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Abstract

Nature-inspired optimization algorithms, especially evolutionary computation-based and swarm intelligence-based algorithms
are being used to solve a variety of optimization problems. Motivated by the obligation of having optimization algorithms, a
novel optimization algorithm based on a lion’s unique social behavior had been presented in our previous work. Territorial
defense and territorial takeover were the two most popular lion’s social behaviors. This paper takes the algorithm forward on
rigorous and diverse performance tests to demonstrate the versatility of the algorithm. Four different test suites are presented
in this paper. The first two test suites are benchmark optimization problems. The first suite had comparison with published
results of evolutionary and few renowned optimization algorithms, while the second suite leads to a comparative study with
state-of-the-art optimization algorithms. The test suite 3 takes the large-scale optimization problems, whereas test suite 4
considers benchmark engineering problems. The performance statistics demonstrate that the lion algorithm is equivalent to
certain optimization algorithms, while outperforming majority of the optimization algorithms. The results also demonstrate

the trade-off maintainability of the lion algorithm over the traditional algorithms.

Keywords Lion algorithm - Optimization - Bio-inspired - Large-scale - Crossover - Mutation

1 Introduction

Nature-inspired computing plays a great role in solving
uncertain, partially true, imprecise, highly conflicting and
complex problems with the aid of nature’s behavior and its
inspiration [1, 2]. Bio-inspired computing can be said as a
subset of natural computing that has emerged from the day
of solving real-life problems with biological motivation [3,
4]. The nature computing has become popular among all the
researchers, when it has broken barriers of classical com-
puting [5], solving classification and prediction problems
and more specifically optimization problems. Numerous
optimization algorithms or optimal search algorithms have
been developed based on natural inspiration since 1970 [6].
Since then, bio-inspired optimization algorithms such as
genetic algorithm, particle swarm optimization algorithm,
and many more find applications in almost all the emerging
fields [5, 7-9].
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In the family of bio-inspired optimization algorithms,
a new optimization algorithm called as lion algorithm is
introduced in this paper. Previously, a basic model of the
algorithm (was termed as lion’s algorithm) was proposed
in [10]. Further, we extended the algorithm (named as lion
algorithm) and solved large scale bilinear system identifi-
cation [11]. Since the development, numerous researchers
have adopted our algorithm for various applications [12—-14].
However, it has not been well-studied for its versatility.
Hence, this paper investigates the performance of the lion
algorithm on different test suites (downloadable at https://
sites.google.com/view/lionalgorithm/test-suite) and engi-
neering optimization problems.

2 Proposed lion algorithm

2.1 Biological inspiration

Distinct from other cat species, lions survive with an inter-
esting social system/behavior, termed as pride, to strengthen

their own species at every generation. Generally, a pride is
comprised of 1-3 lion pairs in which the resident females
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attend males to give birth to offspring. They share an area
called a territory with peaceful interactions. The dominating
lion of a territory (often called as territorial lion) rules the
territory by fighting against other attacking animals includ-
ing nomadic lions. The territorial defense continues till the
cubs attain sexual maturity, probably for 2—4 years. During
these 2—4 years, nomadic lions try to invade the pride. Fre-
quent survival fights take place between the nomadic lions
and the pride (for which territorial lion is responsible) for
the territorial defense. A coalition among the lions, which
are in pride, helps to defeat the nomadic lion. However, if
the territorial lion is defeated, it will be killed or driven out
by the pride of the nomadic lion. The nomadic lion becomes
the territorial lion by taking charge of the pride. It kills the
cubs of a lost lion and drives the lioness to estrus. Copula-
tion begins between the lioness and the new territorial lion to
give birth to offspring of a new lion. The behavior continues
until cubs of a territory get matured.

Once the cubs become adult and if proved as they are
stronger than the territorial lion, territorial takeover hap-
pens. Like territorial defense, the territorial laggard lion will
be either killed or driven out from the pride of completely
grown cubs. The new stronger pride lion drives/kills the cubs
or weak lions of the pride and copulate with pride lioness to
give birth to their own cubs [15].

2.2 Algorithm structure

The basic model of the lion algorithm was introduced as a
searching algorithm in the year of 2012 [10]. Subsequently,
it has been restructured with upgrades and presented in [11].
It comprises of six processing stages namely, (1) Pride gen-
eration, (2) Fertility evaluation, (3) Mating, (4) Territorial
defense, (5) Territorial takeover and (6) Termination.

Pride generation is the initiating process of lion algo-
rithm, which is similar to the initialization steps of most
of the evolution and swarm-based optimization algorithms.
Mating is the most responsible process for deriving new
lions (called as cubs) from the parent lions after subjecting
to fertility evaluation, which is the second process. Terri-
torial defense and territorial takeover are identified as the
unique processes over other optimization algorithms, as they
are the explicit inspiration of lion’s social behavior. These
two steps play the primary roles to guide the algorithm
in determining the optimal solutions from a huge search
space. The termination process of lion algorithm is problem
dependent and hence that could be either based on a number
of iterations/generations or based on the optimality of the
obtained solutions. More details about individual processing
stages are described in [11], while their concise description
is given further. The mathematical background on the paper
is presented in Appendix.
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3 Processes and operators of lion algorithm

In this section, the search processes and operators are
explained in detail with the reference of Fig. 1. Despite two
variants of lion’s algorithm are given in [10]. This paper pre-
sents only real-coded lion algorithm. However, binary-coded
lion algorithm is presented here as a special case of real-coded
lion algorithm when the dimension of the solution variable is
one.

3.1 Problem formulation

Let us consider the objective function given in Eq. (1)

xeptimal — - arg min fxy, x5, ..0x,); n>1.
X E(anin,xl.“ax) (1)

In Eq. (1), f(e) is a continuous unimodal or multimodal
function for which the solution space is of size R” where, R
represents real numbers, x; : i =1,2,...,nis the i solution
variable and 7 is the dimension of the solution vector, x;.’“““
and x;*** are the minimum and maximum limits of ith solution
variable, respectively. X’ is the optimal/target solution to
be obtained from the given optimization algorithm and it can
be represented as in Eq. (3). The size of the solution space of
f(e) can be determined as follows

n

R = [ (=) @)

i=1

Xoplzmal =X f(X) <f(X’|X/ # X;x; e (x;nm’x;nax))’ (3)
where, X is the solution vector with the representation
X= [xl,x2 xn] Equation (1) presents the objective func-
tion to be solved as a minimization function. In some cases,
this could be a maximization function and hence appro-
priate selection process has to be used in the optimization

algorithm.
3.2 Pride generation

According to the pride definition [10] and Eq. (1), pride is
initialized with a territorial lion X its lioness X/¢"@¢ and
a nomadic lion X" The nomadic lion is not a member of
pride, despite its generation is discussed in pride generation
process. The lions representation is as similar to the solution
vector representation. The vector elements of X™e, xfemale
and X"omad je x?”"le, x?emale and x;“””“d are arbitrary integers
within the minimum and maximum limits when n > 1 (search
with real encoding), where,/ = 1,2, ..., L. Here, L represents
the length of the lion that can be determined as follows

n > 1 (general case)
otherwise (special case),

“
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Fig. 1 Flowchart to depict the structure of lion algorithm

where, m and n are integers to decide the length of lions.
When n = 1, the algorithm has to search with binary encoded
lion and so the vector elements are either be generated as 1
or 0, provided the constraints are given in Egs. (5) and (6)
have to be satisfied.

min

g(x) € (X", ™) (5)
m%2 = 0, (6)
where,
L L .
g(x) = szz(f‘ ) (7
=1

Equations (5) and (7) ensure that the generated binary
lion is within the solution space and Eq. (6) ensures that the
numbers of binary bits before and after the decimal point
are equal. As we experiment only with real-coded lion algo-
rithm, we do not further discussed about the binary-encoded
lion and henceforth all the discussions explicitly represent
only real-coded lion algorithm.

