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Abstract We propose a method for accelerating interac-

tive evolutionary computation (IEC) and evolutionary

computation (EC) searches using elite obtained in one-

dimensional spaces and use benchmark functions to eval-

uate the proposed method. The method projects individuals

onto n one-dimensional spaces corresponding to each of

the n searching parameter axes, approximates each land-

scape using interpolation or an approximation method,

finds the best coordinate from the approximated shape,

obtains the elite by combining the best n found coordinates,

and uses the elite for the next generation of the IEC or EC.

The advantage of this method is that the elite may be easily

obtained thanks to their projection onto each one-dimen-

sional space and there is a higher possibility that the elite

individual locates near the global optimum. We compare

the proposal with methods for obtaining the landscape in

the original search space, and show that our proposed

method can significantly save computational time. Exper-

imental evaluations of the technique with differential

evolution using a simulated IEC user (Gaussian mixture

model with different dimensions) and 34 benchmark

functions show that the proposed method substantially

accelerates IEC and EC searches.

Keywords Interactive evolutionary computation �
Evolutionary computation � Fitness landscape �
Convergence acceleration � Dimensionality reduction �
Elite strategy

1 Introduction

The success of evolution in nature outstrips that of evolu-

tionary computing even though it is based on the same

principles. This can be attributed primarily to the abun-

dance of resources in nature, such as time and memory,

which are constrained in a computer system. This is

especially true in the case of systems which involve human

interactivity, such as interactive evolutionary computation

(IEC). Consequently, accelerating evolutionary computa-

tion (EC) is necessary for many EC applications to improve

the performance of their target systems. Consider the case

of an IEC that optimizes a target system based on the IEC

user’s subjective evaluations; user fatigue is a serious

problem limiting such a system’s practical application.

Multiple trials for accelerating IEC and EC have therefore

been proposed [12, 23].

One of the methods taken for accelerating EC is to

approximate the fitness landscape and apply an elite strat-

egy [22]. If the search space is high dimensional, non-

linear, non-differentiable and non-convex, conventional

approximation methods encounter difficulties dealing with

the complex space, and the best solution is to reduce the

search space dimension. This kind of dimensionality

reduction strategy was originally proposed in Pei and

Takagi [10, 13] and applied to the traveling salesman

problem in a real-world application [11].

We have used interpolation or approximation methods

to obtain the fitness landscape in a dimensionally reduced
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search space [10, 13]. Reaching the global optimum from

the elite is easier in the regression space. Although it may

not be the actual global optimum, it may be a neighbor to

the global optimum in the original search space. Finding

the actual global optimum from the elite is therefore an

easier task. Here, regression space refers to a lower

dimensional space consisting of k dimensional (k-D) axes

of the original n-D axes, where we use k = 1 in this paper.

In other words, individuals are projected onto the k-D space

to simplify finding the elite. This elitism does not destroy

the original EC search space so much by approximation,

but can accelerate the IEC and EC convergence with less

computational cost by conducting the elite search in the

n regression spaces of k-D (k = 1).

We extend our previous works [10, 13] and present a

comprehensive investigation of our proposal through the

series of experiments which we present in this paper. Spe-

cifically, we investigate: (1) accelerated convergence of our

proposals in a simulated IEC user model. (2) the computa-

tional cost of our proposal in comparison to the work in [22]

for ordinary EC, and (3) EC acceleration performance for

higher dimensional benchmark tasks. A Gaussian mixture

model with different dimensions and 34 well-known

benchmark functions are employed in our experiments.

Some related analysis and discussions are involved in each

investigation. From a framework viewpoint, this method can

be embedded in any IEC and EC algorithm in order to obtain

accelerated convergence. The investigation of the above-

listed three topics contributes to this paper’s originality.

Following this introductory section, an overview of

methods used for accelerating EC is reported in Sect. 2 We

introduce the interpolation and approximation methods

which relate to our study in Sect. 3. In Sect. 4, we explain

in detail our proposed method is enabled by a technique for

reducing the dimensionality of the search space, and we

show how the elite can be obtained from regression search

spaces. In Sects. 5 and 6, IEC and EC are experimental

evaluated using a Gaussian mixture model with various

different dimensions and 34 benchmark functions, and their

results and related topics are analyzed and discussed.

Finally, we discuss some general issues in Sect. 7 and

conclude with the performance of our proposed methods

presented here and discuss some open topics, further

opportunities and future works in Sect. 8.

2 Conventional techniques

There are many complex optimization tasks in many areas

that involve combinatorial, dynamic, severely non-linear,

non-differentiable, and non-convex space problems.

Although EC is a good metaheuristic optimization tool for

them, its search performance for such complex tasks

naturally decreases. EC usually finds areas of better fitness

easily and quickly, however, finding the global optimum

accurately may be time-consuming. Several conventional

accelerating EC convergence methods have been proposed

to solve this problem [12]. They include approximating the

fitness landscape [15, 16, 22], adaptive evolution control

methods [6], developing new mechanisms embedded into

existent EC algorithms [14], information fusion methods

[5, 8, 27] and so on.

Using the EC landscape information directly is a promising

method for EC acceleration. A single-peak function is used to

obtain the landscape of the original search space [Eq. (1)], and

an elite individual is found from the peak of that landscape’s

curve to accelerate the EC search [22]. This method can be

considered both high return and low risk; the elite is obtained

from a fitted single-peak function and the worst fitness indi-

vidual is simultaneously removed from the population, which

does not significantly destroy the original search space. It is,

however, costly to fit the single peak function in a high

dimensional search space with the requirement that it needs at

least 2D ? 1 individuals in the fitting process, where D is the

number of dimensions of the problem. Our proposed methods

obtain the fitness landscape in lower dimensional search

spaces, and thus significantly reduce the computational cost in

the fitting stage. In this paper, we compare our proposed

methods with the method in [22].

f ðXÞ ¼
Xn

i¼1

aiðxi � biÞ þ c ð1Þ

Adaptive evolution control methods [6] control and self-

adaptively tune the EC parameters, such as operator rate, or

use a dynamic search strategy to balance global exploration

and local exploitation such that EC performance is

enhanced. In differential evolution, there have been some

novel strategies proposed in recent years, such as SaDE

[18], JADE [20], jDE [1] and JASaDE [4].

Information fusion methods are an important accelera-

tion method. In this case, EC is fused with other optimi-

zation techniques to change the search strategy, to decide

the search direction, or to choose high priority individuals,

etc. These fusion techniques include local search [2, 24,

27], simulated annealing [8], artificial neuron networks [5,

7], and others too numerous to mention here.

3 Approximating the fitness landscape by interpolation

and approximation

3.1 Regression function

The computation of each EC generation produces a set

of discrete individuals and their corresponding fitness

ðxi; yiÞ; i ¼ 0; 1; . . .;m, but the analytical expression
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relating the two cannot be known. We make the data

regression curve for the required function from the given

category U.

