
Vol.:(0123456789)1 3

Evolutionary Intelligence (2020) 13:71–82
https://doi.org/10.1007/s12065-018-0157-1

SPECIAL ISSUE

Energy consumption laxity‑based quorum selection for distributed
object‑based systems

Tomoya Enokido1 · Dilawaer Duolikun2 · Makoto Takizawa2

Received: 7 May 2018 / Revised: 12 June 2018 / Accepted: 18 June 2018 / Published online: 29 June 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In object based systems, an object is an unit of computation resource. Distributed applications are composed of multiple
objects. Objects in an application are replicated to multiple servers in order to increase reliability, availability, and per-
formance. On the other hand, the large amount of electric energy is consumed in a system compared with non-replication
systems since multiple replicas of each object are manipulated on multiple servers. In this paper, the energy consumption
laxity-based quorum selection (ECLBQS) algorithm is proposed to construct a quorum for each method issued by a transac-
tion so that the total electric energy consumption of servers to perform methods can be reduced in the quorum based locking
protocol. The total electric energy consumption of servers, the average execution time of each transaction, and the number
of aborted transactions are shown to be more reduced in the ECLBQS algorithm than the random algorithm in evaluation.

Keywords Quorum-based locking protocol · Data management · Energy-aware information systems · Object-based
systems · Replication

1 Introduction

In current information systems, various kinds of distributed
applications like data centers [1, 2] are realized on scalable,
high performance, and fault-tolerant computing systems like
cloud computing systems [2–4]. These distributed appli-
cations are composed of multiple objects in object-based
frameworks [5] like CORBA [6]. Each object is an unit of
computation resource like a file. An object is an encapsula-
tion of data and methods to manipulate the data in the object.
An object is allowed to manipulate only through methods
supported by the object. A transaction is an atomic sequence
of methods [7] to manipulate objects. Once a server which

performs a method issued by a transaction on an object
stops by fault [7], the transaction aborts. In order to real-
ize reliable and available application services, objects are
replicated [8] on multiple servers. Replicas of each object
are distributed on multiple servers and have to be mutually
consistent. In order to keep replicas of each object mutually
consistent, conflicting methods issued by multiple transac-
tions are required to be serializable [9]. In the two-phase
locking (2PL) protocol [7], all the replicas of an object for
a write method and one of the replicas for a read method
are locked before manipulating the object according to the
read-one-write-all scheme [8] to keep the replicas of each
object mutually consistent. However, every replica of each
object has to be locked for every write method issued in a
system, the 2PL protocol is not efficient for write-dominant
applications. In order to reduce the overhead to perform
write methods, the quorum-based locking (QBL) protocols
[5, 10] are proposed. In the quorum-based locking protocol,
some numbers nQr and nQw of replicas of an object, called
quorum numbers , are locked for read and write methods,
respectively. The quorum numbers nQr and nQw for each
object have to be “ nQr + nQw > N ” where N is the total
number of replicas. Subsets of replicas locked for read and
write methods are referred to as read and write quorums ,
respectively. The more number of write methods are issued

 * Tomoya Enokido
 eno@ris.ac.jp

 Dilawaer Duolikun
 dilewerdolkun@gmail.com

 Makoto Takizawa
 makoto.takizawa@computer.org

1 Faculty of Business Administration, Rissho University,
4-2-16, Osaki, Shinagawa, Tokyo 141-8602, Japan

2 Department of Advanced Sciences, Faculty of Science
and Engineering, Hosei University, 3-7-2, Kajino-cho,
Koganei-shi, Tokyo 184-8584, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-018-0157-1&domain=pdf

72 Evolutionary Intelligence (2020) 13:71–82

1 3

in a system, the smaller number of write quorum can be
taken in the QBL protocol. As a result, the overhead to per-
form write methods can be reduced in the QBL protocol than
the 2PL protocol. On the other hand, the large amount of
electric energy is consumed in a system than non-replication
systems since methods issued to each object are performed
on multiple replicas stored in multiple servers. It is critical
to not only provide the reliable and available application
service but also reduce the total electric energy consumption
of an object-based system as discuss in the Green computing
[1, 2, 11, 12].

I n t h i s p a p e r , t h e energy consumption laxity -
based quorum selection (ECLBQS) algorithm is proposed to
construct a quorum for each method issued by a transaction
in the quorum based locking protocol so that the total elec-
tric energy consumption of servers to perform methods can
be reduced. The ECLBQS algorithm is evaluated in terms
of the total electric energy consumption of servers, the aver-
age execution time of each transaction, and the number of
aborted transactions compared with the random algorithm in
homogeneous and heterogeneous server clusters. The evalu-
ation results show the total electric energy consumption of
servers, the average execution time of each transaction, and
the number of aborted transactions in the ECLBQS algo-
rithm can be maximumly reduced to 38.7, 54.1, and 47.6%
of the random algorithm in a homogeneous server cluster,
respectively. In addition, the total electric energy consump-
tion of servers, the average execution time of each transac-
tion, and the number of aborted transactions in the ECLBQS
algorithm can be maximumly reduced to 38.1, 41.6, and
45.1% of the random algorithm in a heterogeneous server
cluster, respectively.

In Sect. 2, we show related studies on energy-efficient
information systems. In Sect. 3, we discuss the system
model, data access model, and power consumption model
of a server. In Sect. 4, we discuss the ECLBQS algorithm.
In Sect. 5, we evaluate the ECLBQS algorithm compared
with the random algorithm.

2 Related works

Various kinds of approaches are proposed to realize energy
aware information systems [1, 2, 11, 13–15]. In order to
realize energy aware information systems, it is necessary
to define the power consumption model and the computa-
tion model of a server to perform application processes. The
electric power of a server depends on not only hardware
components [14] but also types of application processes per-
formed on the server. In our previous studies, application
processes are classified into computation [16, 17, 19–21],
communication [23], storage [18], and general types [22].
The electric power of a server to perform each type of

application processes is measured and the power consump-
tion models to perform each type of application processes
are proposed by abstracting parameters which dominate the
electric power of a server based on the experiments. The
power consumptionmodel for a storage server (PCS model)
[18] to concurrently perform storage and computation pro-
cesses are proposed. Storage processes read and write data
in objects stored in a server. Computation processes mainly
consume CPU resources of a server. In this paper, a transac-
tion issues read and write methods to manipulate replicas
of objects. We assume only read and write methods are per-
formed on a server. Read and write methods are performed
as storage processes [18] in a server. Therefore, the electric
power consumption model of a server to perform multiple
read and write methods issued by transactions is defined
based on the PCS model in this paper.

