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Abstract In this paper, we carry out a sensitivity analysis

for an agent-based model of the use of public resources as

manifested by the El Farol Bar problem. An early study

using the same model has shown that a good-society

equilibrium, characterized by both economic efficiency and

economic equality, can be achieved probabilistically by a

von Neumann network, and can be achieved surely with the

presence of some agents having social preferences, such as

the inequity-averse preference or the ‘keeping-up-with-the-

Joneses’ preference. In this study, we examine this fun-

damental result by exploring the inherent complexity of the

model; specifically, we address the effect of the three key

parameters related to size, namely, the network size, the

neighborhood size, and the memory size. We find that

social preferences still play an important role over all the

sizes considered. Nonetheless, it is also found that when

network size becomes large, the parameter, the bar capacity

(the attendance threshold), may also play a determining

role.

Keywords El Farol Bar problem � Good-society
equilibrium � Social preferences � Imitation � Mutation �
Inequity aversion � Keeping-up-with-the-Joneses

1 Introduction

The El-Farol Bar (hereafter, EFB) problem or the con-

gestion problem, initiated by [1], has been regarded as a

classic model for the study of the allocation or the use of

public resources, particularly when central or top–down

coordination is not available. Through the modeling and

simulation of the EFB problem, one hopes to have a gen-

eral understanding of when and how a good coordination

can emerge from the bottom up. While over the last two

decades various agent-based models have been proposed to

address the EFB problem, most of them have been con-

cerned with the overuse (congestion) or the underuse

(idleness) of public resources. Efficiency certainly is one

important concern of the coordination problem, but it is not

the only one. The one concern missing in the literature is

equity or fairness; after all, public resources belong to all

members of a community, not just a few of them.

Chen and Gostoli [2] reformulate the original one-di-

mensional EFB problem into a two-dimensional one;

hence, both efficiency and equity have been taken into

account in evaluating the emerging bottom–up coordina-

tion. In their study, it is found that the social network plays

an important role for as an efficient means of coordination,

i.e., an outcome with neither idleness nor congestion.

However, many of these efficient outcomes are not equi-

table, so that the public resource is not equally shared by

all community members. A typical example is the emer-

gence of two clusters of agents; one always goes to the bar,

and one never goes to the bar, a familiar phenomenon

known as social segregation or exclusion. They, nonethe-

less, found that if some agents can be endowed with a kind

of social preference, then both efficient and equitable out-

comes become likely. Specifically, they studied two kinds

of social preferences, namely, the inequity-aversion
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preference and the KUJ (standing for ‘Keeping-up-with-

the-Joneses’) preference. They found that, as long as a

proportion of the community members has these kinds of

social preferences, then the convergence to the equilibrium

which is both efficient and equitable is guaranteed. They

refer to this outcome as the ‘good-society’ equilibrium.

While the result of the emergence of the good-society

equilibrium is profound, this result has not been examined

thoroughly, considering the inherent complexity of the

model. Chen and Gostoli [2] were aware that their agent-

based model may be closely related to cellular automata [7]

in that a set of simple rules employed by agents can gen-

erate a large variety of outcomes. However, their original

purpose was simply to demonstrate that the proposed

model has promising features which deserve further anal-

ysis, rather than to provide a full analysis of the model.

Hence, their simulation is limited to a single set of

parameters, for example, a single fixed number of agents, a

single fixed value for the size of the neighborhood, and a

single fixed value of the memory of agents. In this paper,

we attempt to move one step forward and to engage in an

in-depth exploration of the results found in the earlier

work, in particular, the emergence of the good-society

equilibrium.

More precisely, we shall examine how sensitive the

good-society result is with respect to the change in the

following three parameters: network size (number of

agents), neighborhood size (number of connections or

neighbors), and memory size (length of memory on which

the decision is based). By choosing these three, we do not

exclude the significance of other parameters; nonetheless,

the three considered by us are all related to size. Therefore,

at this stage of the analysis, we want to have a focus on

size, and leave other non-size parameters to future analysis.

