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Abstract
In object based systems, an object is an unit of computation resource. Distributed applications are composed of multiple 
objects. Objects in an application are replicated to multiple servers in order to increase reliability, availability, and per-
formance. On the other hand, the large amount of electric energy is consumed in a system compared with non-replication 
systems since multiple replicas of each object are manipulated on multiple servers. In this paper, the energy consumption 
laxity-based quorum selection (ECLBQS) algorithm is proposed to construct a quorum for each method issued by a transac-
tion so that the total electric energy consumption of servers to perform methods can be reduced in the quorum based locking 
protocol. The total electric energy consumption of servers, the average execution time of each transaction, and the number 
of aborted transactions are shown to be more reduced in the ECLBQS algorithm than the random algorithm in evaluation.

Keywords Quorum-based locking protocol · Data management · Energy-aware information systems · Object-based 
systems · Replication

1 Introduction

In current information systems, various kinds of distributed 
applications like data centers [1, 2] are realized on scalable, 
high performance, and fault-tolerant computing systems like 
cloud computing systems [2–4]. These distributed appli-
cations are composed of multiple objects in object-based 
frameworks [5] like CORBA [6]. Each object is an unit of 
computation resource like a file. An object is an encapsula-
tion of data and methods to manipulate the data in the object. 
An object is allowed to manipulate only through methods 
supported by the object. A transaction is an atomic sequence 
of methods [7] to manipulate objects. Once a server which 

performs a method issued by a transaction on an object 
stops by fault [7], the transaction aborts. In order to real-
ize reliable and available application services, objects are 
replicated [8] on multiple servers. Replicas of each object 
are distributed on multiple servers and have to be mutually 
consistent. In order to keep replicas of each object mutually 
consistent, conflicting methods issued by multiple transac-
tions are required to be serializable [9]. In the two-phase 
locking (2PL) protocol [7], all the replicas of an object for 
a write method and one of the replicas for a read method 
are locked before manipulating the object according to the 
read-one-write-all scheme [8] to keep the replicas of each 
object mutually consistent. However, every replica of each 
object has to be locked for every write method issued in a 
system, the 2PL protocol is not efficient for write-dominant 
applications. In order to reduce the overhead to perform 
write methods, the quorum-based locking (QBL) protocols 
[5, 10] are proposed. In the quorum-based locking protocol, 
some numbers nQr and nQw of replicas of an object, called 
quorum numbers , are locked for read and write methods, 
respectively. The quorum numbers nQr and nQw for each 
object have to be “ nQr + nQw > N  ” where N is the total 
number of replicas. Subsets of replicas locked for read and 
write methods are referred to as read and write quorums , 
respectively. The more number of write methods are issued 
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in a system, the smaller number of write quorum can be 
taken in the QBL protocol. As a result, the overhead to per-
form write methods can be reduced in the QBL protocol than 
the 2PL protocol. On the other hand, the large amount of 
electric energy is consumed in a system than non-replication 
systems since methods issued to each object are performed 
on multiple replicas stored in multiple servers. It is critical 
to not only provide the reliable and available application 
service but also reduce the total electric energy consumption 
of an object-based system as discuss in the Green computing 
[1, 2, 11, 12].

I n  t h i s  p a p e r ,  t h e  energy consumption laxity -
based quorum selection (ECLBQS) algorithm is proposed to 
construct a quorum for each method issued by a transaction 
in the quorum based locking protocol so that the total elec-
tric energy consumption of servers to perform methods can 
be reduced. The ECLBQS algorithm is evaluated in terms 
of the total electric energy consumption of servers, the aver-
age execution time of each transaction, and the number of 
aborted transactions compared with the random algorithm in 
homogeneous and heterogeneous server clusters. The evalu-
ation results show the total electric energy consumption of 
servers, the average execution time of each transaction, and 
the number of aborted transactions in the ECLBQS algo-
rithm can be maximumly reduced to 38.7, 54.1, and 47.6% 
of the random algorithm in a homogeneous server cluster, 
respectively. In addition, the total electric energy consump-
tion of servers, the average execution time of each transac-
tion, and the number of aborted transactions in the ECLBQS 
algorithm can be maximumly reduced to 38.1, 41.6, and 
45.1% of the random algorithm in a heterogeneous server 
cluster, respectively.

In Sect. 2, we show related studies on energy-efficient 
information systems. In Sect.  3, we discuss the system 
model, data access model, and power consumption model 
of a server. In Sect. 4, we discuss the ECLBQS algorithm. 
In Sect. 5, we evaluate the ECLBQS algorithm compared 
with the random algorithm.

2  Related works

Various kinds of approaches are proposed to realize energy 
aware information systems [1, 2, 11, 13–15]. In order to 
realize energy aware information systems, it is necessary 
to define the power consumption model and the computa-
tion model of a server to perform application processes. The 
electric power of a server depends on not only hardware 
components [14] but also types of application processes per-
formed on the server. In our previous studies, application 
processes are classified into computation [16, 17, 19–21], 
communication [23], storage [18], and general types [22]. 
The electric power of a server to perform each type of 

application processes is measured and the power consump-
tion models to perform each type of application processes 
are proposed by abstracting parameters which dominate the 
electric power of a server based on the experiments. The 
power consumptionmodel for a storage server (PCS model) 
[18] to concurrently perform storage and computation pro-
cesses are proposed. Storage processes read and write data 
in objects stored in a server. Computation processes mainly 
consume CPU resources of a server. In this paper, a transac-
tion issues read and write methods to manipulate replicas 
of objects. We assume only read and write methods are per-
formed on a server. Read and write methods are performed 
as storage processes [18] in a server. Therefore, the electric 
power consumption model of a server to perform multiple 
read and write methods issued by transactions is defined 
based on the PCS model in this paper.

