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Abstract
Combinatorial optimization focuses on arriving at a globally optimal solution given constraints, incomplete information 
and limited computational resources. The combination of possible solutions are rather vast and often overwhelms the lim-
ited computational power. Smart algorithms have been developed to address this issue. Each offers a more efficient way of 
traversing the search landscapes. Critics have called for a realignment in the bio-inspired metaheuristics field. We propose 
an algorithm that simplifies the search operation to only randomized population initialization following the Randomized 
Incremental Construction Technique, which essentially compartmentalizes optimization into smaller sub-units. This relieves 
the need of complex operators normally imposed on the current metaheuristics pool. The algorithm is more generic and 
adaptable to any optimization problems. Benchmarking is conducted using the traveling salesman problem. The results are 
comparable with the results of advanced metaheuristic algorithms. Hence, suggesting that arbitrary exploration is practicable 
as an operator to solve optimization problems.

Keywords Combinatorial optimization · Bio-inspired algorithms · Randomized incremental construction · Traveling 
salesman problem

1 Introduction

Various methods and algorithms have been proposed to solve 
optimization problems. As of late, bio-inspired metaheuris-
tics are among the favorites. On the one hand, this favorit-
ism is highly influenced by the effectiveness of the search 
mechanism and the availability of powerful computers to 

generate potential solutions in a reasonable amount of time. 
On the other, these solutions are impractical to be generated 
using deterministic approaches due to the incomplete prob-
lem definition and vast search landscape characteristics of 
the potential solutions.

Evidently, as the biological narratives grew, together 
with the advancement of computing, the pool of bio-
inspired algorithms become excessive. As a consequence, 
knowledge creation stopped and the sophistication of the 
mechanisms remain hidden behind their metaphors and were 
never thoroughly discussed [12, 19, 21]. Issues related to the 
conflicting representation of the biological narrative which 
obfuscate the current knowledge and incessant competition 
with other algorithms further degrade the field. For instance, 
criticism on the Harmony Search algorithm [10, 21], and 
Firefly algorithm [22] as being redundant copies of earlier 
bio-inspired algorithms (i.e., Evolutionary Strategies and 
Particle Swarm) [12] is a common occurrence, emphasizing 
on the issue of redundancy populating the ever expanding 
pool of bio-inspired algorithms.

Despite these criticisms, the expansion of the field is 
rather positive. The availability of these algorithms in 
tackling many optimization problems is fundamental to its 
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existence (i.e., why we need algorithms in the first place). As 
a result, we can wisely choose the most suitable algorithm 
given the specific needs of the problem. Therefore, the prob-
lem is not how many, but how good are those algorithms. 
More importantly, whether these algorithms add any novelty 
to the body of knowledge in the metaheuristics field. Ideally, 
every new algorithm has to be thoroughly examined. This is 
to prevent redundancy, since it is liable to the pseudo-nov-
elty trap. When designing bio-inspired metaheuristics, we 
have millions of species in the planet and consequently, we 
have millions of metaphors that might overlap biologically. 
As suggested in [19], metaheuristics should be explicitly 
identified, stripped down to the essentials, and analyzed, to 
reveal their mechanisms in arriving to the solutions.

Metaheuristics is a relatively new field. However, the 
adoption of metaheuristics in solving combinatorial opti-
mization problems has attracted massive attention [20]. Bio-
inspired algorithms that closely mimic biological systems 
are synonymous with this field. At the forefront of the field, 
we have Genetic Algorithm (GA) [11], Evolutionary Pro-
gramming (EP) [9] and Evolution Strategies (ES) [6]. The 
underlying idea behind these algorithms is fundamentally 
similar. Using natural selection as a key operator, iterative 
improvement of the population occurs through the principle 
of survival-of-the-fittest.

