
SPECIAL ISSUE

NeuroEvolution: Evolving Heterogeneous Artificial Neural
Networks

Andrew James Turner • Julian Francis Miller

Received: 20 June 2014 / Revised: 29 September 2014 / Accepted: 16 October 2014 / Published online: 8 November 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract NeuroEvolution is the application of Evolu-

tionary Algorithms to the training of Artificial Neural

Networks. Currently the vast majority of NeuroEvolution-

ary methods create homogeneous networks of user defined

transfer functions. This is despite NeuroEvolution being

capable of creating heterogeneous networks where each

neuron’s transfer function is not chosen by the user, but

selected or optimised during evolution. This paper dem-

onstrates how NeuroEvolution can be used to select or

optimise each neuron’s transfer function and empirically

shows that doing so significantly aids training. This result

is important as the majority of NeuroEvolutionary methods

are capable of creating heterogeneous networks using the

methods described.

Keywords Heterogeneous Artificial Neural Networks �
NeuroEvolution � Evolutionary Algorithms � Artificial

Neural Networks � Computational intelligence � Cartesian

Genetic Programming

1 Introduction

NeuroEvolution (NE) is the application of Evolutionary

Algorithms (EA) to the training of Artificial Neural Net-

works (ANN) [11, 48]. NE’s history began by evolving the

connection weights of fixed topology ANNs [30, 46]. This

method brought many advantages over the still popular

gradient based methods; such as simple back propagation

[31]. These advantages include: being able to natively

escape local optima, being less sensitive to the initial

connection weights, being suited to deep ANNs and not

requiring that each neuron’s Transfer Function (TF) be

differentiable [49]. NE is also suited to reinforcement

learning as well as supervised learning; whereas back

propagation is only suited to supervised learning. Other

ANN training methods such as restricted Bolzmann

machines are also suited to unsupervised learning [34].

A significant advantage of NE is its ability to evolve the

topology of ANNs; as well as the connection weights.

Topology evolving NE methods include: GNARL [1],

NEAT [35], SAGA [7] and CGPANN [14, 39]. This ability

to automatically create suitable topologies is significant as

topology has been shown to strongly influence the effec-

tiveness of back propagation [16] and weight only evolving

NE [40]. Evolving the topology of ANNs has even been

shown to be more important to training than evolving

connection weights [40]. Although some non-evolutionary

ANN training methods do adapt topology, they typically

achieve this by iteratively adding or removing neurons

during training. This approach is akin to a local search of

topologies, and is consequently likely to become trapped in

locally sub-optimal topologies [1]. It has been shown that

using simple back propagation with hand crafted topologies

produce results as good as NE [4]. This result demonstrates

the benefit of topology optimising NE; the topology is also

optimised and does not have to be hand crafted by trial and

error. Finally gradient descent methods struggle to train

deep ANNs [12, 16] whereas the depth of the network has

no impact on NE algorithms. This coupled with the fact that

deep neural networks are thought to be more efficient in

terms of the number of neurons required to solve a task [3]

is another benefit of topology optimising NE.

A. J. Turner (&) � J. F. Miller

Intelligent Systems Group, Electronics Department,

The University of York, York, UK

e-mail: andrew.turner@york.ac.uk

J. F. Miller

e-mail: julian.miller@york.ac.uk

123

Evol. Intel. (2014) 7:135–154

DOI 10.1007/s12065-014-0115-5

Interestingly, NE can also be used to optimise the TF of

each neuron within heterogeneous ANNs1. However, this

capability of NE has been widely overlooked in recent

research. Indeed, at the turn of the twenty-first century

many ANN publications stated that more research was

required concerning the optimisation of TFs: ‘‘Relatively

little has been done on the evolution of node transfer

functions, let alone the simultaneous evolution of both

topological structure and node transfer functions’’ [49,

‘‘The current emphasis in neural network research is on

learning algorithms and architectures, neglecting the

importance of transfer functions’’ [8] and ‘‘Selection and/

or optimisation of transfer functions performed by artificial

neurons have been so far little explored ways to improve

performance of neural networks in complex problems’’ [9].

However, a search of the literature reveals that there has

been little active research in this area. This paper intends to

help fill this gap by showing how NE can easily optimise

neuron TFs during evolution and that doing so produces

strongly beneficial results.

The remainder of this paper is structured as follows.

Section 2 discusses research literature relating to the

application NE to the evolution of the TFs of ANNs.

Section 3 describes the investigations which were under-

taken using NE to evolve heterogeneous ANNs, leading to

the results given in Sect. 4. Finally Sect. 5 discusses the

overall findings with closing conclusions given in Sect. 6.

2 Background

There are many ANN TFs found in the literature [9].

However, the majority of NE implementations only evolve

homogeneous ANNs of logistic or Gaussian functions,

which have both been shown capable of universal

approximation; [13] and [26] respectively. Of those which

do evolve heterogeneous ANNs, there are two main

methods.

The first method selects the TF of each neuron from a

predetermined list of TFs. Training methods which use this

method include General Neural Networks (GNN) [17];

which randomly adds or removes logistic or Gaussian TFs

using an evolutionary programming method. GNN is also a

hybrid approach which makes use of back propagation

during training. Other NE methods which select specific

TFs for each neuron include Parallel Distributed Genetic

Programming (PDGP) [28], a modified Hierarchical Co-

evolutionary Genetic Algorithm (HCGA2) [45] and

Cartesian Genetic Programming of Artificial Neural

Networks (CGPANN) [14, 39]. These methods use genes

to encode which TF is used by each neuron. These genes

are then subject to mutation and/or crossover during

evolution.

The second method by which NE can optimise neuron

TFs is to use TFs which are described by a number of

parameters [9]. The training methods then optimise these

parameters for each individual neuron. A simple version of

this technique has been used by CGPANN [19]; where the

widths of Gaussian functions were optimised for each

neuron. Again the parameter(s) associated with each neu-

ron’s TF were encoded in the chromosome by the inclusion

of additional gene(s). A more complex version of this

method was used in [2] where each neuron’s TF was itself

an evolved Genetic Program. This method allowed for an

almost limitless variation of TFs. Another example where

each neuron is described by a number of genes, is state-

enhanced neural networks [25], where the dynamics of

each neuron are evolved. These state-enhanced neural

network exhibit memory which can be utilised on partially

observable Markov decision tasks.

Until now however, there has been little research which

empirically and rigorously investigates if the ability for NE

to evolve heterogeneous ANNs actually provides any

benefit. This is important research as if it is shown to be

beneficial it could easily be adopted by other NE methods;

as the described methods just require additional genes for

each neuron. As discussed there are two ways in which NE

can evolve TFs: (1) by choosing the TF of each neuron

from a predetermined list or (2) by optimising parameters

associated with each individual neuron. Additionally these

two methods can be combined by allowing evolution to

both select the TF for each neuron and optimises the

parameters associated with the TF. Here both of these

methods are investigated along with a combination of the

two. The investigation uses two NE strategies and com-

pares the results to evolving regular homogeneous ANNs.

3 Investigation

The investigation presented on evolving heterogeneous

ANN using NE takes four parts. The first investigation is to

identify if the choice of TF impacts on the effectiveness of

NE for evolving homogeneous ANNs. The second inves-

tigates if evolving heterogeneous ANNs, by allowing

evolution to select each neuron’s TF from a predetermined

list, outperforms evolving homogeneous ANNs. The third

investigates if using NE to optimise parameters associated

with each neuron’s TF outperforms evolving homogeneous

ANNs. The fourth investigates using NE to both select each

neuron’s TF from a predetermined list and optimise

parameters associated with that TF.

1 Homogeneous ANNs are ANNs where each neuron’s TF is

identical. Heterogeneous ANNs are ANNs where each neuron’s TF

is not identical.

136 Evol. Intel. (2014) 7:135–154

123

The remainder of this section introduces the NE meth-

ods employed by the investigation, the TFs made available

and the benchmarks used.

3.1 NeuroEvolutionary Strategies

In order to undertake the described experiments, two NE

methods were used; this is to ensure that any conclusions

are not specific to a particular type of NE. The chosen NE

methods are Conventional NeuroEvolution (CNE) and

Cartesian Genetic Programming of Artificial Neural Net-

works (CGPANN). CNE is the simplest (and oldest) form

of NE and evolves the connection weights of fixed topol-

ogy ANNs. CGPANN is a more complex NE method

which evolves both the connection weights and topology of

ANNs. These two NE methods represent the two main

types of NE; those which evolve only connection weights

and those which evolve connection weights and topology2.