As a matter of fact, the role of these three size-related

parameters in sensitivity analysis has already received

much attention in the agent-based literature. First, for the

number of agents, we are aware that some simulation

results are not size-free or cannot be scaled-up. This

property is already well-known in agent-based computa-

tional economics [6]. Second, the number of neighbors or

the range of interactions can also matter because that could

affect the flow and the spread of the information [5]. Third,

the memory capacity has constantly been regarded as an

important parameter in various models of learning and has

been operated in different ways. In our model, it determi-

nes how frequently a strategy will be evaluated and hence

has an effect on the speed of learning. The relevance of

speed learning is also referred to in the literature [3, 4].

Therefore, in this paper, we shall begin our sensitivity

analysis with these three parameters.

The rest of the paper is organized as follows. In Sect. 2,

we shall provide a review of the agent-based model of EFB

games proposed by [2]. The sensitivity analysis of the

model will then be conducted with respect to three deter-

minants: the number of agents (the network size) in Sect. 3,

the number of neighbors (the connections or the degree) in

Sect. 4, and, finally, the memory size (memory capacity) in

Sect. 5. The simulation results will be comprehensively

discussed in Sect. 6, and followed by the concluding

remarks in Sect. 7.

2 The agent-based model of the El Farol Bar game

2.1 Network-based decisions

As in the original El Farol Bar problem, we consider a

population composed of N agents and set the bar atten-

dance threshold B=N ¼ a. Each agent can ‘see’ the actions,

the strategies and the strategic performances of his neigh-

bors, which are determined by the given social network.

The network topology applied in this paper is the von

Neumann network (von Neumann neighborhood), with the

agents occupying a cell in a bi-dimensional grid covering

the surface of a torus. The agent is connected to four

neighbors, denoted by N1, N2, N3 and N4.

Each agent is assigned, at the beginning of the simulation,

only one strategy z, randomly chosen from the whole

strategy space. Our representation of the strategy is based on

the binary string as normally used in cellular automata. The

idea is that each agent will first look at what his R neighbors

did in the previous period and only then decide what he will

do in the current period, i.e., a mapping from the neighbors’

previous decisions to his current decision. Denote the action

‘‘going to the bar’’ by 1 and ‘‘staying at home’’ by 0. Then

there are 2R possible states, each corresponding to one

combination of the decision ‘‘1’’ or ‘‘0’’ made by the R

neighbors. Each strategy is composed of 2R rules specifying

the action D the agent has to take in the current period, one

rule for each state. If R ¼ 4, each strategy can be repre-

sented by a 16(24Þ-bit long string. If we fix the numbering

order of the 16 (24) states, then the corresponding 16-bit

representation for the strategy exemplified there is simply,

for example, ‘‘0010001110101110’’, i.e., an array of the

decisions corresponding to each of the sixteen states,

respectively. Altogether, there are 22
R

possible strategies in

the strategy space.

We define the variable diðtÞ as the action taken by agent

i in period t: it takes the value 1 if the agent goes to the bar

and the value 0 otherwise. Moreover, we define the vari-

able siðtÞ as the outcome of agent i’s decision in period t: it

takes the value 1 if the agent made the right decision (that

is, if he went to the bar and the bar was not crowded or if he

stayed at home and the bar was too crowded) and it takes
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the value 0 if the agent made the wrong decision (that is, if

he went to the bar and the bar was too crowded or if he

stayed at home and the bar was not crowded). The agents

are endowed with a memory of length m. This means that

they store in two vectors, d and s of length m, the last m

values of d and s, respectively. So, at the end of any given

period t, agent i’s vectors di and si, are composed,

respectively, of diðtÞ; diðt � 1Þ; . . .; diðt þ 1� mÞ, and of

siðtÞ; siðt � 1Þ; . . .; siðt þ 1� mÞ.
Agent i’s attendance frequency over the most recent m

periods, ai, is defined by (1):

ai ¼
1

m

Xt

j¼tþ1�m

diðjÞ: ð1Þ

The attendance frequency’s value can go from 1, if the

agent always went to the bar, to 0, if the agent never went

to the bar, in the last m periods. Moreover, agent i’s de-

cision accuracy rate, fi, is given by (2):

fi ¼
1

m

Xt

j¼tþ1�m

siðjÞ: ð2Þ

The decision accuracy rate can go from 1, if the agent

always made the right decision, to 0, if the agent always

made the wrong decision, in the last m periods. We define

the duration of agent i’s current strategy (the number of

periods the agent is using his current strategy) as ri. In

order for the average attendance and the decision accuracy

associated with any strategy to be computed, it has to be

adopted for a number of periods equal to the agents’

memory size m: so, we can think of m as the trial period of

a strategy.