Briefly, a set of candidate solutions is randomly gener-
ated, and based on a quality function to be maximized, a 
fitness is measured. Using this fitness measure, selected can-
didates undergo recombination or mutation (i.e., at times 
both operators) to generate the next generation of candidate 
solutions, producing off-springs for the new population. The 
population is re-evaluated to produce parents for the next 
iteration. This process is repeated until a candidate with 
sufficient quality is produced or a computational limit is 
reached. Further sophistication related to gender-biases have 
been introduced to improve on the natural selection process. 
There are gender-based selection whereby gender (female or 
male) value is assigned to each candidate alternatively in a 
population (sorted in descending fitness values) [18] and the 
introduction of selection pressure on the two gender popula-
tion whereby only one gender of the population goes through 
competition in order to produce off-springs [1]. Accordingly, 
these inclusions produced significant improvements when 
compared to their corresponding basic version, however, the 
procedural structure of each remains (i.e., iterative improve-
ment of a randomly generated set of individuals).

Compared to the conventional initialize-and-then-opti-
mize-procedure, we are proposing a random selection pro-
cedure, whereby only the initialization step occurs during 
each iteration. This highlights the importance of random-
ness as exemplified in Greedy Randomized Adaptive Search 
Procedures (GRASP), with elements from a list created by a 
greedy function added randomly in constructing a solution 

[8]. Following this recommendation, we introduced a sim-
ple bio-inspired algorithm based on the Humpback Angler-
fish. In this study, we dissected the algorithm thoroughly 
to explain the mechanism behind the metaphor and dem-
onstrated its ability to solve the popular traveling sales-
man problem (TSP). The Anglerfish metaphor resembles 
the Randomized Incremental Construction (RIC) technique 
introduced in computational geometry [3]. RIC prevents 
similarity and pre-mature convergence with the asymptotic 
bound of O(n log n) in terms of complexity. The proposed 
algorithm is rather minimal; using only randomized iterative 
population as the only operator and a direct fitness evalu-
ation between generations. The mechanism significantly 
improves on the execution time, thus enabling it to become 
a plausible candidate for unsupervised learning intended for 
analytic applications.

2  The Anglerfish metaphor

The deep sea is known for its treacherous environment, e.g., 
freezing temperature, massive water pressure weight, the 
absence of solar and inadequate food sources. However, 
there are species that have adapted and thrived in such harsh 
environment, including the deep sea Humpback Anglerfish 
(i.e., a prime example of deep sea adaptation [16]). Angler-
fish is a predator fish commonly identified by a fleshly 
growth on the fish head called the esca (refer Fig. 1), that 
acts as a lure and is found on most adult females [13, 15] 
An interesting trait of the Anglerfish is sexual parasitism, 

Fig. 1  The Humpback anglerfish (Melanocetus johnsonii), a species 
of black sea devil (Melanocetidae).  Adapted from Brauer ([2])
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prevalent among the sub-order called Ceratiodei, in which 
males are dwarfed and become permanently attached to their 
larger female counterpart.

The dwarf males have difficulty in finding food due to 
their size. Their survival depends entirely on finding a 
female partner for mating. Naturally, the males have big 
eyes and huge nostrils, primarily for detecting pheromone 
released by the females. The common jaw teeth (observed in 
most females) are replaced by a set of pincer-like denticles 
at the tips of the jaws for grasping on a female. The male 
latches onto the female. The male then becomes permanently 
dependent on the female for blood-transported nutrients, 
and the female becomes a self-fertilizing hermaphrodite. 
Multiple spawning may take place afterwards. This sexual 
dimorphism ensures that there is a supply of sperms when 
the female is ready to spawn. Multiple males, up to eight 
males in some species, can be fused.

Some key ideas were extracted from the metaphor in for-
mulating the algorithm. These ideas are converted to the 
procedural and randomization mechanism of the algorithm.

• A population consists of both gender. Male presence is 
more frequent than the females.

• Males will die when they could not find a mate. There is 
some possibility for immature females to die without any 
attachment from the male.

• Only mature females have the ability to spawn.
• The fittest mature female spawns the most. However, 

there is a fix number of spawns that can be generated at 
each time cycle to control the population.

• The spawns from the best mature female inherit her 
legacy. They have priority in terms of luring males for 
mating.

The adaptation of the ideas into the Anglerfish algorithm 
is presented in Fig. 2. As depicted in the figure, the procedure 
consists of only two processes (i.e., initialization and re-ini-
tialization). Although loosely resembles the natural selection 
principle, the recombination process is clearly absent (i.e., 
which is vital in directed evolution). The algorithm simply 
resets and repopulates after each iteration. Sub-mechanisms 
such as mating and spawning are selective randomization pro-
cess to control the initialization of the next population based 
on the fitness value as a guide.