The quorum-based locking (QBL) protocol [10] is pro-
posed to not only keep replicas of objects mutually consist-
ent but also reduce the overhead to perform write methods. 
In the QBL protocol, each object supports simple read and 
write methods. The quorum based object locking (QOL) 
protocol [5] which extends the traditional QBL protocol 
with simple read and write methods to the object-based 
system with abstract methods is proposed to not only keep 
the replicas of objects mutually consistent but also reduce 
the number of replicas to be locked in a system. By using 
the QOL protocol, the total number of replicas to be locked 
in a system can be reduced than the traditional QBL pro-
tocol. However, the QOL and QBL protocols do not con-
sider to reduce the total electric energy consumption of 
servers to perform methods on multiple replicas of objects. 
In this paper, we propose the energy consumption laxity-
based quorum selection (ECLBQS) algorithm which extends 
the traditional QBL protocol to not only keep the replicas of 
objects mutually consistent but also reduce the total electric 
energy consumption of servers to perform read and write 
methods on replicas of objects.

3  System model

3.1  Objects and transactions

A system is composed of multiple servers s1,… , sn ( n ≥ 1) 
interconnected in reliable networks. This means messages 
can be delivered to their destinations in the sending order 
and without message loss. Let S be a cluster of servers s1 , … , 
sn ( n ≥ 1), i.e. S = { s1 , … , sn }. Let O be a set of objects o1 , 
… , om ( m ≥ 1), i.e. O = { o1 , … , om }. Each object oh is a unit 
of computation resource like a file and is an encapsulation 
of data and methods to manipulate the data in the object oh . 
In this paper, we assume each object oh supports read (r) and 
write (w) methods for manipulating data in the object oh . Let 
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op(oh ) be a state obtained by performing a method op ( ∈ {r, 
w}) on an object oh . A pair of methods op1 and op2 on an 
object oh are compatible if and only if (iff) a result obtained 
by performing the methods op1 and op2 does not depend 
on the computation order, i.e. op1 ◦ op2(oh ) = op2 ◦ op1(oh ). 
Otherwise, a method op1 conflicts with another method op2 . 
For example, a pair of read methods r1 and r2 are compatible 
on an object oh . On the other hand, a write method conflicts 
with read and write methods on an object oh.

Each object oh is replicated on multiple servers to make a 
system more reliable and available. Replicas of each object 
oh are distributed on multiple servers in a server cluster S. 
Let R(oh) be a set of replicas o1

h
 , … , ol

h
 ( l ≥ 1) [8] of an object 

oh . Let nR(oh) be the total number of replicas of an object 
oh , i.e. nR(oh) = |R(oh)| . Let Sh be a subset of servers which 
hold a replica of an object oh in a server cluster S ( Sh ⊆ S ). 
For example, a server cluster S is composed of five servers 
s1 , … , s5 as shown in Fig. 1. There are three objects o1 , o2 , 
and o3 . There are three replicas of each object oh , i.e. nR(oh) 
= 3 (h = 1, 2, 3 ). Here, S1 = { s1 , s2 , s5 } since replicas o1

1
 , o2

1
 , 

and o3
1
 of the object o1 are stored in the servers s1 , s2 , and s5.

A transaction is an atomic sequence of methods [7]. A 
transaction Ti is initiated in a client cli and issues read and 
write methods to manipulate replicas of objects. Multiple 
conflicting transactions are required to be serializable [7, 
9] to keep replicas of each object mutually consistent. Let 
T be a set { T1 , … , Tk } ( k ≥ 1) of transactions initiated in a 
system. Let H be a schedule of the transactions in a set T of 
transactions, i.e. a sequence of methods performed in a set T 
of transactions. A transaction Ti precedes another transaction 
Tj ( Ti →H Tj ) in a schedule H iff a method opi issued by the 
transaction Ti is performed before another method opj issued 
by the transaction Tj and the method opi conflicts with the 
method opj . A schedule H is serializable iff the precedent 
relation →H is acyclic.

3.2  Quorum‑based locking protocol

In this paper, multiple conflicting transactions are serialized 
by using the quorum-based locking protocol [5, 10]. Let Qop

h
 

( op ∈ {r, w}) be a subset of replicas of an object oh to be 
locked by a method op. Qop

h
 is referred to as a quorum of the 

method op on the object oh ( Q
op

h
⊆ R(oh)). Let nQop

h
 be the 

quorum number of a method op on a object oh , i.e. nQop

h
 = 

|Qop

h
| . The quorums have to satisfy the following constraints:

[Quorum constraints]

1. Qr
h
⊆ R(oh) , Qw

h
⊆ R(oh) , and Qr

h
∪ Qw

h
 = R(oh).

2. nQr
h
 + nQw

h
> nR(oh) , i.e. Qr

h
∩ Qw

h
≠ �.

3. nQw
h
> nR(oh) / 2.

Every quorum surly includes at least one newest replica oq
h
 

of each object oh by satisfying the quorum constraints. Let 
�(op) be a lock mode of a method op ( ∈ {r, w}). If a method 
op1 is compatible with another method op2 on an object oh , 
a lock mode �(op1) is compatible with another lock mode 
�(op2) . Otherwise, a lock mode �(op1) conflicts with another 
lock mode �(op2).

A transaction Ti locks replicas of an object oh by using 
the following quorum-based locking (QBL) protocol [5, 10] 
before manipulating the replicas with a method op.

[Quorum-based locking protocol]

1. A quorum Qop

h
 for a method op is constructed by select-

ing nQop

h
 replicas in a set R(oh ) of replicas.

2. If every replica in a quorum Qop

h
 can be locked by a lock 

mode �(op), the replicas in the quorum Qop

h
 are manipu-

lated by the method op.
3. When the transaction Ti commits or aborts, the locks on 

the replicas in the quorum Qop

h
 are released.