Agents in our model may have an inequity-aversion

preference, which is characterized by a parameter called

the minimum attendance threshold, denoted by ai, that is, a
fair share of the access to the pubic resources or a fair

attendance frequency expected by the agent. It can take any

value from 0, if the agents do not care about their atten-

dance frequency, to a. We do not consider a higher value

than a because these agents with equity concerns do not

claim to go with an attendance frequency higher than the

bar threshold a.

2.2 Learning

Differing from the traditional El Farol Bar problem setup,

the agents’ strategies are not fixed, but they evolve through

both social learning (imitation) and individual learning

(mutation). So, the social network plays a role both in the

agents’ decision process, allowing the agents to gather

information regarding their neighbors’ choices, and, in the

agents’ learning process, allowing the agents to imitate

their neighbors’ strategies. In any given period, an agent

i imitates the strategy of one of his neighbors if the fol-

lowing six conditions are met:

(a) fi\1 and/or ai\ai
(b) ri �mi

and the agent has at least one neighbor j for which the

following conditions are verified:

(c) fj [ fi
(d) aj � ai
(e) rj �mj

(f) zj 6¼ zi

Condition (a) is quite obvious. It simply states that the

agent will have the tendency to imitate if he is not satisfied

with his current situation (strategy). There are two possi-

bilities which may cause this dissatisfaction. First, there are

errors in his decision (fi\1) so that there is room for an

improvement, and, second, he is not satisfied with his

attendance frequency (ai\ai). Notice that, by this later

qualification, the agent may still look for change even

though all his decisions are accurate (fi ¼ 1). Condition (b)

shows that the agent will not change his strategy frequently

and will consider doing so only if the strategy has been

tested long enough, i.e., after or upon the completion of the

trial period with a given duration of mi.

When imitating neighbors, agent i will only consider

those strategies which not only lead to more accurate

outcomes, but also lead to a satisfactory attendance fre-

quency [Conditions (c) and (d)]. The above promising

strategy should be based on long testing, with a duration of

mj periods, rather than sheer luck [Condition (e)]. Finally,

agent i will not imitate the same strategy which he is

currently using. Condition (f) is to avoid this repetition.

If the first two conditions are met but at least one of the

last four is not, or, alternatively put, if the agent has not yet

reached the optimal strategy and in the current period he

cannot imitate any of his neighbors, then the agent, with a

probability p (p\\1), will mutate a randomly chosen rule

on its strategy while with probability 1� p he will keep

using his present strategy. While the imitation process

ensures that the most successful strategies are spread

among the population, the mutation process ensures that

new, eventually better, strategies are introduced over time.

Once the agent has adopted a new strategy (either through

imitation or mutation) he will reset his memory to zero and

will start keeping track of the new strategy’s fitness. The

agent stops both the imitation and the mutation processes if

the following two conditions are met:

(a) fi ¼ 1

(b) ai � ai

When these two conditions are verified for all the agents,

the system reaches the equilibrium: no further change in
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the agents’ behavior takes place after this point as the

agents always make the right decision and go to the bar

with a satisfying attendance frequency.

2.3 Social preferences

Some agents are assumed to have a kind of social prefer-

ence. For these agents, they expect a minimum bar atten-

dance frequency, and, if their actual attendance is below

the threshold, they will find a way to change their original

decision rule. Agents who do not have such a kind of social

preference do not care about their attendance frequency.

For them, the same learning mechanism applies but with

the minimum attendance threshold set to 0 (ai ¼ 0).

Accordingly, these agents without such a kind of social

preference decide whether or not to imitate their neighbors

only on the basis of the strategies’ accuracy rates.