3.1.1 Conventional NeuroEvolution

Conventional NeuroEvolution [30] operates by storing the

connection weights of a fixed topology ANNs as an array

of floating point numbers. Each of these arrays represents a

chromosome. Mutation is implemented by selecting a new

random weight value for each gene (weight) with a given

probability. CNE is extended here to be capable of

evolving each neuron’s TF by the inclusion of an additional

gene per neuron. These additional TF genes can either be

used as an index in a look-up-table of TFs, or as a

parameter value to be used by each neuron’s TF. As CNE

uses fixed topologies, this topology must be selected in

advanced by the user.

3.1.2 Cartesian Genetic Programming of Artificial Neural

Networks

CGPANN [14, 39] is the application of Cartesian Genetic

Programming (CGP) to the evolution of ANNs. CGP [22,

24] is a form of Genetic Programming (GP) which repre-

sents computational structures as directed graphs of nodes

indexed by their Cartesian coordinates. CGP does not

suffer from bloat [21, 41]. Bloat refers to the condition

where during evolutionary time the size of evolved com-

putational structures grow without limit. Many other forms

of GP do suffer from bloat and there has been intensive

research to address the issue [33]; interestingly other graph

based encoding schemes have also been shown to suffer

less from bloat that standard GP [32]. CGP chromosomes

also contain non-functioning genes enabling neutral

genetic drift during evolution [44, 50]. CGP typically

evolves acyclic networks but can also be easily adapted to

evolve cyclic or recurrent networks [42]. CGP typically

uses point or probabilistic mutation and no crossover.3

Other forms of graph based GP have also been proposed

including Parallel Algorithm Discovery and Orchestration

(PADO) [36] and Parallel Distributed Genetic Program-

ming (PDGP) [27]. PDGP has also been applied to NE

[27]. PDGP is similar in structure to CGP, graph based, but

uses different mutation and crossover operations. CGP also

placed fewer restraints on the structure of the generated

graphs [22]. Research relating to PDGP appears to have

been largely abandoned.

Each CGP chromosome is comprised of a number of

gene types: function genes (Fi), connection genes (Ci;j) and

output genes (Oi). The function genes represent indexes in

a function look-up-table and describe the functionality of

each node. The connection genes define from where each

node gathers its inputs. For regular acyclic CGP, connec-

tion genes may connect a given node to any previous node

in the program, or any of the program inputs. The output

genes address any program input or internal node and

define which nodes are used as program outputs.

Originally CGP programs were organized with nodes

arranged in rows (nodes per layer) and columns (layers);

with each node indexed by its row and a column. However,

this is an unnecessary constraint, as any configuration

possible using a given number of rows and columns is also

possible using one row with many columns; provided the

total number of nodes remains constant. This is due to CGP

being capable of evolving where each node connects its

inputs. Consequently, here the chromosomes are defined

with one row and n columns; with each node only indexed

by its column. A generic (one row) CGP chromosome is

given in Eq. 1; where a is the arity of each node, n is the

number of nodes and m is the number of program outputs.

An example CGP program is given in Fig. 1 along with

its corresponding chromosome. As can be seen, all nodes

are connected to previous nodes or program inputs. Not all

program inputs have to be used, enabling evolution to

Fig. 1 Example CGP program corresponding to the chromosome:

012 233 124 4

2 Sometimes refereed to as TWEANNs—Topology and Weight

Evolving Artificial Neural Networks.

3 An open source cross platform CGP/CGPANN library has also been

recently released for those interested in using CGP or CGPANN [38].

Evol. Intel. (2014) 7:135–154 137

123

decide which inputs are significant. An advantage of CGP

over tree-based GP, again seen in Fig. 1, is that node

outputs can be reused multiple times, rather than requiring

the same value to be recalculated if it is needed again.

Finally, not all nodes contribute to the final program out-

put, these represent the inactive nodes which enable neutral

genetic drift and make variable length phenotypes possible.

F0C0;0. . .C0;aF1C1;0. . .C1;a.FnCn;0. . .Cn;aO0. . .Om

ð1Þ

Cartesian Genetic Programming is easily applied to

ANNs [14, 39] by the inclusion of connection weight genes

(Wi;j) for each node input and by using TFs suited to ANNs.

CGPANN exhibits all of the benefits of CGP and is a NE

training method which can evolve the weights, topology

[40] and TFs of ANNs. Although CGP evolves topology, it

is required that the user specifies a maximum network size.

This could be considered a drawback, but overestimating

the required number of nodes has been shown to be highly

beneficial for CGP [23]. Similarly, a maximum neuron

arity must be specified, however, the arity of each neuron

can be lower than this maximum [39]. This occurs when

the chromosome describes two neurons being connected by

two or more connections. In this case, multiple connections

between two neurons are equivalent to one connection;

with the connection weight value being the sum of the

individual weights.

It is important to note that the types of ANN created

using CGPANN are unconventional and often cannot be

described in terms of layers and nodes per layer. Figure 2

gives an example of the type of ANN which can be created

using CGPANN. It can be seen that each neuron’s input is

highly unconstrained; they can connect to any previous

neuron in the network including input neurons. It can also

be seen that the arity of each neuron can vary. Additionally

any neuron can be used as an output; including the input

neurons. Figure 2 demonstrates that by allowing NE to

optimise topology, evolution is capable of discovering

topologies which would be unlikely to be considered by a

human designer.

3.2 Transfer functions

The TFs used in this investigation are the Heaviside step

function, Eq. 2, the Gaussian function, Eq. 3, and the

logistic sigmoid function4, Eq. 4. Each of these TFs is

shown graphically in Fig. 3. These particular TFs were

selected as they are the most commonly used by ANNs.

As can be seen in Eqs. 3 and 4, the Gaussian and

logistic functions have been given in a form which contains

a r variable. Where r ¼ 1 gives the typical form of these

TFs. When using NE to evolve parameters associated with

each neuron’s TF, the r value can be evolved or optimised.

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

Fig. 3 Form left to right: Heaviside step function, Gaussian function

and the logistic function. With r ¼ 1 for the Gaussian and logistic

functions

Fig. 2 Depiction of the types of ANN created using CGPANN

4 The logistic sigmoid function is often simply referred to as the

sigmoid function in the ANN literature. In fact the term sigmoid

function refers to any function which is ‘S’ shaped. The logistic

sigmoid function is therefore a specific type of sigmoid function along

with other functions including the Gompertz function.

138 Evol. Intel. (2014) 7:135–154

123

Figures 4 and 5 show the Gaussian and logistic function

respectively for a range of r values.

f ðxÞ ¼
1; if x� 0

0; otherwise

�
ð2Þ

f ðxÞ ¼ exp � x2

2r2

� �
ð3Þ

f ðxÞ ¼ 1

1þ expð�rxÞ ð4Þ

3.3 Benchmarks

In order to draw strong conclusions regarding whether it is

beneficial to evolve TFs, it is necessary to examine its

effectiveness on a wide range of benchmarks. In this paper

five benchmarks are employed. The chosen benchmarks

mainly include supervised learning classification tasks, a

common application of ANNs, but also include a rein-

forcement learning control task.

Despite many of the described benchmarks being clas-

sification tasks, they each use their own type of fitness

function. Although this adds complexity, the fitness func-

tions used here are those typically used with these bench-

marks. This is done to make standard the use of these

benchmarks; which is important when comparing machine

learning methods.

3.3.1 Ball Throwing

The ball throwing benchmark [15] is a reinforcement

learning control task. The task is to design a controller for a

driven arm so as to throw a ball a distance of � 9.5 m. A

depiction of the task is given in Fig. 6, with the equations

describing the dynamics of the arm given in Eqs. 5 and 6;

symbol definitions given in Table 1. The model is simu-

lated using Euler integration with a time step of 0.01 s for

3,000 time steps. The control system has two inputs h and

x and outputs two values T and whether or not to release

the ball. The inputs to the controller are linearly scaled

from �p=2 and �5 rad/s to a [0,1] range for h and x
respectively. The first output of the controller sets the

torque applied to the arm and is linearly mapped to a

½�5; 5� N range. The ball is released if the second output

exceeds a threshold of 0.5. Once the ball is released,

Newtonian mechanics are used to calculate the distance the

ball is thrown (d) which is then used as the fitness value.

_h; _x
� �

¼ x;�c � wþ g � sinðhÞ
l

þ T

m � l2

� �
ð5Þ

x ¼ 0 if jhj � p=2 ð6Þ

3.3.2 Full Adder

The full adder benchmark is the task of implementing a full

adder circuit using an ANN. The ANN has three inputs

(two input bits and a carry bit) and two outputs (one for the

sum bit and the other for the carry out). Each output is

decoded as a ‘1’ if � 0.5, otherwise it is decoded as a ‘0’.