The generated X"*" fills one of the two nomadic lion
positions as we assume that there are two nomadic lions try
to invade territory. The other nomadic lion will be initialized
only at the time of territorial defense. Hence, for the time
being the position remains null and X" will be repre-
sented as X;‘”’”“d .

3.3 Fertility evaluation

In the sequential process of lion algorithm, every territorial
lion and lioness begin to age or sometimes infertile. This
makes the lion as laggard either at survival fights or ter-
ritorial takeover. If X”¥¢ and X/*"4¢ become saturated by
their fitness, then either they would have reached global
optima or local optima from which they could not take us to
better solutions. Fertility evaluation can help to skip from
local optimal solutions. In this process, the X" is found as
becoming laggard and its laggardness rate L, is increased by
one, if f (X’"“le) is greater than £, which is reference fit-
ness. When L, exceeds its maximum limit Z"** then territo-
rial defense takes place. The fertility of X% is ensured by
sterility rate S,, which is increased by one after crossover. If
S, exceeds the tolerance ST, then Xfemale yndergoes update
as given in Eq. (8). When the updated female X/émalet s
taken as X"l due to its improvement, the mating process
can be performed. On contrary, the updating continues till
the female generation count g, reaches gi'**. If there is no
Xfemalet to replace X/ throughout the updating process,
it can be decided that the X/ is still fertile enough to
produce better cubs [11].

xfemale+ xfemale+; lfl =k
1 = Xjemale.

! ; otherwise

®)
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xfm‘”” = min [x,‘{“ax, max (x", Vk)] )

Vk — [xfmule + (0.17‘2 _ 0‘05)<x2nale _ r]){('emale)il, (10)
where, )c’l‘maleJr and )dzemalﬁ are the I and k™ vector elements
of Xfemale+ ' respectively, k is a random integer generated
within the interval [1, L], V is the female update function,
r, and r, are random integers generated within the interval
[0, 1].

3.4 Mating

In lion algorithm, mating involves two primary steps and one
supplementary step. Crossover and mutation are considered as
the primary steps and gender clustering is called here as the
supplementary step. In the literature, numerous works have
been discussed about the crossover and mutation operations
and their need for evolutionary algorithms [16—19]. These
operators highly motivate us and hence we embed them in
our algorithm. By performing crossover and mutation, X"
and X7 give birth to cubs, which are solutions derived from
both the elements of X”*¢ and X/*"¢, We follow the maxi-
mum natural littering rate, i.e., four cubs (mostly) in a lioness
pregnancy [20] and so our crossover process gives four cubs.

Fig.2 Crossover operation for
lion algorithm
X male

The proposed crossover operation for generating one cub is
portrayed in Fig. 2, while the definition is given in Definition
1 of Appendix. The crossover mask B is varied to generate
each cub, i.e. p mask B, is used to obtain X““**(p). These
four cubs are further subjected to mutation to produce new four
cubs. Henceforth, we use the terms ‘X¢“¥5* to represent cubs
that are obtained from crossover and ‘X"’ to represent cubs
that are obtained from mutation. These eight cubs occupy cub
pool and are subjected to gender clustering to finalize X"
and X/-“»_ The resultant X”-** and X"-<“® follows cub growth
function to get self-update [11].

3.5 Lion operators

Territorial defense [10, 11] not only facilitates wide searching
of solution space, but also guides to algorithm to evade from
local optimal point as well as identifying diverse solutions with
similar fitness. The territorial defense can be sequenced here
as generating nomad coalition [21, 22], survival fight [23] and
then pride and nomad coalition updates. The nomad coalition
process is simplified by applying winner take-all approach [24]
to identify X¢-"*m4d_ Subsequently, X¢-"" is selected if the
criteria given in Eq. (11)—(13) are met.
f(Xe_nomad) < f(Xmale) (1 1)

f (Xe_nomad) < f (Xm_cub) (12)

Mating Lions
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f(XeJtomad) < f(Xff”‘b) ) (1 3)

Pride is updated only when X" is defeated, whereas
nomad coalition is updated only when X¢-""4 jg defeated.
The pride updating is a process of replacing X" by
Xe-nomad whereas updating a nomad coalition means selec-
tion of only one X" which has E""% greater than or
equal to the exponential of unity (please refer theorem 2 in
Appendix) and the other position will be filled only at the
time of next territorial defense [11].

Territorial takeover [10] drives the algorithm to update
xmale qnd xfemale i xm_cub and Xf-cub gre matured, i.e. when
the age of cubs exceeds the maximum age for cub maturity
Aoy [111.

max

3.6 Termination

The algorithm execution is terminated when atleast one of
the following two termination criteria is met

N, > N;mx (14)

'f( Xmale) _ f( Xoptimal)

where, Ng is the number of generations, which is initialized
as zero and incremented by one when a territorial takeo-
ver takes place, N;““"‘ and e, are the maximum number of
generations and error threshold, respectively and |e| is the
absolute difference. Please note that second criterion, given
in Eq. (15) can be considered only when the target minimum
f(xeptimal) (or maximum) is known and f (X'} does not

mean that XP"a jg known.

<er, (15)

4 Experimental setup
4.1 Implementation

The steps to be followed to simulate lion algorithm are as
follows
Step 1: Initialize X™®e, Xfemale apd xromad

Step 2: Calculate f (X”‘“le), f (Xfe’”"le ) and f <X]””’"“d )

Step 3: Set /% = f(X™) and N, = 0

Step 4: Store X"/ and f(X™a’)

Step 5: Perform fertility evaluation

Step 6: Perform mating and obtain cubpool

Step 7: Perform gender clustering and obtain X"~ and
Xfﬁcub

Step 8: Initialize A, as zero

Step 9: Execute cub growth function

Step 10: Perform territorial defense; if defense result 0,
go to step 4

Step 11: If A, < Apaxs 20 to step 9

Step 12: Perform territorial takeover and obtain updated
Xmale and Xfemale

Step 13: Increase N, by one

Step 14: If the termination criteria are not met, go to step
4, otherwise terminate the process.

5 Results and discussions
5.1 Testsuite 1

The test suite 1 has 23 benchmark functions of unimodal
and multimodal in nature. These benchmark functions have
been widely used by various researchers to assess the per-
formance of optimization algorithms [25-27]. The perfor-
mance of the lion algorithm on test suite 1 is compared in
two phases. In phase 1, traditional evolutionary computation
methods are used, whereas phase 2 considers renowned opti-
mization algorithms.

5.1.1 Phase 1 of test suite 1

The traditional evolutionary computation methods include
classical evolutionary programming (CEP) [28, 29], fast
evolutionary programming (FEP) [27], canonical evolu-
tionary strategies (CES) [30], fast evolutionary strategies
(FES) [31], Covariance Matrix Adaptation-Evolution Strat-
egy (CMA-ES) [32, 33], evolutionary strategies learned with
automatic termination criteria (ESLAT) [34]. To ensure fair
comparison, the published results of CEP and FEP are col-
lected from [27], CES and FES from [31], CMA-ES and
ESLAT from [34]. As unimodal functions and multimodal
functions with many local minima are having higher dimen-
sion than multimodal functions with few local minima, at
least 1000 executions are required to ensure the reliability
of the obtained results [25]. Hence, 1000 executions of lion
algorithm are made and the statistical measures are deter-
mined and tabulated in Tables 1 and 2. Table 3 depicts the
statistical results for 50 runs on multimodal benchmark func-
tions with few local minima.