For those agents who are endowed with social prefer-

ences, we further consider two kinds: the inequity-averse

agents and the KUJ (‘keeping-up-with-the-Joneses’)

agents. For the inequity-average agents, we assume that

their minimum bar attendance frequency is exogenously

given as a. For the KUJ agents, their expected minimum

bar attendance frequency is determined endogenously and

socially in a ‘keeping-up-with-the-Joneses’ manner; they

will find their own reference based on the attendance fre-

quency averaged over their neighbors, and use that as their

own minimum attendance threshold. In other words, the

agents characterized by the ‘keeping-up-with-the-Joneses’

behavior do not, among those in their neighborhood, want

to be those going to the bar with a frequency lower than the

average. Since neighbors’ attendance frequencies change

over time, this threshold, unlike the previous exogenous

setting, is no longer fixed. The number of the inequity-

averse agents and the number of the KUJ agents are

denoted by the parameters Na and NKUJ , respectively.

2.4 Simulation settings

We conduct a sensitivity analysis of the above agent-based

model with three different considerations, coded as Series A,

B, andC. They are summarized inTable 1. Each of these three

series has one focused parameter to explore; it is the number of

agents (N) for series A, the number of neighbors (R) for Series

B, and the length of memory window (m) for Series C.

3 Number of agents

3.1 Does size matter?

The sensitivity analysis of N needs to be addressed at three

different levels: efficiency, distribution of equilibria, and

the emergence of the good society (1C equilibrium). First,

the result with regard to the perfect coordination (effi-

ciency) is robust. For each N in Design A1, Table 1, out of

all the 1000 simulations, we always have the perfectly

coordinated outcomes in the sense that the attendance rate

is equal to the bar’s threshold. In these simulations the

society always segregates into different numbers of clusters

of agents (from one to eight, as shown in Fig. 1), who self-

organize themselves well in their bar attendance schedule

and frequency. Second, while the exact histogram will have

some mild changes with respect to different numbers of

Table 1 Simulation designs

and tableau of control

parameters

Design N R m a Na, NKUJ

A1 25, 100, 225, 400 4 10 0.6 0, 0

A2 225 4 10 0.6 [1,..., 40], 0

A3 225 4 10 0.6 0, [1,..., 40]

A4 36, 64, 100, 144, 196 4 10 0.5 [0 %, 40 %], 0

A5 36, 64, 100, 144, 196 4 10 0.5 0, [0 %, 40 %]

A6 400 4 10 0.5 [1 %, 25 %], 0

A7 400 4 10 0.5 0, [1 %, 25 %]

B1 100 3, 4, 5 10 0.6 0, 0

B2 100 3, 4, 5 10 0.6 [1, 40], 0

B3 100 3, 4, 5 10 0.6 0, [1, 40]

C1 100 4 5, 10, 20 0.6 0, 0

C2 100 4 5, 10, 20 0.6 [1, 40], 0

C3 100 4 5, 10, 20 0.6 0, [1, 40]

a Other parameters which are fixed throughout the whole simulation are: p ¼ 0:005, mi ¼ m; 8i
b The range [1, 40] appearing in the Na and NKUJ columns means that Na and NKUJ are set from 1 to 40 with

an increment of one, whereas ½0; 40%� (½1; 25%�) means that Na and NKUJ are set from 0 % (1 %) to 40 %

(25 %) of the entire population of agents with an increment of 5 % (1 %)
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agents, equilibria with lower numbers of clusters constantly

play a major role in the histogram, in particular, the

dominant 2C equilibria. Hence, this topography of the

histogram is also robust to the number of agents.

Third, what is not robust is the chance of having the 1C

(good-society) equilibrium. It is well noted that the chance

of observing the 1C equilibrium declines with the number

of agents. It becomes increasingly difficult to achieve the

1C equilibrium when the population of agents becomes

larger; for example, when N ¼ 225 or 400, none of the

1000 runs is able to converge to the 1C equilibrium,

indicating that the core result, the emergence of the good-

society equilibrium, is not size independent and the coor-

dination efforts required for achieving the good-society

equilibrium may depend on the number of agents.

3.2 Social preferences: No longer works?

Regardless of its sensitivity to the number of agents, the

‘good society’ will not always emerge even though the

numbers of agents is small. Therefore, the most profound

finding of [2] is that when there is a sufficient number of

agents, who expect to keep a minimum bar attendance which

is socially determined, then the ‘good society’ will always

emerge. They considered two such kinds of social prefer-

ences, namely, inequity aversion and ‘keeping-up-with-

Joneses’ (KUJ), and found that as long as there is a pro-

portion of agents, say, 20–30 %, who have inequity-aversion

preference or have the KUJ preference, one can always have

the 1C equilibrium. It is, therefore, interesting to know

whether this result is also sensitive to the number of agents.