Each replica oq
h
 has a version number vq

h
 . Suppose a transac-

tion Ti reads an object oh . The transaction Ti selects nQr
h
 

replicas in a set R(oh) , i.e. a read (r) quorum Qr
h
 . If every 

replica in the r-quorum Qr
h
 can be locked by a lock mode 

�(r) , the transaction Ti reads data in a replica oq
h
 whose ver-

sion number vq
h
 is the maximum in the r-quorum Qr

h
 . Every 

r-quorum surely includes at least one newest replica since 
nQr

h
 + nQw

h
> nR(oh) . Next, suppose a transaction Ti writes 

data in an object oh . The transaction Ti selects nQw
h
 replicas 

in a set R(oh) , i.e. a write (w) quorum Qw
h
 . If every replica 

in the w-quorum Qw
h
 can be locked by a lock mode �(w) , 

the transaction Ti writes data in a replica oq
h
 whose version 

number vq
h
 is maximum in the w-quorum Qw

h
 and the ver-

sion number vq
h
 of the replica oq

h
 is incremented by one. The 

updated data and version number vq
h
 of the replica oq

h
 are 

sent to every other replica in the w-quorum Qw
h
 . Then, data 

and version number of each replica in the w-quorum Qw
h
 are 

replaced with the newest values. When a transaction Ti com-
mits or aborts, the locks on every replica in a quorum Qop

h
 

( op ∈ {r, w}) are released.

s1 s2 s3 s4 s5

o1
1 o2

1 o3
1

o1
2 o2

2 o3
2

o1
3 o2

3 o3
3

o1

o2

o3

replicas of an object o1

replicas of an object o2

replicas of an object o3

Fig. 1  A server cluster S and replicas of objects
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3.3  Data access model

Methods which are being performed and already terminate 
on a server are current and previous at time � , respectively. 
Let RPt(� ) and WPt(� ) be sets of current read (r) and write 
(w) methods on a server st at time � , respectively. Let Pt

(� ) be a set of current r and w methods on a server st at 
time � , i.e. Pt(� ) = RPt(� ) ∪WPt(� ). Let rti(o

q

h
 ) and wti(o

q

h
 ) be 

methods issued by a transaction Ti to read and write data in 
a replica oq

h
 on a server st , respectively. Data in a replica oq

h
 

is read at rate RRti(� ) [B/sec] by each method rti(o
q

h
 ) in a set 

RPt(� ) at time � . Data in a replica oq
h
 is written at rate WRti(� ) 

[B/sec] by each method wti(o
q

h
 ) in a set WPt(� ) at time � . Let 

maxRRt and maxWRt be the maximum read and write rates 
[B/sec] of r and w methods on a server st , respectively. At 
time � , the read rate RRti(� ) ( ≤ maxRRt ) and write rate WRti

(� ) ( ≤ maxWRt ) for each read and write method performed 
on a server st are given as follows:

Here, frt(� ) and fwt(� ) are degradation ratios of the read rate 
RRti(� ) and write rate WRti(� ) at time � , respectively. Here, 0 
≤ frt(� ) ≤ 1 and 0 ≤ fwt(� ) ≤ 1. The degradation ratios frt(� ) 
and fwt(� ) depends on the number of current read and write 
methods performed on a server st at time � . The degradation 
ratios frt(� ) and fwt(� ) at time � are given as follows:

Here, 0 ≤ rwt ≤ 1 and 0 ≤ wrt ≤ 1.
The read laxity lrti(� ) [B] and write laxity lwti(� ) [B] of 

methods rti(o
q

h
 ) and wti(o

q

h
 ) show how much amount of data 

are read and written in a replica oq
h
 by the methods rti(o

q

h
 ) and 

wti(o
q

h
 ) at time � , respectively. Suppose that methods rti(o

q

h
 ) 

and wti(o
q

h
 ) start on a server st at time stti , respectively. At 

time stti , the read laxity lrti(� ) = rbq
h
 [B] where rbq

h
 is the size 

of data in a replica oq
h
 to be read by a method rti(o

q

h
 ). The 

write laxity lwti(� ) = wbq
h
 [B] where wbq

h
 is the size of data to 

be written in a replica oq
h
 by a method wti(o

q

h
 ). The read laxity 

lrti(� ) and write laxity lwti(� ) at time � are given as lrti(�) = 
rb

q

h
 - Σ�

�=stti
RRti(�) and lwti(�) = wbq

h
 − Σ�

�=stti
WRti(�) , 

respectively.

3.4  Power consumption model of a server

Let Et(� ) be the electric power (W) of a server st at time 
� . maxEt and minEt denote the maximum and minimum 

(1)
RRti(�) = frt(�) ⋅ maxRRt. WRti(�) = fwt(�) ⋅ maxWRt.

(2)

frt(�) =
1

|RPt(�)| + rwt ⋅ |WPt(�)| .

fwt(�) =
1

wrt ⋅ |RPt(�)| + |WPt(�)| .

electric power (W) of the server st , respectively. The 
power consumptionmodel for a storage server (PCS model) 
[18] to concurrently perform storage and computation pro-
cesses on a server is proposed. In this paper, we assume 
only read and write methods are performed on a server st . 
According to the PCS model, the electric power Et(� ) (W) 
of a server st to perform multiple read and write methods at 
time � is given as follows:

A server st consumes the minimum electric power minEt 
(W) if no method is performed on the server st , i.e. the elec-
tric power in the idle state of the server st . The server st 
consumes the electric power REt (W) if |WPt(�)| = 0 and 
|RPt(�)| ≥ 1, i.e. only read methods are performed on the 
server st . The server st consumes the electric power WEt 
(W) if |WPt(�)| ≥ 1 and |RPt(�)| = 0 , i.e. only write meth-
ods are performed on the server st . The server st consumes 
the electric power WREt(� ) (W) = � ⋅ REt +(1− � ) ⋅WEt 
(W) where � = |RPt(�)|/(|RPt(�)| + |WPt(�)| ) if |WPt(�)| ≥ 
1 and |RPt(�)| ≥ 1, i.e. both at least one read method and at 
least one write method are concurrently performed. Here, 
minEt ≤ REt ≤ WREt(� ) ≤ WEt ≤ maxEt.