The quorum-based locking (QBL) protocol [10] is pro-
posed to not only keep replicas of objects mutually consist-
ent but also reduce the overhead to perform write methods.
In the QBL protocol, each object supports simple read and
write methods. The quorum based object locking (QOL)
protocol [5] which extends the traditional QBL protocol
with simple read and write methods to the object-based
system with abstract methods is proposed to not only keep
the replicas of objects mutually consistent but also reduce
the number of replicas to be locked in a system. By using
the QOL protocol, the total number of replicas to be locked
in a system can be reduced than the traditional QBL pro-
tocol. However, the QOL and QBL protocols do not con-
sider to reduce the total electric energy consumption of
servers to perform methods on multiple replicas of objects.
In this paper, we propose the energy consumption laxity-
based quorum selection (ECLBQS) algorithm which extends
the traditional QBL protocol to not only keep the replicas of
objects mutually consistent but also reduce the total electric
energy consumption of servers to perform read and write
methods on replicas of objects.

3 System model

3.1 Objects and transactions

A system is composed of multiple servers s1,… , sn (n ≥ 1)
interconnected in reliable networks. This means messages
can be delivered to their destinations in the sending order
and without message loss. Let S be a cluster of servers s1 , … ,
sn (n ≥ 1), i.e. S = { s1 , … , sn }. Let O be a set of objects o1 ,
… , om (m ≥ 1), i.e. O = { o1 , … , om }. Each object oh is a unit
of computation resource like a file and is an encapsulation
of data and methods to manipulate the data in the object oh .
In this paper, we assume each object oh supports read (r) and
write (w) methods for manipulating data in the object oh . Let

73Evolutionary Intelligence (2020) 13:71–82

1 3

op(oh) be a state obtained by performing a method op (∈ {r,
w}) on an object oh . A pair of methods op1 and op2 on an
object oh are compatible if and only if (iff) a result obtained
by performing the methods op1 and op2 does not depend
on the computation order, i.e. op1 ◦ op2(oh) = op2 ◦ op1(oh).
Otherwise, a method op1 conflicts with another method op2 .
For example, a pair of read methods r1 and r2 are compatible
on an object oh . On the other hand, a write method conflicts
with read and write methods on an object oh.

Each object oh is replicated on multiple servers to make a
system more reliable and available. Replicas of each object
oh are distributed on multiple servers in a server cluster S.
Let R(oh) be a set of replicas o1

h
 , … , ol

h
 (l ≥ 1) [8] of an object

oh . Let nR(oh) be the total number of replicas of an object
oh , i.e. nR(oh) = |R(oh)| . Let Sh be a subset of servers which
hold a replica of an object oh in a server cluster S (Sh ⊆ S).
For example, a server cluster S is composed of five servers
s1 , … , s5 as shown in Fig. 1. There are three objects o1 , o2 ,
and o3 . There are three replicas of each object oh , i.e. nR(oh)
= 3 (h = 1, 2, 3). Here, S1 = { s1 , s2 , s5 } since replicas o1

1
 , o2

1
 ,

and o3
1
 of the object o1 are stored in the servers s1 , s2 , and s5.

A transaction is an atomic sequence of methods [7]. A
transaction Ti is initiated in a client cli and issues read and
write methods to manipulate replicas of objects. Multiple
conflicting transactions are required to be serializable [7,
9] to keep replicas of each object mutually consistent. Let
T be a set { T1 , … , Tk } (k ≥ 1) of transactions initiated in a
system. Let H be a schedule of the transactions in a set T of
transactions, i.e. a sequence of methods performed in a set T
of transactions. A transaction Ti precedes another transaction
Tj (Ti →H Tj) in a schedule H iff a method opi issued by the
transaction Ti is performed before another method opj issued
by the transaction Tj and the method opi conflicts with the
method opj . A schedule H is serializable iff the precedent
relation →H is acyclic.

3.2 Quorum‑based locking protocol

In this paper, multiple conflicting transactions are serialized
by using the quorum-based locking protocol [5, 10]. Let Qop

h

(op ∈ {r, w}) be a subset of replicas of an object oh to be
locked by a method op. Qop

h
 is referred to as a quorum of the

method op on the object oh (Q
op

h
⊆ R(oh)). Let nQop

h
 be the

quorum number of a method op on a object oh , i.e. nQop

h
 =

|Qop

h
| . The quorums have to satisfy the following constraints:

[Quorum constraints]

1. Qr
h
⊆ R(oh) , Qw

h
⊆ R(oh) , and Qr

h
∪ Qw

h
 = R(oh).

2. nQr
h
 + nQw

h
> nR(oh) , i.e. Qr

h
∩ Qw

h
≠ �.

3. nQw
h
> nR(oh) / 2.

Every quorum surly includes at least one newest replica oq
h

of each object oh by satisfying the quorum constraints. Let
�(op) be a lock mode of a method op (∈ {r, w}). If a method
op1 is compatible with another method op2 on an object oh ,
a lock mode �(op1) is compatible with another lock mode
�(op2) . Otherwise, a lock mode �(op1) conflicts with another
lock mode �(op2).

A transaction Ti locks replicas of an object oh by using
the following quorum-based locking (QBL) protocol [5, 10]
before manipulating the replicas with a method op.

[Quorum-based locking protocol]

1. A quorum Qop

h
 for a method op is constructed by select-

ing nQop

h
 replicas in a set R(oh) of replicas.

2. If every replica in a quorum Qop

h
 can be locked by a lock

mode �(op), the replicas in the quorum Qop

h
 are manipu-

lated by the method op.
3. When the transaction Ti commits or aborts, the locks on

the replicas in the quorum Qop

h
 are released.

Each replica oq
h
 has a version number vq

h
 . Suppose a transac-

tion Ti reads an object oh . The transaction Ti selects nQr
h

replicas in a set R(oh) , i.e. a read (r) quorum Qr
h
 . If every

replica in the r-quorum Qr
h
 can be locked by a lock mode

�(r) , the transaction Ti reads data in a replica oq
h
 whose ver-

sion number vq
h
 is the maximum in the r-quorum Qr

h
 . Every

r-quorum surely includes at least one newest replica since
nQr

h
 + nQw

h
> nR(oh) . Next, suppose a transaction Ti writes

data in an object oh . The transaction Ti selects nQw
h
 replicas

in a set R(oh) , i.e. a write (w) quorum Qw
h
 . If every replica

in the w-quorum Qw
h
 can be locked by a lock mode �(w) ,

the transaction Ti writes data in a replica oq
h
 whose version

number vq
h
 is maximum in the w-quorum Qw

h
 and the ver-

sion number vq
h
 of the replica oq

h
 is incremented by one. The

updated data and version number vq
h
 of the replica oq

h
 are

sent to every other replica in the w-quorum Qw
h
 . Then, data

and version number of each replica in the w-quorum Qw
h
 are

replaced with the newest values. When a transaction Ti com-
mits or aborts, the locks on every replica in a quorum Qop

h

(op ∈ {r, w}) are released.