We, therefore, conducted another two series of simula-

tions, Designs A2 and A3 (Table 1), involving different

numbers of agents with these traits, one series for the

inequity-averse agents (A2) and one series for the KUJ

agents (A3). Figure 2 shows the effect of the presence of the

inequity-averse agents on the emergence of the 1C equilib-

rium and other types of efficiency outcomes. Here, we find

some new patterns which we have not seen before. First,

unlike what was found in [2], the presence of the inequity-

averse agents totally fails to result in any convergence to the

1C equilibrium when the network size is large (N ¼ 225).

Second, although there is still a chance of achieving other

perfectly-coordinated (many-C) equilibria, this chance also

declines with the number of inequity-averse agents. The red

curve in the figure indicates that that chance starts with 80 %

out of all 100 runs when Na;0:6 is low, but completely dis-

appears when Na;0:6 is high. Third, the blue curve further

shows that when Na;0:6 is higher up to a point, the chance of

having perfect coordination (the efficient outcome) also

disappears. Hence, both equity and efficiency are ‘impossi-

ble’ to achieve, and the presence of the inequity-averse

agents can actually have an adverse effect on the coordi-

nation of the use of public resources.

Therefore, what is interesting in that it is found here is

that the presence of agents with social preferences has a

totally different effect, depending on the size. When the

size is small (N ¼ 100), in addition to perfect coordination,

their presence strongly facilitates the emergence of the

good-society equilibrium; however, when the size becomes

large (N ¼ 225), the presence of them can even prevent

any possible perfect coordination.

3.3 Social preferences: further explorations

The reason we choose N ¼ 25, 100, 225, and 400 is

because these Ns can work well with the original bar

threshold, i.e., 0.6, given by Arthur [1]. In fact, in order for

the 1C equilibrium to emerge, the multiplication of N and

the threshold (a) must be an integer. The four aforemen-

tioned Ns are all satisfied with this requirement (they,

multiplied by 0.6, become 15, 60, 135, and 240,

Fig. 1 Histogram of the C

equilibria with respect to

different numbers of agents. The

figure above gives the histogram

of the C equilibria with N

(number of agents) = 25, 100,

225, and 400, respectively. They

are separated by different

colors, which, starting from the

left to the right, are black

(N ¼ 25), light grey (N ¼ 100),

dark grey (N ¼ 225), and black

again (N ¼ 400). The x-axis

gives the number of clusters in

the equilibrium (C), and the y-

axis gives the corresponding

frequency

Evol. Intel. (2016) 9:113–123 117

123



respectively). However, the threshold 0.6 does not work

with many other Ns, such as N ¼ 36, 64, 144, 196. If we

also want to extend our sensitivity analysis to these num-

bers, then we have to change a threshold, and a good

candidate is the threshold used in the minority game, i.e.,

0.5.

This compromise to a different bar threshold allows us

to explore a larger variety of network sizes, and can further

explore the effect of the presence of agents with social

preferences. Of course, this may imply that we may no

longer be able to compare our results with the previous

findings based on a ¼ 0:6. The best that we can do is to

ditto the case of N ¼ 100 using the new threshold, 0.5.

Hence, by setting a ¼ 0:5, we, therefore, run another series

of simulations for N ¼ 36; 64; 144; 196, in addition to N ¼
100 (Designs A4 and A5, Table 1). The results are sum-

marized in Fig. 3.

The results are not entirely what we expect: here, the

effect of the presence of the agents with social preferences

seems to be quite robust to the network size. It shows that

the likelihood of the emergence of the good-society equi-

librium consistently increases with the number of either the

inequity-averse agents (Fig. 3, upper panel) or the KUJ

agents (Fig. 3, lower panel). This increasing tendency is

independent of the network size; specifically, when the

network size comes to 196 (14� 14), i.e., very close to the

case of 225 (15� 15), this tendency remains valid. Hence,

the conclusion that, under a large network, social prefer-

ences fail to promote the emergence of the good-society

equilibrium, as seemingly suggested in Sect. 3.2, needs to

be qualified. Here, the additional parameter which can

contribute to the complexity of network behavior and make

a general result hard to obtain, is the bar threshold (a), a
parameter largely ignored in the literature.