From Table 1, it can be seen that the lion algorithm out-
performs four algorithms when solving schwefel 2.21 and
step functions. When solving schwefel 2.22, it dominates
over three algorithms (FEP, CES and FES) while it domi-
nates over two algorithms (CEP and CES) when solving
schwefel 1.2 function. Despite the lion algorithm is incom-
petent to solve sphere and rosenbrock functions, it is the
most competent algorithm to solve quartic function.

Table 2 shows that among all the other multimodal func-
tions with many local minima, the penalized function is the
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most challenging function for lion algorithm as it gives the
least performance over other algorithms. However, from the
same Table, lion algorithm is found to be the best of the six
other evolutionary computation algorithms to solve rastrigin,
Ackley and penalized 2 functions. It dominates over five
algorithms (CEP, FEP, CES, FES and CMA-ES) while solv-
ing schwefel function and two algorithms (CEP and CES),
while solving griewangk function.

From Table 3, it can be seen that all the seven algorithms
found global minima of sixhump, branin and Hartman 3
functions and hence they grab the rank 1. However, lion
algorithm provides zero standard deviation for the first two
functions and second lesser standard deviation for Hartman
3 function. Similarly, lion algorithm dominates over other
algorithms by zero standard deviation when solving gold-
stein-price function, despite CEP, CES, FES and ESLAT
share rank 1 position. Lion algorithm is found as the best
algorithm to solve foxholes function when compared to other
algorithms. Even though lion algorithm is not dominating
for the remaining multimodal functions with few local min-
ima, it outperforms two algorithms while solving Hartman
6 and shekel 7 functions, three algorithms while solving
shekel 10 function and four algorithms while solving kowa-
lik function.

Based on final ranks of lion algorithm, it can be known
that lion algorithm is far better than two, five and four evo-
lutionary computation algorithms when solving unimodal,
multimodal with many local minima and multimodal with
few local minima functions, respectively.

5.1.2 Phase 2 of test suite 1

In this phase, four popular optimization algorithms such as
genetic algorithm (GA) [35], particle swarm optimization
(PSO) [36], artificial bee colony algorithm (ABC) [37] and
group search optimizer (GSO) [25] are compared with lion
algorithm. Like comparison with evolutionary computation
algorithms, we have adopted the published results of GA,
PSO and GSO from [25] and ABC from [26]. The com-
parison results for unimodal functions, multimodal functions
with many local minima and multimodal functions with few
local minima are tabulated in Tables 4, 5 and 6.

Table 4 shows that the lion algorithm is better than GA
while solving sphere, schwefel 2.22 and rosenbrock func-
tions. It outperforms GA and GSO while solving schwe-
fel 1.2 function, while it is better than GA, PSO and GSO
for solving step functions. The results of schwefel 2.21 and
quartic functions showed that lion algorithm is the best
among all the five algorithms.

From Table 35, it can be said as lion algorithm dominates
PSO and GA while solving schwefel and Ackley functions
respectively, whereas it is better than both PSO and GA
for solving griewank function. In spite of lion algorithm’s

Table 3 Performance comparison between lion algorithm and evolutionary computing methods on multimodal benchmark functions with few local minima

FEP CES FES CMA-ES ESLAT

Lion algorithm CEP

Function

R Mean(SD) R Mean(SD) R Mean(SD) R Mean(SD) R Mean(SD) R Mean(SD)

Mean(SD)

1.77(1.37)

7
7

1

10.44(6.87)

2
5

1

1.20(0.63)

6
6

1

2.16(1.82)

3
2

1

1.22(0.56)

4

1.66(1.19)
47x1074(3.0x107%)

—1.03(4.9% 107
0.4(1.5x1077)
3.00)

1

3
1

1(1.12x1071)

Foxholes
Kowalik

8.1x1074(4.1x 107
—1.03(9.7x 10714
0.4(1.0x107"3)

1.5x1073(4.2%x107%)
—1.03(7.7%x 107'%)

0.4(1.4x1071%)
14.34(25.05)

9.7x1074(4.2x 1074
—~1.03(6.0x1077)
0.4(6.0x107%)
3.0(0)

-3.86

-3.23

—5.54

—6.761

-7.63

33

1.2x1073(1.6%x107%)
—1.03(6.0x 1077
0.4(6.0x107%)
3.0(0)

—3.86

—3.24

—6.96!

—-8.31

—8.50!

2.9

5.0x1074(3.2x107%)
—1.03(4.9x 1074
0.4(1.5x1077)
3.02(0.11)

1

3(5.8x 10714

7
1
2
5
6
6

1
1
7
6
4
5

1
1
6
2
2
3

6
1
4
7
7
7

2.9x1071%)

3.3%1072)
2.76)
2.64)

2.06)

= = =

—3.86
-3.31
—8.49
—8.79
—-9.65

1.7

4.8x107'0

5.8%x107%)
3.60)

3.74)
3.74)

= v = = =

—3.86
—3.28
—5.86
—6.58
—7.03

4.3

4.0%x107%)
0.12)
1.82)
3.01)
3.27)

- > T o = =

1.4%x107)
5.7%1072)
3.10)
3.10)
1.25)

=

—3.86(1.4%x107%)
—3.27(5.9%107%)
—5.52(1.59)
—5.52(2.12)
—6.57(3.14)

39

—_ o = = =

6.09%10742.17x107%)

~1.03(0)

SixHump

0.4(4.49%1071%)

3(0)

Branin

1
1
5
4
5
4

Goldstein-Price

—3.86(1.4%x107%)
—3.28(5.8x107%)
—6.86(2.67)

—8.27(2.95)
~9.10 (2.92)

4.49%10715)

N

2
3
3
2

5.55x1072)
2.36)
2.29)
2.49)