s1 s2 s3 s4 s5

o1
1 o2

1 o3
1

o1
2 o2

2 o3
2

o1
3 o2

3 o3
3

o1

o2

o3

replicas of an object o1

replicas of an object o2

replicas of an object o3

Fig. 1 A server cluster S and replicas of objects

74 Evolutionary Intelligence (2020) 13:71–82

1 3

3.3 Data access model

Methods which are being performed and already terminate
on a server are current and previous at time � , respectively.
Let RPt(�) and WPt(�) be sets of current read (r) and write
(w) methods on a server st at time � , respectively. Let Pt

(�) be a set of current r and w methods on a server st at
time � , i.e. Pt(�) = RPt(�) ∪WPt(�). Let rti(o

q

h
) and wti(o

q

h
) be

methods issued by a transaction Ti to read and write data in
a replica oq

h
 on a server st , respectively. Data in a replica oq

h

is read at rate RRti(�) [B/sec] by each method rti(o
q

h
) in a set

RPt(�) at time � . Data in a replica oq
h
 is written at rate WRti(�)

[B/sec] by each method wti(o
q

h
) in a set WPt(�) at time � . Let

maxRRt and maxWRt be the maximum read and write rates
[B/sec] of r and w methods on a server st , respectively. At
time � , the read rate RRti(�) (≤ maxRRt) and write rate WRti

(�) (≤ maxWRt) for each read and write method performed
on a server st are given as follows:

Here, frt(�) and fwt(�) are degradation ratios of the read rate
RRti(�) and write rate WRti(�) at time � , respectively. Here, 0
≤ frt(�) ≤ 1 and 0 ≤ fwt(�) ≤ 1. The degradation ratios frt(�)
and fwt(�) depends on the number of current read and write
methods performed on a server st at time � . The degradation
ratios frt(�) and fwt(�) at time � are given as follows:

Here, 0 ≤ rwt ≤ 1 and 0 ≤ wrt ≤ 1.
The read laxity lrti(�) [B] and write laxity lwti(�) [B] of

methods rti(o
q

h
) and wti(o

q

h
) show how much amount of data

are read and written in a replica oq
h
 by the methods rti(o

q

h
) and

wti(o
q

h
) at time � , respectively. Suppose that methods rti(o

q

h
)

and wti(o
q

h
) start on a server st at time stti , respectively. At

time stti , the read laxity lrti(�) = rbq
h
 [B] where rbq

h
 is the size

of data in a replica oq
h
 to be read by a method rti(o

q

h
). The

write laxity lwti(�) = wbq
h
 [B] where wbq

h
 is the size of data to

be written in a replica oq
h
 by a method wti(o

q

h
). The read laxity

lrti(�) and write laxity lwti(�) at time � are given as lrti(�) =
rb

q

h
 - Σ�

�=stti
RRti(�) and lwti(�) = wbq

h
 − Σ�

�=stti
WRti(�) ,

respectively.

3.4 Power consumption model of a server

Let Et(�) be the electric power (W) of a server st at time
� . maxEt and minEt denote the maximum and minimum

(1)
RRti(�) = frt(�) ⋅ maxRRt. WRti(�) = fwt(�) ⋅ maxWRt.

(2)

frt(�) =
1

|RPt(�)| + rwt ⋅ |WPt(�)| .

fwt(�) =
1

wrt ⋅ |RPt(�)| + |WPt(�)| .

electric power (W) of the server st , respectively. The
power consumptionmodel for a storage server (PCS model)
[18] to concurrently perform storage and computation pro-
cesses on a server is proposed. In this paper, we assume
only read and write methods are performed on a server st .
According to the PCS model, the electric power Et(�) (W)
of a server st to perform multiple read and write methods at
time � is given as follows:

A server st consumes the minimum electric power minEt
(W) if no method is performed on the server st , i.e. the elec-
tric power in the idle state of the server st . The server st
consumes the electric power REt (W) if |WPt(�)| = 0 and
|RPt(�)| ≥ 1, i.e. only read methods are performed on the
server st . The server st consumes the electric power WEt
(W) if |WPt(�)| ≥ 1 and |RPt(�)| = 0 , i.e. only write meth-
ods are performed on the server st . The server st consumes
the electric power WREt(�) (W) = � ⋅ REt +(1− �) ⋅WEt
(W) where � = |RPt(�)|/(|RPt(�)| + |WPt(�)|) if |WPt(�)| ≥
1 and |RPt(�)| ≥ 1, i.e. both at least one read method and at
least one write method are concurrently performed. Here,
minEt ≤ REt ≤ WREt(�) ≤ WEt ≤ maxEt.

The total electric energy TEt(�1 , �2) (J) of a server st
between time �1 an �2 is given as follows:

The processing power PEt(�) (W) of a server st at time � is Et

(�) − minEt . The total processing energy TPEt(�1 , �2) (J) of a
server st between time �1 and �2 is given as follows:

The total processing energy consumption laxity tpeclt(�)
shows how much electric energy a server st has to consume
to perform every current read and write methods on the
server st at time � . The total processing energy consump-
tion laxity tpeclt(�) of a server st at time � is obtained by the
following TPECLt procedure:

(3)Et(�) =

⎧⎪⎨⎪⎩

WEt if �WPt(�)� ≥ 1 and �RPt(�)� = 0.

WREt(�) if �WPt(�)� ≥ 1 and �RPt(�)� ≥ 1.

REt if �WPt(�)� = 0 and �RPt(�)� ≥ 1.

minEt if �WPt(�)� = �RPt(�)� = 0.

(4)TEt(�1, �2) =

�2∑
�=�1

Et(�).

(5)TPEt(�1, �2) =

�2∑
�=�1

PEt(�) =

�2∑
�=�1

(Et(�) − minEt).

75Evolutionary Intelligence (2020) 13:71–82

1 3

TPECLt(τ) {
if RPt(τ) = φ and WPt(τ) = φ, return(0);
laxity = Et(τ) - minEt; /* PEt(τ) of a server st at time τ */
for each read method rti(o

q
h) in RPt(τ), {

lrti(τ + 1) = lrti(τ) - RRti(τ);
if lrti(τ + 1) = 0, RPt(τ + 1) = RPt(τ) - {rti(oqh)};

} /* for end. */
for each write method wti(o

q
h) in WPt(τ), {

lwti(τ + 1) = lwti(τ) - WRti(τ);
if lwti(τ + 1) = 0, WPt(τ + 1) = WPt(τ) - {wit(o

q
h)};

} /* for end. */
return(laxity + TPECLt(τ + 1));

}

In the TPECLt procedure, each time � data in a replica
o
q

h
 is read by a method rti(o

q

h
), the read laxity lrti(�) of the

method rti(o
q

h
) is decremented by read rate RRti(�). Similarly,

the write laxity lwti(�) of a method wti(o
q

h
) is decremented by

write rate WRti(�) each time � data is written in a replica oq
h

by the method wti(o
q

h
). If the read laxity lrti(� + 1) and write

laxity lwti(� + 1) get 0, every data in the replica oq
h
 is read

and written by the methods rti(o
q

h
) and wti(o

q

h
), respectively,

and the methods terminate at time �.