The fitness value assigned to each chromosome is the

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4 -4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 4 Variable Gaussian function. From left to right r = 1, 2 and 3

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4 -4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 5 Variable logistic function. From left to right r = 1, 2 and 3

Fig. 6 Depiction of the Ball Throwing benchmark

Table 1 Ball throwing symbol definitions with commonly used

values

Symbol Description Value

h The arm angle ½� p
2
; p

2
� rad

x The arms angular Velocity

c Friction constant 2:5 s�1

l Arm length 2 m

g Gravity 9:81 ms�2

m Ball mass 0:1 kg

T Torque applied to arm ½�5; 5� Nm

Evol. Intel. (2014) 7:135–154 139

123

number of correct output bits generated after every possible

input pattern has been applied; see Table 2. This results in a

maximum fitness of sixteen.

3.3.3 Monks Problem 1

The Monks Problems [37] are a set of three classification

benchmarks intended for comparing learning algorithms.

The classification tasks are based on the appearance of

robots which are described by six attributes, each with a

range of values; see Table 3. Only the first classification

task is used here, where a robot belongs to a class if

head_shape = body_shape OR jacket_color = red. This task

is one of the recommended non-trivial benchmarks given in

[10]. The task uses 124 of the possible 432 combinations

for the training set and the remainder for the testing set.

The implementation commonly used by ANN is to assign

each value of each attribute its own input to the network;

totaling seventeen inputs. Each of these inputs is set as ‘1’

if the particular attributes value is present and as ‘0’

otherwise. The ANN classifies each sample as belonging to

the class if the single ANN output is � 0.5. The target

fitness is zero percent classification error.

3.3.4 Two Spirals

The two spirals classification benchmarks was created in

the 1980s and was originally posted on a connectionist

mailing list by Alexis Wieland [5]. The task is considered

highly challenging for ANN [6]. The benchmark consists

of 194 data points describing samples taken from two

spirals in Cartesian space; see Fig. 7. The task is to classify

to which spiral each sample belongs using only the ðx; yÞ
Cartesian coordinates. The target fitness is zero, meaning

that there are no incorrect classifications. The ANN com-

prises of two inputs for the ðx; yÞ Cartesian coordinates of

each sample, and one output. The two inputs are linearly

scaled into a ½0; 1� range by assuming the maximum values

are �6:5 and �6 for the x and y axis respectively. When

the output value is \0.5 it is interpreted as one spiral and

� 0.5 as the other.

3.3.5 Proben1: Cancer1

The Cancer1 dataset5 is a classification task described in

the Proben1 document [29]. The dataset was originally

constructed at the University of Wisconsin Hospital [18].

Each sample in the dataset describes nine values, recorded

by a surgeon using fine needle aspiration, of a tumour

located in the breast of patients. Each sample is labelled

with two mutually exclusive flags, benign and malignant,

indicating the tumour type. All of the values are scaled into

a ½0; 1� range. The dataset contains 699 samples, 65.5 % of

which represent benign tumours. The first 525 samples are

used as the training set with the remainder used for the

testing set. The fitness assigned to each chromosome is the

squared error percentage, Eq. 7. Where omin and omax are

the minimum and maximum output values form the ANN,

N is the number of outputs from the ANN, P is the number

of training examples, opi are the actual output values from

the ANN and tpi are the target outputs. Therefore the

optimum corresponds to a squared percentage error equal

to zero.

Table 2 Full Adder truth table A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 3 Monks Problem robot descriptions

Description Attributes

head_shape Round, square, octagon

body_shape Round, square, octagon

is_smiling Yes, no

holding Sword, balloon, flag

jacket_color Red, yellow, green, blue

has_tie Yes, no

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

Fig. 7 Depiction of the two spiral classification benchmark

5 The ‘1’ in ‘Cancer1’ refers to the permutation of the dataset; see

[29].

140 Evol. Intel. (2014) 7:135–154

123

E ¼ 100 � omax � omin

N � P
XP

p¼1

XN

i¼1

ðopi � tpiÞ2 ð7Þ

4 Results

Four experiments are presented here which investigate the

influence of TFs when using NE to train ANNs. All of the

results presented are the average fitness of the best solu-

tions found from fifty repeated runs. Each run was termi-

nated after 100,000 generations, all used a ð1þ 4Þ-ES6,

3 % probabilistic mutation7 and connection weights in the

range �5. When using CNE, three hidden layers were used,

each containing ten neurons; plus one input layer and one

output layer. The arity of each neuron was such that the

ANN was fully connected between layers. When using

CGPANN the maximum number of nodes was set as thirty

each with a maximum arity of ten.

Where appropriate, the results are compared using the

non-parametric two sided Mann–Whitney U test and effect

size [43] statistics. A U test value of \0.05 indicates that

the difference between two datasets is statistically signifi-

cant. The effect size value shows the important of this

difference considering the spread of the data; with values

[0.56 showing small importance, [0.64 medium

importance and [0.71 large importance. Therefore if a

comparison between results is shown to be statically sig-

nificant with a medium or large effect size, then we can be

reasonably sure that any difference is not due to under

sampling and that the difference is significantly large.

4.1 Experiment 1: Homogeneous Networks

The first experiment identifies whether, and to what extent,

the choice of TF impacts on the effectiveness of training

homogeneous ANNs using NE. As previously discussed,

the three TFs used for this investigation are the Heaviside

step, Gaussian and logistic functions; see Sect. 3.2.

The average fitness achieved when using each TF is

given for the five benchmarks in Tables 4 and 5; when

using CNE and CGPANN respectively. The average fitness

value is given in bold if it represents the best fitness for that

benchmark; indicating the most suitable TF for that

benchmark. When appropriate, the fitness is given for the

training and testing sets. Where the testing fitness is the

average fitness achieved by each of the fifty runs on the

testing set after training on the training set is complete. The

statistical significance between the fitnesses achieved using

each TF are given in Tables 6 and 7; when using CNE and

CGPANN respectively. When the difference is statistically

significant, p� 0:05, the value is given in bold. The effect

size of the differences between the fitnesses are also given

in Tables 8 and 9; when using CNE and CGPANN

respectively. When the effect size is of medium or greater

importance the value is given in bold.

In all cases a perfect solutions was found for the Full

Adder benchmark and similarly in many cases for the Ball

Throwing. When perfect solutions are found no compari-

sons can be made in terms of the fitnesses achieved. For

this reason the number of required generations to find

perfect solutions are also presented in for these cases.

Tables 10 and 11 give the average number of generations

required by CNE and CGPANN for the cases where perfect

solutions were found. These generation results are analysed

using the same methods for testing statistical significance

as before, given in Tables 12 and 13 for CNE and

Tables 14 and 15 for CGPANN.

In the case of CGPANN, all TFs found a solution to the

Ball Throwing benchmark; to throw the ball a distance of

� 9.5 m. Interestingly some TFs managed, on average, to

throw the ball much further than the 9.5 m target. This

could be framed as greater generalisation. However this

Table 4 Average fitness achieved using homogeneous ANNs of

different TFs trained using CNE

Benchmark Step Gaussian Logistic Average

Ball Throwing 9.71 9.30 5.89 8.30

Full Adder 16.00 16.00 16.00 16.00

Monks Problem 1 Train 0.065 14.016 0.258 4.80

Monks Problem 1 Test 18.991 39.116 14.981 24.363

Two Spirals 54.64 34.04 74.58 54.42

Proben1: Cancer Train 5.185 2.389 1.798 3.124

Proben1: Cancer Test 12.816 6.736 3.034 7.529

Fitnesses are given in bold if they represent the best fitness for the

range of TFs investigated or an optimal solution to the benchmark

Table 5 Average fitness achieved using homogeneous ANNs of

different TFs trained using CGPANN

Benchmark Step Gaussian Logistic Average

Ball Throwing 9.72 9.58 9.65 9.65

Full Adder 16.00 16.00 16.00 16.00

Monks Problem 1 Train 0.210 15.161 0.952 5.44

Monks Problem 1 Test 4.398 19.532 4.352 9.43

Two Spirals 39.56 49.28 71.28 53.37

Proben1: Cancer Train 0.457 1.364 1.429 1.083

Proben1: Cancer Test 3.678 2.989 2.218 2.962

Fitnesses are given in bold if they represent the best fitness for the

range of TFs investigated or an optimal solution to the benchmark

6 ð1þ 4Þ-ES has been used previously for CGPANN and is also used

here for CNE for simplicity. Additionally as a greedy strategy is used

with no crossover maintaining genetic diversity with large popula-

tions becomes less significant.
7 Where probabilistic mutation changes each gene to a new valid

value with a given probability.

Evol. Intel. (2014) 7:135–154 141

123

aspect of the ball throwing results are not analysed further

in this paper.

From the results given in Tables 4 and 5 it can be seen, for

both CNE and CGPANN, that the choice of TF has a large

impact on the effectiveness of NE. Additionally, in the

majority of cases these differences are shown to be statisti-

cally significant and with a medium or large effect size. This

confirms that the choice of TF has a large impact on the

effectiveness of evolving homogeneous ANN using NE.