NN

NN S S

—3.86
—3.26
—6.47
—6.65
—7.82

2.6

Hartman 3

Hartman 6
Shekel 5
Shekel 7

Shekel 10

1.9

Average rank

SD standard deviation, R rank

Final rank
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K|l = = = =« =& <+ < < failure to perform in solving penalized function, it is proved
to be the best algorithm for rastrigin and penalized 2 func-
A ~ tions (source: Table 5).
o ©
v, o & From Table 6, the performance of lion algorithm over
3 X 2 other algorithms for solving multimodal functions with few
S & S X & &
=¥ T OOF ~ local minima can be seen. Lion algorithm outperforms PSO
N © S g . 8 tpertort
2N IS SIPN % 2 % % py when solving foxholes and hartman6 functions. While solv-
@ N = F . . . . .
2 g x2S 2IZeT ing these functions, both GA and LA shares third position,
ClZ [ TS 1 11 1 1 e« however performance deviation (standard deviation) is lesser
o than GA. For shekel 5, shekel 7 and shekel 10 functions, lion
I algorithm is found to be better than GA and GSO, while
~~ it dominates GA and ABC for solving kowalik functions.
o o —~ Lion algorithm finds the global solution of sixhump and
= X X7 - 1T 1 o&6b gold-stein price function at every run (because there is zero
g S 9 ST 2SS T oY .. LT .-
3= “ = X 29 X X Z XX standard deviation) and remains in the top position among
E =~ = E Qe all the algorithms. It again remains in the top position while
S 2 0N o= S T . . . .. .
g 2% X & = 252383 solving Hartman 3 function with minimum standard devia-
Clu|E|l S35 RNS S S ) . . . .
8|Sy 23¢e9 T T 7@ tion. For branin function, though lion algorithm found global
E minima, it exhibits a second minimum standard deviation
B N P function when compared to other algorithms. Despite the
g lion algorithm is not securing first ranks, it finds equivalent
§ « to GSO and ESLAT as per no free lunch theorem [38], and
= E “— — outperforming over other algorithms.
2 25900585
vy, o —
5 a X 22 X x -
p slet 82X5=288¢ 5.2 Test suite 2
2 LS 28808 @ oo . i
AREEEEEEEEEEE est suite
A EEEE R R
E|RIE| 2w 1@ 1T 1 1 1 1 &« The second test suite of this paper consists of 42 bench-
g pap
= mark functions. The performance of lion algorithm on this
g Hlow = —w = ownun test suite 2 is compared with the swarm algorithms such
% = as Artificial Bee colony (ABC) [37], Bacterial Foraging
= D Optimization Algorithm (BFO) [39], Cuckoo Search (CS)
o x T T [40], Firefly (FF) [41], Group Search Optimization (GSO)
v o q o O .. . .
5‘2 ~ 2% é 3 % [25], Moth-flame Optimization (MFO) [42], particle swarm
9; a S ".; 2xz2383388%2 optimization [36], Dragon Fly algorithm [43], Grey Wolf
:, Z g > g Zs § § < g ? Optimization(GWO) [44], Whale Optimization Algorithm
3 S é < 3 T S c«lw c? lr|> lr|» <|r <« (WOA) [45] and Crow Search Algorithm (CrS) [46]. The
E -c ol er oo results are presented in Tables 7 and 8. Subsequently, the
g o lion algorithm is compared with three renowned evolution-
S NN — — — — N N NN . . .. .
= ary algorithms such as biogeography-based optimization
s y alg geography P
9 o (BBO) [47], differential evolution (DE) [48] and genetic
5 2 ~ algorithm (GA) [35] as well as three human/physics inspired
o 2 o~ . . . .
2 3 — oo algorithms such as gravitational search algorithm (GSA)
5] O é S o g g g
= | E S5 X % [49], harmony search algorithm (HSA) [50] and simulated
= [ < SN~ . .
é Slal2T & % %:. R o annealing (SA) [51] and presented in Tables 9 and 10.
glF|2 bl % S v % § VN‘{ % g Each algorithm attains diverse ranks on finding the opti-
E|S|§|= X8« % Q< 8 ® 9 & - P
s|18|8 =28 S F 888 = mal solution for the 42 benchmark functions. When com-
o |JIZE| =S 1l & I I I 1 I adaen| € . . .
g S pared with the swarm intelligence, the mean performance
< .. . . ..
g 3 ® of the lion algorithm positions it in the second position (as
‘% 3? - e E ; per Table 7), but the performance meets low deviation (as
: 5 328 £cgwe?S 5 =R per Table 7). This shows that the lion algorithm dominates
@ |5 SESEZEZEEZ®EE s | & all the swarm intelligence, except GSO. However, the lion
5 |2 2% 855538738 ¢ . & P ) )
i EdsaS8tcEs8 ZiE] 3 algorithm finds stable searching of solution at any instant.
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Table 7 (continued)

BFO CS FF GSO MFO PSO GWO WOA CrS DA Lion

ABC

Functions

3.7e-3(1)

2.66

3.7e-3(1)

6.26
10

3.7e-3(1)

4.73

3.7e-3(1)

4.78

3.7e-3(1)

45

3.7e-3(1)

5.33

—0.73(12)
11.73
12

3.7e-3(1)
2.64

3.7e-3(1)

4.52

o(11)

3.7e-3(1)

7.33

3.7e-3(1)

4.73
6

42(-)

4.54

Mean rank

Final rank

(—) symbol in the “Functions” column represents the values given in the respective row are negative

According to Tables 8, 9 and 10, the lion algorithm man-
ages to secure first rank over the evolutionary algorithms
and human/physics inspired algorithms.

5.3 Testsuite 3

Here, the lion algorithm is tested on 17 benchmark functions,
which have been widely used by various researchers to assess
the performance of optimization algorithms [25-27]. However,
they are not large scale. This test suite considers these func-
tions in large scale, i.e., the dimension of the solution as 1000,
because of its high significance [25]. Similar to test suite 2, the
comparative study is conducted with swarm algorithms and
evolutionary, human/physics inspired algorithms separately.

According to Tables 11, 12, 13 and 14, the lion algorithm
finds first position in handling large scale optimization prob-
lems. The multiple updating stages in the lion algorithm,
updating based on self-improvement, exploration and exploi-
tation leads the solution update in lion algorithm in all pos-
sible dimensions. Moreover, the provision to find the diverse
solution with similar fitness function makes it highly suitable
for multimodal functions, which are in multiple in large scale
problems.

5.4 Testsuite 4

Test suite 4 has five widely exploited engineering problems
such as welded beam design, pressure vessel design, gear train
design, tension/compression spring design and three-bar truss
design. The problem models are referred from [46]. Similar to
test suite 2 and 3, the comparative study is conducted against
swarm algorithms, evolutionary algorithms and physics/
human inspired algorithms. Each algorithm is subjected to 20
test runs and the resultant statistics are presented in Tables 15
and 16.

Tables 15 and 16 reveals interesting outcomes about the
performance of the lion algorithm over the conventional algo-
rithms. The lion algorithm outperforms swarm algorithms on
solving welded beam, pressure vessel design and gear train
design, while it secures second position on solving compres-
sion/tension spring design and three-bar truss design. On con-
trary, the lion algorithm outperforms evolutionary algorithms
and human/physics inspired algorithms on solving three-bar
truss design, gear train design and welded beam design. The
deviation from mean performance (standard deviation) gets
fluctuated in the lion algorithm. However, the lion algorithm
maintains maximum trade-off between the mean performance
and standard deviation to outperform both the group of algo-
rithms and hence remain in the first position of all the algo-
rithms. The obtained best solution by the lion algorithm is
given in Table 17.
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6 Conclusion and future work
© . N . _
I In the family of nature-inspired algorithms, a new optimiza-
=l =g tion algorithm called as lion algorithm had been proposed
from the inspiration of lion’s unique social behavior, which
e _ keeps the animal stronger than other mammals. A detailed
& § study on the performance of the lion algorithm using four
51332 - diverse test suites has been conducted in this paper. First two
test suites are benchmark optimization problems with uni-
2 o modal and multimodal characteristics. The results from first
é & test suite are compared against the published results of evo-
5 S Jd« lutionary computation methods such as CES, FES, CEP,
FEP, CMA-ES, ESLAT, and other popular optimization
5 o algorithms such as GA, PSO, ABC and GSO. In test suite
<| & 2, a wide comparison has been performed with state-of-
g § 3 the-art optimization algorithms. Test suite 3 has been pre-
sented as large-scale optimization problems and test suite
= 4 has engineering optimization problems. The comparative
g o analysis has disclosed interesting outcomes about the lion
218 & . . .
% S o algorithm. It was found to be competing over majority of
the evolutionary computation methods when solving multi-
a modal functions. In addition, it has better-averaged results
? & than GA and PSO. For unimodal functions, lion algorithm
o v
g § E - has outperformed over two other evolutionary computa-
tion methods, whereas equal to GSO and better than GA.
a P Trade-off has also been maintained between the mean per-
=9 §0 formance and standard deviation and so the stability of the
g § 5 - | & achieved performance has been guaranteed. The algorithm
—_ [0} . .
° " E was also found to be competing over swarm algorithms on
a 5 solving welded beam design problem, pressure vessel design
= e problem and gear train design problem. While solving three
% S 3 bar truss design and tension/compression spring design
DA I problem, the lion algorithm outperforms evolutionary and
[ . . . . . .
e E h.uman/phys1cs inspired a%gorlthrps. Despite tI.le lion algo-
<& = rithm underperforms certain algorithms on solving these test
S8 2 suites, the final rank discloses remarkable performance of
2 ) . .
= R 2 the lion algorithm.
é As the obtained results are encouraging, we have planned
2 2 to apply lion algorithm on various engineering problems and
wlzz 2z applications to study its performance. Perhaps, lion algo-
ClS v | 2 rithm requires certain amendments according to the prob-
_ % lems. However, the presented algorithm structure can play
% g g as a cornerstone for all the future enhancements.
I
elez_| 3
8l w =]
2
2
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Table 9 Comparison on mean performance among the lion, evolutionary and human/physics inspired algorithms while solving test suite 2