3  Formal definition of the Anglerfish 
algorithm

Let N be an integer, we define mature female, C as a set of N 
elements, young female F as a subset of C, and male, m an 
element from C.

The number 8 is chosen because up to 8 males can be 
attached to a female as indicated in the Anglerfish ecosystem 
[16]. At time cycle t = 0, initialization happens with u young 
females and v males. There is no restriction on u and v, the 
only condition is that v must be a larger number than u.

Females are much rarer than males. Therefore,

Mating occurs when the element of the male is absent in a 
young female. They merge to become a mature female. This 
continues until all 7 cases are merged.

(1)C = {1, 2, 3,… ,N}

(2)F ⊂ C, (N − 8) < |F| < (N − 1)

(3)m ∈ C

(4)A(0) = {F1,F2,F3,… ,Fu,m1,m2,m3,…mv}

(5)m(t) > F(t)

(6)
C =F ∪ m1, whereby m1 ∉ F, |F| = N − 1

C =F ∪ m1 ∪ m2, whereby m1,m2 ∉ F, |F| = N − 2,m1 ≠ m2

C =F ∪ m1 ∪ m2 ∪ m3, whereby m1,m2,m3 ∉ F, |F| = N − 3,m1 ≠ m2 ≠ m3

Re-Initialization

Fig. 2  The Anglerfish algorithm. The procedural step consists of ini-
tialization and re-initialization. Initialization is a purely random pro-
cess unlike re-initialization, where selective randomization occurs 

with embedded elitism element. The re-initialization process is com-
prised of mating, fitness evaluation and spawning. Algorithm is ter-
minated once maximum epoch has been reached
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Males die when they could not find a mate. There is prob-
ability of a young female to remain immature due to lack of 
males. Eventually, she will die as well.

Mature females spawn young females and young males. 
Spawning is skewed towards the male off-springs.

We fixed the probability of a young male to spawn at 0.8 
after initial trial runs. This value can be optimized depend-
ing on a given task. By increasing the bias towards male off-
spring, we will effectively preserve the diversity of the popu-
lation. Reversely, the bias skewed towards female off-spring 
generation limits the randomization mechanism, influencing 
the exploration capability of the algorithm.

Number of spawns that can be generated at each time cycle 
is assigned as maximum spawn number, sp. Let Sfittest be the 
spawn group of the fittest mature fish, Cfittest . We denote s as 
the individual spawn as

We denote r as the number to be reduced from sp. Each 
subsequent fittest fish will spawn a smaller group of sp (grad-
ually). This iteration will continue until sp = 0. The three 
dynamic parameters that can be refined for optimization are 
sp, r and maximum time cycle T as the termination criterion. 
All three variables affect the performance of the algorithm 
depending on the optimization problem at hand.

4  The Anglerfish algorithm

Similar to the existing population based optimization algorithms, 
the algorithm starts with the initialization phase. During ini-
tialization, only young females and young males are created as 
opposed to the complete candidate solution, which in our case is 
the mature female. In essence, representation of the sub-problems 
or sub-components of the solution, is similar to the procedural 
steps of the Randomized Incremental Construction (RIC) tech-
nique proposed in [3]. RIC utilizes random sampling to split 
problems into sub-problems, and then incrementally assem-
bles the solution. These young-lings are representation of sub-
problems and accordingly, the incremental approach is imitated 
through the merging process of males with immature female.