Because there must be some errors in the observed

discrete data, we do not require interpolated or approxi-

mated curves pass through all the discrete points exactly,

but rather that it approaches the original curve at its dis-

crete points, i.e. near xi, as much as possible.

We let the function uðxÞ belong to U, and di ¼
uðxiÞ � yi be the error at uðxiÞ, such that the error vector is

d ¼ ðd0; d1; . . .; dmÞT . In the regression calculation process,

we let the norm of the vector ||d|| be minimized. For a

different norm, we can construct a different regression

function. The function series is shown in Eq. (2).

U ¼ Spanfu0ðxÞ;u1ðxÞ; . . .;unðxÞg ð2Þ

The members in Eq. (2), i.e. u0ðxÞ;u1ðxÞ; . . .;unðxÞ, are

linearly independent in the interval [a, b], where the nodes

xi are contained. Any type of function uðxÞ can be

expressed as Eq. (3).

uðxÞ ¼ a0u0ðxÞ þ a1u1ðxÞ þ � � � þ anunðxÞ ð3Þ

The EC search space is complex for some nonlinear,

non-differentiable, and non-convex space problems. The

regression process brings additional cost to the EC, so a

better solution is to select a simple function as the

regression function to reduce its additional cost. A

polynomial function is suitable for regression computing,

so in this paper, we select it as the regression function in

our interpolation and approximation methods.

3.2 Lagrange interpolation method

The Lagrange interpolation polynomial has the character-

istic of being linear and unique. For one dimensional data

from individuals x0; x1; . . .; xn, we can set up an n degree

polynomial l0ðxÞ; l1ðxÞ; . . .; lnðxÞ. We set its type as

li(xj) = dij, where the form of dij is as shown in Eq. (4).

dij ¼
0 if i ¼ j

1 if i 6¼ j

�
ð4Þ

From the definition of lk(x), we can obtain Eq. (5), which is

the n degree interpolation polynomial, where li(x) is an nth

degree polynomial. The relationships of the Lagrange

interpolation polynomial are shown in Eqs. (5), (6), (7) and (8).

pnðxÞ ¼
Xn

k¼0

lkðxÞyk ¼ yi ð5Þ

lkðxÞ ¼ aðx� x0Þ. . .ðx� xk�1Þðx� xkþ1Þ. . .ðx� xnÞ ð6Þ

When lk(xk) = 1,

a ¼ ½ðxk � x0Þ. . .ðxk � xk�1Þðxk � xkþ1Þ. . .ðxk � xnÞ��1

ð7Þ

i.e.,

lðxÞ ¼
Yn

i¼1;i 6¼k

ðx� xiÞ
ðxk � xiÞ

ð8Þ

Equations (8) and (9) are the n degree Lagrange

interpolation basis function and the n degree Lagrange

interpolation polynomial, respectively.

LnðxÞ ¼
Xn

k¼0

lkðxÞyk; i ¼ 0; 1; . . .; n ð9Þ

In this paper, we use the binomial Lagrange

interpolation polynomial as the simplified regression

search space expression, and use the three individuals

with relative better fitness as the interpolation points to

obtain the concrete regression function. The concrete

interpolation polynomial is as in Eq. (10). The Lagrange

interpolation method is used to find the parameters of

Eq. (10).

LðxÞ ¼
X3

k¼1

Y3

i¼1;i6¼k

ðx� xiÞ
ðxk � xiÞ

( )
yk ð10Þ

3.3 Least squares approximation method

As is mentioned above, we want to minimize the norm of

the error vector d ¼ ðd0; d1; . . .; dmÞT . If we use the 2-norm

form vector as the error vector, the calculation process is

simplified. When one calculates the error vector norm for

the 2-norm, the approximation method is referred to as the

least squares method. Given data in the form of the

function series, i.e., Eq. (2), we want to find a function that

lets the error 2-norm vector be minimized, namely,

Eq. (11).

jjd�jj22 ¼
Xm

i¼0

d�2i ¼
Xm

i¼0

½u�ðxiÞ � yi�2 ¼ min
uðxÞ2U

jjd�jj22 ð11Þ

The approximation function is shown in Eq. (12).

u�ðxÞ ¼ a�0u0ðxÞ þ a�1u1ðxÞ þ � � � þ a�nunðxÞ ð12Þ

If we can obtain u0ðxÞ;u1ðxÞ; . . .;unðxÞ, the system

will be orthogonal, i.e. ðui;ujÞ ¼ 0ði 6¼ jÞ, and the

coefficient matrix equations will form a diagonal matrix

[Eq. (13)].

a�k ¼
ðf ;ukÞ
ðuk;ukÞ

ð13Þ
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So the approximation function is as in Eq. (14).

u�ðxÞ ¼
Xn

i¼0

ðf ;uiÞ
ðui;uiÞ

uiðxÞ: ð14Þ

Similar to the use of Lagrange interpolation in Sect. 3.2

to obtain a regression search space by interpolation, here

we use a linear function to obtain a linear approximation of

the regression search space. The concrete expression is

shown in Eq. (15).

ðu0u0Þ ðu0u1Þ
ðu1u0Þ ðu1u1Þ

� �
D
E

� �
¼ y0

y1

� �
ð15Þ

The approximation process is used to obtain the

parameters D and E in Eq. (15) such that the regression

search space may be defined in a linear space.

4 Obtaining elite from regression search spaces

by dimensionality reduction to accelerate IEC

and EC searches

4.1 Dimensionality reduction method

It is not easy for conventional interpolation or approxi-

mation methods to find an accurate regression search space

corresponding to the original multi-dimensional space. An

alternative method is to reduce the dimensionality of the

original search space and find approximate curve expres-

sions in the lower dimensional spaces. However, if the

parameter variables of the fitness function are dependent,

when they are separated into the lower dimensional space,

the dimensionality reduction method will destroy the ori-

ginal search space information and the dependent param-

eter variables’ relationships. Although there is a risk that

some information will be lost when reducing the search

space dimensionality, it is easy to interpolate or approxi-

mate the search space to obtain landscape information in

lower dimensional search spaces with e.g. one or two

dimensions of the original search space.

Our method for reducing the dimensionality of the

searching space uses only one of the n parameter axes at a

time instead of all n parameter axes, and projects individ-

uals onto each 1-D regression space. The landscape of the

n-D parameter space is given by a fitness function,

y ¼ f ðx1; x2; . . .; xnÞ, and the fitness value of the m-th

individual are given by Eq. (16).

ym ¼ f ðx1m; x2m; . . .; xnmÞ ðm ¼ 1; 2; . . .;MÞ ð16Þ

There are M individuals with n-D parameter variables.

We project the individuals onto the n 1-D spaces in i-th

dimension as follows.

ðxi1; y1Þðxi2; y2Þ. . .ðxim; ymÞ

Each of the n 1-D regression spaces has M projected

individuals. The original search space and dimensionally

reduced search space are shown in Fig. 2. The

dimensionality reduction method simplifies the regression

computations, and it is easy to obtain a regression search

space in lower dimension, which can be helpful

in situations which involve a higher dimensional

nonlinear search space.