The total electric energy TEt(�1 , �2 ) (J) of a server st 
between time �1 an �2 is given as follows:

The processing power PEt(� ) (W) of a server st at time � is Et

(� ) − minEt . The total processing energy TPEt(�1 , �2 ) (J) of a 
server st between time �1 and �2 is given as follows:

The total processing energy consumption laxity tpeclt(� ) 
shows how much electric energy a server st has to consume 
to perform every current read and write methods on the 
server st at time � . The total processing energy consump-
tion laxity tpeclt(� ) of a server st at time � is obtained by the 
following TPECLt procedure:

(3)Et(�) =

⎧⎪⎨⎪⎩

WEt if �WPt(�)� ≥ 1 and �RPt(�)� = 0.

WREt(�) if �WPt(�)� ≥ 1 and �RPt(�)� ≥ 1.

REt if �WPt(�)� = 0 and �RPt(�)� ≥ 1.

minEt if �WPt(�)� = �RPt(�)� = 0.

(4)TEt(�1, �2) =

�2∑
�=�1

Et(�).

(5)TPEt(�1, �2) =

�2∑
�=�1

PEt(�) =

�2∑
�=�1

(Et(�) − minEt).
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TPECLt(τ ) {
if RPt(τ) = φ and WPt(τ) = φ, return(0);
laxity = Et(τ) - minEt; /* PEt(τ) of a server st at time τ */
for each read method rti(o

q
h) in RPt(τ), {

lrti(τ + 1) = lrti(τ) - RRti(τ);
if lrti(τ + 1) = 0, RPt(τ + 1) = RPt(τ) - {rti(oqh)};

} /* for end. */
for each write method wti(o

q
h) in WPt(τ), {

lwti(τ + 1) = lwti(τ) - WRti(τ);
if lwti(τ + 1) = 0, WPt(τ + 1) = WPt(τ) - {wit(o

q
h)};

} /* for end. */
return(laxity + TPECLt(τ + 1));

}

In the TPECLt procedure, each time � data in a replica 
o
q

h
 is read by a method rti(o

q

h
 ), the read laxity lrti(� ) of the 

method rti(o
q

h
 ) is decremented by read rate RRti(� ). Similarly, 

the write laxity lwti(� ) of a method wti(o
q

h
 ) is decremented by 

write rate WRti(� ) each time � data is written in a replica oq
h
 

by the method wti(o
q

h
 ). If the read laxity lrti(� + 1) and write 

laxity lwti(� + 1 ) get 0, every data in the replica oq
h
 is read 

and written by the methods rti(o
q

h
 ) and wti(o

q

h
 ), respectively, 

and the methods terminate at time �.

4  The ECLBQS algorithm

We newly propose the energy consumption laxity-
based quorum selection (ECLBQS) algorithm to select rep-
licas to be members of a quorum of each method in the quo-
rum-based locking protocol so that the total electric energy 
consumption of a server cluster S to perform read and write 
methods can be reduced. Suppose a transaction Ti issues a 
method op ( op ∈ {r, w}) to manipulate an object oh at time 
� . Each transaction Ti selects a subset Sop

h
 ( ⊆ Sh ) of nQop

h
 

servers in a subset Sh by the following ECLBQS procedure:

ECLBQS(op, oh, τ) { /* op ∈ {r, w} */
Sop
h = φ;

while (nQop
h > 0) {

for each server st in Sh, {
if op = read method, RPt(τ) = RPt(τ) ∪ {op};
else WPt(τ) = WPt(τ) ∪ {op}; /* op = write method*/
TPEt(τ) = TPECLt(τ);
} /* for end. */
server = a server st where TPEt(τ) is the minimum;
Sop
h = Sop

h ∪ {server};
Sh = Sh - {server};
nQop

h = nQop
h - 1;

} /* while end. */
return(Sop

h );
}

Suppose a server cluster S is composed of five serv-
ers s1 , … , s5 and replicas of three objects o1 , o2 , and o3 are 

distributed on multiple servers in the server cluster S as 
shown in Fig. 1, i.e. S1 = { s1 , s2 , s5 }, S2 = { s2 , s3 , s4 }, and 
S3 = { s3 , s4 , s5 }. Every server st ( t = 1,… , 5 ) follows the 
same data access model and the power consumption model 
as shown in Table 1. The size of data in every object oh 
( h = 1, 2, 3 ) is 80 MB. There are three replicas for each 
object oh , i.e. nR(oh) = 3 . The quorum numbers nQw

h
 and 

nQr
h
 for every object oh are two, i.e. nQw

h
 = nQr

h
 = 2.

At time �0 , a pair of replicas o1
1
 and o3

1
 stored in the serv-

ers s1 and s5 are being locked by a transaction T1 with a lock 
mode �(w) and a pair of write methods w11(o11 ) and w51(o31 ) 
are being performed on the servers s1 and s5 , respectively, as 
shown in Fig. 2. Let Ti.Q

op

h
 be a quorum to perform a method 

op issued by a transaction Ti . Let Ti.S
op

h
 be a subset of serv-

ers which hold replicas in a quorum Ti.Q
op

h
 constructed by 

a transaction Ti . The w-quorum T1.Qw
1
 is { o1

1
 , o3

1
 } since the 

quorum number nQw
1
= 2 . The subset T1.Sw1  is { s1 , s5 } since 

a pair of replicas o1
1
 and o3

1
 are stored in the servers s1 and s5 , 

respectively. A pair of write laxities lw11(�0 ) and lw51(�0 ) are 
45 MB, respectively, at time �0.