(7)A(t) = {C1,C2,C3,… ,Cc(t)}

(8)Pr(m) > Pr(F)

(9)
Pr(m) = 0.8

Pr(F) = 0.2

(10)
s =m or F

Sfittest ={s1, s2, s3,… , ssp}

(11)
sp = sp − r

Snext fittest ={s1, s2, s3,… , ssp}

Algorithm 1: The basic Anglerfish TSP algorithm
Data: TSP instance
Result: find the fittest solution (fish)

1 initialization with 10 young females and 50 young males;
2 while not end of Time cycle do
3 mating;
4 fitness evaluation;
5 sort according to descending fitness;
6 maximum spawn number, sp = 100, reduction number, r=10;
7 for each female fish,F from the top do
8 if sp > 0 then
9 f spawns sp, Pr(m)=0.8 and Pr(F)=0.2;

10 sp = sp - r;
11 else
12 break;
13 end
14 end
15 Time cycle=Time cycle+1;
16 end

Algorithm 2: The legacy Anglerfish TSP algorithm
Data: TSP instance
Result: find the fittest solution (fish)

1 initialization with 10 young females and 50 young males;
2 assign similar legacy to all females;
3 while not end of Time cycle do
4 sort according to descending legacy;
5 for each female fish,f from the top legacy do
6 mating;
7 end
8 remove all young males and young females;
9 fitness evaluation;

10 sort according to descending fitness;
11 assign descending legacy to all fishes,fittest fish has best legacy;
12 maximum spawn number sp=100, and reduction number r=10;
13 for each female fish,f from the top fitness do
14 if sp > 0 then
15 F spawns sp, Pr(male)=0.8 and Pr(female)=0.2;
16 assign F’s legacy to all spawns;
17 sp = sp - r;
18 else
19 break;
20 end
21 end
22 Time cycle=Time cycle+1;
23 end

The next phase is mating. Unlike the recombination 
operator found in evolutionary optimization algorithms, the 
mating process is a form of selective randomization applied 
to create the candidate solutions similar to the incremental 
approach in RIC. However, different from RIC, the incre-
mental steps in the Anglerfish algorithm are arbitrary for 
each young female (F) with a maximum incremental step 
(defined at 8 times, following the metaphor). The Anglerfish 
combines a single female (F) with up to eight males (m). 
This produces a richer pool of candidates irregardless of the 
fitness value. In Anglerfish, mating is a part of the re-initial-
ization process, and it is directly responsible in creating the 
candidate solutions instead of the recombination process to 
produce off-springs as commonly observed in evolutionary 
algorithms. Randomness is further promoted during mating 
to allow for a creation of diverse candidate solutions.
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A key feature of population based algorithms is utiliz-
ing the neighborhood search to find the optimal solution. 
This is possible only if a neighborhood relation is defined 
in the search space. For instance, in Ant Colony Optimi-
zation (ACO), the neighborhood search are directed using 
pheromone as weight [4], while Particle Swarm Optimiza-
tion (PSO) utilizes the positioning and velocity values to 
determine its flocking behavior [5]. There is a need to define 
adaptive parameters to reflect the relation between agents. 
These parameters are constantly updated at each iteration, 
taking into consideration input from the sub-sequence or 
even the entire population. Adaptive parameters between 
population are discarded and do not contribute to the opti-
mization process. Compared to common population based 
algorithms, Anglerfish has the ability to stumble upon qual-
ity solution at any steps even in less preferable settings.

In adapting the Anglerfish metaphor, the fittest fish gets 
to spawn the most and the best breed of spawn gets to mate 
first because they are more attractive. Following the meta-
phor, ranking is performed to determine the candidate solu-
tion (C) that can become parents for the next generation. To 
ensure the fittest fish has an advantage compared to the unfit 
candidates, we reduce the spawn number for the next fittest 
fish until a threshold is reached. The spawn limit (sp) and 
reduction rate (r) can be tuned to optimize the algorithm. 
During the spawning process, a legacy value is assigned 
to all female spawns. The legacy value represents the fit-
ness order of their parent. This legacy attribute enables the 
spawn to have priority during mating. Finally the algorithm 
checks for the end of time cycle (T) and repeats the whole 
process if it has not reached T. Unlike most metaheuristics, 
the exploration of the search landscape is rather loose and 
undirected, except for the preferential treatment (priority) of 
the fittest candidate during mating. Further randomization 
on the population are enforced to ensure diversity is pre-
served (i.e., during the spawning and mating phases). This 
randomization mechanism would negate the elitism aspect 
in mating to indirectly prevent local optima.