4 The ECLBQS algorithm

We newly propose the energy consumption laxity-
based quorum selection (ECLBQS) algorithm to select rep-
licas to be members of a quorum of each method in the quo-
rum-based locking protocol so that the total electric energy
consumption of a server cluster S to perform read and write
methods can be reduced. Suppose a transaction Ti issues a
method op (op ∈ {r, w}) to manipulate an object oh at time
� . Each transaction Ti selects a subset Sop

h
 (⊆ Sh) of nQop

h

servers in a subset Sh by the following ECLBQS procedure:

ECLBQS(op, oh, τ) { /* op ∈ {r, w} */
Sop
h = φ;

while (nQop
h > 0) {

for each server st in Sh, {
if op = read method, RPt(τ) = RPt(τ) ∪ {op};
else WPt(τ) = WPt(τ) ∪ {op}; /* op = write method*/
TPEt(τ) = TPECLt(τ);
} /* for end. */
server = a server st where TPEt(τ) is the minimum;
Sop
h = Sop

h ∪ {server};
Sh = Sh - {server};
nQop

h = nQop
h - 1;

} /* while end. */
return(Sop

h);
}

Suppose a server cluster S is composed of five serv-
ers s1 , … , s5 and replicas of three objects o1 , o2 , and o3 are

distributed on multiple servers in the server cluster S as
shown in Fig. 1, i.e. S1 = { s1 , s2 , s5 }, S2 = { s2 , s3 , s4 }, and
S3 = { s3 , s4 , s5 }. Every server st (t = 1,… , 5) follows the
same data access model and the power consumption model
as shown in Table 1. The size of data in every object oh
(h = 1, 2, 3) is 80 MB. There are three replicas for each
object oh , i.e. nR(oh) = 3 . The quorum numbers nQw

h
 and

nQr
h
 for every object oh are two, i.e. nQw

h
 = nQr

h
 = 2.

At time �0 , a pair of replicas o1
1
 and o3

1
 stored in the serv-

ers s1 and s5 are being locked by a transaction T1 with a lock
mode �(w) and a pair of write methods w11(o11) and w51(o31)
are being performed on the servers s1 and s5 , respectively, as
shown in Fig. 2. Let Ti.Q

op

h
 be a quorum to perform a method

op issued by a transaction Ti . Let Ti.S
op

h
 be a subset of serv-

ers which hold replicas in a quorum Ti.Q
op

h
 constructed by

a transaction Ti . The w-quorum T1.Qw
1
 is { o1

1
 , o3

1
 } since the

quorum number nQw
1
= 2 . The subset T1.Sw1 is { s1 , s5 } since

a pair of replicas o1
1
 and o3

1
 are stored in the servers s1 and s5 ,

respectively. A pair of write laxities lw11(�0) and lw51(�0) are
45 MB, respectively, at time �0.

Suppose a transaction T2 issues a write method to the
object o3 at time �0 . The size of data to be written in the
object o3 by the write method issued by the transaction T2
is 45 MB, i.e. the write laxity lwt2(�0) = 45 MB. Here, R(o3)
= { o1

3
 , o2

3
 , o3

3
 } and S3 = { s3 , s4 , s5 } as shown in Fig. 1. First,

the transaction T2 constructs a w-quorum T2.Qw
3
 by the pro-

cedure ECLBQS(w, o3 , �0). Suppose a write method w32(o13)
is issued to a replica o1

3
 stored in the server s3 at time �0 . No

method is performed on the server s3 at time �0 . Hence, WP3

(�0) = WP3(�0) ∪ { w32(o13)} = { w32(o13)} at time �0 . Since only
one write method w32(o13) is performed on the server s3 at
time �0 , the degradation ratio fw3(�0) is 1/(wr3 ⋅ |RP3(�0)| +
|WP3(�0)|) = 1/(0.5 ⋅ 0 + 1) = 1 and the write method w32(o13)
is performed on the server s3 at write rate WR32(�0) = fw3(�0)
⋅maxWR3 = 1 ⋅ 45 = 45 MB/s. Hence, the write laxity lw32

(�1) gets 0 since lw32(�0) − WR32(�0) = 45 MB − 45 MB = 0
at time �1 . Here, the write method w32(o13) terminates at time
�1 and no method is performed after time �1 on the server
s3 . Similarly, if a write method w42(o23) is issued to a replica
o2
3
 stored in the server s4 at time �0 as shown in Fig. 2, the

write method w42(o23) terminates at time �1 since no method
is performed on the server s4 at time �0 . Suppose a write
method w52(o33) is issued to a replica o3

3
 stored in the server

s5 at time �0 . Here, a pair of write methods w51(o31) and w52

(o3
3
) are concurrently performed on the server s5 at time �0 ,

i.e. WP5(�0) = { w51(o31), w52(o33)} and |WP5(�0)| = 2 . Here, the
degradation ratio fw5(�0) is 1/(wr5 ⋅ |RP5(�0)| + |WP5(�0)|)
= 1∕(0.5 ⋅ 0 + 2) = 0.5 . A pair of the write methods w51(o31)
and w52(o33) are concurrently performed on the server s5 at
write rate WR51(�0) = WR52(�0)= fw5(�0) ⋅maxWR5 = 0.5 ⋅
45 = 22.5 MB/s at time �0 , respectively. Hence, the write
laxity lw51(�1) is 22.5 MB/s at time �1 since lw51(�0) − WR51

(�0) = 45 MB − 22.5 MB = 22.5 MB. Similarly, the write

76 Evolutionary Intelligence (2020) 13:71–82

1 3

laxity lw52(�1) is 22.5 MB at time �1 . At time �1 , a pair of
the write methods w51(o31) and w52(o33) are still concurrently
performed on the server s5 at write rate 22.5 MB/s. The write
laxity lw51(�2) gets 0 at time time �2 since lw51(�1) − WR51(�1)
= 22.5 MB − 22.5 MB = 0 . Similarly, the write laxity lw52

(�2) gets 0 at time �1 . Here, a pair of write methods w51(o31)
and w52(o33) terminate at time �2 on the server s5.

Figure 3 shows the processing power (W) of the serv-
ers s3 , s4 , and s5 to perform the write methods as shown in
Fig. 2. The electric power Et(�) (W) of a server st at time � is
given in formula (3). At time �0 to �1 , only the write method
w32(o13) is performed on the server s3 , i.e. |WR3(�0)| = 1 and
|RP3(�0)| = 0 . Hence, the electric power E3(�0) = WE3 = 53
W. Similarly, the electric power E4(�0) = WE4 = 53 W in
the server s4 . In the server s5 , only a pair of write methods
w51(o31) and w52(o33) are performed, i.e. |WR5(�0)| = 2 and

|RP5(�0)| = 0 . Hence, the electric power E5(�0) = WE5 = 53
W. The total processing energy TPE3(�0 , �1) J between �0 and
�1 is E3(�0) − minE3 = 53 − 39 = 14 W. Similarly, The total
processing energies TPE4(�0 , �1) and TPE5(�0 , �1) between �0
and �1 are 14 W, respectively. At time �1 to �2 , a pair of write
methods w51(o31) and w52(o33) are performed on the server
s5 , i.e. |WR5(�1)| = 2 and |RP5(�1)| = 0 . Hence, the electric
power E5(�1) = WE5 = 53 W and the total processing energy
TPE5(�1 , �2) = 53 − 39 = 14 W.