A further interesting result, also seen in Tables 4 and 5,

is that despite being the least commonly used of the three

TFs, the Heaviside step function produced the best results

in many cases. It can also be seen that the best TF was

often also dependent on the NE method used.

Table 6 Statistical significance between the homogeneous CNE fit-

ness results given in Table 4

Benchmark Step versus

Gaussian

Step versus

logistic

Gaussian

versus

logistic

Ball Throwing 2.65E21 8.19E219 1.13E214

Full Adder – – –

Monks Problem 1 Train 1.16E219 1.81E-1 3.30E219

Monks Problem 1 Test 6.97E218 1.49E204 6.96E218

Two Spirals 4.42E218 4.30E218 6.55E218

Proben1: Cancer Train 1.15E214 5.59E218 6.76E23

Proben1: Cancer Test 4.90E214 6.29E218 5.98E214

Statistical significance in indicated in bold. A ‘–’ indicates where no

statistical significant testing could be undertaken due to all runs

finding an optimal solution

Table 7 Statistical significance between the homogeneous CGPANN

fitness results given in Table 5

Benchmark Step versus

Gaussian

Step versus

logistic

Gaussian

versus

logistic

Ball Throwing 7.25E25 7.36E-2 8.20E23

Full Adder – – –

Monks Problem 1 Train 1.42E213 9.90E-2 1.35E211

Monks Problem 1 Test 1.96E29 9.17E-1 2.94E29

Two Spirals 6.36E210 6.61E218 4.39E217

Proben1: Cancer Train 1.36E216 1.11E217 7.16E-2

Proben1: Cancer Test 9.10E23 2.48E29 1.78E23

Statistical significance in indicated in bold. A ‘–’ indicates where no

statistical significant testing could be undertaken due to all runs

finding an optimal solution

Table 8 Effect size between the homogeneous CNE fitness results

given in Table 4

Benchmark Step versus

Gaussian

Step versus

logistic

Gaussian

versus

logistic

Ball Throwing 0.90600 0.98840 0.92600

Full Adder 0.50000 0.50000 0.50000

Monks Problem 1 Train 1.00000 0.54400 1.00000

Monks Problem 1 Test 1.00000 0.72020 1.00000

Two Spirals 1.00000 1.00000 1.00000

Proben1: Cancer Train 0.94760 1.00000 0.65560

Proben1: Cancer Test 0.93680 0.99980 0.93420

Medium and large effect sizes are indicated in bold

Table 9 Effect size between the homogeneous CGPANN fitness

results given in Table 5

Benchmark Step versus

Gaussian

Step versus

logistic

Gaussian

versus

logistic

Ball Throwing 0.73040 0.60400 0.65360

Full Adder 0.50000 0.50000 0.50000

Monks Problem 1 Train 0.87360 0.53960 0.85060

Monks Problem 1 Test 0.84540 0.50620 0.84120

Two Spirals 0.85840 1 0.98740

Proben1: Cancer Train 0.97580 0.99260 0.60320

Proben1: Cancer Test 0.65000 0.84240 0.67920

Medium and large effect sizes are indicated in bold

Table 10 Average number of generations required to find optimal

solutions using homogeneous ANNs of different TFs trained using

CNE

Benchmark Step Gaussian Logistic Average

Ball Throwing 20,365.44 – – –

Full Adder 132.94 317.04 476.54 308.84

Generations are given in bold if they represent the fewest number of

generations for the range of TFs investigated. (A ‘–’ indicates that an

optimal solution was not found)

Table 11 Average number of generations required to find optimal

solutions using homogeneous ANNs of different TFs trained using

CGPANN

Benchmark Step Gaussian Logistic Average

Ball Throwing 487.76 9,850.46 20,401.14 10,246.45

Full Adder 386.60 729.20 1,092.50 736.10

Generations are given in bold if they represent the fewest number of

generations for the range of TFs investigated

Table 12 Statistical significance between the homogeneous CNE

generation results given in Table 10

Benchmark Step versus

Gaussian

Step versus

Logistic

Gaussian versus

Logistic

Full Adder 1.19E207 1.26E210 4.63E22

Statistical significance in indicated in bold

142 Evol. Intel. (2014) 7:135–154

123

4.2 Experiment 2: Heterogeneous Networks

The second experiment identifies if allowing NE to evolve

heterogeneous ANNs, by selecting each neuron’s TF from

a predetermined list, produces better results than evolving

homogeneous ANNs. Evolving the TF used by each neuron

is considered beneficial if the result is better than the

average of using each TF individually. This measure is

chosen because when approaching a new task it not gen-

erally known which TF would be most suited, therefore a

TF would have to be selected arbitrarily. When evolving

heterogeneous ANNs the need to make this choice is

removed, and hence it should be considered beneficial if it

beats the average random choice of TF. The average fitness

for evolving homogeneous ANNs using each TF individ-

ually for the five benchmarks are given in Tables 4 and 5

for CNE and CGPANN respectively. In the cases where a

perfect solution is always found the required number of

generations is also given and used for the comparison.

The results achieved when evolving heterogeneous

ANN are given in Tables 16 and 17 for CNE and CGP-

ANN respectively. The results are given in bold if the fit-

ness is better, or equal, to the average of using each TF

individually; or the average number of generations required

to find a perfect solution is equal or lower. The percentage

of neurons which use each TF is also given in Tables 16

and 17; this is only for the active nodes in the CGPANN

case. No statistical analysis can be undertaken for this

experiment as the comparison is against the average result

of using each TF individually.

As can be seen in Tables 16 and 17, in the majority of

cases evolving heterogeneous ANNs outperformed the

average result of evolving homogeneous ANNs. This

indicates that evolving heterogeneous ANNs is typically a

better strategy than evolving homogeneous ANNs. This

holds unless the user knows in advance which TF is most

suited to a given task; in which case that TF should be

used. Interestingly in the case of CNE applied to the ball

throwing benchmark, evolving heterogeneous ANNs pro-

duce an equal fitness to that of using the best TF alone.

Additionally for CNE applied to the Proben1:Cancer1

benchmark, heterogeneous ANNs produce a better fitness

on the test set than using the best TF alone. This indicates

that it may be the ability to mix TFs, as well as choose

which are used, which is offering an evolutionary

advantage.

4.3 Experiment 3: Evolving Transfer Function

Parameters

The third experiment is to identify if optimising parameters

associated with each neuron is beneficial for NE. As pre-

viously discussed, the parameters to be optimised vary the

Table 13 Effect size between the homogeneous CNE generation

results given in Table 10

Benchmark Step versus

Gaussian

Step versus

logistic

Gaussian versus

logistic

Full Adder 0.80740 0.87340 0.61580

Medium and large effect sizes are indicated in bold

Table 14 Statistical significance between the homogeneous CGP-

ANN generation results given in Table 11

Benchmark Step versus

Gaussian

Step versus

Logistic

Gaussian versus

Logistic

Ball Throwing 5.69E215 4.06E214 2.04E23

Full Adder 8.25E-1 3.03E24 8.89E23

Statistical significance in indicated in bold

Table 15 Effect size between the homogeneous CGPANN genera-

tion results given in Table 11

Benchmark Step versus

Gaussian

Step versus

logistic

Gaussian versus

logistic

Ball Throwing 0.95340 0.93880 0.67920

Full Adder 0.51300 0.70980 0.65200

Medium and large effect sizes are indicated in bold

Table 16 Average fitness achieved using heterogeneous ANNs trained using CNE

Benchmark Train Test Generations Step (%) Gaussian (%) Logistic (%)

Ball Throwing 9.71 – 2,931.04 34.3 34.1 31.6

Full Adder 16.00 – 201.90 32.3 36.0 31.7

Monks Problem 1 3.597 27.30 – 33.2 34.5 32.4

Two Spirals 38.52 – – 37.2 32.7 30.1

Proben1: Cancer 1.505 4.379 – 33.6 30.1 36.3

Where appropriate, test results are also given. If optimal solutions were always found the average number of generations required is given. Bold

values indicate that heterogeneous ANNs performed as well or better than the average of the homogeneous ANNs investigated. The percentage of

neurons which used each TF is also given

Evol. Intel. (2014) 7:135–154 143

123

shape of the Gaussian and logistic functions; see Sect. 3.2.

In each case the ANNs are comprised of the same TF,

Gaussian or logistic, but a parameter controlling the shape

of each neuron’s TF is evolved. Here the parameter values

for each TF are limited to the set {1, 2, 3}, see Eqs. 3

and 4; but this is not a requirement of the method.

Evolving parameters associated with each neuron’s TF

will be considered beneficial if it produces stronger results

than the use of the non-parametrised counterpart e.g. if

variable Gaussian produces stronger results than the stan-

dard Gaussian TF. This comparison is used as it isolates the

aspect we are interested in and tests whether the ability to

vary the shape of each neuron’s TF provides any benefit.