The basic version of the Anglerfish algorithm (i.e., no 
legacy option) was implemented first on the TSP. Pseudo-
code for the basic Anglerfish TSP is listed in Algorithm 1. 
The legacy enabled version (i.e., the advanced Anglerfish 
algorithm), is presented in Algorithm 2.

5  Results and discussions

An instance of the traveling salesman problem (TSP) (from 
the TSPLIB [17]) was selected for benchmarking (the 
ulysses16). This instance has 16 cities with their respective 
coordinates. For the Anglerfish TSP algorithm, young males, 
(m) represent a single city and young females, (F) represent 
any 8–15 arbitrary ordered cities. The range of between 8 

and 15 is selected based on the metaphor of having a maxi-
mum of eight male partners (that will latch to the female 
fish). Mating is permitted only if the city is not yet available 
in the female. A new city is added at any random point once 
mating is initiated. A female is deemed mature once all 16 
cities are connected.

Fitness evaluation is performed on all mature females in 
the population. The fitness value is determined by calculat-
ing the travel route of all 16 cities in the order found in a 
particular mature female, in which the fittest represents the 
shortest path. Re-population is performed afterwards.

Priority of spawning is assigned to the fittest mature 
female. During spawning, young males are randomly 
assigned a city number of the 16 cities (with the likelihood 
sets to 0.8 as default). Young females inherit the route from 
their ancestor minus a single city (i.e., imitating a single 
based mutation operator common in evolutionary algo-
rithms), or multiple cities (up to 8 cities), randomly selected 
to ensure diversity. These young-lings are then allowed to 
mate with new males.

For the simulation, 10 young females and 50 young males 
are initialized. Five sets of simulations were conducted. 
The five sets differ by the time cycle T (25 time cycles, 50 
time cycles, 75 time cycles, 100 time cycles and 125 time 
cycles). These time cycles act as a termination point of the 
algorithm. These cycles were selected based on pre-trial 
runs while developing the algorithm. Each set of simulation 
consists of 30 runs and the optimal solution is identified at 
6859, as quoted from the online TSPLIB.1 Both Anglerfish 
TSP algorithms (with and without the legacy attribute) were 
tested.

5.1  The Anglerfish TSP without the legacy attribute

Benchmarking is conducted on the basic version of the 
Anglerfish TSP algorithm. We are excluding the legacy 
attribute to evaluate the performance of the exploration 
mechanism. The population simply resets after the first 

Table 1  Results for the Anglerfish TSP without the legacy attribute 
(or basic Anglerfish TSP)

Optimal solution of 6859 were generated from 75, 100 and 125 cycles

No. of iteration Best result Mean result SD SE

25 7002 7536.13 248.2 45.3
50 6875 7130.80 146.7 26.8
75 6859 7027.46 106.8 19.5
100 6859 6988.96 106.4 19.4
125 6859 6961.56 86.9 15.9

1 http://comop t.ifi.uni-heide lberg .de/softw are/TSPLI B95/STSP.html.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html
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initialization without ranking and assignment of the legacy 
attribute. Table 1 depicts the best and mean results from 
the 30 runs. The distribution of the solutions is presented 
in Fig. 3. Runs were conducted with the spawn number (sp) 
sets to 100, this value is deducted with r = 10 from the pre-
vious run spawn number for subsequent runs.

The mean results consistently improved in correlation 
to the number of iterations. The dispersion of the solution 
and the SE were reduced. In the absence of any directed 
evolution mechanism to converge the population, randomi-
zation takes central role, thus corresponding directly to the 
improvement of the exploration with an increase of itera-
tion number. The algorithm produces better solution as more 
individuals are initialized. This is also reflected in the result 
of the best solution, where the 25 iterations run was only 
able to produce 7002 (after 30 trials), an outlier to the 6859 
optimal solution generated from 75, 100 and 125 iterations. 
The value 6859 is the optimal solution for this instance.

Since the Anglerfish algorithm preserves the popula-
tion diversity, the population is not directed to converge to 
only sets of optimal individuals. As illustrated in Fig. 3, the 
mean results are relatively within the optimal solutions, with 
presence of a few outliers. We observed an improvement in 
the density of the population corresponding to the increase 
of the iterations. These occurred despite the absence of 

mechanism to converge the population following the under-
lying principle of RIC—as designed.