4.2 Method for simplifying the regression space

landscape to select an elite

We interpolate or approximate the landscape of each 1-D

regression space using the projected M individuals and

select elite from the n approximated 1-D landscape shapes.

In this paper, we test two methods for approximating the

1-D regression search spaces; in the first method we use a

binomial Lagrange interpolation and in the other linear

least squares approximation. The elite is generated from

the resulting approximated shapes.

Finding the elite corresponds to a kind of local search in

the area where relatively better individuals exist in the

original search space. The global optimum is expected to

be near this area and we may be able to find it with a

probability higher than chance [22]. So the elite selection

method is a critical step in the proposed acceleration

processes.

As the elite obtained by the two different elite selec-

tion methods is different, it is expected that the acceler-

ation performance will also differ. Further, the regression

EC search space obtained by approximation or interpo-

lation has its own characteristics and particularities, and

we must use an efficient method to obtain an elite

from this simplified search space after analyzing its

characteristics.

Binomial Lagrange interpolation simplifies a regression

space with a nonlinear curve, and it is easy to obtain its

inflection point from its gradient, using the inflection point

as the elite. The linear least squares approximation uses a

linear function to approximate the regression space. Its

gradient is either descent or ascent. Lacking an inflection

point, a safer method, taking into account both descent and

ascent, is to select the average point of the linear approx-

imation line as the elite (see Fig. 1).

Our proposed methods replace the worst individual in

each generation with an elite selected as above. Although

we cannot deny the small possibility that the global

optimum is located near the worst individual, the possi-

bility that the worst individual will become a parent in the

next generation is also low; removing the worst individual

therefore presents the least risk and is a reasonable

choice.
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4.3 Method for synthesizing elite

The methods in Sect. 4.2 select n elite points in n 1-D

regression spaces, respectively: x1�elite; x2�elite; . . .; and xn-

elite. The n-D elite used for accelerating IEC/EC conver-

gence in the next generation is obtained as follows:

New Elite ¼ ðx1�elite; x2�elite; ::; xn�eliteÞ:

It is easier to calculate elite in a lower dimensional space

than a higher dimensional space. Although we use 1-D as

the lower dimensional space in this paper, in general the

method need not be restricted to 1-D.

Once a new elite has been obtained, there are two

methods for how it can be handled. In one cautious method,

the fitness value of this elite is calculated to determine

whether the new elite is really useful for acceleration, and

in the other straightforward method, the new elite is

inserted into the next IEC/EC iteration process without any

prior consideration or judgment. In our proposed methods,

we choose the first method. If the fitness of elite is better

than the worst one, we place it into the next generation.

Our proposed method is based on the hypothesis that (1)

elite calculated by interpolation or approximation from

relatively better individuals will also have good fitness; (2)

synthesizing an n-D elite from n elite points in n 1-D

regression spaces will also produce a good elite; (3) the

probability of the global optimum being located near to the

synthesized elite is high. (see Fig. 2)

In general, this proposed method represents a novel

local search method for accelerating IEC/EC convergence,

and it is this method that represents this paper’s principal

original contribution.

5 IEC experimental evaluations and analysis

5.1 Methods for comparison

Table 1 shows our proposed methods along with conven-

tional methods for comparison. We use differential evo-

lution (DE) [17] in our experiments. As mentioned above,

our proposed methods can be embedded as a framework in

any IEC or EC algorithm to accelerate its search and is not

limited to DE.

5.2 IEC user model and experimental conditions

Experimental evaluations frequently demand many repe-

ated experiments under the same conditions, and evalua-

tions with an IEC user model is necessary for this case

rather than a real human IEC user. Our IEC user model [9]

was designed based on the four specifications of (1) a

relatively simple fitness landscape, (2) a multi-modal fit-

ness landscape, (3) a big valley structure, and (4) para-

metrically controllability of the shape and complexity of

the fitness landscape. The rationale of (1) is that although a

human IEC user cannot distinguish differences less than

the differential threshold of perceptions, he or she can

nevertheless obtain practical solutions. The rationale of (2)

is the observation that there are graphics, design, music,

and others expressions for which fitness values are high but

their expressions are quite different. That of the (3) is that

an IEC user can reach the global optimum area easily in

inflection point
average point

Fig. 1 New elite selection methods from a regression search space.

Left by Lagrange interpolation method; Right by least squares

approximation method

),...,,( 21 eliteneliteelite xxxNew Elite =

Fig. 2 Method for synthesizing elite. This proposed method repre-

sents a novel local search method for accelerating IEC/EC

convergence

Table 1 Conventional methods and our proposed methods used for

experimental comparison

(I)DE-N Canonical DE [17]

(I)DE-TB Fitting a single peak function using n best individuals

[22]

(I)DE-TN Fitting a single peak function using n distance nearest

best individuals [22]

(I)DE-TA Fitting a single peak function using all individuals [22]

(I)DE-LS Fitting a linear function using least square approximation

(I)DE-LR Fitting a binomial function using Lagrange interpolation

Evol. Intel. (2013) 6:27–40 31
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spite of (2). The feature of the (4) is essential to conduct

experiments with gradually changed several fitness

landscapes.

A Gaussian mixture model (GMM) was established as

pseudo-IEC user to simulate the user’s evaluation in [21].

The GMM consists of different means, variances and peaks

mixed together to express the characteristics of a human

user conducting an IEC evaluation experiment. We use a

GMM for evaluation in this section. Concretely, we com-

bine four Gaussian functions (k = 4) and realize the

characteristics expressed by Eqs. (17, 18, 19, 20) in 3

dimensions (3-D), 5-D, 7-D, and 10-D. Fig. 3 is a 3-D

example of a Gaussian mixture model.

The big difference between an IEC user model and

ordinary fitness functions is the implementation of the

(a) relative and (b) discrete fitness evaluations of a human

user. A human IEC user compares given individuals rela-

tively and, unlike a fitness function, does not give absolute

fitness. He or she also cannot give precise fitness values but

rather assigns discrete ones, e.g. 1–5 points, every gener-

ation, while ordinary fitness functions give continuous

values. When the difference between individuals is less

than the minimum discrete fitness range, i.e. an evaluation

threshold, a human IEC user cannot distinguish the dif-

ference, and it becomes fitness noise that must be realized

by an IEC user model.

The IDE user simulation in this section randomly

chooses either a trial vector or a target vector and leaves it

as offspring in the next generation when the difference of

their fitness values is less than a certain value to simulate

the unavailability of a human IDE user’s comparison; we

set the difference threshold as 1/50 of the difference

between the maximum and minimum fitness values present

in the population for each generation.

