
RESEARCH PAPER

Scalable multiagent learning through indirect
encoding of policy geometry

David B. D’Ambrosio • Kenneth O. Stanley

Received: 8 March 2012 / Revised: 7 November 2012 / Accepted: 28 December 2012 / Published online: 18 January 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract Multiagent systems present many challenging,

real-world problems to artificial intelligence. Because it is

difficult to engineer the behaviors of multiple cooperating

agents by hand, multiagent learning has become a popular

approach to their design. While there are a variety of tra-

ditional approaches to multiagent learning, many suffer

from increased computational costs for large teams and the

problem of reinvention (that is, the inability to recognize

that certain skills are shared by some or all team member).

This paper presents an alternative approach to multiagent

learning called multiagent HyperNEAT that represents the

team as a pattern of policies rather than as a set of indi-

vidual agents. The main idea is that an agent’s location

within a canonical team layout (which can be physical,

such as positions on a sports team, or conceptual, such as

an agent’s relative speed) tends to dictate its role within

that team. This paper introduces the term policy geometry

to describe this relationship between role and position on

the team. Interestingly, such patterns effectively represent

up to an infinite number of multiagent policies that can be

sampled from the policy geometry as needed to allow

training very large teams or, in some cases, scaling up the

size of a team without additional learning. In this paper,

multiagent HyperNEAT is compared to a traditional

learning method, multiagent Sarsa(k), in a predator–prey

domain, where it demonstrates its ability to train large

teams.

Keywords Multiagent learning � Indirect encoding �
HyperNEAT � Neural networks

1 Introduction

Cooperative multiagent learning focuses on training groups

of autonomous agents to work together to solve problems.

By intelligently dividing responsibility among the agents,

such teams can solve difficult problems that may be pro-

hibitive for a single agent [78, 100, 107]. Researchers

across artificial intelligence are interested in multiagent

systems because they apply to real world problems and the

challenge of controlling and coordinating multiple inter-

acting agents provides a compelling opportunity to dem-

onstrate the promise of sophisticated learning techniques

[8, 66, 100].

At present, two leading approaches to multiagent learning

are cooperative coevolutionary algorithms (CCEAs; [31, 67,

68, 73, 74])and multiagent reinforcement learning (MARL;

[10, 17, 47, 102]). At heart, these approaches pose multi-

agent learning as an extension of single-agent learning in the

sense that teams are trained as multiple instances of the

single-agent learning problem that are also rewarded for

effectively cooperating. In contrast, this paper provides a

novel perspective on how to represent and train a team of

agents based on discovering how their roles relate to each

other.

An interesting property of real life teams is that the

behaviors and policies of team members tend to be dictated

by their canonical position within the team. The result is

that the policies (what an agent should do given a cer-

tain situation) of agents on a team are often distributed in a

pattern according to their positions. In other words, the

D. B. D’Ambrosio (&) � K. O. Stanley

Department of Electrical Engineering and Computer Science,

University of Central Florida, 4000 Central Florida Blvd.,

Orlando, FL 32816-2362, USA

e-mail: ddambro@eecs.ucf.edu

K. O. Stanley

e-mail: kstnaley@eecs.ucf.edu

123

Evol. Intel. (2013) 6:1–26

DOI 10.1007/s12065-012-0086-3

team has a policy geometry that dictates how each member

should behave based on their location within the team. For

example, in a soccer (that is, football) team (Fig. 1), the

positions closest to the goal are defensive and become

incrementally more offensive the farther they are from the

goal. Also importantly, even as policies vary, agents tend

to share common skills; in the soccer example, all players

know how to pass and kick.

Note that these positions need not be related to the

physical location of the team members. For example, in a

team of collaborating robots that move at different speeds,

their ‘‘position’’ along the dimension of speed defines a

conceptual policy geometry that similarly can dictate the

roles of the robots (that is, slower robots should perform

different tasks than faster ones). An intriguing implication

of the idea of policy geometry for multiagent learning is

that, rather than learning the policies of individual agents,

the training method can learn how the pattern of policies

relates to the geometry of the team and derive the policies

of individual agents based on that relationship.

To see the benefits of this perspective, consider that in

traditional approaches, the complexity of the multiagent

learning problem increases with the size of the team

because the number of possible team states grows with the

number of agents, as does the uncertainty of individual

agents, which limits the size of teams that can be trained

[14, 67]. However, representing multiagent teams as a

pattern of policies, that is, as a set of related policies, rather

than as individual agents, eliminates this problem because

all that needs to be learned and represented is the pattern.

Even more interesting is that such a pattern effectively

represents up to an infinite number of multiagent policies

that can be sampled from the policy geometry as needed;

thus multiagent teams represented in this way have no a

priori bound on their team size. This capability means that

large teams can be trained. It also provides a heuristic for

scaling the size of a team that was trained to complete a

task with a specific number agents up and down dynami-

cally, depending on the number of agents available when

the task is attempted in the real world.

While homogeneous and heterogeneous learning are

usually separated conceptually in discussions of multiagent

learning [67, 99, 114], another important insight is that

heterogeneity can alternatively be viewed as a continuum

that begins at pure homogeneity and ends at radical differ-

entiation. For example, in this view, it is possible for a team

to be nearly homogeneous but not completely. In such a

team, to a large extent, many skills and behaviors are shared

among agents on the team even though individuals possess

their own unique tendencies, suggesting the possibility to

avoid redundantly discovering and representing common

skills. Such intermediate configurations between pure

homogeneity and extreme heterogeneity are common in

human teams. For example, in soccer, players share many

fundamental abilities, from low-level universal human fac-

ulties such as visual recognition to high-level skills such as

passing and dribbling the ball. In fact, it is difficult to think

of a kind of team that is purely heterogeneous (that is, no

team members share any traits or skills whatsoever).

This view of heterogeneity as extending from pure

homogeneity exposes a potential problem with approaches

that treat heterogeneous agents as separately learned enti-

ties. This problem of reinvention is that many of the shared

skills that often should dominate the policies of every agent

in fact must be reinvented separately for each agent. Thus a

more principled approach should be able to represent the

commonalities as a regularity that only needs to be dis-

covered and encoded once. The novel approach in this

paper shows how such team encoding is possible through

learning policy geometry.

In effect, this paper introduces a method that both

addresses the problem of reinvention and provides a way to

overcome the computational obstacles to scaling the size of

multiagent teams by representing them as patterns of pol-

icies rather than as individual agents. To implement this

idea, hypercube-based neuroevolution of augmenting

topologies (HyperNEAT), an approach to evolving artifi-

cial neural networks (ANNs) that has demonstrated success

in single agent control and in encoding large, scalable

neural networks [18, 35, 96, 112], is extended to encode

patterns of ANNs distributed across space with a single

genome. The spatial distribution of ANNs matches with the

locations (physical or conceptual) of agents on the team,

thereby allowing HyperNEAT to learn a pattern of policies

(that is, the policy geometry), all generated from the same

genome. In this way, HyperNEAT can reuse critical

Fig. 1 Role as a function of geometry. In the soccer team in the

picture, the defensive to offensive dimension of variation spans from

left to right. The question marks represent a hypothetical new line of

players whose roles can be inferred from their positions. An important

observation is that the policies are distributed in a pattern in space

2 Evol. Intel. (2013) 6:1–26

123

information by learning the ways in which roles relate to one

another to conquer the problem of reinvention and scale

teams to new sizes by sampling from the policy geometry.