5.2  The Anglerfish TSP with the legacy attribute

The legacy attribute adaptation of the Anglerfish metaphor 
loosely mimics the elitist mechanism commonly found dur-
ing the selection process in popular evolutionary algorithms. 
This attribute is introduced to all females. Based on the met-
aphor, the fittest mature female will have the highest legacy 
value and this attribute is inherited by subsequent generation 
(from the female spawns). Priority is given to the young 
females based on the attribute value. With the introduction 
of this attribute, young females with good legacy will be 
more attractive to the young males, thus allowing her to latch 
to her mates first. Ranking and legacy attribute assignment 
are embedded into the basic Anglerfish TSP.

Immediate improvement for the best and mean values can 
be observed with the legacy attribute (refer Table 2). Both 
iterations of 25 and 50 produced better optimal values as 
compared to previous runs. Variants within the population 
are smaller for all runs with better dispersion, as indicated 
in Fig. 4. The effect of the legacy attribute is further high-
lighted with the significant reduction of the SD values of all 
population. This indicates that each population has better 

Fig. 3  Results distribution 
for the candidates in Table 1. 
Aside from cycle 25 and 50, the 
remaining cycles (75, 100 and 
125) showed consistent means 
that hover approximately within 
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fitted Anglerfish females as seeds during the randomization 
process as compared to the complete purely arbitrary order 
of the basic version.

It is important to note that the improvement for the individ-
ual solutions was achieved by facilitating better seeds for rand-
omization. In contract with the conventional “selection” phase 
employed in most bio-inspired algorithms. The Anglerfish 
maintains all individuals, however the legacy attribute allows 
mating to be prioritized, thus allowing more suitable males 
to latch first with more attractive females. The luring process 
remains random. This is unlike conventional “selection” and 

“recombination” strategies that force the fittest individuals to 
become parents, enabling better off-spring generation.

Mean processing time for all runs with the legacy attrib-
ute is marginally higher than the basic Anglerfish algorithm. 
Correspondingly, increasing the time cycle (T) directly affect 
the processing time as depicted in Fig, 5. Increasing the time 
cycle allows for more candidate solutions to be generated 
and promote a more thorough exploration. Depending on the 
computational power available, increasing the cycle time, 
might not be the best option. Similar exploration capability 
can be achieved through the utilization of the spawn number 
(sp) and reduction number (r).

In principle, both the spawn number sp and reduction 
number r are able to affect the diversity of the candidate 
solutions, thus allowing better results to be generated using 
smaller time cycle T. Although the optimization of sp and 
r values can reduce the time cycle T, the actual processing 
time might not differ by much, because the re-initialization 
process that involves both mating and spawning will take 
longer time to complete. Three separate runs were conducted 
to investigate the influence of both sp and r in determining 
the solutions by assigning sp = 500 and r = 50 for the first 
run, sp = 700 and r = 50 for the second and sp = 1000 and 
r = 100 for the third.

Table 2  Results for the legacy Anglerfish TSP

Optimal results were generated for cycle 75, 100 and 125; as 
observed in Table 1. However, cycles 25 and 50 produced better opti-
mal values. The mean and SD improved with the introduction of the 
legacy attribute

No. of iteration Best result Mean result SD SE

25 6976 7254.6 219.1 40.0
50 6870 7005.3 121.0 22.1
75 6859 6920.0 42.1 7.7
100 6859 6900.0 40.1 7.3
125 6859 6892.7 31.1 5.7

Fig. 4  Result distribution for the 
legacy Anglerfish TSP. Popula-
tion dispersion improved in all 
cycles especially for cycles 75, 
100 and 125. Comparing to 
the same cycles that performed 
in the basic version, the mean 
improved to approximately ± 20 
points between the three cycles
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Compared to the legacy run (Table 2, the effect of tun-
ing both sp and r resulted with better candidate solutions. 
As observed in Table 3, the increase of sp to 500 allows the 
optimal solution to be generated in only 50 iterations. The 
previous best solution using the legacy mode was stuck at 
6870 and not the optimal solution of 6859. Furthermore, 
the variance between candidate solutions is significantly 
better with 6894.4 as the mean average. This is further indi-
cated by the smaller SD value (i.e., 34.99 as compared to 
219.1). Similar results can be observed for the sp = 700 
and sp = 1000. Evidently, further analysis is required to 
determine the impact of both sp and r parameters for the 
proposed algorithm. Tuning both parameters does influence 
the exploration capability of the algorithm, and could poten-
tially reduce the number of iterations (time cycle). From our 
limited observation, the trade-off between iterations and re-
initialization in terms of actual computational time is not as 
significant, considering the abundance of parallel computing 
resources available currently. However, fine tuning of the 
sp, r and time cycle T is necessary to influence the optimal 
outcome, and requires a more detailed investigation.