GMMðxÞ ¼
Xk

i¼0

ai exp �
Xn

j¼0

ðxij � lijÞ2

2r2
ij

 !
ð17Þ

r¼

1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5

2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

0

BBB@

1

CCCA

ð18Þ

l¼

�1 1:5 �2 2:5 �1 1:5 �2 2:5 �1 1:5

0 �2 3 1 0 �2 3 1 0 �2

�2:5 �2 1:5 3:5 �2:5 �2 1:5 3:5 �2:5 �2

�2 1 �1 3 �2 1 �1 3 �2 1

0
BBB@

1
CCCA

ð19Þ

ai ¼ 3:1; 3:4; 4:1; 3ð ÞT ð20Þ

IDE parameters are set as the Table 2. Population size,

20, is used to reflect a realistic choice for IEC experiments

with a real human user.

5.3 Evaluations of our proposal

Figure 4 shows the average convergence curves of the best

fitness values for 50 trial runs of IDE-LS and IDE-LR with

their competitors using GMM with 3-D, 5-D, 7-D and 10-D.

Table 3 shows the average fitness value at the 20th generation.

From these results it can be seen that, in general, our

proposed methods are able to accelerate all Gaussian

mixture models, i.e., our proposed methods are signifi-

cantly better than canonical IDE, with the exception of the

IDE-LR method applied to a 3-D model. This indicates that

our proposed acceleration methods can be effectively used

in some IEC applications. However, for some cases, our

proposed methods are not more effective than the previ-

ously proposed acceleration method.

To obtain an estimate of the performance of our pro-

posed acceleration methods under real IEC application

conditions, we conducted IEC evaluation experiments with

20 individuals per generation. In Table 3, it can be seen

that the acceleration performance improves with higher

dimensions, i.e. the 10-D, 7-D and 5-D GMM with 20

individuals are more efficient than in the 3-D case. This

indicates that our proposed methods increase the diversity

of the population in higher dimensions more significantly

−6
−4

−2
0

2
4

6

−6
−4

−2
0

2
4

6
0

1

2

3

4

5

6

7

Gaussian Mixture Model

Fig. 3 3-D view of a Gaussian mixture model

Table 2 IEC experiment parameter settings

Population size 20

Search range of parameters [-5.12, 5.12]

Scale factor F 0.9

Crossover rate 0.8

IDE operation IDE/best/1/bin

Max. search generation, MAXNFC 20

Dimensions of Gaussian mixture model, D 3, 5, 7, 10

No. of trial runs 50
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than in lower dimensions. When the dimension of the

GMM is higher, our proposed methods seem to offer the

same performance.

Compared with the IDE-TA method, all of our pro-

posed methods outperform it, except IDE-LS applied in

the 7-D modal case. The proposed method IDE-LS and

IDE-LR can perform significantly better than IDE-TB in

lower dimensional problems (3-D and 5-D) and IDE-TN in

higher dimensional problems (7-D and 10-D), respec-

tively. These observations indicate that our proposed

methods may work better than IDE-(TB, TN, TA) when

the distribution of individuals in a search space has less

diversity, while IDE-(TB, TN, TA) have better perfor-

mance even in such cases.

6 EC experimental evaluations and analysis

6.1 Benchmark functions and experimental conditions

We evaluate our proposed methods with 34 benchmark

functions. Our proposed methods aim to reduce IDE user

fatigue by accelerating IDE search. However, their appli-

cability is not limited to IEC; they can be used for any EC

search with fitness functions. Information about some of

these functions and their related parameters can be found in

literature [3, 19, 25], and [26]. See definitions, search

ranges of optimization parameters, and characteristics of

the benchmark functions in Table 4.

Some evaluation indexes for comparing our proposed

methods applied to EC are average fitness value until

convergence is reached in the maximum search generation,

Wilcoxon signed-rank test at the maximum search gener-

ation and the total time cost statistics and analysis, which
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Fig. 4 Average convergence

curves of 50 trial runs for a 3-D,

b 5-D, c 7-D and d 10-D

Gaussian mixture model with

population size of 20

Table 3 Average fitness value at 20th generation of 3-D, 5-D, 7-D

and 10-D Gaussian mixture models (pseudo-IDE user)

Method 3-D 5-D 7-D 10-D

IDE -5.59 -3.28 -2.77 -2.76

IDE-TB -5.59 -3.37 -3.25 -3.14

IDE-TN -5.76 -3.38 -3.22 -2.74

IDE-TA -5.58 -3.33 -2.83 -2.98

IDE-LS 25.75�,§ 23.39�,�,§ 22.78 23.03§

IDE-LR -5.58§ 23.37§ 23.27�,§ 23.07�,§

Bold font, �, �, § marks values mean IDE-LS or IDE-LR significantly

better than IDE, IDE-TB, IDE-TN and IDE-TA, respectively, by

Wilcoxon signed-rank tests (p \ 0.05)
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Table 4 Benchmark functions used in experimental evaluations, where Range is the scale of the parameters, n is the dimension of the function