The average fitnesses achieved using variable Gaussian

and variable logistic functions on the five benchmarks are

given in Tables 18 and 20 respectively when using CNE. In

cases where the target fitness is always reached the average

number of generations used are given in Tables 19 and 21.

Similarly, Tables 22 and 24 give the results when using

CGPANN. Again in cases where the target fitness is always

reached the average number of generations used are given

in Tables 23 and 25. In all cases the results are compared

against those obtained for the non-variable form of the TFs.

In the given tables, a bold fitness/number of generations

indicates that the variable TF performed better than the

non-variable form. Additionally, a bold value for the the

U test indicates statistical significance and a bold value for

the effect size indicates a medium or large effect size. For

instance, if the fitness, U test and effect size values are all

given in bold then the variable TF is shown to strongly

Table 17 Average fitness achieved using heterogeneous ANNs trained using CGPANN

Benchmark Train Test Generations Step (%) Gaussian (%) Logistic (%)

Ball Throwing 9.68 – 1,000.76 31.4 34.0 34.5

Full Adder 16.00 – 698.10 32.5 35.2 32.3

Monks Problem 1 1.226 6.139 – 38.4 27.3 34.3

Two Spirals 50.20 – – 34.0 34.3 31.8

Proben1: Cancer 1.086 3.126 – 34.9 33.5 31.6

Where appropriate, test results are also given. If optimal solutions were always found the average number of generations required is given. Bold

values indicate that heterogeneous ANNs performed as well or better than the average of the homogeneous ANNs investigated. The percentage of

neurons which used each TF is also given

Table 18 Average fitness of ANNs of variable Gaussian TFs trained using CNE

Benchmark Variable Gaussian U test Effect

size

Over all

Ball Throwing 9.58 1.20E204 0.72340 Adv (Strong)

Full Adder 16.00 – 0.50000 –

Monks Problem 1 Train 13.500 0.54481 0.53520 –

Monks Problem 1 Test 37.634 3.25E22 0.62420 Adv (Strong)

Two Spirals 49.36 5.42E215 0.95340 DisAdv (Strong)

Proben1: Cancer Train 1.512 2.41E207 0.79700 Adv (Strong)

Proben1: Cancer Test 3.598 1.10E210 0.87320 Adv (Strong)

Fitnesses are given in bold if they represent better solutions than the use of standard Gaussian TFs. Statistical significance and effect sizes are

given between the use of variable and non-variable Gaussian TFs. Values are given in bold if statically significant or represent a medium or large

effect size

Table 19 Average number of generations required to find optimal

solutions using ANNs of variable Gaussian TFs trained using CNE

Benchmark Variable

Gaussian

U test Effect

size

Over all

Full Adder 221.08 6.54E23 0.65800 Adv (Strong)

Generations are given in bold if they are lower than the use of

standard Gaussian TFs. Statistical significance and effect sizes are

given between the use of variable and non-variable Gaussian TFs.

Values are given in bold if statically significant or represent a medium

or large effect size

Table 21 Average number of generations required to find optimal

solutions using ANNs of variable logistic TFs trained using CNE

Benchmark Variable

logistic

U test Effect

size

Over all

Full Adder 270.18 1.61E23 0.68320 Adv (Strong)

Generations are given in bold if they are lower than the use of

standard logistic TFs. Statistical significance and effect sizes are

given between the use of variable and non-variable logistic TFs.

Values are given in bold if statically significant or represent a medium

or large effect size

144 Evol. Intel. (2014) 7:135–154

123

outperform the non-variable counterpart with statistical

significance. If however the value is not bold, but the U test

and effect size values are bold, then this shows that the

non-variable TF strongly outperformed the variable coun-

terpart with statistical significance. If the U test is bold but

the effect size is not bold, then then this indicates a weak

difference with statistical significance. If the U test value is

not bold then the difference between non-variable and

variable TFs is not statistically significant and is considered

insignificant.

It can be seen in Tables 18, 19, 20, 21, 22, 23, 24, 25, in the

majority of cases, the variable version of the TF outperformed

the non-variable form. Additionally, many instances where

the variable form is superior are also shown to be statistically

significance with a medium to large effect size. Only four of

the twenty cases show the non-variable form outperforming

the variable form with statistical significance and medium to

large effect size. Eleven of the twenty cases showed the

variable form outperforms the non-variable form with sta-

tistical significance with a medium to large effect size. Of the

remaining five cases, one showed variable TFs offered a weak

disadvantage and the remainder showed no significant dif-

ference8. Therefore using variable TFs is shown to be often

beneficial and rarely worse.

The differences can also be given in terms of the NE

method used. In seven of the ten cases which used CNE,

the variable TFs offered an advantage compared with three

cases where it was a disadvantage. For CGPANN, five out

of the ten cases showed variable TFs offered an advantage

compared to one of the ten cases showing a disadvantage.

The results can also be given in terms of the TF employed.

In six of the ten cases the variable logistic TF offered and

advantage and in two cases a disadvantage. In five of the

ten cases the variable Gaussian TF offered an advantage

and in three cases a disadvantage.

4.4 Experiment 4: Evolving Heterogeneous Networks

and Transfer Function Parameters

The fourth experiment investigates allowing NE to evolve

heterogeneous ANNs whilst also optimising parameters

associated with each neuron’s TF. The function set con-

tains the step, Gaussian and logistic functions where the

Gaussian and logistic functions can have their r value in

the set {1,2,3}; the step function is not parametrised.

Evolving heterogeneous ANNs which also optimise TF

parameters will be considered beneficial if it produces

stronger results than the use of the non-parametrised het-

erogeneous counterpart; given in Sect. 4.2. This compari-

son is made to see if including variable TFs can improve

again upon the use of heterogeneous ANN.

The results of evolving heterogeneous ANN with vari-

able TF parameters are given in Tables 26 and 28 when

using CNE and CGPANN respectively. The tables give the

average fitness for applying heterogeneous ANN with

variable TFs to each of the five benchmarks. The average

fitness is given in bold if it represents a better average

fitness than that found when evolving non-parametrised

heterogeneous ANNs. The U-test and effect size are also in

the same format as in Sect. 4.3. As previously, if perfect

solutions are always found the number of generations

required to find perfect solutions is also give so as to allow

comparison. These results are given in Tables 27 and 29

for CNE and CGPANN respectively.

As can be seen in Tables 26, 27, 28, 29, in the majority

of cases the addition of varying TF parameters to evolving

heterogeneous ANNs does not improve the performance.

When using CNE it produced statistically significant

superior results for the Ball Throwing benchmark and

produced statistically significant worse results for the Two

Spirals benchmark. When using CGPANN it produced no

statistically significant superior results and produced sta-

tistically significantly worse results for the Two Spirals

benchmark. In all other cases there was no statistical sig-

nificance between the two techniques. It can therefore be

Table 20 Average fitness of ANNs of variable logistic TFs trained using CNE

Benchmark Variable

logistic

U test Effect

size

Over all

Ball Throwing 9.62 3.22E218 0.98000 Adv (Strong)

Full Adder 16.00 – 0.50000 –

Monks Problem 1 Train 0.710 1.67E22 0.60720 DisAdv (Strong)

Monks Problem 1 Test 19.218 8.04E204 0.69460 DisAdv (Strong)

Two Spirals 58.70 6.51E218 1.00000 Adv (Strong)

Proben1: Cancer Train 1.684 0.124 0.58800 –

Proben1: Cancer Test 3.598 1.74E22 0.63660 DisAdv (Strong)

Fitnesses are given in bold if they represent better solutions than the use of standard logistic TFs. Statistical significance and effect sizes are given

between the use of variable and non-variable logistic TFs. Values are given in bold if statically significant or represent a medium or large effect size

8 In the case where training and testing results are given the training

result is used for comparisons. This is because no steps to combat

over training were made.

Evol. Intel. (2014) 7:135–154 145

123

concluded that the addition of variable TFs to evolving

heterogeneous ANNs does not improve the performance

over the use of non-variable TFs.

4.5 Box and whisker plots

For high-level inspection, all of the previously given results

are presented as box and whisker plots. The boxes represent

the lower and upper quartile ranges and the whiskers are set

as 1.5 the interquartile range. Points greater than 1.5 of the

interquartile range are labelled with a red ‘?’ and points

greater than 3 times the interquartile range labelled with a

red ‘�’. The median of each plot is given as a solid red line

and the arithmetic mean is given as a dashed black line.

The average homogeneous fitness, given in Sect. 4.1, is

also given as a dashed green line spanning the three

homogeneous functions; step, Gaussian and logistic. The

average homogeneous fitness is calculated as the arithmetic

mean of the arithmetic means of the fitnesses achieved for

the step, Gaussian and logistic function.