5.3  Benchmarking with other algorithms

The performance of the Anglerfish TSP algorithm is then 
tested against well-known metaheuristics. Benchmarking is 
conducted using oliver30 [4]. For replication purpose, oli-
ver30 is selected because this instance has an optimal value 
and published results for the common algorithms. Bench-
marking is conducted only for these results as rerunning the 

Fig. 5  The mean processing 
time between the basic and 
advanced Anglerfish algorithms 
for each cycles. All runs were 
conducted on an Intel Core 
i7-4790 3.6 GHz Quadcore 
machine with 8GB RAM
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Table 3  Results for the legacy Anglerfish TSP with sp = 500 and 
r = 50 , sp = 700 and r = 50 , and sp = 1000 and r = 100

Optimal results are obtained in time cycle 50 as compared with previ-
ous legacy runs depicted in Table 2. Both time cycles recorded better 
dispersion

sp r No. of iteration Best result Mean result SD

500 50 50 6859 6894.4 34.99
100 6859 6881.7 20.87

700 50 50 6859 6883.6 31.05
100 6859 6885.8 24.25

1000 100 50 6859 6886.0 26.39
100 6859 6885.4 27.06
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experiment is difficult due to the lack of available codes, and 
biases that might be introduced during re-coding of these 
algorithms.

The coordinates of oliver30 is available online.2 The 
optimal solution of oliver30 is 420. For this experiment, 
the Anglerfish TSP algorithm is configured with 30 young 
females and 150 young males, maximum males that can 
attach to a female remains at 8, with the sp value sets at 
700, subsequent next best spawn deduction sets to r = 50 
from the previous spawn number, and population control 
of 10,000 fishes. These values are configured after pre-trial 
runs. Adjustments were made according to the number of 
instances involved (i.e., from 16 to 30 cities).

Benchmarking is performed only on the optimal solution 
based on the data available from [4]. Table 4 summarized 
the optimal value generated from Ant Colony System (ACS), 
Genetic Algorithm (GA), Evolutionary Programming (EP), 
Simulated Annealing (SA), hybrid of SA and GA (AG) and 
the proposed Anglerfish algorithm. As mentioned above, the 
optimal solution for oliver30 is 420, and only ACS, EP, AG 
and Anglerfish managed to produce the optimal value.

Details of the runs are listed in Table 5. Since the termi-
nation criterion is solely based on number of iterations, we 
have conducted trial runs to gauge the maturity of the popu-
lation. Similar to previous observation, the additional nodes 
evidently increases the number of iterations. The number of 
iterations was set to 400 cycles based on the trial runs con-
ducted prior to the simulation. After 400 cycles, the popu-
lation has the optimal value of 420, with relatively better 
dispersion of fishes (mean of 452 ± 4.1) when compared to 
the optimal solution. SD of the population is relatively low 

at 22.5, consistent with our previous findings with legacy 
attribute assignment.

Benchmarking is then expanded to 52 cities (berlin52) 
to evaluate on the scalability of the proposed algorithm. As 
indicated in TSPLIB, the optimum solution for the berlin52 
is 7542. The same configurations as described for the oli-
ver30 version were applied. Summary of the results is listed 
in Table 6. The Anglerfish TSP algorithm was able to gen-
erate the optimal value of 7542 after 4000 iterations. Since 
the number of cities tripled as compared to the previous 
benchmark, we have to extend the run cycles accordingly. 
For this experiment, we ran between 600 and 4000 iterations 
with varying outcomes (refer Table 7).