Functions BBO DE GA GSA HAS SA Lion

1 9.08e—07(2) 9.367753(5) 12.81959(7) 12.07019(6) 0.000177(3) 0.030306(4) o(1)

2 1.66e—05(3) 0.171017(6) 0.000494(4) 2.634131(7) 1.07e—06(2) 0.003964(5) 6.98e—08(1)

3(-) 106.765(1) 87.2947(6) 106.74(5) 12.3598(7) 106.765(1) 106.764(4) 106.765(1)
1.72e—08(3) 9.070845(7) 0.000444(4) 7.472382(6) 1.09e—-08(2) 0.062209(5) o(1)

5 3.053732(6) 3.043247(5) 0.015376(3) 1.251493(4) 3.053732(6) 0.001562(2) o(1)
35.03475(5) 13.97583(4) 1.619303(3) 35.03475(5) 35.03475(5) 0.189471(2) 0o(1)

7(-) 1.42781(7) 3.59099(6) 9.16902(5) 20.8517(4) 24.1568(1) 24.1568(1) 24.1568(1)

8(—-) 42.8549(4) 32.1808(7) 38.4256(6) 39.527(5) 42.9444(1) 42.9375(3) 42.9444(1)
4.85e—05(1) 5.04e—05(5) 5.11e—-05(6) 5.9e—05(7) 4.85e—05(1) 4.85e—05(1) 4.85e—05(1)

10(-) 2.06261(1) 2.01386(6) 2.0626(5) 1.97379(7) 2.06261(1) 2.06261(1) 2.06261(1)

11(-) 0.01203(4) 0.0001(7) 0.00018(6) 0.00061(5) 0.01736(3) 0.02743(2) (D)

12 0.02429(2) 0.634307(6) 0.558454(5) 0.838567(7) 0.133322(4) 0.12931(3) 0.0001(1)

13 64.25729(2) 6.21e+10(6) 1.23e+11(7) 457.8695(4) 149.3677(3) 5.45e+08(5) 59.9248(1)

14(-) 1(1) 8.2e—93(7) 0.19992(5) 0.1973(6) 1(1) 0.4921(4) 0.80002(3)

15(-) 3623.93(4) 2447.51(5) 2030.8(6) 1676.03(7) 6989.35(1) 6144.49(3) 6877.68(2)

16 0.06447(1) 0.065211(6) 0.064547(5) 0.069895(7) 0.06447(1) 0.064471(4) 0.06447(1)

17 8.4(4) 36.15145(6) 8.457085(5) 70.07004(7) 3(1) 3.165408(3) 3(1)

18 0.058247(5) 2.605944(6) 4.768995(7) 0.008596(2) 0.029124(4) 0.020782(3) 0(1)

19 1.573239(3) 4089.703(7) 2319.044(6) 0.77763(1) 3.207501(4) 11.24056(5) 1.237624(2)

20 7.63e—12(2) 5.23598(6) 0.001857(4) 32.86475(7) 1.42e—08(3) 0.003321(5) 0o(1)

21(-) 19.2085(1) 13.2169(7) 19.2072(5) 17.8899(6) 19.2085(1) 19.2085(1) 19.2085(1)

22 0.009648(4) 0.240421(6) 0.001916(3) 3.801337(7) 0.032138(5) 0.000617(2) o(1)

23 4.36e—10(2) 1.724852(6) 0.024257(5) 2.259259(7) 6.73e—08(3) 0.001033(4) 1.35e-31(1)

24 1.11e-07(3) 0.377263(6) 0.000382(4) 0.422321(7) 5.38e—08(2) 0.003399(5) 0(1)

25(-) 1.91051(4) 0.10808(7) 1.91318(3) 1.05925(6) 1.91051(4) 1.91322(1) 1.91322(1)

26 0.001876(2) 0.010046(5) 0.159705(6) 0.189236(7) 0.003127(3) 0.005055(4) 0(1)

27 0.000364(2) 0.287496(7) 0.232103(6) 0.130523(5) 0.001659(3) 0.005151(4) 0.000152(1)

28 0.001911(1) 0.2133(7) 0.091343(5) 0.14227(6) 0.002894(2) 0.005115(3) 0.011466(4)

29 0.293019(2) 0.296375(5) 0.334012(6) 0.356616(7) 0.292795(1) 0.293301(3) 0.295745(4)

30 (-) 0.94382(5) 0.94623(4) 0.94039(6) 0.85892(7) 0.96353(1) 0.96353(1) 0.96353(1)

31 0.001474(2) 58243.37(6) 54404.35(5) 22083.49(4) 0.00119(1) 14671.54(3) 0

32 2.387896(4) 10.72624(6) 8.777119(5) 0 5.52e—-08(2) 0.114777(3) o)

33 151.1211(1) 2.62e+08(4) 3.92e+08(5) 0 267.9483(2) 415604.7(3) 0

34(-) 837.966(1) 561.572(5) 561.45(6) 500.739(7) 837.966(1) 837.963(4) 837.966(1)

35 0.735808(3) 3.856049(7) 3.753272(5) 3.789925(6) 0.552869(2) 1.965483(4) 0.410484(1)

36 —1.03163(1) —0.23691(6) —0.70381(5) 0.697168(7) —1.03163(1) —1.0315(4) —1.03163(1)

37(-) 332.287(5) 246.396(7) 344.262(4) 250.308(6) 391.662(1) 368.045(3) 391.662(1)

38(-) 10.4704(5) 10.5961(4) 10.3745(6) 10.0504(7) 10.8723(1) 10.8656(2) 10.8591(3)

39 0.179183(5) 0.011526(4) 0.17936(6) 1.595538(7) 6.49¢—07(2) 0.000538(3) 0o(1)

40 8.14e—05(2) 356.0894(7) 0.849241(4) 2.211149(6) 3.89e—05(1) 1.361192(5) 0.000175(3)

41 0.576521(1) 472861.3(6) 23831636(7) 79261.05(5) 38.72378(3) 2434.018(4) 25.57872(2)

42 —0.00379(1) 0.501655(6) —0.00361(4) 1.231383(7) —0.00379(1) —0.00273(5) —0.00379(1)

Average rank 2.809524 5.880952 5.119048 5.666667 2.166667 3.238095 1.309524

Final rank 3 7 5 6 2 4 1

(—) symbol in the “Functions” column represents the values given in the respective row are negative
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Table 10 Comparison on performance deviation among the lion, evolutionary and human/physics inspired algorithms while solving test suite 2

Functions BBO DE GA GSA HAS SA Lion

1 1.58e—06(2) 0.833183(5) 5.115353(6) 7.39228(7) 0.000186(3) 0.026977(4) 0o(1)

2 3.44e—-05(3) 0.03589(6) 0.000297(4) 1.135101(7) 1.85e—06(2) 0.004443(5) 1.56e—07(1)
3 9.87e—12(2) 3.921394(7) 0.019734(6) 0(1) 1.42e—07(4) 6.87e—05(5) 6.1e—10(3)
4 3.2e—08(3) 0.142784(6) 0.000766(4) 4.177189(7) 1.05e—08(2) 0.045378(5) 0o(1)

5 0o(1) 3.42e—-05(4) 0.019667(6) 1.645212(7) 0o(1) 0.001793(5) 0o(1)

6 0(1) 1.99e—15(5) 1.04194(7) 0(1) 0(1) 0.219(6) 0(1)