The hatched area shows the total processing energy con-
sumption laxity tpeclt(�0) (J) of each server st (t = {3, 4, 5})
where the write method wt2(o3) issued by the transaction T2
is performed on each server st at time �0 . Here, tpecl3(�0) =
TPE3(�0 , �1) = 14 J. tpecl4(�0) = TPE4(�0 , �1) = 14 J. tpecl5
(�0) = TPE5(�0 , �1) + TPE5(�1 , �2) = 14 + 14 = 28 J. Here, a
w-quorum T2,Qw

3
 is constructed by a pair of replicas o1

3
 and

o2
3
 stored in the servers s3 and s4 since nQw

3
 = 2 and tpecl3

(�0) = tpecl4(�0) < tpecl5(�0), i.e. T2.Qw
3
 = { o1

3
 , o2

3
 } and T2

.Sw
3
 = { s3 , s4}.

5 Evaluation

5.1 Environment

The ECLBQS algorithm is evaluated in terms of the total
processing energy consumption of a server cluster, the
average execution time of each transaction, and the aver-
age number of aborted transactions compared with the ran-
dom algorithm. In the random algorithm, a quorum for each
method is randomly selected. In this evaluation, we consider
a homogeneous (S) and heterogeneous (H) server clusters
which are composed of fifteen servers s1 , … , s15 (n = 15),
respectively, as shown in Tables 2 and 3.

In the homogeneous server cluster S = { s1 , … , s15 }, every
server st (t = 1, … , 15) follows the same data access model
and power consumption model as shown in Table 2. Param-
eters of each server st are given based on the experimenta-
tions [18]. The maximum read and write rates (B/s) on every
server st are 80 and 45 MB/s, respectively, i.e. maxRRt =
80 MB/s and maxWRt = 45 MB/s. The parameters rwt and
wrt in the read and write degradation ratios frt(�) and fwt

(�) of every server st are 0.5, respectively. The minimum
electric power minEt (W) of every server st is 39 W. The
electric power WEt where only write methods are performed
on every server st is 53 W. The electric power REt where
only read methods are performed on every server st is 43 W.

Table 1 Parameters of each
server st in a server cluster S

(t = 1,..., 5)

Server maxRRt maxWRt rwt wrt minEt WEt REt

st 80 MB/s 45 MB/s 0.5 0.5 39 W 53 W 43 W

write rate

write rate

write rate

write rate

write rate

time τ

time τ

time τ

time τ

time τ

s1

s2

s3

s4

s5

w11(o
1
1)

w51(o
3
1)

w52(o
3
3)

w42(o
2
3)

w32(o
1
3)

45 [MB/sec]

45 [MB/sec]

45 [MB/sec]

22.5 [MB/sec]

22.5 [MB/sec]

τ0 τ1 τ2

Fig. 2 Execution of methods

77Evolutionary Intelligence (2020) 13:71–82

1 3

In the heterogeneous server cluster H = { s1 , … , s15 }, we
consider three types of servers, Type1 = { s1 , … , s5 }, Type2
= { s6 , … , s10 }, Type3 = { s11 , … , s15 } as shown in Table 3.
In each server type, every parameter of data access model
and power consumption model is the same. For example,
parameters of five servers s1 , … , s5 in Type1 are the same as a
server st (t = 1 , … , 15) in the homogeneous server cluster S.
The maximum read and write rates (B/s) of the Type2 server
s6 are 120 and 67 MB/s, respectively, i.e. maxRR6 = 120

MB/s and maxWR6 = 67 MB/s. fr6(�) = 0.5 , fw6(�) = 0.5 ,
minE6 = 59 W, WE6 = 80 W, and RE6 = 64 W. Parameters
of Type2 servers s7 , … , s10 are the same as the server s6 . The
maximum read and write rates (B/s) of the Type3 server s11
are 136 and 76 MB/s, respectively, i.e. maxRR11 = 136 MB/s
and maxWR11 = 76 MB/s. fr11(�) = 0.5 , fw11(�) = 0.5 , minE11
= 45 W, WE11 = 60 W, and RE11 = 49 W. Parameters of Type3
servers s12 , … , s15 are the same as the server s11.

There are fifty objects o1 , … , o50 in a system, i.e. O =
{ o1 , … , o50 }. Each object oh supports read (r) and write
(w) methods. The size of data in each object oh is randomly
selected between 50 and 250 MB. The total number of rep-
licas for every object is seven, i.e. R(oh) = { o1

h
 , … , o7

h
 } and

nR(oh) = 7 (h = 1 , … , 50). Replicas of each object are ran-
domly distributed on fifteen servers in the homogeneous S
and heterogeneous H server clusters, respectively. The quo-
rum number nQw

h
 of a write method on every object oh is

four, i.e. nQw
h
 = 4 . The quorum number nQr

h
 of a read method

on every object oh is four, nQr
h
 = 4.

The total number m of transactions T1 , … , Tm (0 ≤ m ≤
600) are issues to manipulate objects in a system. Each
transaction issues three methods randomly selected from
one-hundred methods on the fifty objects. By each read and
write method issued by a transaction Ti to a replica oq

h
 of

an object oh , the total amount of data of the replica oq
h
 are

fully read and written, respectively. The starting time of each
transaction Ti is randomly selected in a unit of 1 s between
1 and 360 s.

5.2 The average execution time of each transaction

The ECLBQS algorithm is evaluated in terms of the average
execution time (s) of each transaction in the homogeneous S
and heterogeneous H server clusters, respectively, compared
with the random algorithm. Let ET�

i
 be the execution time

(s) of a transaction Ti in a server cluster � ∈ {S (homogene-
ous), H (heterogeneous)} where the transaction Ti commits.
For example, suppose a transaction Ti starts at time sti and
commits at time eti in a server cluster � . Here, the execution
time ET�

i
 of the transaction Ti is eti − sti (s). In this evalua-

tion, the execution time ET�

i
 for each transaction Ti is meas-

ured five times for each total number m of transactions (0
≤ m ≤ 600). Let ET�,tm

i
 be the execution time ET�

i
 obtained

in tmth simulation. The average execution time AET� (s) of
each transaction for each total number m of transactions is
calculated as

∑5

tm=1

∑m

i=1
ET

�,tm

i
/(m ⋅ 5).

time τ

time τ

time τ

s3

s4

s5

53 [W]
14 [Ws]

τ0 τ1 τ2

53 [W]

53 [W]

1 1

14 [Ws]

28 [Ws]

minE3 = 39 [W]

minE4 = 39 [W]

minE5 = 39 [W]