The idea of applying HyperNEAT to multiagent learning in

this way was first raised in conferences papers by D’Am-

brosio and Stanley [26], D’Ambrosio et al. [25], and later

Knoester et al. [52], but is significantly expanded and

comprehensively investigated in this paper for the first time.

To demonstrate its promise, the multiagent HyperNEAT

method is tested in a multiagent predator–prey domain in

which a team of multiple predators that cannot see each

other is trained to round up a team of prey that try to run

away. This task is challenging because the predators must

coordinate their behavior to avoid pushing the prey away

from each other. To show that multiagent HyperNEAT

indeed gains an advantage by distributing heterogeneous

policies across space, it is compared to the more traditional

multiagent Sarsa(k) reinforcement learning technique,

focusing on how both methods fare with very large team

sizes. Furthermore, smaller HyperNEAT-trained teams are

scaled after training to much larger sizes, up to 1,024 agents,

that still coordinate seamlessly, thereby establishing the

ability to scale afforded by learning the policy geometry.

Thus the main conclusion is that by representing teams

as a pattern of policies rather than as individual agents,

HyperNEAT can train much larger effective multiagent

teams than have heretofore been possible and provides a

heuristic to scale already-trained teams to larger sizes.

Additionally, by viewing the team as a point on the con-

tinuum of heterogeneity, rather than as purely heteroge-

neous or homogeneous, HyperNEAT is able to vary

existing singleton policies into effective team-wide strate-

gies. In contrast, multiagent Sarsa(k) does not have access

to such tools and is only able to find piece-wise solutions

for smaller teams. Thus, the new ideas in multiagent Hy-

perNEAT contribute a novel practical advantage. In the

future, by exploiting policy geometry, this advantage may

also be possible to extend to more traditional approaches

such as multiagent Sarsa(k) as well.

The paper begins with a review of cooperative multi-

agent learning, NEAT, and HyperNEAT in the next sec-

tion. The multiagent HyperNEAT approach is then detailed

in Sect. 3. Section 4 describes and presents results in a

predator–prey domain. Section 6 then discusses the

implications of these results and outlines future work,

followed by conclusions in Sect. 7.

2 Background

This section reviews relevant multiagent approaches and

the NEAT and HyperNEAT methods that form the back-

bone of multiagent HyperNEAT.

2.1 Cooperative multiagent learning

Multiagent systems confront a broad range of domains,

creating the opportunity for real-world applications such as

room clearing, pursuit [27], and synchronized motion [77].

In cooperative multiagent learning, which is reviewed in

this section, agents are trained to work together to

accomplish a task, usually by one of several alternative

methods. Teams can sometimes share a homogeneous

control scheme, which means that all agents have the same

control policy and thus only one policy is learned. How-

ever, it has been shown [121] that teams of agents with

heterogeneous behaviors can solve tasks that homogeneous

teams cannot; thus this paper will focus mainly on teams

with heterogeneous policies but homogeneous physical

capabilities.

2.1.1 Traditional approaches

There are two major classes of approaches to multiagent

learning: multiagent reinforcement learning (MARL; [23,

58, 87, 97]) and cooperative coevolutionary algorithms

(CCEAs; [31, 67, 72]). While these approaches are mainly

the focus of separate communities, Panait et al. [71] noted

recently that they share a significant common theoretical

foundation. One key commonality is that they break the

learning problem into separate roles that are semi-inde-

pendent and thereby learned separately through interaction

with each other. Although this idea of separating multi-

agent problems into parts is popular, it does create chal-

lenges for certain desirable objectives such as scaling to

larger team sizes, which is a focus in this paper. The

problem is that when individual roles are learned sepa-

rately, there is no representation of how roles relate to the

team structure and thus it is difficult to assign new roles

automatically to new individuals; they must somehow be

derived through interactions or inferences [9, 15]. Never-

theless, these approaches have produced significant insight

into multiagent learning, and are reviewed in this section.

Multiagent reinforcement learning encompasses several

specific techniques based on off-policy and on-policy

temporal difference learning [10, 17, 47, 102]. The basic

principle that unifies MARL techniques is to identify and

reward cooperative or beneficial states and actions among a

team of agents to encourage their repetition, eventually

resulting in an effective team after a number of repetitions

[13, 67]. For example, if a group of predator agents is

tasked with capturing a prey, agents are all rewarded at

least in part when the prey is captured. The reward is a

signal that their recent actions were useful and should be

repeated with greater probability. Conversely, actions that

are not rewarded or that are punished are less likely to be

repeated. Rewards can be given globally (to the entire

Evol. Intel. (2013) 6:1–26 3

123

team) or locally (to single agents or groups of agents) and

agents may update their own policies or maintain a single

group policy depending on the specific method chosen.

One reason that MARL is attractive is because it is

possible to prove convergence to Nash equlibria in some

situations [46, 87]. Yet such guarantees rely on having

complete or at least significantly large amounts of infor-

mation about the world state, and lacking such information

is often what makes multiagent domains challenging [85].

Even in scenarios with sufficient state information, the

number of possible states the team can grow with the

number of agents, making the full state space difficult to

approximate and increasingly uncertain. Additionally,

there is also the credit assignment problem [61], wherein it

is not always possible for the individual agents to associate

the rewards with the correct actions. Thus experimenters

must carefully identify the correct reward states manually

to minimize this uncertainty. Nevertheless, MARL has

provided several successes including intrusion detection

[84] and trading strategies [56].

The other major approach, CCEAs, is an established

evolutionary method for training teams of agents that must

work together [31, 48, 67, 68, 73]. The main idea is to

maintain one or more populations of candidate agents,

evaluate them in groups, and guide the creation of new

candidate solutions based on their joint performance. An

important distinction among coevolutionary methods is the

population model chosen, which can range from a single-

population from which all team members are drawn [12,

76] to separate populations for each agent on the team [73].

Recent work by Panait et al. [69] CCEA performance is

enhanced by keeping an archive of informative collabora-

tors, an idea that is also relevant to MARL.

In cooperative coevolution, agents are explicitly rewar-

ded for their cooperative abilities and multiple combina-

tions may be evaluated in the same population, potentially

leading to more robust solutions. However, depending on

the population model employed, trade-offs between spe-

cialization and skill sharing must be made. In the single

population model, genetic information is easily spread

among the entire population; thus if an agent finds a good

general strategy other agents can potentially adopt it.

However, with only one population it is difficult for agents

to specialize to specific roles [118]. In contrast, multiple

populations encourage specialization, yet the separate

populations must reinvent basic, useful policies. Addi-

tionally, by evaluating agents with many different teams,

depending on the evaluation scheme there is a risk of

encouraging too much generalization [70], which means

the resulting team may not be the best possible. Another

significant problem is that adding more agents to the team

results in a significant increase in computational com-

plexity; the need for more sampling and potentially more

populations and can significantly impact the ability to

optimize the performance of the final team [62]. The

approach in this paper addresses this problem with training

large teams.