The optimal values fluctuate inconsistently between runs, 
indicating no substantial pattern for the termination criterion 
(i.e., of better optimal values as the cycle increases). How-
ever, the mean values in the population are consistent. In 
essence, this shows the effectiveness of the randomization 
procedure, and at the same time highlights the importance of 
the stopping criterion (a common problem in combinatorial 
optimization algorithms). A further comparison against the 
common optimization strategy is omitted since performance 
analytics of these algorithms are missing from the references 
and re-coding the codes would introduce unnecessary pro-
gramming biases.

In both cases (oliver30 and berlin52), the proposed 
Anglerfish TSP algorithm managed to arrive to the opti-
mal results. Considering the minimal computational time 
involved for both runs, and the plausible adaptation to par-
allel runs, we believe that the proposed algorithm would 
be able to generate solutions in an unconventional way as 
compared to the gradual improvement strategy employed by 
most optimization algorithms. Although there is no rule of 
thumb, a large time cycle would be adequate for the algo-
rithm to stumble on the optimal values. This is suitable as 
the algorithm is computational inexpensive to run (i.e., and 
can be executed in parallel environment).

6  Conclusion

Extensive computational power is now available in the form 
of multi-core processors, where instructions can be executed 
in parallel. Therefore, the need of complicated algorithms 

Table 4  Results for the oliver30 
TSP benchmarking

The optimal values for Ant Colony System (ACS), Genetic Algorithm (GA), Evolutionary Programming 
(EP), Simulated Annealing (SA), hybrid algorithm of Simulated Annealing and Genetic Algorithm (AG) 
are extracted directly from Table 3 in [4]. These values are the best optimal values recorded during the 
simulation. The optimal value for the Anglerfish algorithm (Anglerfish) was generated from the simulation, 
detailed in Table 5. Only ACS, EP, AG and the Anglerfish managed to arrive at the optimal value

TSP instance ACS GA EP SA AG Anglerfish

oliver30 420 421 420 424 420 420

Table 5  Results for the oliver30 runs from the legacy Anglerfish 
(TSP) algorithm after 400 cycles

The number of iterations was increased to 400 to accommodate for 
the number of cities involved. The number of individuals allowed 
after each cycle are kept at 10,000

No. of iteration Best result Mean result SD SE

400 420 452 22.5 4.1

2 http://steve dower .id.au/blog/resea rch/olive r-30/.

http://stevedower.id.au/blog/research/oliver-30/
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to speed up computation is no longer necessary. To lever-
age on such technology, we need to be able to run simple 
instructions concurrently for multiple times. The proposed 
Anglerfish algorithm fits this description. The algorithm 
traverses the search landscape using random sampling 
without any complicated procedural routines. Issues such 
as the termination criterion and the efficacy of the algorithm 
remained, however the proposed algorithm can become a 
blueprint towards realigning the bio-inspired metaheuristics 
field in producing simple and elegant solution, leveraging on 
the current computational platform for future autonomous 
optimization.
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Table 6  Results for berlin52 
TSP benchmarking

Optimal values for the common metaheuristics were extracted from [14, Table 2] for Basic and Improved 
Discrete Cuckoo Search (DCS), and [14, Table 5] for Discrete Particle Swarm Optimization (DPSO), from 
[7, Table 7] for Ant Colony System (ACS) and Ant Colony Extended (ACE)

TSP instance Basic DCS Improved DCS DPSO ACS ACE Anglerfish

berlin52 (Best) 7542 7542 7542 7542 7542 7542

Table 7  Results for the berlin52 runs from the legacy Anglerfish TSP 
algorithm

Since there is no reference point and the size of the cities involved 
is large, multiple runs were executed using between 600 and 4000 
cycles as termination points. The optimal solution was generated after 
4000 runs. As mentioned previously, the number of individuals were 
controlled at 10,000

No. of iteration Best result Mean result SD SE

600 7775 8558.5 375.7 68.6
1000 7922 8525.4 402.9 73.6
1500 7854 8559.4 362.9 66.3
2000 8142 8637.3 346.4 63.3
3000 7764 8387.8 396.1 72.3
4000 7542 8447.9 391.8 71.5
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