Table 22 Average fitness of ANNs of variable Gaussian TFs trained using CGPANN

Benchmark Variable

Gaussian

U test Effect

size

Over all

Ball Throwing 9.60 3.72E-1 0.55200 –

Full Adder 16.00 – 0.50000 –

Monks Problem 1 Train 6.725 2.72E24 0.69980 Adv (Strong)

Monks Problem 1 Test 11.903 6.41E24 0.69380 Adv (Strong)

Two Spirals 54.78 8.02E-5 0.72880 DisAdv (Strong)

Proben1: Cancer Train 1.375 4.69E-1 0.54160 DisAdv (Weak)

Proben1: Cancer Test 2.690 2.71E-1 0.56340 –

Fitnesses are given in bold if they represent better solutions than the use of standard Gaussian TFs. Statistical significance and effect sizes are

given between the use of variable and non-variable Gaussian TFs. Values are given in bold if statically significant or represent a medium or large

effect size

Table 23 Average number of generations required to find optimal

solutions using ANNs of variable Gaussian TFs trained using

CGPANN

Benchmark Variable

Gaussian

U test Effect

size

Over all

Ball Throwing 4,730.86 1.12E-1 0.59240 –

Full Adder 507.98 7.75E-1 0.51680 –

Generations are given in bold if they are lower than the use of

standard Gaussian TFs. Statistical significance and effect sizes are

given between the use of variable and non-variable Gaussian TFs.

Values are given in bold if statically significant or represent a medium

or large effect size

Table 24 Average fitness of ANNs of variable logistic TFs trained using CGPANN

Benchmark Variable

logistic

U test Effect

size

Over all

Ball Throwing 9.66 7.17E-1 0.52120 –

Full Adder 16.00 – 0.50000 –

Monks Problem 1 Train 0.290 2.25E-1 0.53000 –

Monks Problem 1 Test 4.287 9.42E-1 0.50440 –

Two Spirals 63.00 2.81E29 0.84460 Adv (Strong)

Proben1: Cancer Train 1.082 5.03E27 0.78760 Adv (Strong)

Proben1: Cancer Test 2.966 7.39E24 0.69220 DisAdv (Strong)

Fitnesses are given in bold if they represent better solutions than the use of standard logistic TFs. Statistical significance and effect sizes are given

between the use of variable and non-variable logistic TFs. Values are given in bold if statically significant or represent a medium or large effect

size

Table 25 Average number of generations required to find optimal

solutions using ANNs of variable logistic TFs trained using CGPANN

Benchmark Variable

logistic

U test Effect

size

Over all

Ball Throwing 1,959.20 2.53E29 0.84600 Adv (Strong)

Full Adder 630.16 9.32E-2 0.59760 –

Generations are given in bold if they are lower than the use of

standard logistic TFs. Statistical significance and effect sizes are

given between the use of variable and non-variable logistic TFs.

Values are given in bold if statically significant or represent a medium

or large effect size

146 Evol. Intel. (2014) 7:135–154

123

As a perfect fitness was often achieved for the Ball

Throwing and the Full Adder benchmarks, the average

number of generations to find the perfect solution are also

given as box plots.

The CNE results are given in Figs. 8, 9, 10, 11, 12, 13,

14, 15, 16 and the CGPANN results are given in Figs. 17,

18, 19, 20, 21, 22, 23, 24, 25.

5 Discussion

This paper has empirically demonstrated that when using NE

to create homogeneous ANNs the choice of TF has a large

impact on the fitness of the solutions found. It was also shown

that no single TF produced the best results in all cases.

Therefore when using homogeneous ANNs one must accept

possibly inferior results or repeat training with a range of TFs.

This paper has also empirically demonstrated that, on average,

evolving heterogeneous ANNs produces better results than the

average of using each TF individually. Additionally it has been

shown that optimising parameters associated with each neu-

ron’s TF produces better results, on average, than using the

typical fixed TFs. Interestingly however, a combination of

evolving heterogeneous ANNs where each neuron’s TF can

also be adapted was shown not to produce better results than

simply evolving heterogeneous ANNs of static TFs.

Table 26 Average fitness of heterogeneous ANNs of variable TFs trained using CNE

Benchmark Heterogeneous U test Effect size Over all

Ball Throwing 9.67 0.230 0.56980 –

Full Adder 16.00 – 0.50000 –

Monks Problem 1 Train 3.387 7.00E-1 0.52240 –

Monks Problem 1 Test 25.065 5.93E-2 0.60960 –

Two Spirals 49.86 5.58E212 0.89960 DisAdv (Strong)

Proben1: Cancer Train 1.383 1.31E-1 0.58660 –

Proben1: Cancer Test 3.287 4.71E204 0.70160 Adv (Strong)

Fitnesses are given in bold if they represent better solutions than the use of non-variable variable TFs. Statistical significance and effect sizes are

given between the use of variable and non-variable TFs. Values are given in bold if statically significant or represent a medium or large effect

size

Table 27 Average number of generations required to find optimal

solutions using heterogeneous ANNs of variable TFs trained using

CNE

Benchmark Heterogeneous U test Effect

size

Over all

Ball

Throwing

2,288.98 2.57E22 0.62960 Adv

(Strong)

Full Adder 282.22 5.36E-2 0.61220 –

Generations are given in bold if they are lower than the use of non-

variable TFs. Statistical significance and effect sizes are given

between the use of variable and non-variable TFs. Values are given in

bold if statically significant or represent a medium or large effect size

Table 29 Average number of generations required to find optimal

solutions using heterogeneous ANNs of variable TFs trained using

CGPANN

Benchmark Heterogeneous U test Effect size Over all

Ball Throwing 1,025.80 5.06E-1 0.53880 –

Full Adder 480.40 2.52E-1 0.56660 –

Generations are given in bold if they are lower than the use of non-

variable TFs. Statistical significance and effect sizes are given

between the use of variable and non-variable TFs. Values are given in

bold if statically significant or represent a medium or large effect size

Table 28 Average fitness of heterogeneous ANNs of variable TFs trained using CGPANN

Benchmark Heterogeneous U test Effect size Over all

Ball Throwing 9.67 3.78E-1 0.55140 –

Full Adder 16.00 – 0.50000 –

Monks Problem 1 Train 0.8226 7.82E-1 0.50960 –

Monks Problem 1 Test 6.907 2.44E-1 0.56780 –

Two Spirals 58.50 4.52E29 0.84000 DisAdv (Strong)

Proben1: Cancer Train 1.086 4.42E-1 0.54420 –

Proben1: Cancer Test 3.126 9.75E-1 0.50200 –

Fitnesses are given in bold if they represent better solutions than the use of non-variable variable TFs. Statistical significance and effect sizes are given

between the use of variable and non-variable TFs. Values are given in bold if statically significant or represent a medium or large effect size

Evol. Intel. (2014) 7:135–154 147

123

0

20000

40000

60000

80000

100000

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

G
en

er
at

io
ns

Fig. 9 Generations required from applying CNE to the Ball Throwing benchmark

13

13.5

14

14.5

15

15.5

16

16.5

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
or

re
ct

 O
ut

pu
ts

Fig. 10 Fitnesses achieved from applying CNE to the Full Adder benchmark

0

500

1000

1500

2000

2500

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

G
en

er
at

io
ns

Fig. 11 Generations required from applying CNE to the Full Adder benchmark

5

6

7

8

9

10

11

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

D
is

ta
nc

e
T

hr
ow

n
(m

)

Fig. 8 Fitnesses achieved from applying CNE to the Ball Throwing benchmark

148 Evol. Intel. (2014) 7:135–154

123

0

10

20

30

40

50

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

ss
ifi

ca
tio

n
E

rr
or

 %

Fig. 13 Fitnesses achieved from applying CNE to the monks problem 1 benchmark—testing

20

30

40

50

60

70

80

90

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

N
um

be
r

of
 M

is
cl

as
si

fic
at

io
ns

Fig. 14 Fitnesses achieved from applying CNE to the two spirals benchmark

0

2

4

6

8

10

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

ss
ifi

ca
tio

n
E

rr
or

 %

Fig. 15 Fitnesses achieved from applying CNE to the Proben Cancer1 benchmark—Training

0

5

10

15

20

25

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

ss
ifi

ca
tio

n
E

rr
or

 %

Fig. 12 Fitnesses achieved from applying CNE to the monks problem 1 benchmark—training

Evol. Intel. (2014) 7:135–154 149

123

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

D
is

ta
nc

e
T

hr
ow

n
(m

)

Fig. 17 Fitnesses achieved from applying CGPANN to the ball throwing benchmark

0

20000

40000

60000

80000

100000

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

G
en

er
at

io
ns

Fig. 18 Generations required from applying CGPANN to the ball throwing benchmark

13

13.5

14

14.5

15

15.5

16

16.5

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
or

re
ct

 O
ut

pu
ts

Fig. 19 Fitnesses achieved from applying CGPANN to the full adder benchmark

0

10

20

30

40

50

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

ss
ifi

ca
tio

n
E

rr
or

 %

Fig. 16 Fitnesses achieved from applying CNE to the Proben Cancer1 benchmark—testing

150 Evol. Intel. (2014) 7:135–154

123

0

5

10

15

20

25

30

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

ss
ifi

ca
tio

n
E

rr
or

 %

Fig. 21 Fitnesses achieved from applying CGPANN to the monks problem 1 benchmark—training

0

10

20

30

40

50

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

ss
ifi

ca
tio

n
E

rr
or

 %

Fig. 22 Fitnesses achieved from applying CGPANN to the monks problem 1 benchmark—testing

0

1000

2000

3000

4000

5000

6000

7000

8000

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

G
en

er
at

io
ns

Fig. 20 Generations required from applying CGPANN to the full adder benchmark

20

30

40

50

60

70

80

90

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

N
um

be
r

of
 M

is
cl

as
si

fic
at

io
ns

Fig. 23 Fitnesses achieved from applying CGPANN to the two spirals benchmark

Evol. Intel. (2014) 7:135–154 151

123

The results presented in Sect. 4.1 demonstrated that the

choice of TF has a large impact on the effectiveness of NE.