Both CCEAs and MARL face the problem of reinvention.

That is, because agents are treated as separate subproblems

they must usually separately discover and represent all

aspects of the solution, even though there may be a high

degree of overlapping information among the policies of

each agent. CCEAs commonly separate agents into different

populations, creating strict divisions among agents, and in

MARL methods, each agent may learn a separate value

function based upon individual experiences. There have

been attempts to address the problem of reinvention such as

introducing existing agents that ‘‘train’’ new agents [75, 107]

or implementing specially designed genetic operators [42].

However, an intriguing alternative is to exploit the contin-

uum of heterogeneity, which means distributing shared skills

optimally among the agents and only representing such

skills once. At the same time, unique abilities could be

isolated and assigned appropriately. The method in this

paper addresses the problem of reinvention by finding the

right point on the continuum of heterogeneity.

There are several extensions to these basic approaches

that attempt to make the problem of multiagent learning

more tractable. Layered learning [45, 98] takes inspiration

from multiagent learning in the sense that a complex

problem is broken into smaller sub-problems that should be

easier to learn. In layered learning, the policy of each agent

is first broken up by the experimenter into subtasks through

a hierarchical decomposition. These subtasks are then

arranged into layers based on their interdependencies.

Subtasks are learned independently, in layer order. That is,

subtasks that do not depend on other subtasks are learned

first, followed by subtasks that depend on those subtasks

and so on. When all subtasks are learned they are combined

into a single policy for the agent. A possible downside to

this approach is that when the subtasks are trained inde-

pendently there may be inconsistencies between the sub-

domain in which they were trained and the actual domain

to which they will be applied. Concurrent layered learning

[117] addresses this issue by allowing lower layers to

continue to learn when higher layers are being trained.

Both versions of layered learning have proven successful in

many domains, particularly Robocup soccer. However,

both methods also require significant effort by the

researcher to properly decompose the agent policies and to

design sub-domains that effectively train the subtasks.

Additionally, both methods restrict the search space of the

algorithm, which can speed up search, but also restricts the

types of solutions and strategies employed. The approach

in this paper avoids the up-front effort of dividing tasks by

hand while also bypassing the need for such restrictions.

4 Evol. Intel. (2013) 6:1–26

123

Another technique that can benefit multiagent learning is

transfer learning [106, 108], wherein agents trained in one

domain (source task) can be transferred to another domain

(target task) while maintaining and exploiting knowledge

gained in the original domain. If the target task is similar

enough to the source task (that is, the state-action space is

the same) teams may immediately be applicable and

thereby simply continue learning in the new domain.

However if the domains are very different, a mapping must

be constructed between the two tasks [109]. In this paper,

teams of agents are trained at one size and then transferred

to another size, which has been explored previously [109].

However, unlike such previous work, the approach in this

paper often does not require retraining to perform tasks at

the new team sizes.

In this paper, multiagent Sarsa(k), an on-policy MARL

approach [101, 104] is compared to multiagent Hyper-

NEAT. Sarsa(k) is ideal for this comparison for several

reasons. In terms of computational complexity, training

large teams with CCEAs would be too expensive for large

teams due to the combinatorial properties of team evalua-

tions; Sarsa(k) does not have this combinatorial problem.

Additionally, it has preformed well in high-profile multi-

agent tasks [101]. Finally, as mentioned earlier, research

indicates theoretical similarities between MARL and

CCEAs, thus a comparison against one serves as a com-

parison against both.

2.1.2 Alternative techniques

Breaking the team into separate parts is not the only way to

distribute policies. This section reviews several alternative

approaches.

One such approach is to optimize a single, monolithic

controller that takes inputs from all the agents and outputs

the actions of all the agents. Such consolidation allows

information sharing but generally increases the dimen-

sionality of the search significantly, while ignoring sepa-

rability [121]. Such a model also assumes the existence of

global, instantaneous communication, which is infeasible

in most real world scenarios. A related approach is to

directly encode several disconnected policies in a single

monolithic description [6, 59, 62], which gains separability

at the expense of information sharing. In both cases, adding

more agents to the teams causes large increases in the

search space, especially in the single controller case.

One solution to reduce dimensionality in either case

without combining multiple individuals is to assign the

same homogeneous control system to each agent [4, 11]. If

all the agents are controlled by separate instantiations of a

single controller, then it is only necessary to discover that

one policy, and the problem of sharing discoveries

disappears. This approach has produced significant results

in swarm robotics, such as a team of four connected robots

that exhibit coordinated trajectories [4]. However, Yong

and Miikkulainen [121] show that in predator–prey tasks

with three predators and one prey, heterogeneous teams

learn more effective strategies than homogeneous ones.

Thus, while a homogeneous team may be easier to train

and scale, there are limits to what it can do [114]: Pure

homogeneity is only a single point on the continuum, while

heterogeneity is the continuum.

In summary, there are many challenges faced by mul-

tiagent learning, and choosing one method over another

generally leads to trade-offs among several competing

factors. However, in almost all cases, adding more agents

to the team greatly impacts the efficiency of search and, as

a result, the overall quality of the resulting multiagent

team.

2.2 Evolution and indirect encodings

In the context of reinforcement learning problems (such as

in multiagent learning), an interesting property of evolu-

tionary computation (EC) is that it is guided by a fitness

function rather than from an error computation derived

from a reward prediction. The independence of the fitness

function from direct error computation has encouraged

much experimentation with alternative representations

because representations in EC do not need to support an

algorithm for optimizing error. Such freedom has led to the

advent of innovative representations for neural networks

and also to novel methods for encoding complex structures,

as described in this section.

The specific subfield of EC that is implemented in this

paper is called neuroevolution (NE), which employs EC to

create artificial neural networks (ANNs) [32, 120]. In this

approach, the phenotype is an ANN and the genotype is an

implementation-dependent representation of the ANN.

Assuming that the representation is sufficiently robust, NE

can evolve any type of ANN, including recurrent and

adaptive networks [79, 88]. Early attempts at NE used

fixed-topology models that were designed by the experi-

menter [64]. In the fixed-topology approach, the genotype

is simply an array of numbers that represented the weights

of each connection in the network. However, this approach

is also restrictive because the solution may be difficult to

discover or may not exist at all in the chosen topology.

Thus new techniques that allowed evolving both connec-

tion weights and network topology were developed [44, 55,

90]. One such method, neuroevolution of augmenting

topologies or NEAT, which is described next, has proven

successful and serves as the foundation for the multiagent

learning approach introduced in this paper.

Evol. Intel. (2013) 6:1–26 5

123

2.2.1 Neuroevolution of augmenting topologies (NEAT)

The NEAT method was originally developed to evolve

ANNs to solve difficult control and sequential decision

tasks [90, 92, 94]. In this paper, it is significantly extended

to evolve the representation of teams of agents. Never-

theless, the basic principles of NEAT, reviewed in this

section, still supply the foundation of the approach.