and C is the function’s characteristics, respectively

No. Name Test function Range n C

F1 Sphere f ðxÞ ¼
Pn

i¼1 x2
i

[-5.12, 5.12] 3 U-S

F2 Rosenbrock f(x) = 100 (x1
2 - x2)2 ? (1 - x1)2 [-2.048, 2.048] 2 U–N

F3 DeJong-step f ðxÞ ¼
Pn

i¼1bxic [-5.12, 5.12] 5 U–S

F4 Quantic and noise f ðxÞ ¼
Pn

i¼1 ix4
i þ Gaussð0; 1Þ [-1.28, 1.28] 30 U–S

F5 Foxholes f ðxÞ ¼ ½0:02þ
P25

j¼1
1

jþ
P2

i¼1
ðxi�aijÞ6

��1 [-65.536, 65.536] 2 M–S

F6 Rastrigin f ðxÞ ¼ ð10nÞ þ
Pn

i¼1ðx2
i � 10 cosð2pxiÞÞ [-5.12, 5.12] 5 M–S

F7 Schwefel 2.26 f ðxÞ ¼
Pn

i¼1ð�xi sinð
ffiffiffiffiffiffi
jxij

p
ÞÞ [-512, 512] 5 M–S

F8 Griewank f ðxÞ ¼ 1þ
Pn

i¼1

x2
i

4000
�
Qn

i¼1 cosð xiffi
i
p Þ [-512, 512] 5 M–N

F9 Schaffer 1
f ðxÞ ¼ 0:5þ sin2ð

ffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

1
þx2

2
Þ

p
Þ�0:5

½1:0þ0:001ðx2
1
þx2

2
Þ�2

[-100, 100] 2 M–N

F10 Schaffer 2 f ðxÞ ¼ ðx2
1 þ x2

2Þ
0:25½sin2ð50ðx2

1 þ x2
2Þ

0:1Þ þ 1:0� [-100, 100] 2 M–S

F11 Schwefel 2.22 f ðxÞ ¼
Pn

i¼1 jxij þ
Qn

i¼1 jxij [-10, 10] 30 U–N

F12 Schwefel 1.2 f ðxÞ ¼
Pn

i¼1ð
Pi

j¼1ðxjÞÞ2 [-10, 10] 30 U–N

F13 Hartman-3 f ðxÞ ¼ �
P4

i¼1 ci exp½�
P3

j¼1 aijðxj � pijÞ2� [0, 1] 3 M–N

F14 Step f ðxÞ ¼
Pn

i¼1ðbxi þ 0:5cÞ2 [-10, 10] 30 U–S

F15 Beale f ðxÞ ¼ ð1:5� x1 þ x1x2Þ2
þð2:25� x1 þ x1x2

2Þ
2

þð2:625� x1 þ x1x3
2Þ

2

[-4.5, 4.5] 2 U–N

F16 Kowalik f ðxÞ ¼
P11

i¼1½ai � x1ðb2
i þbix2Þ

b2
i þbix3þx4

�2 [-5, 5] 4 M–N

F17 Carnel-Back f ðxÞ ¼ 4x2
1 � 2:1x4

1 þ 1
3

x6
1 þ x1x2 � 4x2

2 þ 4x4
2

[-5, 5] 2 M–N

F18 Branin f ðxÞ ¼ ðx2 � 5:1
4p2 x2

1 þ 5
p x1 � 6Þ2

þ10ð1� 1
8pÞ cosðx1Þ þ 10

[-5, 10] 9 [0, 15] 2 M–S

F19 Goldstein-Price f ðxÞ ¼ ½1þ ðx1 þ x2 þ 1Þ2
� ð19� 14x1 þ 3x2

1 � 14x2 þ 6x1x2 þ 3x2
2Þ�

� ½30þ ð2x1 � 3x2Þ2
�ð18� 32x1 þ 12x2

1 þ 48x2 � 36x1x2 þ 27x2
2Þ�

[-2, 2] 2 M–N

F20 Hartman-6 f ðxÞ ¼ �
P4

i¼1 ci exp½�
P6

j¼1 aijðxj � pijÞ2� [0, 1] 6 M–N

F21 Sh Sphere same as F1 with Sh [-100, 100] 50 Sh–U–S

F22 Sh Schwefel 1.2 same as F12 with Sh [-100, 100] 50 Sh–U–N

F23 Sh Rt Elliptic f ðxÞ ¼
Pn

i¼1ð106Þ
i�1
n�1x2

i
[-100, 100] 50 Sh–Rt–U–N

F24 F22 with Noise same as F22 with noise [-100, 100] 50 Sh–U–N

F25 Sh Schwefel 2.6 GB f(x) = Max|Aix - Bi| [-100, 100] 50 Sh–U–N

F26 Sh Rosenbrock same as F2 with Sh [-100, 100] 50 Sh–M–N

F27 Sh Rt Griewank same as F8 with Sh and Rt [0, 600] 50 Sh–Rt–M–N

F28 Sh Rt Ackley GB f ðxÞ ¼ �20 expð�0:2ð1n
Pn

i¼1 x2Þ
1
2Þ [-32, 32]

� expð1n
Pn

i¼1 cosð2pxiÞÞ þ 20þ e [-32, 32] 50 Sh–Rt–M–N

F29 Sh Rastrigin same as F6 with Sh [-5, 5] 50 Sh–M–Sep

F30 Sh Rt Rastrigin same as F6 with Sh and Rt [-5, 5] 50 Sh–Rt–M–N

F31 Sh Rt Weierstrass f ðxÞ ¼
Pn

i¼1ð
Pkmax

k¼0 ½ak cosð2pbkðxi þ 0:5ÞÞ�
�n
Pkmax

k¼0 ½ak cosð2pbk � 0:5Þ�Þ
[-0.5, 0.5] 50 Sh–Rt–M–N

F32 Schwefel 2.13 f ðxÞ ¼
Pn

i¼1ð
Pn

j¼1ðaij sin xi þ bij cos xiÞÞ2 [-100, 100] 50 Mul–N

F33 Sh Expanded F28F22 f(x) = F28F22(x1, x2, ..., xn) [-3, 1] 50 Sh–M–N

F34 Sh Rt Scaffer F6 same as F9 with Sh and Rt [-100, 100] 50 Sh–Rt–M–N

U unimodal, M multimodal, Sh shifted, Rt rotated, GB global on bounds, N non-separable, and S separable
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can show us to what degree our proposed methods are

time-saving.

EC experimental parameters are set as shown in

Table 5. We use differential evolution (DE/best/1/bin) as

the optimization method to evaluate the methods. The

evaluation is conducted under difficult search conditions;

only 100 individuals search 50-D/30-D functions for which

the search parameter ranges are expanded, and the other

uses 30 individuals.

6.2 Evaluations of our proposal

Convergence characteristics of the 34 benchmark functions

are shown in Tables 6 and 7. In the tables, Wilcoxon

signed-rank tests are applied between our proposed meth-

ods with canonical DE and previous acceleration methods

[22]. As was previously mentioned, for higher dimensional

problems (F21–F34), the previous acceleration methods

require the # of population size must be 2D ? 1 = 2 9

50 = 101, which exceeds the experimental settings, so our

proposed methods can be applied to such higher dimen-

sional problems but the previous methods cannot. This

demonstrates one advantage of our proposed methods.

The proposed methods converge faster than the con-

ventional methods at the same generation for both lower

and higher dimensional problems except for a few func-

tions. This effect cannot be observed for F3, F5, F7, F8,

F23, F28, F31, F32 and F34 functions because there are no

significant differences between canonical DE and DE with

either of our proposed methods. Our proposed method’s

acceleration performance look similar, and if there is any

difference, the superiority depends on the task being per-

formed. From the Wilcoxon signed-rank tests comparison

of our proposed methods with previous acceleration

methods, the performance of our proposed methods is

better than one of them in F2, F3, F4, F10, F11, F12, F14,

F15, F16, F18, F19 and F20 in lower dimension problems.

The DE-LS method’s performance is better than that of

DE-LR method in comparison with previous mentioned

acceleration methods, i.e. DE-TB, DE-TN and DE-TA. For

higher dimensional benchmark functions (F21–F34), our

Table 5 EC experiment parameter settings

Population size 100 (D = 50, D = 30)/30 (others)