E3(τ) [W]

E4(τ) [W]

E5(τ) [W]

Fig. 3 Total processing energy laxity (J)

Table 2 Homogeneous server
cluster S

(t = 1 , … , 15)

Server st maxRRt maxWRt rwt wrt minEt WEt REt

s
1
 , … , s

15
80 MB/s 45 MB/s 0.5 0.5 39 W 53 W 43 W

Table 3 Heterogeneous server
cluster H

(t = 1 , … , 15)

Server st maxRRt maxWRt rwt wrt minEt WEt REt

s
1
 , … , s

5
80 MB/s 45 MB/s 0.5 0.5 39 W 53 W 43 W

s
6
 , … , s

10
120 MB/s 67 MB/s 0.5 0.5 59 W 80 W 64 W

s
11

 , … , s
15

136 MB/s 76 MB/s 0.5 0.5 45 W 60 W 49 W

78 Evolutionary Intelligence (2020) 13:71–82

1 3

Figure 4 shows the average execution time AETS (s) of
each transaction in the homogeneous server cluster S to per-
form the total number m of transactions in the ECLBQS
and random algorithms. In the ECLBQS and random algo-
rithms, the average execution time AETS increases as the
total number m of transactions increases since more number
of transactions are concurrently performed. For 0 < m ≤
600, the average execution time AETS of each transaction
can be more shorter in the ECLBQS algorithm than the ran-
dom algorithm. This means that the data access resources
in the server cluster S can be more efficiently utilized in
the ECLBQS algorithm than the random algorithm. For
example, for m = 100 , the average execution time AETS
of each transaction in the homogeneous server cluster S in
the ECLBQS and random algorithms are 9.1 and 19.9 s,
respectively. This means the average execution time AETS of
each transaction in the homogeneous server cluster S in the
ECLBQS algorithm can be maximumly reduced to 54.1% of
the random algorithm. In Fig. 4, the average execution time
AETS of each transaction in the homogeneous server cluster
S in the ECLBQS algorithm can be averagely reduced to
25.1% of the random algorithm for 0 ≤ m ≤ 600.

Figure 5 shows the average execution time AETH (s) of
each transaction in the heterogeneous server cluster H to
perform the total number m of transactions in the ECLBQS
and random algorithms. For 0 < m ≤ 600, the average exe-
cution time AETH of each transaction can be more shorter
in the ECLBQS algorithm than the random algorithm as
similar to the results obtained in the homogeneous server
cluster S. For m = 150 , the average execution time AETH
of each transaction in the heterogeneous server cluster H in
the ECLBQS and random algorithms are 14.8 and 25.4 s,
respectively. This means the average execution time AETH of

each transaction in the heterogeneous server cluster H in the
ECLBQS algorithm can be maximumly reduced to 41.6% of
the random algorithm. In Fig. 5, the average execution time
AETH of each transaction in the heterogeneous server cluster
H in the ECLBQS algorithm can be averagely reduced to
24.3% of the random algorithm for 0 ≤ m ≤ 600.

5.3 The average number of aborted instances
of each transaction

The ECLBQS algorithm is evaluated in terms of the aver-
age number of aborted transactions in the homogeneous S
and heterogeneous H server clusters, respectively, compared
with the random algorithm. A transaction Ti aborts if the
transaction Ti could not lock every replica in an r-quorum
Qr

h
 or w-quorum Qw

h
 . If a transaction Ti aborts, the transac-

tion Ti is restarted after � time units in this evaluation. The
time units � (s) is randomly selected between 20 and 30 s
(20 s ≤ � ≤ 30 s) in this evaluation. Every transaction Ti
is restarted until the transaction Ti commits. Each execu-
tion of a transaction is referred to as transaction instance.
We measure how many number of transaction instances are
aborted until each transaction Ti commits. Let AT�

i
 be the

number of aborted instances of a transaction Ti in a server
cluster � ∈ {S (homogeneous), H (heterogeneous)}. The
number of aborted instances AT�

i
 for each transaction Ti is

measured five times for each total number m of transactions
(0 ≤ m ≤ 600). Let AT�,tm

i
 be the number of aborted trans-

action instances AT�

i
 of a transaction Ti in a server clus-

ter � obtained in tmth simulation. The average number of
aborted instances AAT� of each transaction in a server clus-
ter � for each total number m of transactions is calculated as ∑5

tm=1

∑m

i=1
AT

�,tm

i
/(m ⋅ 5).

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
of

 e
ac

h
tr

an
sa

ct
io

n
[s

ec
]

Number m of transactions

ECLBQS
Random

Fig. 4 Average execution time AETS (s) of each transaction in the
homogeneous server cluster S

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
of

 e
ac

h
tr

an
sa

ct
io

n
[s

ec
]

Number m of transactions

ECLBQS
Random

Fig. 5 Average execution time AETH (s) of each transaction in the
heterogeneous server cluster H

79Evolutionary Intelligence (2020) 13:71–82

1 3

Figure 6 shows the average number of aborted instances
AATS of each transaction in the homogeneous server clus-
ter S to perform the total number m of transactions in the
ECLBQS and random algorithms. In the ECLBQS and ran-
dom algorithms, the average number of aborted instances
AATS of each transaction increases as the total number m
of transactions increases. The more number of transactions
are concurrently performed, the more number of transac-
tions cannot lock replicas. Hence, the number of aborted
instances of each transaction increases in the ECLBQS and
random algorithms. For 80 ≤ m ≤ 600, the average number
of aborted instances AATS of each transaction can be more
reduced in the ECLBQS algorithm than the random algo-
rithm. The data access resources in the homogeneous server
cluster S can be more efficiently utilized in the ECLBQS
algorithm than the random algorithm. Hence, the average
execution time of each transaction in the homogeneous
server cluster S can be shorter in the ECLBQS algorithm
than the random algorithm as shown in Fig. 4. As a result,
the number of aborted instances AATS of each transaction
can be more reduced in the ECLBQS algorithm than the ran-
dom algorithm since the number of transaction to be concur-
rently performed can be reduced in the ECLBQS algorithm
than the random algorithm. For example, for m = 400 , the
average number of aborted instances AATS of each transac-
tion in the homogeneous server cluster S in the ECLBQS
and random algorithms are 108 and 205, respectively. This
means the average number of aborted instances AATS of
each transaction in the ECLBQS algorithm can be maxi-
mumly reduced to 47.6% of the random algorithm. In Fig. 6,
the average number of aborted instances AATS of each trans-
action in the ECLBQS algorithm can be averagely reduced
to 38.9% of the random algorithm for 0 ≤ m ≤ 600.