Traditionally, ANNs evolved by NEAT control agents

that select actions based on their sensory inputs. NEAT is

unlike many previous methods that evolved neural net-

works, that is, neuroevolution methods, which historically

evolved either fixed-topology networks [37, 80], or arbi-

trary random-topology networks [3, 39, 120]. Instead,

NEAT begins evolution with a population of small, simple

networks and increases the complexity of the network

topology into diverse species over generations, leading to

increasingly sophisticated behavior. A similar process of

gradually adding new genes has been confirmed in natural

evolution [60, 116] and shown to improve adaptation in a

few prior evolutionary [2] and neuroevolutionary [41]

approaches. However, a key feature that distinguishes

NEAT from prior work in evolving increasingly complex

structures is its unique approach to maintaining a healthy

diversity of structures of different complexity simulta-

neously, as this section reviews. This approach has proven

effective in a wide variety of domains [1, 93, 95, 111].

Complete descriptions of the NEAT method, including

experiments confirming the contributions of its compo-

nents, are available in Stanley and Miikkulainen [90, 92]

and Stanley et al. [94].

The NEAT method is based on three key ideas. First, to

allow network structures to increase in complexity over

generations, a method is needed to keep track of which

gene is which. Otherwise, it is not clear in later generations

which individual is compatible with which in a population

of diverse structures, or how their genes should be com-

bined to produce offspring. NEAT solves this problem by

assigning a unique historical marking to every new piece

of network structure that appears through a structural

mutation. The historical marking is a number assigned to

each gene corresponding to its order of appearance over the

course of evolution. The numbers are inherited during

crossover unchanged, and allow NEAT to perform cross-

over among diverse topologies without the need for

expensive topological analysis.

Second, NEAT speciates the population so that indi-

viduals compete primarily within their own niches instead

of with the population at large. Because adding new

structure is often initially disadvantageous, this separation

means that unique topological innovations are protected

and therefore have the opportunity to optimize their

structure without direct competition from other niches in

the population. NEAT uses the historical markings on

genes to determine to which species different individuals

belong.

Third, many approaches that evolve network topologies

and weights begin evolution with a population of random

topologies [39, 120]. In contrast, NEAT begins with a

uniform population of simple networks with no hidden

nodes, differing only in their initial random weights.

Because of speciation, novel topologies gradually accu-

mulate over evolution, thereby allowing diverse and com-

plex phenotype topologies to be represented. No limit is

placed on the size to which topologies can grow. New

nodes and connections are introduced incrementally as

structural mutations occur, and only those structures sur-

vive that are found to be useful through fitness evaluations.

In effect, then, NEAT searches for a compact, appropriate

topology by incrementally adding complexity to existing

structure.

The next section reviews the HyperNEAT extension to

NEAT that is itself extended in this paper to generate

multiagent teams.

2.2.2 CPPNs and HyperNEAT

A key similarity among many neuroevolution methods,

including NEAT, is that they employ a direct encoding,

that is, each part of the solution’s representation maps to a

single piece of structure in the final solution. For example,

in NEAT, the genome is a list of connections and nodes in

the neural network in which each item corresponds to

exactly one component in the phenotype. Yet direct en-

codings impose the significant disadvantage that even

when different parts of the solution are similar, they must

be encoded and therefore discovered separately. This

challenge is related to the problem rediscovery in multi-

agent systems: After all, if individual team members are

encoded by separate genes, even if a component of their

capabilities is shared, the search algorithm has no way to

exploit such a regularity. Thus this paper leverages the

power of indirect encoding instead, which means that the

description of the solution is compressed such that infor-

mation can be reused, allowing the final solution to contain

more components than the description itself.

For example, if a hypothetical solution ANN required all

weights to be set to 1.0, NEAT would separately have to

discover that each such weight must be 1.0 whereas an

indirect encoding could instead discover that all weights

should be the same value. Indirect encodings are often

motivated by development in biology, in which the geno-

type (DNA) maps to the phenotype (the living organism)

indirectly through a process of growth [5, 57, 91]. Indirect

encodings are powerful because they allow solutions to be

represented as a pattern of policy parameters, rather than

6 Evol. Intel. (2013) 6:1–26

123

requiring each parameter to be represented individually.

This capability is the focus of the field called generative and

developmental systems [5, 7, 30, 43, 57, 63, 86, 89, 91].

HyperNEAT, reviewed in this section, is an extension of

NEAT that allows it to benefit from indirect encoding.

HyperNEAT has become a popular neuroevolution method

in recent years and is proven in a wide range of domains

such as board games [33–36], adaptive maze navigation

[79], quadruped locomotion [21], keepaway soccer [112,

113] and a variety of others [18–20, 22, 28, 40, 96, 119].

For a full description of HyperNEAT see Stanley et al. [96]

and Gauci and Stanley [35].

In HyperNEAT, NEAT is altered to evolve an indirect

encoding called compositional pattern producing networks

(CPPNs [89]) instead of ANNs. CPPNs are a high-level

abstraction of the development process in nature, intended

to approximate its representational power without the

computational cost. The idea is that regular patterns such as

those seen in nature can be approximated at a high level by

compositions of functions, wherein each function in the

composition loosely corresponds to a canonical event in

development. For example, a Gaussian function is analo-

gous to a symmetric chemical gradient. Each such com-

ponent function also creates a novel geometric coordinate

frame within which other functions can reside. For exam-

ple, any function of the output of a Gaussian will output a

symmetric pattern because the Gaussian is symmetric. In

this way, the Gaussian is a coordinate frame like a chem-

ical gradient in natural development that provides a context

for growing symmetric structures.

The appeal of this encoding is that it allows a repre-

sentation akin to developmental processes to be encoded as

networks of simple functions (that is, CPPNs), which

means that NEAT can evolve CPPNs just like ANNs.

CPPNs are similar to ANNs, but they rely on more than one

activation function (each representing a chemical gradient

common to development) and are an abstraction of devel-

opment rather than of brains. Also, unlike other artificial

developmental encodings, CPPNs do not require an explicit

simulation of growth or local interaction, yet still exhibit

their essential representational capabilities [89].

Specifically, CPPNs produce a phenotype that is a func-

tion of n dimensions, where n is the number of dimensions

of the desired solution, for example, n = 2 for a two-

dimensional image. For each coordinate in that space, its

level of expression is output by the CPPN, which encodes

the phenotype. Figure 2 shows how a two-dimensional

phenotype can be generated by a function of two parameters

that is represented by a network of composed functions.

Because CPPNs are a superset of traditional ANNs, which

can approximate any function [24], CPPNs are also uni-

versal function approximators. Thus a CPPN can encode any

pattern within its n-dimensional space.

The appeal of the CPPN as an indirect encoding is that it

can compactly encode patterns with regularities such as

symmetry, repetition, and repetition with variation [82, 83,

89]. For example, simply by including a Gaussian function,

which is symmetric, the output pattern can become sym-

metric. A periodic function such as sine creates segmen-

tation through repetition. Most importantly, repetition with

variation (for example, the fingers of the human hand) is

easily discovered by combining regular coordinate frames

(for example, sine and Gaussian) with irregular ones (for

example, the asymmetric x-axis). For example, a function

that takes as input the sum of a symmetric function and an

asymmetric function outputs a pattern with imperfect

symmetry. In this way, CPPNs produce regular patterns

with subtle variations reminiscent of many seen in nature.