Scale factor F 0.9

Crossover rate 0.8

DE operations DE/best/1/bin

Max. search generation 50

No. of trial runs 50

Table 6 Average fitness value of F1–F20 benchmark functions

Fun. DE-N DE-TB DE-TN DE-TA DE-LS DE-LR

F1 2.02E-06 9.40E-10 1.65E-11 0.00E?00 2.97E208 4.28E-03

F2 7.12E-07 5.64E-07 2.66E-07 5.99E-07 2.20E207�,�,§ 3.81E207�,§

F3 -3.00E?01 -3.00E?01 -2.99E?01 -3.00E?01 -2.99E?01 -3.00E?01�,§

F4 1.33E?01 5.56E-01 1.38E?00 1.86E-01 9.22E201� 1.67E100

F5 1.10E?00 1.04E?00 1.61E?00 1.10E?00 1.18E?00 1.58E?00

F6 6.85E?00 3.78E?00 3.53E?00 3.79E?00 4.38E100 4.92E100

F7 -1.97E?03 -1.98E?03 -1.94E?03 -1.96E?03 -1.96E?03 -1.95E?03

F8 3.60E-01 3.60E-01 3.60E-01 3.60E-01 3.60E-01 3.60E-01

F9 1.01E-02 8.45E-03 1.13E-02 8.19E-03 9.10E203 8.11E203

F10 7.78E-02 3.59E-03 6.27E-03 1.10E-02 1.56E202 9.25E203§

F11 6.26E?02 2.32E?01 2.54E?01 5.46E?00 7.72E100�,� 4.60E101

F12 3.25E?04 1.70E?03 5.20E?03 4.88E?02 3.58E103� 8.51E103

F13 6.38E?00 2.70E?00 4.05E?00 1.25E?00 3.85E100 4.82E100

F14 1.93E?02 2.64E?01 4.69E?01 9.86E?00 3.69E101� 6.72E101

F15 1.78E?01 8.57E?00 1.21E?01 5.46E?00 1.00E101� 1.26E101

F16 3.49E-03 1.77E-03 4.16E-03 9.54E-04 1.67E203�,� 2.58E203

F17 2.82E-09 5.20E-13 2.00E-13 1.20E-11 2.65E211 8.15E206

F18 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E201� 3.98E-01

F19 3.00E?00 3.00E?00 3.00E?00 3.00E?00 3.00E100�,§ 3.00E100

F20 -3.26E?00 -3.27E?00 -3.27E?00 -3.26E?00 -3.27E100� -3.26E100

Bold font, �, � ,§ marks values mean IDE-LS or IDE-LR significantly better than ordinary IDE, IDE-TB, IDE-TN and IDE-TA, respectively, by

Wilcoxon signed-rank tests (p \ 0.05)
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proposed methods also show the capability to accelerate

EC search, except in some cases, and even to problems

with shifted and rotated characteristics.

6.3 Discussion on acceleration performance

With the exception of F3, F5 F7 and F8, our proposed

methods can accelerate all lower dimensional benchmark

functions. There were no cases where the proposed meth-

ods were significantly poorer than canonical DE. Although

our proposed acceleration methods use a dimensionality

reduction technique to obtain new elite in a lower dimen-

sional search space, which would seem to imply more

efficiency in problems with the characteristic of variable

separability (i.e. F1, F4, F6, F10, F14 and F18), the

experimental results show that DE-LR and DE-LS also

exhibit better performance when the variables are non-

separable (i.e. F2, F9, F11–F13, F15–F17, F19 and F20).

For uni-modal and multi-modal problems, the experimental

results indicate that our proposed methods have the same

capability to accelerate these two kinds of problems.

As the global optimum of F3 is on the edge of a

searching space, the elite obtained around the global opti-

mum by function approximation may be located outside of

the searching range. Our experiment does not use the elite

in this case, and the DE using our proposed methods

becomes identical to canonical DE. This would explain

why there is no significant difference between DE-N, DE-

LR and DE-LS.

F7 is made by putting multiple sine curves on a sloped

plane that is otherwise similar to F3. The difficulty with

this task is that the minimum point, i.e. the global

optimum, is located near the maximum point of the plane

and there are local minimums around the global optimum.

When local minimums and the global optimum are located

close together, the elite obtained from an approximated

curve may be located in a gap between these peaks and its

fitness may be poor. This may be a reason why the per-

formance of our proposed methods is the same as with

canonical DE.

F4 is a quartic function with Gaussian noise and has its

global optimum in the center of the searching space.

Although it is a multi-modal function due to the quartic

function and fluctuations due to noise, the influence of the

noise is relatively small and its whole shape is close to a

quadratic function such as in F1. Elite from an approxi-

mated function using individuals that fluctuate slightly

should be located in the center, and the performance of DE-

LR and DE-LS should be better, as with F1, while that of

canonical DE is negatively influenced by the fluctuations.

This may explain the good performance of our proposed

method with F4.

For higher dimensional problems (F21–F34), our pro-

posed methods are also effective except F23, F28, F31, F32

and F34; most of them have complex fitness landscapes

with a rotation characteristic. As rotated fitness landscape

changes the real location of global optimum dramatically,

our projected one-dimensional landscape can not use other

dimensional search space information collaboratively.

Obtained elite are not correct in each lower dimension.

Maybe this is the reason why our proposed methods are

ineffective in those benchmark tasks.

Except in special cases, the performance of DE-LR and

DE-LS are better than that of DE-TN. This demonstrates

that the original search space landscape fitted by those

individuals with the lowest distance from the best indi-

vidual is not accurate as a regression of the original search

space; i.e. individuals near the best individual are not

necessarily in regions of better fit in the original search

space.

6.4 Discussion on computational complexity

Reducing computational cost is the greatest feature offered

by our methods. This method of approximating landscapes

and using the peak of an approximated function belongs to

the same category as [22], but we extend that work by

introducing projection onto a 1-D space, synthesizing an

elite from the elites on multiple 1-D functions, and thus

further reducing computational cost. Let’s examine the

efficiency of the methods by calculating the time cost (see

Table 8).

We calculate the run times of 50 trials of DE-N, DE-LR,

DE-LS, DE-TB, DE-TN and DE-TA, and obtain the

average running time cost of one computation. The system

Table 7 Average fitness value of F21–F34 benchmark functions

Fun. DE-N DE-LS DE-LR

F21 1.58E?05 1.16E105 1.39E105

F22 4.04E?05 3.81E105 3.98E?05

F23 5.07E?09 4.97E?09 5.07E?09

F24 4.95E?05 4.40E105 4.51E105

F25 4.97E?04 4.65E104 4.91E104

F26 1.28E?11 7.97E110 1.07E111

F27 6.01E?03 4.76E103 5.84E103

F28 -1.19E?02 -1.19E?02 -1.19E?02

F29 5.69E?02 4.78E102 5.52E102

F30 1.10E?03 9.07E102 1.06E103

F31 1.68E?02 1.68E?02 1.68E?02

F32 6.86E?06 6.86E?06 6.84E?06

F33 2.62E?03 1.28E103 1.47E103

F34 -2.76E?02 -2.76E?02 -2.76E?02

Bold font values mean DE-LS or DE-LR significantly better than

ordinary DE by Wilcoxon signed-rank tests (p \ 0.05)
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used to run the experiment is powered by a Core2 Duo

2GHz CPU with 1GB RAM running Windows XP (SP2).

The table shows that the time cost of our proposed

methods is more than canonical DE and less than the

previous acceleration methods. The time cost of our pro-

posed method is almost the same for one benchmark

function. The three previous acceleration methods are

costly for one benchmark function. We can conclude that

our proposed methods save the time cost of optimization

when compared to the previous acceleration methods.