Figure 7 shows the average number of aborted instances
AATH of each transaction in the heterogeneous server clus-
ter H to perform the total number m of transactions in the
ECLBQS and random algorithms. For 100 ≤ m ≤ 600, the
average number of aborted instances AATH of each transac-
tion can be more reduced in the ECLBQS algorithm than
the random algorithm as similar to the results obtained in
the homogeneous server cluster S. For m = 450, the average
number of aborted instances AATH of each transaction in the
heterogeneous server cluster H in the ECLBQS and random
algorithms are 158 and 288, respectively. This means the
average number of aborted instances AATH of each transac-
tion in the ECLBQS algorithm can be maximumly reduced
to 45.1% of the random algorithm. In Fig. 7, the average
number of aborted instances AATH of each transaction in
the ECLBQS algorithm can be averagely reduced to 41.2%
of the random algorithm for 0 ≤ m ≤ 600.

5.4 The average total processing energy of a server
cluster

The ECLBQS algorithm is evaluated in terms of the aver-
age total processing energy (J) of the homogeneous S and
heterogeneous H server clusters, respectively, to perform
the total number m of transactions. Let TEC�,tm be the total
processing energy (J) of a server cluster � ∈ {S (homogene-
ous), H (heterogeneous)} to perform the number m of trans-
actions (0 ≤ m ≤ 600) obtained in the tmth simulation. The
total processing energy TEC�,tm is measured five times for
each number m of transactions. The average total process-
ing energy ATEC� (J) of a server cluster � is calculated as ∑5

tm=1
TEC�,tm /5 for each number m of transactions.

Figure 8 shows the average total processing energy ATECS
of the homogeneous server cluster S to perform the total
number m of transactions in the ECLBQS and random algo-
rithms. In the ECLBQS and random algorithms, the average
total processing energy ATECS of the homogeneous server
cluster S increases as the number m of transactions increases.
For 0 < m ≤ 600, the average total processing energy ATECS
of the homogeneous server cluster S can be more reduced
in the ECLBQS algorithm than the random algorithm. In
the ECLBQS algorithm, each time a transaction Ti issues a
method op (∈ {r, w}) to manipulate an object oh , the trans-
action Ti selects a subset nSop

h
 (⊆ Sh) of nQop

h
 servers which

hold a replica oq
h
 of the object oh to construct a quorum Qop

h
 for

the method op so that the total processing energy laxity of a
server cluster S is the minimum. In addition, the processing
energy to perform each transaction and aborted instances of
each transaction can be more reduced in the ECLBQS algo-
rithm than the random algorithm since the average execution
time and the number of aborted instances of each transac-
tion can be more reduced in the ECLBQS algorithm than the
random algorithm. As a result, the average total processing

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600A
ve

ra
ge

 n
um

be
r

of
 a

bo
rt

ed
 tr

an
sa

ct
io

n
in

st
an

ce
s

Number m of transactions

ECLBQS
Random

Fig. 6 Average number of aborted transaction instances AATS in the
homogeneous server cluster S

80 Evolutionary Intelligence (2020) 13:71–82

1 3

energy ATECS of the server cluster S to perform the num-
ber m of transactions can be more reduced in the ECLBQS
algorithm than the random algorithm. For example, for m =
600, the average total processing energy of the homogene-
ous server cluster S in the ECLBQS and random algorithm
are 1521 and 2483 KJ, respectively. This means the average
processing energy of the homogeneous server cluster S in the
ECLBQS algorithm can be maximumly reduced to 38.7%
of the random algorithm. In Fig. 8, the average processing
energy of the homogeneous server cluster S in the ECLBQS
algorithm can be averagely reduced to 18.3% of the random
algorithm for 0 ≤ m ≤ 600.

Figure 9 shows the average total processing energy
ATECH of the heterogeneous server cluster H to perform the
total number m of transactions in the ECLBQS and random
algorithms. For 0 < m ≤ 600, the average total processing
energy ATECH of the heterogeneous server cluster H can be
more reduced in the ECLBQS algorithm than the random
algorithm as similar to the results obtained in the homogene-
ous server cluster S. For example, for m = 250 , the average
total processing energy of the heterogeneous server cluster H
in the ECLBQS and random algorithm are 150 and 243 KJ,
respectively. This means the average processing energy of the
heterogeneous server cluster H in the ECLBQS algorithm can
be maximumly reduced to 38.1% of the random algorithm.
In Fig. 9 the average processing energy of the heterogeneous
server cluster H in the ECLBQS algorithm can be averagely
reduced to 15.5% of the random algorithm for 0 ≤ m ≤ 600.

5.5 Summary of evaluation

In the evaluation, the average total processing energies of
the homogeneous S and heterogeneous H server clusters to

perform the total number m (0 ≤ m ≤ 600) of transactions
are shown to be more reduced in the ECLBQS algorithm
than the random algorithm. The average total process-
ing energies of the homogeneous S and heterogeneous H
server clusters in the ECLBQS algorithm can be maxi-
mumly reduced to 38.7 and 38.1% of the random algorithm,
respectively, for 0 ≤ m ≤ 600. The average total processing
energies of the homogeneous S and heterogeneous H server
clusters in the ECLBQS algorithm can be averagely reduced
to 18.3 and 15.5% of the random algorithm, respectively,
for 0 ≤ m ≤ 600. The average execution time and number
of aborted instances of each transaction in the homoge-
neous S and heterogeneous H server cluster are shown to
be more reduced in the ECLBQS algorithm than the ran-
dom algorithm. The average execution time and number of
aborted instances of each transaction in the homogeneous
server cluster S in the ECLBQS algorithm can be maxi-
mumly reduced to 54.1 and 47.6% of the random algorithm,
respectively, for 0 ≤ m ≤ 600. The average execution time
and number of aborted instances of each transaction in the
homogeneous server cluster S in the ECLBQS algorithm
can be averagely reduced to 25.1 and 38.9% of the random
algorithm, respectively, for 0 ≤ m ≤ 600. The average exe-
cution time and number of aborted instances of each transac-
tion in the heterogeneous server cluster H in the ECLBQS
algorithm can be maximumly reduced to 41.6 and 45.1% of
the random algorithm, respectively, for 0 ≤ m ≤ 600. The
average execution time and number of aborted instances of
each transaction in the heterogeneous server cluster H in the
ECLBQS algorithm can be maximumly reduced to 24.3 and
41.2% of the random algorithm, respectively, for 0 ≤ m ≤
600. Following the evaluation, the ECLBQS algorithm is
more useful than the random algorithm.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600A
ve

ra
ge

 n
um

be
r

of
 a

bo
rt

ed
 tr

an
sa

ct
io

n
in

st
an

ce
s

Number m of transactions

ECLBQS
Random

Fig. 7 Average number of aborted transaction instances AATH in the
heterogeneous server cluster H

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600

A
ve

ra
ge

 to
ta

l e
ne

rg
y

of
 a

 s
er

ve
r

cl
us

te
r

[K
J]

Number m of transactions

ECLBQS
Random

Fig. 8 Average total processing energy ATECS (KJ) in the homogene-
ous server cluster S

81Evolutionary Intelligence (2020) 13:71–82

1 3

6 Concluding remarks

I n t h i s p a p e r , w e n e wly p r o p o s e d t h e
energy consumption laxity - based quorum selection
(ECLBQS) algorithm to select a quorum for each method
issued by a transaction in the quorum based locking (QBL)
protocol so that the total electric energy consumption of a
server cluster to perform read and write methods issued by
transactions can be reduced. We evaluated the ECLBQS
algorithm in terms of the average total processing energy
consumption of a server cluster, the average execution time
of each transaction, and the number of aborted instances
of each transaction in homogeneous and heterogeneous
server clusters compared with the random algorithm. The
evaluation results show the average total processing energy
consumption of a server cluster, the average execution time
of each transaction, and the average number of aborted
instances of each transaction can be more reduced in the
ECLBQS algorithm than the random algorithm. Following
the evaluation, the ECLBQS algorithm is more useful than
the random algorithm.