The potential for CPPNs to represent patterns with natural

motifs has been demonstrated in several studies [89]

including an online service on which users collaboratively

breed patterns represented by CPPNs [82, 83].

The main idea in HyperNEAT is that CPPNs can also

naturally encode connectivity patterns [33–35, 96, 112].

That way, NEAT can evolve CPPNs that represent large-

scale ANNs with their own symmetries and regularities.

This capability will prove essential to encoding multiagent

policy geometries in this paper because it will ultimately

allow connectivity patterns to be expressed as a function of

team geometry, which means that a smooth gradient of

(a) Pattern Encoding

(b) CPPN

Fig. 2 CPPN encoding. a The CPPN takes arguments x and y, which

are coordinates in a two-dimensional space. When all the coordinates

are drawn with an intensity corresponding to the output of the CPPN,

the result is a spatial pattern, which can be viewed as a phenotype

whose genotype is the CPPN. b Internally, the CPPN is a graph that

determines which functions are connected. As in an ANN, the

connections are weighted such that the output of a function is

multiplied by the weight of its outgoing connection. The CPPN in

b actually produces the pattern in a

Evol. Intel. (2013) 6:1–26 7

123

policies can be produced across possible agent locations.

The key insight in HyperNEAT is that 2n-dimensional

spatial patterns are isomorphic to connectivity patterns in

n dimensions, that is, in which the coordinate of each

endpoint is specified by n parameters, which means that

CPPNs can express both spatial and connectivity patterns

with the same kinds of regularities.

Consider a CPPN that takes four inputs labeled

x1, y1, x2, and y2; this point in four-dimensional space also

denotes the connection between the two-dimensional

points (x1,y1) and (x2,y2), and the output of the CPPN for

that input thereby represents the weight of that connection

(Fig. 3). By querying every possible connection among a

set of points in this manner, a CPPN can produce an ANN,

wherein each queried point is a neuron position. Because

the connections are produced by a function of their end-

points, the final structure is a product of the geometry of

these points and the CPPN can thus exploit the relation-

ships between them in the network it encodes. In effect, the

CPPN is painting a pattern on the inside of a four-dimen-

sional hypercube that is interpreted as the isomorphic

connectivity pattern, which explains the origin of the name

hypercube-based NEAT (HyperNEAT). Connectivity pat-

terns produced by a CPPN in this way are called substrates

so that they can be verbally distinguished from the CPPN

itself, which has its own internal topology.

Each queried point in the substrate is a node in a neural

network. The experimenter defines both the location and role

(that is, hidden, input, or output) of each such node. As a rule

of thumb, nodes are placed on the substrate to reflect the

geometry of the task [20, 21, 34, 35, 96, 112]. That way, the

connectivity of the substrate is a function of the task structure.

For example, the sensors of an autonomous robot can be

placed from left to right on the substrate in the same order

that they exist on the robot (Fig. 4). Outputs for moving

left or right can also be placed in the same order, implying

a relationship between the sensors and effectors. In this

way, knowledge about the problem geometry can be

injected into the search and HyperNEAT can exploit the

regularities (for example, adjacency, or symmetry) of a

problem that are invisible to traditional encodings.

In summary, HyperNEAT is a method for evolving

ANNs with regular connectivity patterns that uses CPPNs

as an indirect encoding. This capability is important for

multiagent learning because it provides a formalism for

producing policies (that is, the output of the CPPN) as a

function of geometry (that is, the inputs to the CPPN). The

evolutionary algorithm in HyperNEAT is the same as

NEAT except that it evolves CPPNs that encode ANNs

instead of evolving the ANNs directly. As the next section

explains, not only can such an approach produce a single

network but it can also produce a set of networks that are

each generated as a function of their location in space.

3 Approach: multiagent HyperNEAT

Recall that the policy geometry of a team is the relationship

between the canonical positions (physical or conceptual) of

agents and their behavioral policies. Multiagent Hyper-

NEAT is based on the idea that policy geometry is the right

level of description for a team because it can be encoded

naturally as a pattern, thereby describing the relationship of

policies to each other. To understand how the policy

geometry of a team can be encoded, it helps to begin by

considering homogeneous teams, which in effect express a

trivial policy geometry in which the same policy is uni-

formly distributed throughout the team at all positions.

Fig. 3 Hypercube-based geometric connectivity pattern interpreta-

tion. A collection of nodes, called the substrate, is assigned

coordinates that range from -1 to 1 in all dimensions. (1) Every

potential connection in the substrate is queried to determine its

presence and weight; the dark directed lines in the substrate depicted

in the figure represent a sample of connections that are queried. (2)

For each query, the CPPN takes as input the positions of the two

endpoints and (3) outputs the weight of the connection between them.

Thus, CPPNs can produce regular patterns of connections in space

(a) Robot (b) Substrate

Fig. 4 Substrate configuration. An autonomous robot (a) is equipped

with five sensors, spanning a 180� arc in front of it and labeled 1

through 5 from left to right. The substrate that controls the robot (b) is

arranged such that the placement of inputs in the ANN corresponds to

the physical locations of the sensors on the robot (for example, the

leftmost sensor corresponds to the leftmost input). Similarly, the

outputs of the network are related to their effects on the agent and

correspond to the sensors (for example, the left turn output is on the

left side of the network and above the leftmost sensor input). Such

placement allows the CPPN to generate connectivity patterns easily

that respect the geometry of the problem, such as left-right symmetry

8 Evol. Intel. (2013) 6:1–26

123

Thus this section begins by exploring how teams of purely

homogeneous agents can be evolved with an indirect

encoding, and then transitions to the method for evolving

heterogeneous teams that are represented by a single gen-

ome in HyperNEAT.

3.1 Pure homogeneous teams

A homogeneous team only requires a single controller that is

copied once for each agent on the team. To generate such a

controller, a four-dimensional CPPN with inputs x1, y1,

x2, and y2 (Fig. 5a) queries the substrate shown in Fig. 5c,

which has five inputs, five hidden nodes, and three output

nodes, to determine its connection weights. This substrate is

designed to correlate sensors to corresponding outputs geo-

metrically (for example, seeing something on the left and

turning left). Thus the CPPN can exploit the geometry of the

agent [96] when generating the ANN controller. However, the

agents themselves have exactly the same policy no matter

where they are positioned. Thus while each agent is informed

by geometry, their policies cannot differentiate genetically.

3.2 Teams on the continuum of heterogeneity

Heterogeneous teams are a greater challenge; how can a

single CPPN encode a set of networks in a pattern, all with

related yet varying roles? Indirect encodings such as Hy-

perNEAT are naturally suited to capturing such patterns by

encoding the policy geometry of the team as a pattern. The

remainder of this section discusses the method by which

HyperNEAT can encode such teams.

The main idea is that the CPPN is able to create a pattern

based on both the agent’s internal geometry (x and y) and its

position on the team (z) by incorporating an additional input

(Fig. 5b, d). The CPPN can thus emphasize connections

from z for increasing heterogeneity or minimize them to

produce greater homogeneity. Furthermore, because z is a

spatial dimension, the CPPN can literally generate policies

based on their positions on the team. Note that because z is a

single dimension, the policy geometry of this team (and

those in this paper) is on a one-dimensional line. However,

in principle, more inputs could be added, allowing two- or

more dimensional policy geometry to be learned as well.