3.4 Bar thresholds

The results from the simulation series A4 and A5 indicate

that the reason we fail to reach the 1C equilibrium (within

1 million periods), say, in the case of N ¼ 225, but can

reach it in the case of N ¼ 196, is related to the different

threshold used in these cases. It seems much more difficult

to reach the 1C equilibrium with a threshold of 0.6 than to

reach it with a threshold of 0.5. This conjecture is con-

firmed by the simulation series A6 and A7 (Table 1), where

we perform with an N of 20� 20. The simulation results of

A6 and A7 show that the society has a high probability of

reaching the 1C equilibrium with a threshold of 0.5

(Fig. 4).

4 Number of neighbors

The simulation of Series B (B1–B3, Table 1) concerns the

effect of the number of neighbors (R). Figure 5 shows the

simulation results of Series B1. We can see that there is

little qualitative effect of changing the neighborhood size.

It has no effect on the efficient outcome. All runs lead to

Fig. 2 Frequencies of various C equilibria under different numbers of

inequity-averse agents. The three lines above show the frequency of

2C equilibria (the red line), 3C equilibria (the green line), and all

C equilibria (the blue line) with respect to different numbers of

inequity-averse agents (Na;0:6 ¼ 1; 2; . . .; 22) when the network size is

225 (N ¼ 225). The frequencies are calculated based on the result of

100 runs for each value of Na;0:6 (color figure online)
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perfect coordination, although with different numbers of

clusters. The many-cluster equilibria have a mild tendency

to increase with the neighborhood size. For example, with a

neighborhood size of 5, the likelihood of reaching an

equilibrium with more than three clusters becomes 20 %.

Nevertheless, the 2C equilibria, irrespective of the number

of neighbors, remain the major type.

Series B2 and B3 test the sensitivity of the coordination

effect of social preferences. Chen and Gostoli [2] have

shown that increasing the number of agents with social

preferences ensure eventually the emergence of the good-

society (1C) equilibrium. This property has been exten-

sively examined in Series A. This result seems to be robust

to the perturbation of neighborhood size when N is fixed at

100. As we can see from Fig. 6, increasing the number of

neighbors (from 3 to 5) does not change the increasing

frequency of having 1C equilibria with the increase in

Na;0:6 (upper left panel) and NKUJ (upper right panel).

However, the number of times the system reaches any

equilibrium within the first 1 million periods is influenced

by the number of neighbors. In particular, while for a low

number of inequity-averse agents (below 10) the system

always reaches the equilibrium (within the first 1 million

periods), as we increase the number of inequity-averse

agents it takes increasingly more periods to reach the

equilibrium and in some cases the system does not reach it

within the first 1 million periods (when the simulation is

halted for practical reasons). The negative effect of this

intermediate number of inequity-averse agents is stronger

as we move from 3 neighbors to 5 neighbors. For exam-

ple, as shown in Fig. 6 (the lower left panel), with a

number of 18 inequity-averse agents in the population the

system reaches the equilibrium, in the first 1 million

periods, in just 70 out of the 100 runs (and of these 56,

i.e., 80 %, are 1C equilibria, as shown in the upper left

panel of Fig. 6).

5 Memory capacity

Length of memory (m) is another key parameter in the EFB

system. Figure 7 shows the result of simulation C1. Two

features stand out. First, both a small and a large value of m

(m ¼ 5; 20) will lessen the chance of observing the 1C

equilibrium. Hence, a length of memory, neither too long

nor too short, can contribute to the emergence of the good-

society equilibrium. Second, while a short memory length

contributes little to the 1C equilibrium, it does contribute to

the occurrence of the many-cluster equilibria. When

m ¼ 5, the chance of having 3C equilibria is more than

20 %, and even for 6C equilibria the chance remains as

high as 10 %. Such a large probability of observing the

Fig. 3 Social preferences and

the number of agents. The two

panels above show the

frequency of the emergence of

the good-society equilibrium

when certain proportions of the

agents are the inequity-averse

type (the left panel) or the KUJ

(keeping-up-with-the-Joneses)

type (the right panel). In each

panel, from left to right, we

consider the proportions of

these agents from 0 to 40 %, at

an increment of 5 %, as shown

on the x-axis. The five bars

associated with each proportion

is the empirical distribution of

the emergence of the 1C

equilibrium under the five

different network sizes (Ns): 36,

64, 100, 144, and 196; they are

distinguished by different

degrees of greyness. The

empirical distribution is derived

based on 100 runs for each

parameter setting
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many-cluster equilibria is not seen in our other simulations.