Suppose a transaction T2 issues a write method to the 
object o3 at time �0 . The size of data to be written in the 
object o3 by the write method issued by the transaction T2 
is 45 MB, i.e. the write laxity lwt2(�0 ) = 45 MB. Here, R(o3 ) 
= { o1

3
 , o2

3
 , o3

3
 } and S3 = { s3 , s4 , s5 } as shown in Fig. 1. First, 

the transaction T2 constructs a w-quorum T2.Qw
3
 by the pro-

cedure ECLBQS(w, o3 , �0 ). Suppose a write method w32(o13 ) 
is issued to a replica o1

3
 stored in the server s3 at time �0 . No 

method is performed on the server s3 at time �0 . Hence, WP3

(�0 ) = WP3(�0 ) ∪ { w32(o13 )} = { w32(o13 )} at time �0 . Since only 
one write method w32(o13 ) is performed on the server s3 at 
time �0 , the degradation ratio fw3(�0 ) is 1/(wr3 ⋅ |RP3(�0)| + 
|WP3(�0)| ) = 1/(0.5 ⋅ 0 + 1) = 1 and the write method w32(o13 ) 
is performed on the server s3 at write rate WR32(�0 ) = fw3(�0 ) 
⋅maxWR3 = 1 ⋅ 45 = 45 MB/s. Hence, the write laxity lw32

(�1 ) gets 0 since lw32(�0 ) − WR32(�0 ) = 45 MB − 45 MB = 0 
at time �1 . Here, the write method w32(o13 ) terminates at time 
�1 and no method is performed after time �1 on the server 
s3 . Similarly, if a write method w42(o23 ) is issued to a replica 
o2
3
 stored in the server s4 at time �0 as shown in Fig. 2, the 

write method w42(o23 ) terminates at time �1 since no method 
is performed on the server s4 at time �0 . Suppose a write 
method w52(o33 ) is issued to a replica o3

3
 stored in the server 

s5 at time �0 . Here, a pair of write methods w51(o31 ) and w52

(o3
3
 ) are concurrently performed on the server s5 at time �0 , 

i.e. WP5(�0 ) = { w51(o31 ), w52(o33 )} and |WP5(�0)| = 2 . Here, the 
degradation ratio fw5(�0 ) is 1/(wr5 ⋅ |RP5(�0)| + |WP5(�0)| ) 
= 1∕(0.5 ⋅ 0 + 2) = 0.5 . A pair of the write methods w51(o31 ) 
and w52(o33 ) are concurrently performed on the server s5 at 
write rate WR51(�0 ) = WR52(�0)= fw5(�0 ) ⋅maxWR5 = 0.5 ⋅ 
45 = 22.5 MB/s at time �0 , respectively. Hence, the write 
laxity lw51(�1 ) is 22.5 MB/s at time �1 since lw51(�0 ) − WR51

(�0 ) = 45 MB − 22.5 MB = 22.5 MB. Similarly, the write 
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laxity lw52(�1 ) is 22.5 MB at time �1 . At time �1 , a pair of 
the write methods w51(o31 ) and w52(o33 ) are still concurrently 
performed on the server s5 at write rate 22.5 MB/s. The write 
laxity lw51(�2 ) gets 0 at time time �2 since lw51(�1 ) − WR51(�1 ) 
= 22.5 MB − 22.5 MB = 0 . Similarly, the write laxity lw52

(�2 ) gets 0 at time �1 . Here, a pair of write methods w51(o31 ) 
and w52(o33 ) terminate at time �2 on the server s5.

Figure 3 shows the processing power (W) of the serv-
ers s3 , s4 , and s5 to perform the write methods as shown in 
Fig. 2. The electric power Et(� ) (W) of a server st at time � is 
given in formula (3). At time �0 to �1 , only the write method 
w32(o13 ) is performed on the server s3 , i.e. |WR3(�0)| = 1 and 
|RP3(�0)| = 0 . Hence, the electric power E3(�0 ) = WE3 = 53 
W. Similarly, the electric power E4(�0 ) = WE4 = 53 W in 
the server s4 . In the server s5 , only a pair of write methods 
w51(o31 ) and w52(o33 ) are performed, i.e. |WR5(�0)| = 2 and 

|RP5(�0)| = 0 . Hence, the electric power E5(�0 ) = WE5 = 53 
W. The total processing energy TPE3(�0 , �1 ) J between �0 and 
�1 is E3(�0 ) − minE3 = 53 − 39 = 14 W. Similarly, The total 
processing energies TPE4(�0 , �1 ) and TPE5(�0 , �1 ) between �0 
and �1 are 14 W, respectively. At time �1 to �2 , a pair of write 
methods w51(o31 ) and w52(o33 ) are performed on the server 
s5 , i.e. |WR5(�1)| = 2 and |RP5(�1)| = 0 . Hence, the electric 
power E5(�1 ) = WE5 = 53 W and the total processing energy 
TPE5(�1 , �2 ) = 53 − 39 = 14 W.

The hatched area shows the total processing energy con-
sumption laxity tpeclt(�0 ) (J) of each server st (t = {3, 4, 5}) 
where the write method wt2(o3 ) issued by the transaction T2 
is performed on each server st at time �0 . Here, tpecl3(�0 ) = 
TPE3(�0 , �1 ) = 14 J. tpecl4(�0 ) = TPE4(�0 , �1 ) = 14 J. tpecl5
(�0 ) = TPE5(�0 , �1 ) + TPE5(�1 , �2 ) = 14 + 14 = 28 J. Here, a 
w-quorum T2,Qw

3
 is constructed by a pair of replicas o1

3
 and 

o2
3
 stored in the servers s3 and s4 since nQw

3
 = 2 and tpecl3

(�0 ) = tpecl4(�0 ) < tpecl5(�0 ), i.e. T2.Qw
3
 = { o1

3
 , o2

3
 } and T2

.Sw
3
 = { s3 , s4}.

5  Evaluation

5.1  Environment

The ECLBQS algorithm is evaluated in terms of the total 
processing energy consumption of a server cluster, the 
average execution time of each transaction, and the aver-
age number of aborted transactions compared with the ran-
dom algorithm. In the random algorithm, a quorum for each 
method is randomly selected. In this evaluation, we consider 
a homogeneous (S) and heterogeneous (H) server clusters 
which are composed of fifteen servers s1 , … , s15 ( n = 15 ), 
respectively, as shown in Tables 2 and 3.

In the homogeneous server cluster S = { s1 , … , s15 }, every 
server st (t = 1, … , 15) follows the same data access model 
and power consumption model as shown in Table 2. Param-
eters of each server st are given based on the experimenta-
tions [18]. The maximum read and write rates (B/s) on every 
server st are 80 and 45 MB/s, respectively, i.e. maxRRt = 
80 MB/s and maxWRt = 45 MB/s. The parameters rwt and 
wrt in the read and write degradation ratios frt(� ) and fwt

(� ) of every server st are 0.5, respectively. The minimum 
electric power minEt (W) of every server st is 39 W. The 
electric power WEt where only write methods are performed 
on every server st is 53 W. The electric power REt where 
only read methods are performed on every server st is 43 W.