Thus each agent is assigned a z-coordinate based on its

relationship to the other agents (for example, starting

location) and a CPPN determines the weight of every

connection within the agent’s ANN by querying the con-

nections using the five-dimensional CPPN as shown in

Fig. 5b. The process for querying the networks for a team

of agents is formalized in Algorithm 1.

(a) Homogeneous CPPN (b) Heterogeneous CPPN

(c) Homogeneous Substrate (d) Heterogeneous Substrate

Fig. 5 Multiagent HyperNEAT encoding. The CPPNs and substrates

in two approaches to encoding multiple agents with HyperNEAT are

shown. The CPPN in a generates a single controller for a single agent

or a homogeneous team of agents. The single controller substrate that

is queried by this CPPN to produce a neural network is shown in c. In

contrast, the CPPN in b encodes heterogeneous teams by sampling the

heterogeneous substrate (d), which is made up of the single substrate

(c) copied a number of times along the z-axis. Each discrete value of

z corresponds to a new set of x and y coordinates that contain the

controller for a single agent. By creating patterns across z, multiagent

HyperNEAT can, in effect, exploit the policy geometry of the team.

Note that CPPNs depicted in a and b increase in complexity over

evolution through the NEAT algorithm

Algorithm 1: Querying a Multiagent Substrate (for example, Fig. 5d). The main idea is that if the CPPN output is above a
threshold, then the connection is created and assigned a weight based on the CPPN output.

Evol. Intel. (2013) 6:1–26 9

123

The heterogeneous substrate (Fig. 5d) formalizes the

idea of encoding a team as a pattern of policies. This

capability is powerful because generating each agent with

the same CPPN means they can share tactics and policies

while still exhibiting variation across the policy geometry.

In other words, policies are spread across the substrate in a

pattern just as role assignment in a human team forms a

pattern across a field. However, even as roles vary, many

skills are shared, an idea elegantly captured by indirect

encoding. The complete multiagent HyperNEAT algorithm

is enumerated in Algorithm 2.

Importantly, the complexity of the CPPN is independent

of the number of agents in the substrate, which is a benefit

of indirect encoding. Therefore, in principle, teams with a

high number of agents can be trained without the additional

cost that would incur to traditional methods. Another key

property of the heterogeneous substrate is that if a new

network is added to the substrate at an intermediate loca-

tion, its policy can theoretically be interpolated from the

policy geometry embodied in the CPPN. Thus, as the next

section describes, it becomes possible to scale teams

without further training by interpolating new roles.

3.3 Scaling after learning

As discussed in Sect. 2.1.1, there are typically no rules or

principles to determine how additional agents could be

added after learning has taken place in traditional methods.

However, in real world tasks, it would be most convenient

if the number of possible agents is unbounded and inde-

pendent of the number initially trained. Whether in search

and rescue operations or futuristic nanotechnology proce-

dures, the potential utility of deploying hundreds of agents

should be achievable through multiagent learning. Fur-

thermore, because agents may break down or additional

ones may become available, ideally the size of a learned

team should be dynamically adjustable after deployment.

While in the homogeneous case scaling is simply accom-

plished by adding or subtracting agents with the same

control policy, scaling heterogeneous teams is in principle

significantly more complicated.

Recall the soccer team in Fig. 1, which includes eleven

agents with assigned roles. How can additional agents be

added to such a team, for example, between the midfielders

and the forwards? Intuitively, the implicit policy geometry

suggests that these new agents should interpolate between

the policies of the surrounding agents, that is, they should

be relatively offensive, but not as offensive as the players

in front of them. Traditional techniques have no way to

exploit this policy geometry because they treat each agent

independently and would thus require retraining to assign

roles to the new agents. However, because teams in mul-

tiagent HyperNEAT are represented by the CPPN as a

pattern of policies rather than as individual agents, the

CPPN effectively encodes an infinite number of heteroge-

neous agent policies that can be sampled as needed without

the need for additional learning. Thus if more agents are

required, the substrate can be updated to encompass the

new agents and resampled to assign policies to them

without further evolving the CPPN.

In fact, the heterogeneous substrate in Fig. 5d accom-

modates additional agents by simply redistributing their

controllers on the z-axis so that they are uniformly spaced

in accordance with their new number (Fig. 6).

Note that these steps can be taken after learning is

completed and the new agent policies will be automatically

interpolated based on the policy geometry by simply

requerying the CPPN. There is no limit to the size to which

such a substrate can be scaled in this way. Thus, through

this approach, a new form of heuristic for post-deployment

scaling is introduced.

3.4 Seeding

Seeding each agent of a multiagent team with the behavior

of a single pre-trained agent exploits the fact that effective

teams often lie close to pure homogeneity on the contin-

uum of heterogeneity. That is, most teams include agents

1. Set up the substrate to contain the necessary number of agents.
2. Initialize a population of minimal CPPNs with random weights that correspond to the chosen substrate configuration.
3. Repeat until a solution is found or the maximum number of generations are reached:

(a) For each CPPN in the population:
i. Query its CPPN for the weight of each connection in the substrate within each agent’s ANN (Algorithm 1 and

Fig. 3).
ii. Assign the generated ANNs to the appropriate agents and run the team in the task domain to ascertain fitness.

(b) Reproduce the CPPNs according to the NEAT method to create the next generation’s population.

Algorithm 2: Multiagent HyperNEAT

10 Evol. Intel. (2013) 6:1–26

123

that share a number of skills and policies. For example, all

members of a soccer team know how to kick, pass, and

dribble a ball. Thus it would be inefficient if each agent had

to learn these basic skills separately. In this way, training a

single agent to master the core skill set is not only com-

putationally more efficient (that is, only one agent needs to

be simulated), but generally leads to more efficient learning

of team-wide strategies. While most multiagent learning

methods can seed teams or bootstrap learning intelligently

through techniques such as layered learning [45, 98] (Sect.

2.1.1), because they are indifferent to the team policy

geometry, they cannot subsequently vary the seed policy

intelligently to coincide with the policy geometry.

In contrast, multiagent HyperNEAT creates teams as a

function of their policy geometry and can alter the seed

policy by gradually shifting it away from pure homoge-

neity along the continuum of heterogeneity. The challenge

for multiagent HyperNEAT is to extend a strong single

policy to represent the policies of an entire team. As with

scaling, pure homogeneous teams are trivial to seed

because such teams only require one controller that is

copied to each member of the team; thus seeding the team

requires only that evolution is started with a population of

controllers derived from the seed. However, the same

method does not work with heterogeneous teams because a

CPPN that represents a single agent does not automatically

represent a whole team. To address this problem, the

remainder of this section describes how a CPPN that rep-

resents a single agent’s controller can be slightly altered to

encode the controllers of every agent on a team.