This is an intuitive result as it is likely that particular TFs

are more or less suited suited to given tasks; it appears to

mirror the ‘No Free Lunch’ theorem [47] but concerning

TFs. However, although intuitive, it is a significant result as

a user is unlikely to know, in advance of training, which TF

is most suited to a given task.

A further interesting and unexpected result from the first

experiment is that, in many cases, the Heaviside step func-

tion was found to be the most effective TF; particularly for

CGPANN. The step function was the original TF used by the

McCulloch and Pitts neuron models [20]. The fact that the

step function is incompatible with back propagation algo-

rithms and is only suited to tasks with binary outputs is

probably the reason other TFs have been favoured. Here,

however, it has been shown that when using NE the Heavi-

side step function is still a suitable TF for contemporary

ANNs provided the task is compatible with binary outputs.

The second experiment demonstrated that allowing NE

to evolve heterogeneous ANNs produced better results, on

average, than the average result obtained by evolving

homogeneous ANNs of each TF. This is significant

because, as the first experiment demonstrates, the choice of

TF has a large impact on the effectiveness of the final

ANNs. This, coupled with the fact there is no way of

knowing which TF will be most suited to a given task

before training begins, puts homogeneous ANN at a

disadvantage. The importance of this result is heightened

by the fact that the majority of NE methods are probably

capable of evolving heterogeneous ANNs. The evolution of

heterogeneous ANNs may even be further improved by the

inclusion of additional TFs not considered here; and as NE

places no restrictions on the types of TFs used, the range of

possible TF is limitless. It may even be the case that certain

TFs complement each other while others may not.

In the application of CNE to the Ball Throwing and

Proben1:Cancer1 (training) benchmarks, evolving hetero-

geneous ANNs produced equal and better average fitnesses

than for any of the homogeneous ANNs investigated. This

indicates that evolution may be positively combining TFs

to produce better results than could be achieved using each

TF individually.

A further result from the second experiment concerns

the percentage of neurons which used each type of TF in

the evolved heterogeneous ANNs. Interestingly, it was

never the case that one type of TF strongly dominated the

networks. If this had occurred it would have indicated that

evolution has found a particular TF to be the most suited

toward the given task. There was, however, reasonable

variation in the percentages of each type of TF used for

CNE applied to the Full Adder and Two Spirals bench-

marks and CGPANN applied to the Monks Problem1

benchmark. This shows that in curtain conditions evolu-

tion is providing some form of pressure to use a particular

type of TF i.e. it is not simply random. The fact that a

0

0.5

1

1.5

2

2.5

3

3.5

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

ss
ifi

ca
tio

n
E

rr
or

 %

Fig. 24 Fitnesses achieved from applying CGPANN to the Proben Cancer1 benchmark—training

0

1

2

3

4

5

6

7

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

ss
ifi

ca
tio

n
E

rr
or

 %

Fig. 25 Fitnesses achieved from applying CGPANN to the Proben Cancer1 benchmark—training

152 Evol. Intel. (2014) 7:135–154

123

particular TF was not favoured in many cases may also

indicate that evolution is combining the functionality of

all the TFs.

The third experiment demonstrated that, in the majority

of cases, using NE to optimise parameters associated with

each neuron provided superior results compared to using

using non-parametrised TFs. This is also an important

result as the inclusion of an additional gene (or genes)

which alter the characteristics of each neuron’s TF is again

probably compatible with all NE methods.

It was also seen in the third experiment that the logistic

TF benefited from being parametrised significantly more

than the Gaussian TF. This was despite the non-parametr-

ised Gaussian TF producing worse results than the logistic

TF overall i.e. there was more room for improvement. It

appears that the logistic TF strongly benefits from being

parametrised. It could be the case however that this result is

dependent on the range of values the TF parameters can

take; this was not investigated in this paper. For instance

the Gaussian TF may work best over a much smaller or

much larger range of values.

In Sects. 4.2 and 4.3 evolving heterogeneous ANNs and

evolving parameters associated with each neuron’s TF

were individually shown to be beneficial for NE. However,

in Sect. 4.4 it was show that when combined they produced

no benefit, on average, than evolving heterogeneous ANNs

with fixed TF parameters. It may be the case that using

parameterised TFs and heterogeneous ANN produce a

similar benefits, however, using them together increases

the search space dimensionality without increasing the

density of good solutions. It could also be possible that

performance depends subtly on evolutionary parameter

settings so that when these methods are combined new

parameter settings are required for optimum performance.

Further research would be required to determine this.

As mentioned in Sect. 2, homogeneous ANNs com-

prised of logistic or Gaussian TFs can be universal ap-

proximators. This means that with the correct connection

weight values and combination of TFs, standard homoge-

neous ANNs are capable of implementing everything

which heterogeneous ANNs can also implement. However,

this fact says nothing about how efficiently standard

homogeneous ANNs can implement certain configurations.

Where here the term efficiently refers to both the number of

neurons required and the time needed to configure the

ANNs. Therefore the fact that ANNs are universal ap-

proximators is not enough to be considered useful. It is also

necessary that the ANNs can also be configured towards a

given task. To this end it appears that heterogeneous ANNs

are, on average, more efficiently configurable.

Although this paper has demonstrated using NE to evolve

ANNs it only used a limited set of TFs and optimised only a

single parameter associated with each neuron over a small

range of values. Further research should therefore investi-

gate additional TFs and allow for more complex TFs

described by multiple parameters; such as those described in

[2]. Although certain TFs have been shown to be universal

approximators this tells us nothing about how ‘‘trainable’’/

‘‘evolvable’’ they are. For instance other TFs, such as the

step function, were demonstrated to produce better results

than other universal approximator TFs.

6 Conclusion

The use of NE to optimise the weights and topology of

ANNs is well established and offers a number of advan-

tages over traditional training methods; such as back

propagation. However, the use of NE to create heteroge-

neous ANNs has so far been under researched and under

utilised. This paper has demonstrated the use of two

methods for allowing NE to create heterogeneous ANNs.

That is, selecting each neuron’s TF from a predetermined

list of TFs or by optimising parameters associated with

each neurons TF. The paper has also shown that the

effectiveness of using NE to train homogeneous ANNs is

highly dependent on the selected TF. Using NE to optimise

each neuron’s TF has been empirically demonstrated to

alleviate this issue.

The results presented in this paper are significant as the

methods described for creating heterogeneous ANNs are

likely to be compatible with all NE methods. That is many

NE method could benefit from evolving heterogeneous

ANNs.

Acknowledgments We would like to thank the reviewers for their

feedback which helped make a much stronger paper.