To further evaluate the significance of our proposed

methods as compared with the previous methods, we

conduct a time cost variance analysis with the time cost

data sample from our tests. Before calculating the F dis-

tribution value of the multiple groups’ sample time cost

data for significance evaluation, we should check whether

the sample data fit a normal distribution in theory. For a

large data set (data [30 samples), it must fit a normal

distribution in accordance with the Central Limit Theorem.

We use the Jarque–Bera test to check each time cost data

set for goodness-of-fit to a normal distribution, and for

abnormal data we smooth it for fitting to a normal distri-

bution. We calculate the F value for each of the lower

dimensional benchmark functions (F1–F20) in Table 9

with r = 5, n = 250. F0.05(r - 1, n - r) = F0.05(4, 245),

i.e, F0:05ð4;1Þ ¼ 2:37. From Table 9, it can be seen that

all the F values are greater than 2.37, indicating that our

proposed method’s time cost means differ significantly

from those of the previous methods.

From Tables 8 and 9, we can conclude that the proposed

methods can significantly save time over previous methods.

A comparison of DE-(LR and LS) with DE-(TB, TN and

TA) shows that our proposed acceleration methods seem

more beneficial than previous ones. However, before the

regression and fitting process, it is necessary to select the

sample data. In the selection process, there are more

searching and sorting operations, and these take as much as

or even more time than the regression and fitting process-

ing. This shows how essential selection of sample data is

when accelerating EC from a landscape obtained from its

search space. This, improving the performance of data

selection, will be a subject of our future research.

7 Discussion of general issues related to our proposal

7.1 Regression function selection for landscape

approximation

Approximation function selection is a critical issue in the

approximation of the IEC/EC landscape. From a practical

viewpoint, we should select an appropriate approximation

function after analyzing the characteristics of the IEC/EC

landscape. In this study, we reviewed related regression

methods used to approximate IEC/EC landscapes in Sect.

3, and selected binomial Lagrange interpolation and linear

least squares approximation as the regression methods for

our study.

The regression search space approximated by binomial

Lagrange interpolation and linear least squares approxi-

mation are nonlinear and linear, respectively. The charac-

teristic of the nonlinear space is that it is ruleless, which is

a feature common to most IEC/EC search spaces. Binomial

Lagrange interpolation is a method that can be used to

obtain nonlinear landscape information about the IEC/EC

search space and we can find new elite in this nonlinear

regression space. Maybe there is a rule between the new

elite and the global optimum in the regression search space,

and we can obtain it by chance. The linear function least

squares method approximates some linear relationship

between each individual and its fitness in the local search

space. If the search space of some IEC/EC application is

linear, we can obtain the IEC/EC search space’s linear

relationship from the linear function approximation. We

can also obtain the global optimum from the new elite in

the regression linear space.

How to obtain the approximated IEC/EC search space is

a promising research direction. In our study, we tried to use

Table 8 Average cost time of each method for one time running

(Unit: ms)

F N TB TN TA LS LR

F1 6.26 24.69 24.37 24.07 9.06 8.95

F2 9.58 24.05 23.02 23.45 12.2 12.19

F3 10.52 36.87 39.27 36.67 12.29 12.29

F4 25.00 1,761.25 2,754.58 2,754.49 28.12 28.13

F5 20.63 35.10 34.18 34.47 23.12 23.13

F6 15.31 42.81 40 38.33 17.71 17.92

F7 16.88 44.27 41.15 39.37 19.79 19.69

F8 17.39 44.59 41.47 39.47 19.89 20.00

F9 12.39 27.08 26.25 26.14 15.00 15.21

F10 13.02 27.71 26.98 26.67 15.83 15.94

F11 25.52 1,748.96 2,709.58 2,697.81 28.12 28.55

F12 45.63 1,762.19 2,740.21 2,725.31 48.23 48.01

F13 13.02 35.41 36.25 34.69 15.63 15.53

F14 50.11 2,292.91 2,739.48 2,748.33 44.17 43.85

F15 10.00 24.58 23.45 23.64 12.19 12.92

F16 13.23 35.84 36.97 35.52 15.74 16.04

F17 9.89 24.27 24.89 23.85 12.71 12.61

F18 11.26 25.94 23.85 24.17 14.06 14.16

F19 9.79 24.37 23.65 23.75 12.61 12.71

F20 9.06 41.98 45.11 42.19 11.56 1.67

F means function. N means canonical DE. LR, LS, TB, TN and TA

mean the acceleration methods of DE-LR, DE-LS, DE-TB, DE-TN

and DE-TA, respectively
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nonlinear and linear curve expressions to approximate the

IEC/EC search space, to obtain the approximation rela-

tionship between the approximated and the original IEC/

EC search space, and to find the global optimum from the

new elite by chance. However, the approximation process

influences the performance of the IEC/EC algorithms, so

using an efficient approximation method is another topic to

be considered when designing accelerated IEC/EC algo-

rithms. We should use the lowest possible degree of

interpolation and approximation functions in the lowest

possible dimensional spaces to reduce the time cost

required for the entire IEC/EC algorithm.

7.2 Regression model establishment and usage

The experimental results in this study show that both linear

(DE-LS) models and nonlinear (DE-LR) models can be

used to efficiently accelerate IEC/EC convergence. How-

ever, sign tests indicate that the methods are mostly

effective in the initial generations [10], and an alternative

solution is to use this kind of acceleration method to speed

IEC/EC convergence only in those early generations.

Constructing and selecting different models to better

approximate the IEC/EC search space is a worthwhile topic

for further research. To achieve optimal performance, we

should choose approximation methods that are suited to the

characteristics of the search space. For regression in the

discrete domain, a more powerful tool than continuous

domain Lagrange interpolation and least squares approxi-

mation is required. To find how best to approximate the

search space in the discrete domain is a valuable research

topic.

Another point deserving special attention is the method

used for dimensionality reduction. The objective of the

dimensionality reduction is to simplify the computation of

the search space regression by performing it in a lower

dimension. The dimensionality reduction loses much

search space information, however, such as the relationship

between the parameters in non-separable problems. How

we can reduce the search space dimension as much as

possible while simultaneously preserving the necessary

search space information for the next generation of the

search is a challenging problem for further research into the

dimensionality reduction method.

The new elite selection method is also a key step in the

acceleration process. The elite selection method is deter-

mined by the different search space regression methods.

They can be categorized as linear and nonlinear models,

corresponding to the classification method of the regres-

sion model. A new elite selection method should be

determined by analyzing the characteristics of the

regression model.