In other words, short memory is the only parameter found

thus far which can cause a highly segregated society.

Despite these inequitable results, like the other parameters

(N and R), m has no effect on the efficiency results. The

perfect coordination result can always be achieved,

regardless of the values of m.

As we did in Series B2 and B3, we also test the sig-

nificance of the presence of agents with social preferences

in Series C2 and C3. The result is shown in Fig. 8 (upper

panels). Basically, we can see that changes in the length of

memory have a rather limited effect; when Na;0:6 and NKUJ

increase up a size of around 25, the emergence of the

1C equilibrium is almost certain. However, as experienced

in Series B2 and B3, not all runs can converge in 1 million

periods (lower left and right panels).

6 Discussions

The El Farol Bar problem has long been taken as a standard

theoretical environment to study the use and the distribu-

tion of public resources. The agent-based model is an

appropriate representation of the problem. Through the

agent-based model or its connection to cellular automata,

one can see its inherent complexity, indicating a great

variety of possible outcomes or equilibria. From both the

efficiency and equity viewpoint, Chen and Gostoli [2]

classify the perfectly coordinated equilibria into two basic

types, and consider the good society equilibrium (the

1C equilibrium) as the most ‘interesting’ one. Two results

have been established in their study: first, this equilibrium

can occur probabilistically under a suitable network

topology; second, the presence of some agents with social

Fig. 4 Effects of the number of agents. The three lines above show

the frequency of the 1C equilibrium (the blue line), 2C equilibria (the

red line), and 3C equilibria (the green line) with respect to different

percentages of inequity-averse agents (the left panel) and KUJ agents

(the right panel), from 1 to 25 % at an increment of 1 %, when the

network size is 400 (N ¼ 400). The frequencies are calculated based

on the result of 100 runs for each percentage (color figure online)
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preferences can cause a dramatic change, i.e., this equi-

librium is assured.

In this study we carry out a sensitivity analysis of these

two fundamental results with three size-related parameters.

Alternatives to the good society equilibrium are equilibria

with different numbers of clusters. Regardless of the

number, all these clustering equilibria indicate that public

resources are not equally shared by all community mem-

bers. Hence, some members dominate in regard to the use

of these resources, but some are excluded. The most

striking example consists of the 2C (two-cluster) equilibria.

In this study, we find that the appearance of the 2C

Fig. 5 Effects of the number of neighbors. The figure above gives the

histogram of the C equilibria with respect to R (number of neighbors)

being 3, 4, and 5, respectively. They are distinguished by different

colors: black (R ¼ 3), light grey (R ¼ 4), and dark grey (R ¼ 5). The

x-axis gives the number of clusters in the equilibrium (C), and the y-

axis gives the corresponding frequency

Fig. 6 Good society, neighborhood size, and social preferences. The

three lines in the upper left panel show the frequency of achieving the

1C equilibrium when Na;0:6 increases from 1 to 40 under three

different neighborhood sizes: R=3 (blue line), 4 (red), and 5 (green).

The three lines in the upper right panel show the same frequency

except that Na;0:6 on the x-axis is replaced with NKUJ . Notice that the

frequency is based on the runs which have converging results, and not

all runs lead to convergence. The bottom left (right) panel gives the

number of converging runs under same parameter setting of the upper

left (right) one (color figure online)

Fig. 7 Effects of the memory capacity. The figure above gives the

histogram of the C equilibria with respect to m (memory capacity or

size of memory) = 5, 10, and 15, respectively. The equilibria are

distinguished by different colors: black (m ¼ 5), light grey (m ¼ 10),

and dark grey (m ¼ 15). The x-axis gives the number of clusters in the

equilibrium (C), and the y-axis gives the corresponding frequency
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equilibria is rather robust. They dominate other types of

equilibria in all settings of parameters. The only exception

occurs when the network size is small (N ¼ 25). Hence,

these series of simulations (A1, B1, and C1) altogether

indicate that, except in a small community, inequity seems

to be an inevitable outcome. The good society can happen

only occasionally (probabilistically), and the chance

becomes zero when the network size is large

(N ¼ 225; 400). The first conclusion established by Chen

and Gostoli [2], therefore, remains quite robust to almost

all size-related parameters. The only qualification which

we add is that the good society equilibrium is most likely to

be a small-community property, and exists only there.