7 4.5e—14(1) 1.032548(6) 8.688083(7) 0.192287(5) 4.21e—08(3) 7.81e—06(4) 8.56e—09(2)
8 0.2(4) 0.320822(5) 5.575198(7) 4.85804(6) 2.05e—-06(2) 0.011949(3) 3.55e—15(1)
9 3.01e—-20(3) 2.61e—07(6) 2.43e—06(7) 0(1) 2.62e—15(4) 2.88e—11(5) 4.79e-21(2)
10 5.87e—16(3) 0.006036(7) 6.47e—06(6) 0(1) 5.12e—10(4) 5.71e—07(5) 0(1)

11 0.015473(5) 1.15e—05(2) 5.8e—05(3) 0.001117(4) 0.037689(7) 0.03188(6) 0(1)

12 0.022341(2) 0.054636(4) 0.04(3) 0.111799(7) 0.074926(6) 0.066478(5) 0(1)

13 56.56213(1) 1.1e+10(6) 7.2e+10(7) 596.5479(4) 86.56948(2) 6.52e+08(5) 123.7719(3)
14 3.74e—07(3) 1.83e—-92(1) 0.447036(5) 0.441186(4) 7.01e—08(2) 0.500293(7) 0.447177(6)
15 832.8938(5) 251.1806(2) 930.4567(7) 220.4297(1) 548.327(3) 687.1904(4) 863.7747(6)
16 9.93e—17(2) 0.0002(7) 0.000108(6) 0(1) 4.46e—11(4) 1.51e-07(5) 1.45e—12(3)
17 12.07477(7) 0.669572(5) 12.05432(6) 0(1) 2.65e—08(3) 0.203371(4) 0o(1)

18 0.079759(5) 1.135114(6) 5.250773(7) 0.018857(3) 0.065123(4) 0.015953(2) 0(1)

19 1.299141(2) 324.685(6) 3329.536(7) 0.98032(1) 2.237334(3) 9.463523(5) 2.767411(4)
20 1.15e—-11(2) 0.75275(6) 0.0023(4) 2.918562(7) 9.11e—09(3) 0.004794(5) 0(1)

21 2.18e—11(1) 0.854161(7) 0.001738(5) 0.205887(6) 7.39e—09(3) 2.58e—05(4) 6.78e—11(2)
22 0.015625(4) 0.021648(5) 0 0(1) 0.045098(6) 0.000554(3) 0(1)

23 9.73e—10(3) 0.020334(6) 0.053611(7) 0(1) 8.69e—08(4) 0.001307(5) 0o(1)

24 2.38e—07(4) 0.006303(7) 0.000629(5) 0(1) 4.82e—08(3) 0.003016(6) 0(1)

25 3.36e—12(1) 1.252654(7) 5.75e—05(5) 0.08224(6) 1.2e—11(2) 2.82e—06(4) 1.96e—11(3)
26 0.001713(4) 0.001392(3) 0.152669(7) 0.131521(6) 1.97e—-07(2) 0.003647(5) 0(1)

27 0.00048(2) 0.001551(3) 0.137574(7) 0.09034(6) 0.002942(4) 0.00605(5) 0.000339(1)
28 0.00037(1) 0.001541(3) 0.17074(7) 0.149512(6) 0.001225(2) 0.004008(4) 0.01794(5)
29 0.000512(3) 5.64e—05(1) 0.036056(6) 0.074383(7) 0.000146(2) 0.001235(4) 0.005382(5)
30 0.029823(5) 0.005477(4) 0.036811(6) 0.040622(7) 7.26e—11(2) 1.81e—07(3) 6.73e—12(1)
31 0.001084(2) 8657.613(4) 26646.29(6) 28015.5(7) 0.000986(1) 14616.07(5) 323.6487(3)
32 3.696095(6) 2.668684(5) 5.976367(7) 0(1) 5.12e—08(3) 0.229356(4) 0(1)

33 70.92023(1) 1.01e+08(6) 2.86e+08(7) 241640.3(4) 80.66749(2) 463357.5(5) 112.9015(3)
34 7.31e—12(2) 11.96794(6) 33.90606(7) 0o(1) 5.14e-07(4) 0.004928(5) 4.75e-07(3)
35 0.38608(5) 0.04282(1) 0.183888(3) 0.088996(2) 0.354223(4) 0.585937(7) 0.514455(6)
36 5.02e—13(2) 0.038982(6) 0.447906(7) 0o(1) 3.06e—09(4) 0.000201(5) 1.13e—11(3)
37 20.96815(6) 4.234592(3) 6.51993(4) 71.14095(7) 2.88e—07(1) 15.82329(5) 3.11e-07(2)
38 0.213589(7) 0.065441(6) 0.000517(3) 0o(1) 5.81e—09(2) 0.009396(4) 0.029416(5)
39 0.163571(6) 0.0018(5) 0.163707(7) 0o(1) 1.45e—06(3) 0.000899(4) o)

40 4.83e—05(2) 64.7332(7) 0.919062(4) 0.948491(5) 2.84e—05(1) 0.959454(6) 0.000355(3)
41 0.518085(1) 56033.37(5) 21001882(7) 93518.7(6) 84.12407(3) 2672.475(4) 36.14519(2)
42 4.37e—16(3) 0.001132(6) 0.000151(5) o) 4.45e—10(4) 0.00154(7) o)

Mean rank 3.047619 4.952381 5.642857 3.809524 2.97619 4.738095 2.261905
Final rank 3 6 7 4 2 5 1
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Table 13 Comparison on mean performance among the lion, evolutionary and human/physics inspired algorithms while solving test suite 3

Functions BBO DE GA GSA HSA SA Lion

44.67812(6) 43.19215(5) 46.58722(7) 37.04171(1) 37.04171(1) 37.04171(1) 37.04171(1)
2 —0.70516(4) —0.11492(6) —0.54081(5) 0.846826(7) —1.03163(1) —1.03162(3) —1.03163(1)
3(-) 3.08976(6) 3.24674(5) 3.84944(4) 2.52383(7) 3.86278(1) 3.86276(3) 3.86278(1)
4(-) 3.32237(1) 2.4188(6) 3.17102(5) 0.81062(7) 3.32237(1) 3.31997(4) 3.32237(1)
5 0.004694(5) 0.00344(3) 0.033284(7) 0.013067(6) 0.003767(4) 0.001976(2) 0.000491(1)
6 1.27e—-05(2) 1257998(6) 3633494(7) 0.704618(4) 1.4e—-06(1) 35336.62(5) 0.076858(3)
7 1.79e—-05(3) 80264189(6) 86406416(7) 17684847(5) 3.69e—06(2) 573898.9(4) 9.71e—13(1)
8 0.00434(1) 11.90561(6) 0.692018(5) 30.18762(7) 0.023386(3) 0.613645(4) 0.011084(2)
9(-) 507.837(4) 324.954(6) 233.914(7) 493.164(5) 636.35(1) 599.35(3) 632.325(2)
10 7.401581(2) 181527.2(6) 479541.7(7) 1931.715(3) 2530.188(4) 146876.8(5) 0.000315(1)
11 0.048745(2) 63.34128(7) 58.41237(6) 7.16e—16(1) 0.865555(4) 15.73728(5) 0.600265(3)
12 0.034092(3) 2.37e+10(7) 2.13e+10(6) 81.17991(4) 0.011233(2) 6975775(5) 2e—05(1)
13(-) 2.63047(4) 0.8263(6) 2.61849(5) 0.57922(7) 2.65143(3) 9.02516(2) 10.1532(1)
14(-) 3.14926(4) 2.16381(6) 2.74895(5) 0.75384(7) 7.73148(3) 9.33552(2) 10.4029(1)
15(-) 5.17565(4) 1.29693(6) 5.12449(5) 0.71706(7) 5.7869(3) 9.44529(2) 10.5364(1)
16 —7.3e+22(2) 119.998(5) —119.041(4) 65535(7) —9.6e+20(3) 119.998(5) —3.4e+65(1)
17 0.000198(4) 7320.788(6) 0 2.16e—32(1) 1.49e—-05(3) 453.5853(5) 3.34e—13(2)
Mean rank 3.352941 5.764706 5.411765 5.058824 2.352941 3.529412 1.411765
Final rank 3 7 6 5 2 4 1