Recall that a CPPN that represents a single agent takes

the four inputs x1, y1, x2, and y2 (Fig. 5a). This CPPN

represents a two-dimensional connectivity pattern, whereas

the stacked agent substrate is three-dimensional. Therefore,

a new z input is added to the network, although with no

connections to the existing network (Fig. 7). Only one

z input is necessary because each agent exists at an infin-

itesimal point on the z-axis. In this way, the previously

single-agent CPPN can now be queried for the policies of a

team of agents. However, because the only factor that

differentiates the agents, z, is not connected to the network,

the team is initially homogeneous. However, once z is

connected to the network by mutation, the CPPN can create

variations of the seed policy based on the policy geometry

along z. Figure 8 gives an example of how this idea works.

3.5 Applicability of approach

The multiagent HyperNEAT approach is a heuristic that

can be exploited to train teams of heterogeneous agents.

Like all heuristics, it is not ideal for all conceivable cases.

For example, teams in which the agents do not ideally

exhibit a clear or easily definable relationship, such as the

relative aggressiveness of soccer players mentioned earlier,

would be difficult to represent in this manner. However, as

noted earlier, it is difficult to think of any real teams in

which the members do not share some meaningful infor-

mation even if it is as simple as how to move towards a

target. Additionally, for teams where homogeneous

behaviors are preferable a priori, multiagent HyperNEAT

would be inefficient; although homogeneous teams can

easily be represented by multiagent HyperNEAT (by

ignoring the z input), the search process would continue to

also search the super-set of heterogeneous solutions. In any

case, it is incumbent upon the researcher to provide a

substrate geometry that sufficiently encompasses these

relationships in a manner that can be exploited by multi-

agent HyperNEAT. It is at this stage that domain knowl-

edge can play a key role. For example, if a team must

perform a symmetric task, ensuring that the agents are laid

(a) 5 Agent Team (b) 7 Agent Team

Fig. 6 Heterogeneous scaling. Because multiagent HyperNEAT

represents teams as a pattern of policies, it is possible to interpolate

new policies in the policy geometry for additional agents by sampling

new points on the substrate. The original substrate (a) is scaled by

inserting new two-dimensional substrate slices along the z-axis (b)

Fig. 7 Heterogeneous seeding. From a CPPN that generates a

successful single agent, multiagent HyperNEAT can generate a team

of agents. To allow the CPPN to differentiate between team members,

the CPPN at left is modified by giving it a new z input that determines

which agent is being sampled. This method preserves the original

seed pattern, but allows multiagent HyperNEAT to create a pattern of

policies relevant to the team’s policy geometry, which varies along z

Evol. Intel. (2013) 6:1–26 11

123

out symmetrically along z-coordinates and across the origin

can be vital to solving the task. Additionally, while the first

domain in this paper exploits the initial positioning of

agents to define a policy geometry, there may exist other

approaches that can also be effective. For example, policies

could be assigned according to agent maximum velocities

(for example, if agents are physically heterogeneous)

instead of starting positions.

The next section describes a multiagent learning

experiment designed to test the overall multiagent Hyper-

NEAT approach and compare it to an existing multiagent

learning method.

4 Predator–prey experiment

The aim of this experiment is to establish the advantage of

representing a team as a pattern of policies and to dem-

onstrate the novel capability to scale (with and without

further training) that results. While traditional learning

techniques offer potential solutions to multiagent problems

[67, 97, 121], such approaches do not exploit fundamental

regularities that govern the distribution of policies on a

team, or the fact that such policies tend to overlap partially

and can thus benefit from a representation that does not

need to relearn shared information. To test that exploiting

such regularities is beneficial, teams trained with multi-

agent HyperNEAT are compared against teams trained

with Sarsa(k) [104], a traditional reinforcement learning

technique that was chosen because it has been applied to

multiagent learning [53, 101], in a multiagent predator–

prey problem. There are many domains (such as Robocup

soccer [100]) that can benchmark an approach. However

they are typically not designed with scalability in mind;

Adding or removing agents can trivialize or overly com-

plicate the problem being solved. With that in mind,

cooperative multiagent predator–prey is a good platform to

test this idea because the task is challenging yet easy to

understand. Both methods are equally challenged because

this domain, like many multiagent domains, is partially

observable (that is, non-Markovian) and both temporal

difference methods and the feed-forward neural networks

that control multiagent HyperNEAT’s agents (Fig. 5d) in

this task typically could only provide performance guar-

antees in Markovian domains. However, both methods

have been successfully applied in particular to multiagent

predator–prey problems in the past [25, 49, 54] (although at

different team sizes), so this task will provide a good

benchmark.

The version of predator–prey in this paper is similar to

that described when multiagent HyperNEAT was first

introduced [25]: Agents cannot see their teammates nor can

they communicate with each other. Also, because prey run

away from nearby predators, it is easy for one predator to

undermine another’s pursuit by knocking its prey off its

path. Therefore, predators must learn consistent roles that

complement those of their allies. At the same time, agents

need basic skills in interpreting and reacting to their sen-

sors. Because multiagent HyperNEAT creates all the agent

ANNs from the same CPPN, it has the potential to balance

these delicate ingredients. An important difference between

the predator–prey domain in this investigation and in others

[49, 50, 54] is that the environment is neither a fixed size

nor toroidal, allowing an arbitrary number of predators and

prey to fit in the world, and facilitating the later scaling

experiments. The domain also differs from the original

multiagent HyperNEAT predator–prey domain in that the

agents are limited to a set of discrete actions, which makes

(a) Single-Agent Behavior (b) Initial Seeded Team (c) Mutated Seeded Team

Fig. 8 Seeding example. A single agent (depicted as a square above

its CPPN) learns the behavior of turning left (a), which is represented

by its CPPN. This behavior can be used as a seed for a team of agents

by simply adding a z input to the CPPN that represents the single

agent’s behavior. However, such a team is initially homogeneous

because the z-input is initially unconnected (b). Through mutations

the z input can become connected, allowing the CPPN to vary the

initial seed policy among the agents on the team (c)

12 Evol. Intel. (2013) 6:1–26

123

the domain more amenable to reinforcement learning

techniques such as Sarsa(k). Also unlike previous scaling

experiments with multiagent HyperNEAT [25], the domain

difficultly (that is, number of prey) scales with the number of

predators, providing an additional challenge for scaled teams.

4.1 Predators and prey

The goal of the predators is to capture (that is, intercept)

the prey agents by positioning themselves so that a prey is

within 3 U of the predator. The predators are equipped with

five rangefinder sensors evenly spanning a 180� arc that

detect prey within 50 U. Predators cannot sense each other.

Thus, the state of each agent is the five continuous floating-

point values (0.0–1.0) returned by the sensors, representing

the distance of the closest prey in the corresponding arc (as

in Fig. 4a). In the case of the HyperNEAT-controlled

agents, these five values correspond to the five inputs on

the substrate (Fig. 4b) that is queried by the CPPN to

generate the agent’s controller. In contrast, to facilitate

reinforcement learning, Sarsa(k) encodes these values with

Sutton’s tile coding algorithm [105], with eight tilings and

a tile width of 0.2 to create the state representation. Tile

coding is a coarse coding method used to increase gener-

alization and encode large or continuous state spaces

compactly for reinforcement learning, and has previously

been applied to MARL [101, 115]. The state space is

partitioned into several tilings, which are further broken

into tiles, such that each tile representing a discrete feature.