We are now defining meaningless methods which are
not required to be performed on each replica of an object
based on the precedent relation and semantics of methods.
In future works, we improve the ECLBQS algorithm to fur-
thermore reduce the total electric energy consumption of a
server cluster by omitting meaningless methods.

References

 1. Natural Resources Defense Council (NRDS) (2014) Data center
efficiency assessment—scaling up energy efficiency across the
data center industry: evaluating key drivers and barriers. http://

www.nrdc.org/energ y/files /data-cente r-effic iency -asses sment -IP.
pdf. Accessed 3 Apr 2015

 2. Natural Resources Defense Council (NRDS) (2012) Is cloud
computing always greener? Finding the most energy and car-
bon efficient information technology solutions for small- and
medium-sized organizations. http://www.nrdc.org/energ y/files /
cloud -compu ting-effic iency -IB.pdf. Accessed 6 Apr 2015

 3. Enokido T, Duolikun D, Takizawa M (2015) An extended
improved redundant power consumption laxity-based (EIRPCLB)
algorithm for energy efficient server cluster systems. World Wide
Web 18(6):1629–1630

 4. Tomimori M, Sugawara S (2017) Content sharing method using
expected acquisition rate in hybrid peer-to-peer networks with
cloud storages. Int J Space Based Situated Comput 7(4):187–196

 5. Tanaka K, Hasegawa K, Takizawa M (2000) Quorum-based rep-
lication in object-based systems. J Inf Sci Eng 16(3):317–331

 6. Object Management Group Inc. (2012) Common object request
broker architecture (CORBA) specification, version 3.3, Part 1—
Interfaces. http://www.omg.org/spec/CORBA /3.3/Inter faces /PDF.
Accessed 24 Apr 2017

 7. Bernstein PA, Hadzilacos V, Goodman N (1987) Concurrency
control and recovery in database systems. Addison-Wesley,
Boston

 8. Schneider FB (1993) Replication management using the state-
machine approach. Distributed systems, 2nd edn. ACM Press,
New York

 9. Gray JN (1978) Notes on database operating systems. Lect Notes
Comput Sci 60:393–481

 10. Garcia-Molina H, Barbara D (1985) How to assign votes in a
distributed system. J ACM 32(4):814–860

 11. Khan S, Kolodziej J, Li J, Zomaya AY (2013) Evolutionary based
solutions for green computing. Springer, New York

 12. Serhan Z, Diab WB (2016) Energy efficient QoS routing and adap-
tive status update in WMSNs. Int J Space Based Situated Comput
6(3):129–146

 13. Qu X, Peng X (2017) An energy-efficient virtual machine sched-
uler based on CPU share-reclaiming policy. Int J Grid Util Com-
put (IJGUC) 6(2):113–120

 14. Intel Corporation (2010) Intel Xeon Processor 5600 Series: the
next generation of intelligent server processors. http://www.intel
.com/conte nt/www/us/en/proce ssors /xeon/xeon-5600-brief .html.
Accessed 24 Apr 2017

 15. Kaushik A, Vidyarthi DP (2018) A hybrid heuristic resource allo-
cation model for computational grid for optimal energy usage. Int
J Grid Util Comput (IJGUC) 9(1):51–74

 16. Kataoka H, Nakamura S, Duolikun D, Enokido T, Takizawa M
(2017) Multi-level power consumption model and energy-aware
server selection algorithm. Int J Grid Util Comput (IJGUC)
8(3):201–210

 17. Duolikun D, Enokido T, Takizawa M (2017) An energy-aware
algorithm to migrate virtual machines in a server cluster. Int J
Grid Util Comput (IJGUC) 7(1):32–42

 18. Sawada A, Kataoka H, Duolikun D, Enokido T, Takizawa M
(2016) Energy-aware clusters of servers for storage and compu-
tation applications. In: Proceedings of the 30th IEEE international
conference on advanced information networking and applications
(AINA-2016), pp 400–407

 19. Enokido T, Aikebaier A, Takizawa M (2010) A model for reduc-
ing power consumption in peer-to-peer systems. IEEE Syst J
4(2):221–229

 20. Enokido T, Aikebaier A, Takizawa M (2011) Process allocation
algorithms for saving power consumption in peer-to-peer systems.
IEEE Trans Ind Electron 58(6):2097–2105

 21. Enokido T, Aikebaier A, Takizawa M (2014) An extended sim-
ple power consumption model for selecting a server to perform

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600

A
ve

ra
ge

 to
ta

l e
ne

rg
y

of
 a

 s
er

ve
r

cl
us

te
r

[K
J]

Number m of transactions

ECLBQS
Random

Fig. 9 Average total processing energy ATECH (KJ) in the heteroge-
neous server cluster H

http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
http://www.nrdc.org/energy/files/cloud-computing-efficiency-IB.pdf
http://www.nrdc.org/energy/files/cloud-computing-efficiency-IB.pdf
http://www.omg.org/spec/CORBA/3.3/Interfaces/PDF
http://www.intel.com/content/www/us/en/processors/xeon/xeon-5600-brief.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-5600-brief.html

82 Evolutionary Intelligence (2020) 13:71–82

1 3

computation type processes in digital ecosystems. IEEE Trans Ind
Inform 10(2):1627–1636

 22. Enokido T, Takizawa M (2013) Integrated power consump-
tion model for distributed systems. IEEE Trans Ind Electron
60(2):824–836

 23. Enokido T, Takizawa M (2013) The evaluation of the extended
transmission power consumption (ETPC) model to perform com-
munication type processes. Computing 95(10–11):1019–1037

	Energy consumption laxity-based quorum selection for distributed object-based systems
	Abstract
	1 Introduction
	2 Related works
	3 System model
	3.1 Objects and transactions
	3.2 Quorum-based locking protocol
	3.3 Data access model
	3.4 Power consumption model of a server

	4 The ECLBQS algorithm
	5 Evaluation
	5.1 Environment
	5.2 The average execution time of each transaction
	5.3 The average number of aborted instances of each transaction
	5.4 The average total processing energy of a server cluster
	5.5 Summary of evaluation

	6 Concluding remarks
	References