Table 1  Parameters of each 
server st in a server cluster S 

(t = 1,..., 5)

Server maxRRt maxWRt rwt wrt minEt WEt REt

st 80 MB/s 45 MB/s 0.5 0.5 39 W 53 W 43 W
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Fig. 2  Execution of methods
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In the heterogeneous server cluster H = { s1 , … , s15 }, we 
consider three types of servers, Type1 = { s1 , … , s5 }, Type2 
= { s6 , … , s10 }, Type3 = { s11 , … , s15 } as shown in Table 3. 
In each server type, every parameter of data access model 
and power consumption model is the same. For example, 
parameters of five servers s1 , … , s5 in Type1 are the same as a 
server st (t = 1 , … , 15) in the homogeneous server cluster S. 
The maximum read and write rates (B/s) of the Type2 server 
s6 are 120 and 67 MB/s, respectively, i.e. maxRR6 = 120

MB/s and maxWR6 = 67 MB/s. fr6(� ) = 0.5 , fw6(� ) = 0.5 , 
minE6 = 59 W, WE6 = 80 W, and RE6 = 64 W. Parameters 
of Type2 servers s7 , … , s10 are the same as the server s6 . The 
maximum read and write rates (B/s) of the Type3 server s11 
are 136 and 76 MB/s, respectively, i.e. maxRR11 = 136 MB/s 
and maxWR11 = 76 MB/s. fr11(� ) = 0.5 , fw11(� ) = 0.5 , minE11 
= 45 W, WE11 = 60 W, and RE11 = 49 W. Parameters of Type3 
servers s12 , … , s15 are the same as the server s11.

There are fifty objects o1 , … , o50 in a system, i.e. O = 
{ o1 , … , o50 }. Each object oh supports read (r) and write 
(w) methods. The size of data in each object oh is randomly 
selected between 50 and 250 MB. The total number of rep-
licas for every object is seven, i.e. R(oh ) = { o1

h
 , … , o7

h
 } and 

nR(oh ) = 7 (h = 1 , … , 50). Replicas of each object are ran-
domly distributed on fifteen servers in the homogeneous S 
and heterogeneous H server clusters, respectively. The quo-
rum number nQw

h
 of a write method on every object oh is 

four, i.e. nQw
h
 = 4 . The quorum number nQr

h
 of a read method 

on every object oh is four, nQr
h
 = 4.

The total number m of transactions T1 , … , Tm (0 ≤ m ≤ 
600) are issues to manipulate objects in a system. Each 
transaction issues three methods randomly selected from 
one-hundred methods on the fifty objects. By each read and 
write method issued by a transaction Ti to a replica oq

h
 of 

an object oh , the total amount of data of the replica oq
h
 are 

fully read and written, respectively. The starting time of each 
transaction Ti is randomly selected in a unit of 1 s between 
1 and 360 s.

5.2  The average execution time of each transaction

The ECLBQS algorithm is evaluated in terms of the average 
execution time (s) of each transaction in the homogeneous S 
and heterogeneous H server clusters, respectively, compared 
with the random algorithm. Let ET�

i
 be the execution time 

(s) of a transaction Ti in a server cluster � ∈ {S (homogene-
ous), H (heterogeneous)} where the transaction Ti commits. 
For example, suppose a transaction Ti starts at time sti and 
commits at time eti in a server cluster � . Here, the execution 
time ET�

i
 of the transaction Ti is eti − sti (s). In this evalua-

tion, the execution time ET�

i
 for each transaction Ti is meas-

ured five times for each total number m of transactions (0 
≤ m ≤ 600). Let ET�,tm

i
 be the execution time ET�

i
 obtained 

in tmth simulation. The average execution time AET� (s) of 
each transaction for each total number m of transactions is 
calculated as 

∑5

tm=1

∑m

i=1
ET

�,tm

i
/(m ⋅ 5).

time τ

time τ

time τ
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1 1
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minE4 = 39 [W]

minE5 = 39 [W]
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E4(τ) [W]
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Fig. 3  Total processing energy laxity (J)

Table 2  Homogeneous server 
cluster S 

(t = 1 , … , 15)

Server st maxRRt maxWRt rwt wrt minEt WEt REt

s
1
 , … , s

15
80 MB/s 45 MB/s 0.5 0.5 39 W 53 W 43 W

Table 3  Heterogeneous server 
cluster H 

(t = 1 , … , 15)

Server st maxRRt maxWRt rwt wrt minEt WEt REt

s
1
 , … , s

5
80 MB/s 45 MB/s 0.5 0.5 39 W 53 W 43 W

s
6
 , … , s

10
120 MB/s 67 MB/s 0.5 0.5 59 W 80 W 64 W

s
11

 , … , s
15

136 MB/s 76 MB/s 0.5 0.5 45 W 60 W 49 W
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Figure 4 shows the average execution time AETS (s) of 
each transaction in the homogeneous server cluster S to per-
form the total number m of transactions in the ECLBQS 
and random algorithms. In the ECLBQS and random algo-
rithms, the average execution time AETS increases as the 
total number m of transactions increases since more number 
of transactions are concurrently performed. For 0 < m ≤ 
600, the average execution time AETS of each transaction 
can be more shorter in the ECLBQS algorithm than the ran-
dom algorithm. This means that the data access resources 
in the server cluster S can be more efficiently utilized in 
the ECLBQS algorithm than the random algorithm. For 
example, for m = 100 , the average execution time AETS 
of each transaction in the homogeneous server cluster S in 
the ECLBQS and random algorithms are 9.1 and 19.9 s, 
respectively. This means the average execution time AETS of 
each transaction in the homogeneous server cluster S in the 
ECLBQS algorithm can be maximumly reduced to 54.1% of 
the random algorithm. In Fig. 4, the average execution time 
AETS of each transaction in the homogeneous server cluster 
S in the ECLBQS algorithm can be averagely reduced to 
25.1% of the random algorithm for 0 ≤ m ≤ 600.