Table 9 Confidence interval and F value for the 20 benchmark functions

Function F value TA-LR TA-LS TN-LR TN-LS TB-LR TB-LS

F1 195.16 [24.71, 25.90] [24.93, 26.12] [11.48, 12.67] [11.69, 12.88] [0.55, 1.74] [0.76, 1.95]

F2 107.80 [24.28, 25.52] [24.17, 25.41] [10.42, 11.66] [10.31, 11.55] [0.21, 1.46] [0.10, 1.34]

F3 673.36 [26.96, 28.41] [26.76, 28.21] [16.98, 18.43] [16.78, 18.23] [1.86, 3.31] [1.66, 3.11]

F4 198,746.11 [141.39, 142.5] [140.5, 141.73] [197.02, 198.19] [196.19, 197.36] [111.39, 112.56] [110.56, 111.73]

F5 171.23 [24.89, 25.93] [24.48, 25.52] [11.04, 12.07] [10.63, 11.67] [0.82, 1.86] [0.42, 1.45]

F6 568.36 [24.87, 26.16] [24.77, 26.06] [15.60, 16.89] [15.50, 16.79] [4.66, 5.95] [4.56, 5.85]

F7 371.44 [26.01, 27.13] [25.79, 26.92] [16.63, 17.75] [16.41, 17.54] [6.52, 7.64] [6.31, 7.43]

F8 381.21 [26.69, 27.70] [26.48, 27.48] [16.25, 17.26] [16.04, 17.04] [6.37, 7.38] [6.16, 7.16]

F9 212.91 [24.73, 25.89] [24.72, 25.88] [10.68, 11.83] [10.67, 11.83] [0.46, 1.61] [0.45, 1.61]

F10 121.83 [25.40, 26.67] [25.30, 26.57] [10.92, 12.20] [10.82, 12.10] [0.09, 1.37] [0.00, 1.27]

F11 484,763.35 [142.97, 144.12] [141.51, 142.66] [197.85, 199.00] [196.39, 197.54] [111.19, 112.34] [109.73, 110.88]

F12 364,138.63 [143.29, 144.81] [141.74, 143.25] [197.56, 199.08] [196.01, 197.53] [111.52, 113.04] [109.97, 111.49]

F13 525.10 [26.55, 28.02] [26.46, 27.93] [15.19, 16.66] [15.11, 16.58] [1.23, 2.70] [1.15, 2.62]

F14 143,719.42 [146.15, 149.68] [144.28, 147.80] [196.15, 199.68] [194.28, 197.80] [110.52, 114.04] [108.65, 112.17]

F15 89.73 [2.50, 25.69] [24.59, 25.79] [10.44, 11.64] [10.54, 11.73] [0.55, 1.75] [0.64, 1.84]

F16 591.96 [27.66, 29.00] [27.46, 28.80] [15.46, 16.81] [15.26, 16.61] [1.19, 2.53] [0.99, 2.33]

F17 94.37 [24.68, 25.93] [24.38, 25.63] [10.83, 12.08] [10.53, 11.78] [0.62, 1.87] [0.32, 1.57]

F18 63.00 [23.59, 24.97] [23.48, 24.86] [9.72, 11.11] [9.61, 10.99] [0.36, 1.75] [0.25, 1.63]

F19 118.13 [24.32, 25.69] [24.12, 25.49] [10.66, 12.03] [10.46, 11.83] [0.66, 2.03] [0.46, 1.83]

F20 1,069.79 [27.65, 28.81] [27.85, 29.01] [22.55, 23.71] [22.75, 23.91] [1.81, 2.98] [2.01, 3.18]

All the intervals are positive, indicating that the previous acceleration methods, i.e. DE-(TB, TN and TA) have significantly greater time cost than

our proposed acceleration methods, i.e. DE-(LR and LS)
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7.3 Data sampling technique

It is necessary to sample the data to obtain the original

search space information which is used in the approxima-

tion processes. The data sampling technique determines the

quality of the approximation model, indirectly influencing

the model usage and obtained elite. Several data sampling

methods have been proposed. These include best data

strategy, distance nearest data strategy, whole data strategy

and random data strategy. For comparison of those sample

studies, we discuss the advantages and disadvantages of the

methods as follows.

First, obtaining suitable data for the approximation of

the IEC/EC landscape requires time in searching and

sorting operations. With a view to maximizing perfor-

mance and saving time, we need to select an easy way to

obtain the sample data. Secondly, from the experimental

results, the distance nearest data strategy is more costly

than any of the other sampling data strategies. The accel-

eration performance of the approximation model combined

with distance nearest data is not as good as the others. So

with a view to practical applications, the distance nearest

data strategy exhibits low performance. Third, our pro-

posed acceleration methods that use the best data strategy

to approximate the model in the lower search space per-

form better than the previous acceleration methods in some

cases. However, if we select a data sampling strategy

which is even more time efficient and does not require

searching and sorting, such as the random data strategy, the

performance of our proposed methods may be further

improved. This is a direction for further research.

7.4 Limitations

Additional time is required to approximate the IEC/EC

search space when using our proposed acceleration meth-

ods, so the IEC/EC algorithm’s computational complexity

is increased. The performance issue is the biggest problem

for the application of our acceleration methods. Although

our proposed methods exhibit performance that is better

than the previously proposed acceleration methods, per-

formance remains a critical issue when looking to apply the

method. When this acceleration is used in a concrete

application, we must consider the issue of performance and

find a balance between algorithm computational com-

plexity and the speed of convergence.

Population diversity is the key consideration for obtain-

ing the final global optimum in IEC/EC. Acceleration

methods can lead to a premature convergence on a local

optimum in some special landscape conditions. When a

nearly identical elite is inserted generation after generation,

our proposed method can lead to premature convergence.

The issue of elite insertion strategy selection is a topic of

considerable importance when applying our proposed

acceleration methods to concrete IEC/EC applications.

8 Conclusion and future work

We proposed IEC/EC convergence be accelerated by using

a dimensionality reduction technique in approximating the

fitness landscape. The novel feature in these acceleration

methods was to use elite synthesized from elite points found

in lower dimensional spaces. The main contribution of this

study was utilizing the notion of dimensionality reduction

for approximating the fitness landscape to accelerate IEC/

EC searches. Our experimental evaluations with a Gaussian

mixture model and 34 benchmark functions showed that the

proposed methods can accelerate IEC and EC searches with

lower computational cost. The acceleration performance

can be obtained in both lower and higher dimensional

problems, especially when the landscape of the tasks takes

on a roughly big valley structure. We also analyzed the

relationship between the performance of the proposed

methods and the landscape shapes.

Theoretical research is but one part of this scientific

research; the ultimate objective of our research is to apply

this novel method and technique to actual applications with

societal benefit. We conducted simulation evaluations to

compare characteristics of several methods with multiple

different initializations under the same experimental con-

ditions. In the next step, we should quantitatively evaluate

IEC user fatigue and collect basic experimental data

together with the convergence experiments’ results in this

paper. After that, we need to conduct human subjective

tests with human IEC users, evaluate user fatigue and

acceleration performance synthetically, and conclude the

evaluation of the proposed methods. It is important to

obtain conclusions through its application and thus find

new directions by which we can improve our work. We

expect these developments will occur on topics such as the

selection of the linear or nonlinear model, the actual

interpolation or approximation methods used and the

expression of the regression space. We will continue con-

ducting research on those topics in the future.
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