References

1. Angeline P, Saunders G, Pollack J (1994) An evolutionary

algorithm that constructs recurrent neural networks. IEEE Trans

Neural Netw 5(1):54–65

2. Augusteijn MF, Harrington TP (2004) Evolving transfer functions

for artificial neural networks. Neural Comput Appl 13(1):38–46

3. Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy

layer-wise training of deep networks. Adv Neural Fnfo Process

Syst 19:153

4. Cantú-Paz E, Kamath C (2005) An empirical comparison of

combinations of evolutionary algorithms and neural networks for

classification problems. IEEE Trans Syst Man Cybern Part B

Cybern 35(5):915–927

5. Chalup SK, Wiklendt L (2007) Variations of the two-spiral task.

Connect Sci 19(2):183–199

6. Chebira A, Madani K (2003) Advances in soft computing, vol 19,

chap. A Neural network based approach for sensors issued data

fusion. Physica, Wien, pp 155–160

7. Cliff D, Harvey I, Husbands P (1992) Incremental evolution of

neural network architectures for adaptive behaviour. In:

Evol. Intel. (2014) 7:135–154 153

123

Proceedings of the European symposium on artificial neural

networks (ESANN’93), pp 39–44

8. Duch W, Jankowski N (1999) Survey of neural transfer functions.

Neural Comput Surv 2(1):163–212

9. Duch W, Jankowski N (2001) Transfer functions: hidden possi-

bilities for better neural networks. In: ESANN, pp 81–94

10. Duch W, Jankowski N, Maszczyk T (2012) Make it cheap:

learning with o (nd) complexity. In: The 2012 international joint

conference on neural networks (IJCNN). IEEE, pp 1–4

11. Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from

architectures to learning. Evolut Intell 1(1):47–62

12. Glorot X, Bengio Y (2010) Understanding the difficulty of

training deep feedforward neural networks. In: Proceedings of the

international conference on artificial intelligence and statistics

(AISTATS10). Society for artificial intelligence and statistics

13. Hornik K, Stinchcombe M, White H (1989) Multilayer feedfor-

ward networks are universal approximators. Neural Netw

2(5):359–366

14. Khan MM, Ahmad MA, Khan MG, Miller JF (2013) Fast

learning neural networks using Cartesian Genetic Programming.

Neurocomputing 121:274–289

15. Koutnı́k J, Gomez F, Schmidhuber J (2010) Evolving neural

networks in compressed weight space. In: Proceedings of the

conference on genetic and evolutionary computation (GECCO-

10), pp 619–626

16. Larochelle H, Bengio Y, Louradour J, Lamblin P (2009)

Exploring strategies for training deep neural networks. J Mach

Learn Res 10:1–40

17. Liu Y, Yao X (1996) Evolutionary design of artificial neural net-

works with different nodes. In: Proceedings of IEEE international

conference on evolutionary computation, 1996, pp 670–675. IEEE

18. Mangasarian OL, Setiono R, Wolberg WH (1990) Large-scale

numerical optimization. In: Coleman TF, Li Y (eds) Pattern

recognition via linear programming: theory and application to

medical diagnosis. SIAM, Philadelphia, PA, pp 22–31

19. Manning T, Walsh P (2013) Improving the performance of CGP-

ANN for breast cancer diagnosis using crossover and radial basis

functions. In: Evolutionary computation, machine learning and data

mining in bioinformatics. Springer, Berlin, pp 165–176

20. McCulloch W, Pitts W (1943) A logical calculus of the ideas

immanent in nervous activity. Bull Math Biol 5(4):115–133

21. Miller JF (2001) What bloat? Cartesian genetic programming on

Boolean problems. In: 2001 Genetic and evolutionary computa-

tion conference late breaking papers, pp 295–302

22. Miller JF (2011) Cartesian genetic programming. Springer, Berlin

23. Miller JF, Smith S (2006) Redundancy and computational effi-

ciency in Cartesian genetic programming. IEEE Trans Evolut

Comput 10(2):167–174

24. Miller JF, Thomson P (2000) Cartesian genetic programming. In:

Proceedings of the third European conference on genetic pro-

gramming (EuroGP), vol 1820. Springer, Berlin, pp 121–132

25. Montana D, VanWyk E, Brinn M, Montana J, Milligan S (2009)

Evolution of internal dynamics for neural network nodes. Evolut

Intel 1(4):233–251

26. Park J, Sandberg IW (1991) Universal approximation using

radial-basis-function networks. Neural Comput 3(2):246–257

27. Poli R (1996) Discovery of symbolic, neuro-symbolic and neural

networks with parallel distributed genetic programming. Cogni-

tive Science Research Papers University of Birmingham CSRP

28. Poli R (1999) Parallel distributed genetic programming. New ideas

in optimization, advanced topics in computer science, pp 403–431

29. Prechelt L (1994) Proben1: a set of neural network benchmark

problems and benchmarking rules. Fakultät für Informatik, Univ.

Karlsruhe, Karlsruhe, Germany. Tech Rep 21:94

30. Richard K, B., John, M., Nico l N, S (1990) Evolving networks:

using the genetic algorithm with connectionist learning.

Technical report of cognitive computer science research group,

Computer Science and Engineering Department (C-014), Uni-

versity of California at San Diego

31. Rumelhart DE, Hintont GE, Williams RJ (1986) Learning rep-

resentations by back-propagating errors. Nature 323(6088):

533–536

32. Schmidt M, Lipson H (2007) Comparison of tree and graph en-

codings as function of problem complexity. In: Proceedings of

the 9th annual conference on genetic and evolutionary compu-

tation. ACM, New York, pp 1674–1679

33. Silva S, Costa E (2009) Dynamic limits for bloat control in

genetic programming and a review of past and current bloat

theories. Genetic Progr Evolvable Mach 10(2):141–179

34. Smolensky P (1986) Parallel distributed processing: explorations

in the microstructure of cognition, chap. Information processing

in dynamical systems: foundations of harmony theory. MIT

Press, Cambridge, pp 194–281

35. Stanley K, Miikkulainen R (2002) Evolving neural networks

through augmenting topologies. Evolut Comput 10(2):99–127

36. Teller A, Veloso M (1996) Symbolic visual learning. In: Ikeuchi

K, Veloso M (eds) PADO: a new learning architecture for object

recognition. Oxford University Press, pp 81–116

37. Thrun S, Bala J, Bloedorn E, Bratko I, Cestnik B, Cheng J, De

Jong K, Dzeroski S, Fahlman S, Fisher D et al (1991) The monk’s

problems a performance comparison of different learning algo-

rithms. Technical report, Carnegie Mellon University

38. Turner AJ (2014) Cartesian genetic programming library. http://

cgplibrary.co.uk/

39. Turner AJ, Miller JF (2013) Cartesian genetic programming

encoded artificial neural networks: a comparison using three

benchmarks. In: Proceedings of the conference on genetic and

evolutionary computation (GECCO-13), pp 1005–1012

40. Turner AJ, Miller JF (2013) The importance of topology evolu-

tion in NeuroEvolution: a case study using Cartesian genetic
programming of artificial neural networks. In: Research and

development in intelligent systems XXX. Springer, Berlin,

pp 213–226

41. Turner AJ, Miller JF (2014) Cartesian genetic programming: why

no bloat? Genetic programming: 17th European conference, vol

8599., EuroGP-2014, LNCS. Springer, Berlin, pp 193–204

42. Turner AJ, Miller JF (2014) Recurrent Cartesian genetic pro-

gramming. In: 13th International conference on parallel problem

solving from nature (PPSN 2014), LNCS, vol 8672, pp 476–486

43. Vargha A, Delaney HD (2000) A critique and improvement of the

CL common language effect size statistics of McGraw and Wong.

J Educ Behav Stat 25(2):101–132

44. Vassilev VK, Miller JF (2000) The advantages of landscape

neutrality in digital circuit evolution. In: Proceedings on inter-

national conference on evolvable systems, LNCS, vol 1801.

Springer, Berlin, pp 252–263

45. Weingaertner D, Tatai VK, Gudwin RR, Von Zuben FJ (2002)

Hierarchical evolution of heterogeneous neural networks. In:

Proceedings of the 2002 congress on evolutionary computation,

2002. CEC’02, vol 2. IEEE, pp 1775–1780

46. Wieland A (1991) Evolving neural network controllers for

unstable systems. In: IJCNN-91-Seattle international joint con-

ference onNeural networks, 1991, vol 2. IEEE, pp 667–673

47. Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evolut Comput 1(1):67–82

48. Yao X (1993) A review of evolutionary artificial neural networks.

Int J Intell Syst 8(4):539–567

49. Yao X (1999) Evolving artificial neural networks. Proc IEEE

87(9):1423–1447

50. Yu T, Miller JF (2001) Neutrality and the evolvability of boolean

function landscape. In: Genetic programming, LNCS. Springer,

Berlin, pp 204–217

154 Evol. Intel. (2014) 7:135–154

123

http://cgplibrary.co.uk/
http://cgplibrary.co.uk/

	NeuroEvolution: Evolving Heterogeneous Artificial Neural Networks
	Abstract
	Introduction
	Background
	Investigation
	NeuroEvolutionary Strategies
	Conventional NeuroEvolution
	Cartesian Genetic Programming of Artificial Neural Networks

	Transfer functions
	Benchmarks
	Ball Throwing
	Full Adder
	Monks Problem 1
	Two Spirals
	Proben1: Cancer1

	Results
	Experiment 1: Homogeneous Networks
	Experiment 2: Heterogeneous Networks
	Experiment 3: Evolving Transfer Function Parameters
	Experiment 4: Evolving Heterogeneous Networks and Transfer Function Parameters
	Box and whisker plots

	Discussion
	Conclusion
	Acknowledgments
	References