Figure 5 shows the average execution time AETH (s) of 
each transaction in the heterogeneous server cluster H to 
perform the total number m of transactions in the ECLBQS 
and random algorithms. For 0 < m ≤ 600, the average exe-
cution time AETH of each transaction can be more shorter 
in the ECLBQS algorithm than the random algorithm as 
similar to the results obtained in the homogeneous server 
cluster S. For m = 150 , the average execution time AETH 
of each transaction in the heterogeneous server cluster H in 
the ECLBQS and random algorithms are 14.8 and 25.4 s, 
respectively. This means the average execution time AETH of 

each transaction in the heterogeneous server cluster H in the 
ECLBQS algorithm can be maximumly reduced to 41.6% of 
the random algorithm. In Fig. 5, the average execution time 
AETH of each transaction in the heterogeneous server cluster 
H in the ECLBQS algorithm can be averagely reduced to 
24.3% of the random algorithm for 0 ≤ m ≤ 600.

5.3  The average number of aborted instances 
of each transaction

The ECLBQS algorithm is evaluated in terms of the aver-
age number of aborted transactions in the homogeneous S 
and heterogeneous H server clusters, respectively, compared 
with the random algorithm. A transaction Ti aborts if the 
transaction Ti could not lock every replica in an r-quorum 
Qr

h
 or w-quorum Qw

h
 . If a transaction Ti aborts, the transac-

tion Ti is restarted after � time units in this evaluation. The 
time units � (s) is randomly selected between 20 and 30 s 
(20 s ≤ � ≤ 30 s) in this evaluation. Every transaction Ti 
is restarted until the transaction Ti commits. Each execu-
tion of a transaction is referred to as transaction instance. 
We measure how many number of transaction instances are 
aborted until each transaction Ti commits. Let AT�

i
 be the 

number of aborted instances of a transaction Ti in a server 
cluster � ∈ {S (homogeneous), H (heterogeneous)}. The 
number of aborted instances AT�

i
 for each transaction Ti is 

measured five times for each total number m of transactions 
(0 ≤ m ≤ 600). Let AT�,tm

i
 be the number of aborted trans-

action instances AT�

i
 of a transaction Ti in a server clus-

ter � obtained in tmth simulation. The average number of 
aborted instances AAT� of each transaction in a server clus-
ter � for each total number m of transactions is calculated as ∑5

tm=1

∑m

i=1
AT

�,tm

i
/(m ⋅ 5).
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Figure 6 shows the average number of aborted instances 
AATS of each transaction in the homogeneous server clus-
ter S to perform the total number m of transactions in the 
ECLBQS and random algorithms. In the ECLBQS and ran-
dom algorithms, the average number of aborted instances 
AATS of each transaction increases as the total number m 
of transactions increases. The more number of transactions 
are concurrently performed, the more number of transac-
tions cannot lock replicas. Hence, the number of aborted 
instances of each transaction increases in the ECLBQS and 
random algorithms. For 80 ≤ m ≤ 600, the average number 
of aborted instances AATS of each transaction can be more 
reduced in the ECLBQS algorithm than the random algo-
rithm. The data access resources in the homogeneous server 
cluster S can be more efficiently utilized in the ECLBQS 
algorithm than the random algorithm. Hence, the average 
execution time of each transaction in the homogeneous 
server cluster S can be shorter in the ECLBQS algorithm 
than the random algorithm as shown in Fig. 4. As a result, 
the number of aborted instances AATS of each transaction 
can be more reduced in the ECLBQS algorithm than the ran-
dom algorithm since the number of transaction to be concur-
rently performed can be reduced in the ECLBQS algorithm 
than the random algorithm. For example, for m = 400 , the 
average number of aborted instances AATS of each transac-
tion in the homogeneous server cluster S in the ECLBQS 
and random algorithms are 108 and 205, respectively. This 
means the average number of aborted instances AATS of 
each transaction in the ECLBQS algorithm can be maxi-
mumly reduced to 47.6% of the random algorithm. In Fig. 6, 
the average number of aborted instances AATS of each trans-
action in the ECLBQS algorithm can be averagely reduced 
to 38.9% of the random algorithm for 0 ≤ m ≤ 600.

Figure 7 shows the average number of aborted instances 
AATH of each transaction in the heterogeneous server clus-
ter H to perform the total number m of transactions in the 
ECLBQS and random algorithms. For 100 ≤ m ≤ 600, the 
average number of aborted instances AATH of each transac-
tion can be more reduced in the ECLBQS algorithm than 
the random algorithm as similar to the results obtained in 
the homogeneous server cluster S. For m = 450, the average 
number of aborted instances AATH of each transaction in the 
heterogeneous server cluster H in the ECLBQS and random 
algorithms are 158 and 288, respectively. This means the 
average number of aborted instances AATH of each transac-
tion in the ECLBQS algorithm can be maximumly reduced 
to 45.1% of the random algorithm. In Fig. 7, the average 
number of aborted instances AATH of each transaction in 
the ECLBQS algorithm can be averagely reduced to 41.2% 
of the random algorithm for 0 ≤ m ≤ 600.

5.4  The average total processing energy of a server 
cluster

The ECLBQS algorithm is evaluated in terms of the aver-
age total processing energy (J) of the homogeneous S and 
heterogeneous H server clusters, respectively, to perform 
the total number m of transactions. Let TEC�,tm be the total 
processing energy (J) of a server cluster � ∈ {S (homogene-
ous), H (heterogeneous)} to perform the number m of trans-
actions (0 ≤ m ≤ 600) obtained in the tmth simulation. The 
total processing energy TEC�,tm is measured five times for 
each number m of transactions. The average total process-
ing energy ATEC� (J) of a server cluster � is calculated as ∑5

tm=1
TEC�,tm /5 for each number m of transactions.