(—) symbol in the “Functions” column represents the values given in the respective row are negative

Table 14 Comparison on performance deviation among the lion, evolutionary and human/physics inspired algorithms while solving test suite 3

Functions BBO DE GA GSA HSA SA Lion

1 4.268882(7) 0.478047(6) 1.04e—06(5) 0(1) o(1) 0(1) 0o(1)

2 0.447032(6) 0.040077(5) 0.447938(7) 1.24e—16(2) 1.69e—09(3) 6.18e—06(4) 0o(1)

3 4.97e—16(3) 0.047366(7) 0.016929(6) 0(1) 2.17e—-07(4) 3.19e—05(5) 0(1)

4 5.02e—11(3) 0.189149(7) 0.095325(6) 1.24e—16(1) 1.94e—09(4) 0.003023(5) 1.54e—14(2)
5 0.008773(5) 0.001558(3) 0.029481(7) 0.008901(6) 0.00611(4) 0.000693(2) 0.00041(1)
6 7.61e—6(2) 435877.5(6) 2452607(7) 0.671285(4) 1.08e—6(1) 50463.19(5) 0.1718(3)

7 1.91e-05(3) 23872623(5) 62132994(7) 39544520(6) 2.45e—06(2) 757992.5(4) 1.16e—12(1)
8 0.00235(1) 2.18592(7) 0.40867(6) 0.32888(5) 0.01636(3) 0.31206(4) 0.0047(2)

9 29.08413(4) 38.54154(5) 87.66384(7) 53.84716(6) 4.11e—-6(1) 16.55112(3) 5.2909(2)
10 5.922497(2) 41581.53(5) 233465.7(7) 1549.069(3) 3576.703(4) 69957.13(6) 0.0005(1)

11 0.03361(2) 0.16820(3) 12.1076(7) 7.51e—16(1) 1.20058(5) 8.11455(6) 0.5520(4)
12 0.020556(3) 2.76e+10(7) 2.27e+10(6) 62.05451(4) 0.006559(2) 7170694(5) 1.97e-05(1)
13 1.49¢—-14(3) 0.052687(6) 0.007976(4) 0(1) 0.028694(5) 2.234464(7) 1.26e—15(2)
14 0.524939(5) 0.352888(4) 0.010214(3) 0(1) 3.658042(7) 2.378228(6) 1.26e—15(2)
15 9.15e—13(2) 0.01411(4) 0.031521(5) o(1) 2.836387(7) 2.38718(6) 1.56e—11(3)
16 1.62e+23(6) 2.02e—08(2) 534.5072(4) o(1) 1.96e21(5) 5.65e—07(3) 7.51e65(7)
17 0.000168(4) 795.8149(0) 4536.278(6) 1.73e-32(1) 9.22e—6(3) 283.1926(5) 5.45e—13(2)
Mean rank 3.588235 4.823529 5.882353 2.647059 3.588235 4.529412 2.117647
Final rank 3 6 7 2 3 5 1
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Table 15 Comparison on mean performance and deviation among the lion and swarm algorithms while solving test suite 4

BFO CS FF GSO MFO PSO DA GWO WOA CrS Lion

ABC

Statistics

Engi-

neering

function

1.8849(5) 1.7301(1)

1.878(4) 3.3901(9) 4.6582(10)
9.4464(3)

16.7133(12)
431.0398(11)

100(4)

2.1895(7) 1.7534(3) 1.7459(2) 2.9437(8) 14.2957(11)
6.9867(2) 2.0315(1)
0(1)

2.0307(6)

Mean

Welded

173.0384(9)
86.8613(1)

345.7692(10)
166.942(10)
57.6147(11)

ocl)

58.0295(8)
100.3756(6)
0.0001(3)

12.6503(4)
135.3904(9)

56.0003(10)
2.67e—24(5)

5e—24(6)
0.0135(4)
0.0029(7)

506.9932(12)

19.9593(6)
91.6478(2)

23.3597(7)

15.5411(5)

Std(e—2)

beam

101.4575(8)
1.2647(5)

265.6904(12)
97.5748(12)

101.2403(7)
1.1681(4)

100.3754(5)

o(1)

168.5795(11)
42.6545(9)
2.14e—15(8)
5e—15(10)
0.0178(6)
0.0018(5)

91.9216(3)
14.7953(6)

Mean(e2)
Std(e2)
Mean

Std

pressure

24.0641(8)

0(1)

15.5443(7)
3.52e—25(4)
4e-25(5)
0.0151(5)
0.002(6)

vessel

1.28e—34(3)
3e—34(4)

3.33e—12(10)

3e—15(9)
1.6753(7)

1.23e—15(7)

2e—15(8)

8.31e—-07(12)

01y

1.03e—16(6)
le—16(7)
5.0061(9)

2.81e—15(9)
6e—15(11)
1.6763(8)
4.0789(9)

7.08e—12(11)
6e—12(12)
0.0107(1)
0.0001(1)

Gear train

0(1)

o1y

0.0111(2)

0.0017(4)

5.0088(10)
5.4741(12)

0.0118(3)
0.0013(3)

10.0003(12)
0.0001(1)

8.3488(11)
4.062(8)

Mean
Std

Tension/

4.0794(10)

5.4705(11)

com-

pression
spring

Three bar

2.6389(2)

2.6391(7)
0.0154(7)

6.4

2.6423(10)

2.639(6)
0.0113(6)

7.4

2.6853(11)

2.6389(2)
0.0002(4)

6.2

2.7662(12)

ocl)

2.6395(8)
0.0734(9)

2.6389(2)
0.0014(5)

5.4

2.6389(2)

2.055(1)

2.6395(8)
0.0193(8)

6.1

Mean(e2)

Std

3.4e—08(3)

32

0.5322(10)

6.9

7.0321(11)

7.1

4.02e—14(2)

52

101.1444(12)

7.6

truss

9.2

Mean

rank

10

12

Final rank
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Appendix

Definition 1 An X of an X" and an X/*"% is the sum
of Hadamard product of crossover mask and X”"*¢ and Had-
amard product of complement of the same crossover mask
and Xl provided the crossover mask is essentially to be
a binary vector with C, - L number of binary ones.

Assumption 1 Within a pride, male lions are always stronger
than female lions, applicable to cubs also.

Lemma 1 If the product of C, and L is equal to zero, then
X5 gre equal to XFemae,

Proof of Lemma 1 According to Definition 1, B, which
is a vector with L elements, has C, - Lnumber of ones
andL(1 — C,) number of zeros. If C, - L = 0, then B has no
ones and L number of zeros, which means B is a vector of
zeros. By applying this B in the mathematical representation
of crossover operation given in [11], the first term of RHS
becomes B and the second term of RHS becomes X/e™ale g
B =1 — B. Hence, X““* becomes X" when C, - L = 0.

Lemma 2 If the product of C, and L is equal to one, then
X<“bs are equal to X",

Proof of Lemma 2 Similar to the proof of Lemma 1, B is a
vector of ones, when C, - L = L and B becomes a vector of
zeros. This in turn, makes the first RHS term of Eq. (11) as
X™ale and the second RHS term as a vector of zeros. Hence,
Xeubs become X" when C, - L = L.