It is with this baseline result one can acknowledge the

presence of agents with social preferences. The rest of the

simulation series (A2–A7, B2–B3, and C2–C3) indicates

that social preferences can facilitate the emergence of the

good-society (1C) equilibrium. The existence of some

agents who are inequity-averse or who tend to ‘keep up

with the Joneses’ actually has a social value (a positive

externality). It is they who make the emergence of the good

society from being an exception to being a rule. Their

existence is a disturbing force to any ‘temporal equilib-

rium’ which is not equitable.

The inequity preference, as a psychological gadget,

promotes agents to innovate (to search and to learn) and to

acquire new strategies to destroy the above-mentioned

‘temporal equilibrium’, making the bar attendance go up

and down, above and below the threshold (the bar capac-

ity). This fluctuation further ‘wakes up’ those who have

already given up learning and prefer to stay home, and

encourages them to innovate and to learn, too (see Sect. 2.2

for the learning conditions). In other words, these inequity-

averse agents ‘inspire’ those who have been completely

‘discouraged’ and have ‘rested’. This on-and-on process

changes the stability of the inequitable equilibria (the

many-C equilibria, specifically, the 2C equilibria) and re-

shapes a large domain of attraction to the good-society

equilibrium. Our sensitivity analysis hence shows again

that this effect of social preferences is also robust to the

change in the size-related parameters.

Nonetheless, as we have seen in a number of scenarios,

this on-and-on reshuffling process may go indefinitely

long, causing slow convergence or non-convergence. When

this happens, the perfect coordination to the ELB problem

fails in ‘limited’ time. From Figs. 6 and 8 (lower panels),

we have found that this slow convergence or non-conver-

gence property is related to the number of the inequity-

Fig. 8 Good society, length of memory, and social preferences. The

three lines in the upper left panel show the frequency of achieving the

1C equilibrium when Na;0:6 increases from 1 to 40 under three

different lengths of memory: m ¼ 5 (blue line), 10 (red), and 20

(green). The three lines in the upper right panel show the same

frequency except that Na;0:6 on the x-axis is replaced with NKUJ .

Notice that the frequency is based on the runs which have a

convergence result, and not all runs lead to convergence. The bottom

left (right) panel gives the number of convergence runs under the

same parameter setting as the upper left (right) one (color

figure online)
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averse agents or the number of the KUJ agents in a V-

shaped manner, indicating that it happens only when the

number of the agents with social preferences is neither

sufficiently small nor sufficiently large. As long as we have

a sufficiently large number of agents with social prefer-

ences the basic results on the convergence to the good-

society equilibrium remain unchanged.

7 Concluding remarks

We have long been inquiring of the role of government or

the role of central (top–down) intervention and regulation.

Is it possible to leave citizens themselves to coordinate and

solve an ELB-like problem purely from individual actions,

not even making an attempt to form an alliance or union?

Can the purely individual actions alone bring in a change

for the society? Can the good society emerge under an

extremely minimal degree of coordination?

Of course, while the simulation presented in this paper

can teach us a lot, it is not equivalent to presenting a formal

proof. Therefore, one can always ask how far we can push

further and generalize the finding. This is certainly an

open-ended question. Generally speaking, we believe that

the El Farol Bar problem as a theoretical environment for

the study of the coordination problem and as a complex

adaptive system can be used to demonstrate how the

coordination problem can sometimes be solvable and

sometimes be unsolvable. Due to its complexity, a device

which Chen and Gostoli [2] have found in a limited study

may work in some extensions, but fail in others. As a

whole, how social networks coupled with social prefer-

ences can facilitate the coordination of the EFB problem

remains an interesting and challenging subject for further

research.
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