Figure 8 shows the average total processing energy ATECS 
of the homogeneous server cluster S to perform the total 
number m of transactions in the ECLBQS and random algo-
rithms. In the ECLBQS and random algorithms, the average 
total processing energy ATECS of the homogeneous server 
cluster S increases as the number m of transactions increases. 
For 0 < m ≤ 600, the average total processing energy ATECS 
of the homogeneous server cluster S can be more reduced 
in the ECLBQS algorithm than the random algorithm. In 
the ECLBQS algorithm, each time a transaction Ti issues a 
method op ( ∈ {r, w}) to manipulate an object oh , the trans-
action Ti selects a subset nSop

h
 ( ⊆ Sh ) of nQop

h
 servers which 

hold a replica oq
h
 of the object oh to construct a quorum Qop

h
 for 

the method op so that the total processing energy laxity of a 
server cluster S is the minimum. In addition, the processing 
energy to perform each transaction and aborted instances of 
each transaction can be more reduced in the ECLBQS algo-
rithm than the random algorithm since the average execution 
time and the number of aborted instances of each transac-
tion can be more reduced in the ECLBQS algorithm than the 
random algorithm. As a result, the average total processing 
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energy ATECS of the server cluster S to perform the num-
ber m of transactions can be more reduced in the ECLBQS 
algorithm than the random algorithm. For example, for m = 
600, the average total processing energy of the homogene-
ous server cluster S in the ECLBQS and random algorithm 
are 1521 and 2483 KJ, respectively. This means the average 
processing energy of the homogeneous server cluster S in the 
ECLBQS algorithm can be maximumly reduced to 38.7% 
of the random algorithm. In Fig. 8, the average processing 
energy of the homogeneous server cluster S in the ECLBQS 
algorithm can be averagely reduced to 18.3% of the random 
algorithm for 0 ≤ m ≤ 600.

Figure  9 shows the average total processing energy 
ATECH of the heterogeneous server cluster H to perform the 
total number m of transactions in the ECLBQS and random 
algorithms. For 0 < m ≤ 600, the average total processing 
energy ATECH of the heterogeneous server cluster H can be 
more reduced in the ECLBQS algorithm than the random 
algorithm as similar to the results obtained in the homogene-
ous server cluster S. For example, for m = 250 , the average 
total processing energy of the heterogeneous server cluster H 
in the ECLBQS and random algorithm are 150 and 243 KJ, 
respectively. This means the average processing energy of the 
heterogeneous server cluster H in the ECLBQS algorithm can 
be maximumly reduced to 38.1% of the random algorithm. 
In Fig. 9 the average processing energy of the heterogeneous 
server cluster H in the ECLBQS algorithm can be averagely 
reduced to 15.5% of the random algorithm for 0 ≤ m ≤ 600.

5.5  Summary of evaluation

In the evaluation, the average total processing energies of 
the homogeneous S and heterogeneous H server clusters to 

perform the total number m (0 ≤ m ≤ 600) of transactions 
are shown to be more reduced in the ECLBQS algorithm 
than the random algorithm. The average total process-
ing energies of the homogeneous S and heterogeneous H 
server clusters in the ECLBQS algorithm can be maxi-
mumly reduced to 38.7 and 38.1% of the random algorithm, 
respectively, for 0 ≤ m ≤ 600. The average total processing 
energies of the homogeneous S and heterogeneous H server 
clusters in the ECLBQS algorithm can be averagely reduced 
to 18.3 and 15.5% of the random algorithm, respectively, 
for 0 ≤ m ≤ 600. The average execution time and number 
of aborted instances of each transaction in the homoge-
neous S and heterogeneous H server cluster are shown to 
be more reduced in the ECLBQS algorithm than the ran-
dom algorithm. The average execution time and number of 
aborted instances of each transaction in the homogeneous 
server cluster S in the ECLBQS algorithm can be maxi-
mumly reduced to 54.1 and 47.6% of the random algorithm, 
respectively, for 0 ≤ m ≤ 600. The average execution time 
and number of aborted instances of each transaction in the 
homogeneous server cluster S in the ECLBQS algorithm 
can be averagely reduced to 25.1 and 38.9% of the random 
algorithm, respectively, for 0 ≤ m ≤ 600. The average exe-
cution time and number of aborted instances of each transac-
tion in the heterogeneous server cluster H in the ECLBQS 
algorithm can be maximumly reduced to 41.6 and 45.1% of 
the random algorithm, respectively, for 0 ≤ m ≤ 600. The 
average execution time and number of aborted instances of 
each transaction in the heterogeneous server cluster H in the 
ECLBQS algorithm can be maximumly reduced to 24.3 and 
41.2% of the random algorithm, respectively, for 0 ≤ m ≤ 
600. Following the evaluation, the ECLBQS algorithm is 
more useful than the random algorithm.
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6  Concluding remarks

I n  t h i s  p a p e r ,  w e  n e wly  p r o p o s e d  t h e 
energy consumption laxity - based quorum selection 
(ECLBQS) algorithm to select a quorum for each method 
issued by a transaction in the quorum based locking (QBL) 
protocol so that the total electric energy consumption of a 
server cluster to perform read and write methods issued by 
transactions can be reduced. We evaluated the ECLBQS 
algorithm in terms of the average total processing energy 
consumption of a server cluster, the average execution time 
of each transaction, and the number of aborted instances 
of each transaction in homogeneous and heterogeneous 
server clusters compared with the random algorithm. The 
evaluation results show the average total processing energy 
consumption of a server cluster, the average execution time 
of each transaction, and the average number of aborted 
instances of each transaction can be more reduced in the 
ECLBQS algorithm than the random algorithm. Following 
the evaluation, the ECLBQS algorithm is more useful than 
the random algorithm.

We are now defining meaningless methods which are 
not required to be performed on each replica of an object 
based on the precedent relation and semantics of methods. 
In future works, we improve the ECLBQS algorithm to fur-
thermore reduce the total electric energy consumption of a 
server cluster by omitting meaningless methods.
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