Lemma 3 E’l"’m"d is greater than EZ‘””"‘], ifd,and f (X’]wm”d )
are greater than d, and f (X;“””“d), respectively.

Proof of Lemma 3 According to the lemma,

max(d,,d,) = d, (16)
max (f (X;wmad) »f (X;omad) ) — f (X;wmad) ( 1 7)

Hence, Eqgs. (24) and (25) (from Theorem 2) takes the
form,

@ Springer
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Table 16 Comparison on mean and standard deviation performance among the lion, evolutionary and human/physics inspired algorithms while

solving test suite 4

Engineering functions Statistics BBO DE GA GSA HAS SA Lion
Welded beam design Mean 13.6534(5)  3.6578(3) 9.2342(4) 16.0827(7)  14.0993(6)  2.1308(2) 1.7301(1)
Std 0.0361(1) 0.8252(4) 7.2407(6) 8.1954(7) 0.517(3) 0.2015(2) 1.7303(5)
Pressure vessel design Mean(e2) 100(3) 497.2405(6) 1776.418(7) 134.6275(5) 100(3) 81.6229(1)  86.8612(2)
Std(e2) (1) 14.6343(3)  250.2908(7) 56.6359(6)  0(1) 17.0338(4)  24.0641(5)
Gear train design Mean 5.58e—26(3) 3.52e—12(5) 1.35e—10(7) 0O(1) 2.42e—15(4) 8.88e—11(6) 0(1)
Std 1.23e-25(3) Se—12(5) 2.09e—10(7) 0(1) 3.78e—15(4) 1.19e—10(6) 0(1)
Compression/tension spring Mean 10.003(4) 10.026(7) 0.01425(3)  10.002(6) 10.003(4) 0.01088(1)  0.01115(2)
Std 0(1) 0.00037(4)  0.0040(7) o(l) (1) 0.00047(5)  0.00173(6)
Three-bar truss Mean(e2) 2.641(3) 2.7018(6) 2.6441(5) 2.7662(7) 2.6425(4) 2.6401(2) 2.6389(1)
Std 0.1500(4) 0.3154(6) 0.4499(7) 0(1) 0.2541(5) 0.0556(3) 3.4e-8(2)
Mean rank 2.8 4.9 6 4.2 35 32 2.6
Final rank 2 6 7 5 4 3 1

Table 17 Optimized design parameters and constraints of the engineering problems obtained from lion algorithm

Design parameters/ Welded beam design

constraint functions

Pressure vessel design

Tension/compres- Three-bar truss design

sion spring design

Gear train design

a, —2.155342 0.7908

a, —1.43504¢? 0.3909

a, -3.50736e~* 40.9752

a, —3.42922 191.0709

as —0.080392 n/a

ag —0.235643 n/a

h, —0.20539 —1.6397422¢73
h, —3.470225 —2.513248¢7°
h, —9.058026 —3.56100

h, —0.2057427 n/a

f 1.728084 5.90745¢*

—43.3016 0.05 0.78867
—12.7057 0.37443 0.4082481
—14.4569 8.5467673 n/a
—29.4012 n/a n/a

n/a n/a n/a

n/a n/a n/a

n/a —6.12125¢° —3.03024¢712
n/a —5.4141832e7° —1.46410
n/a —4.86066 —0.53589
n/a —0.7170461 n/a

0 0.0098725 263.895

E""d = exp (1) = 2.71 (18)
d f(Xnomad)

Enomad =exp <_2> 1 ] 19

2 dl f(Xgomad) ( )

Eromad can be greater than exp(l)only if

f(X’lw’"“d) >>f(X;w’”“d) as the first term produces
exponential decay from exp(l), when d, > d,. But, if
f(xpomad) >> f(xzomad), then probably d; >> d,due to
its linear relationship with f(X7°"), which leads exp (+)
towards zero, and hence E;”’"“d becomes lesser than exp (1).
Thus it is proved that E/*" > E2™  when d; > d,
andf (X;mmad) > f (Xgomad )

@ Springer

Lemma 4 E;’”’”"d is greater than E’z"””“d, ifd,and f (X;wm“d)
are greater than d, and f (X;w’””d), respectively.

Proof of Lemma 4 According to the lemma,

max(dl,d2) =d, (20)
max (f (X;"0). f (X370) ) = f (X3 @1)
- (ynomad
As ;gzdg > 1from Eq. (21)
nomad
E"" = exp(1)——— > exp(1) 22
1 f(qumad) ( )
nomad d2
E] = exp 7 < exp(1) (23)
1
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Hence, it is proved that E""% > Eromad when d, > d
nomad nomad ! 2 ! 2 Xnomad Xnomad
andf(XZ ) >f(X1 ) Em)mad = exp d2 max(f( 1 )’f( 2 ))
2 - omad
max(dl,dz) f(X;”m“ )
Lemma5 E;’”’”“d is greater than ET"’”“”Z, ifd,and f (X;"’m”d) (25)

are greater than d, and f (X’z"’m“d), respectively.

Lemma 6 Eg‘””“d is greater than Eq“””“d, ifd, and f (X’z"’m“d)
are greater than d, and f (X;“’m“d ) respectively.

Proof of Lemma5and 6 Lemma 5 is the vice versa of lemma
3as E37™ > exp (1) and E7"* < exp (1). Lemma 6 is the
vice versa of lemma 4 as Eg"’"“d = exp (1) and probably
E’l"”"“d < exp (1) proved through Axiom 3.

Axiom 1 C,.-L =L is an integer possibly between 1 and
L-1ie,C.-Le(,L-1).

Axiom 2 X7omed and X2om are essentially different and
hence d, is not always equal to d,.

Axiom 3 f (X’lw’””d) and f (X;"””“d) exhibit linear variation
with respect to d; and d,, respectively.

Theorem 1 X can be a subset of both X"%¢ and Xfemale
only if C, is selected in such a way thatC, - L = L.

Proof of Theorem 1 It is known that B has C, - L number of
ones in arbitrary vector positions and zeros in the remaining
positions. Hence, X’ male 5 B have elements of X" and zeros
from the positions where B has ones and zeros, respectively.
In contrast, X¢™4! o B has elements of X" and zeros from
the positions where B has zeros and ones, respectively, as
B is the one’s complement of B. Hence, it can be said that
Xmaleop c Xmale and Xfemaleop c Xfemale . As ‘4 operator
in the mathematical representation of crossover operation
given in [11] is equivalent to set union operation, the result-
ant X are subset of both and only X™¢ and X7 je.,
Xcubs C Xmale, Xfemale.

Theorem 2 In a nomad coalition of only two lions, the evalu-
ation score Eq‘o’”“d will be always greater than E;"””“d when
E’l’"’"“d is greater than or equal to exponential function of
unity and vice versa.

Proof of Theorem 2 Let E’f"’"“d and E;U’”“d be the evaluation
scores of X" and X;’””‘“d, respectively. The evaluation
scores can be calculated as

d1 max (f(X?Omad) ’f(Xlzmmad))
max(d,,d,) f(xpyomad)

E;iwmad = exp

(24)

where d, is the Euclidean distance between X" and
Xmaled, is the Buclidean distance between X;“”"“d and X™dle,
From lemmas 3 and 4, it can be said that if
Emomad = exp (1) (according to lemma 3) and E"" > exp (1)
(according to lemma 4), then Eg‘””“‘l < exp(1). Similarly,
lemmas 5 and 6 asserts E;”’”“" > E’f‘”""d, if E;’”’”“d > exp (1).
Hence, the theorem states that it is not necessary to calcu-
late both Eq"”"“d and Eg”’"“d to evaluate Xl””mad and X’z’”’"“d,
respectively. It is sufficient to calculate either of them and
can be concluded by comparing it with exp (1).
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