The number of tilings and tile width were chosen to

encourage generalization, and because they produced the

best results in preliminary experiments. For a complete

description of tile coding see Sutton [103].

At each discrete moment of time, a predator can turn 90�
left or right or move 1 U forward. HyperNEAT-controlled

agents have three outputs in their neural networks

(Fig. 4b), one for each such action, and perform the action

with the highest activation after the network is activated.

Reinforcement learning agents independently maintain and

update their own Q-functions and select actions with an �-

greedy approach during training, where � ¼ 0:01, and pure-

greedy action selection during testing. For both methods,

ties default to moving forward.

Prey agents are programmed to maintain their current

location until they are threatened; if there is a predator

within 5 U the prey moves in the direction exactly opposite

to the direction of the closest predator; thus the prey are not

restricted to discrete actions and can adjust their heading to

any angle (for example, a prey can move diagonally to

escape a predator). Prey move at twice the maximum speed

of predator agents. That way, it is impossible for a single

predator to catch a prey and the predators must work

together to accomplish their goal.

The predator team starts each trial in a line, 4 U apart,

facing the prey (Fig. 9). The environment the agents

inhabit is physically unbounded, and each trial lasts 1,000

time steps. On Sarsa(k) teams, each agent receives the

same reward r at each time step, where r ¼ pc

pt
� 1; pc is the

number of prey captured, and pt is the total number of prey,

until either the time limit expires or all prey have been

captured. This reward scheme follows precedent in prior

applications of MARL that reward all agents collectively

for team success [101]. Trials were also attempted with

individual rewards, but performance was markedly worse,

further supporting the chosen scheme. Because they are

evolved, HyperNEAT teams do not receive rewards over

the trial; instead they are given a fitness value of

1; 000 pc

pt

� �
þ ð500� tÞ, where t is the time taken to cap-

ture all the prey or 500 if not all prey were captured. Both

measures incentivize the predators to capture as many prey

as possible, as quickly as possible.

The major challenge for the predators is to coordinate

despite their inability to see one another or communicate.

This restriction encourages establishing a priori policies for

cooperation because agents thus have little information to

infer each others’ current states. Such scenarios are not

(a) Line Formation

(b) L Formation

Fig. 9 Prey formations. The prey (circles) are arranged in either a

line (a) or an L (b) formation, thereby testing both symmetric and

asymmetric scenarios. This figure depicts both formations with eight

predators (squares), although the number of predators and prey can

change. The predators are always placed in an evenly-spaced line

below the prey

Evol. Intel. (2013) 6:1–26 13

123

uncommon. Military units often form plans, split up, and

execute complicated maneuvers with little to no contact

with each other [29].

4.2 Prey formations

Agent teams are trained on one of two formations: the line

or the L (Fig. 9a, b, respectively), both of which presents a

different challenge to the teams.

In the line, there are half as many prey as predators. The

prey are positioned 10 U away from the predators verti-

cally and spaced
4ð2pt�1Þ

pt
units apart horizontally, starting

from the same x-coordinate as the predators, but shifted by

half the normal spacing amount. Thus the prey are spread

across the same distance as the predators, but with a slight

space on the edges to encourage predators to approach the

prey. An interesting property of the line regarding coop-

eration is that it is symmetric, so teams should in principle

be able to develop symmetric strategies to capture the prey.

Additionally, all the prey are seen by at least one predator

at the start of the simulation so exploration is not

required, that is, together the predators have complete

information about the prey. However, because they cannot

communicate, individual predators still have limited state

information.

The L formation is a more complex test of coordination

for the teams because it is asymmetric. Thus the agents

have to learn specific roles for specific locations. Pre-

liminary multiagent HyperNEAT experiments only tested

symmetric prey formations, but were able to develop both

symmetric and asymmetric strategies [25], suggesting that

such blind coordination should be possible in principle.

Also, the prey are not fully-observable from the start, that

is, many of them cannot be seen by any predators when the

simulation begins. Thus exploration is necessary to solve

the task. Finally, the L has almost double the prey com-

pared to the line formation, which makes the task more

complex and time-consuming. The first half of the prey are

placed exactly as in the line formation. The remaining prey

are placed behind the left-most prey in a straight line back,

5 U apart. Note that unlike the line, in the L formation the

maximum distance between a predator and a prey increases

depending on the number of prey. Thus in sizes 128 and

256 of the L a predator cannot actually reach all the prey

within the time limit, so these sizes will not be investi-

gated. Also, size two of the L is identical to the line at size

two, so it will also not best tested in these experiments.

4.3 Scaling

As technology progresses, the demand for larger, more

complex multiagent teams increases. Thus, the ability to

train scalable teams of agents is critical. In this paper, two

types of scaling will be investigated: pre-training and post-

training.

A multiagent learning algorithm should be able to

handle training a large number of agents simultaneously. In

this paper such scaling is referred to as pre-training scaling

because the number of agents in the team is known before

training is started. Thus this type of scaling tests the sca-

lability of the learning algorithm itself. Such a property is

important if large-scale, real world problems are to be

solved with the method.

Post-training scaling, in contrast, is defined as changing

the size of the team after training is already completed and

without further learning. Such scaling is challenging

because the policies of the new agents must be assigned

automatically. However, this capability would benefit real-

world multiagent applications such as unmanned aerial

vehicle (UAV) or unmanned ground vehicle (UGV)

swarms. For example, imagine that additional UGVs

become available to an existing swarm of UGVs on a

search and rescue operation. The ability to integrate these

new agents into the team immediately could be critical.

Many traditional multiagent learning approaches are not

designed to facilitate such scaling because they represent

agents as discrete entities. In contrast, because multiagent

HyperNEAT represents a team of agents as a pattern of

policies, it is possible to dynamically change the size of a

team by sampling new points in this pattern (Sect. 3.3).

This kind of interpolated scaling is a unique capability of

HyperNEAT, making a direct post-training comparison

between methods difficult. Therefore, because Sarsa(k)

lacks such a capability, its post-training scaling will be

tested by duplicating the policies of existing agents such

that when a team is scaled up by a factor of S, the first

S agents will have the first agent’s policy, the second

S agents will have the second agent’s policy, and so on.

Therefore, both methods will be tested in their ability to

scale both pre and post-training with team sizes ranging

from 2 to 1,024 agents, wherein each team size is double

the last (that is, 2, 4, 8, and so forth). Teams will be trained

on sizes of up to 256 agents for the line and 64 for the L

and tested on up to 1,024 for the line and 64 for the L.

4.4 Seeding

Simulating multiagent teams is typically computationally

expensive. Post-training scaling is one way to mitigate this

issue. However, another is to take existing single-agent

policies and build a team from them as a starting point for

further learning. In this way, knowledge about fundamental

or important skills and strategies can be injected into the

search from the beginning. Such a capability is powerful

because starting with fundamental skills means they do not

14 Evol. Intel. (2013) 6:1–26

123

need to be discovered by the search algorithm. Also, it can

be much less expensive to simulate and train a single agent

to perform the required skills.

Seeding in multiagent problems has been used in both

evolution [45] and Sarsa(k) [110] with success. For mul-

tiagent HyperNEAT, Sect. 3.4 described how a team is

formed from a single seed genome. For Sarsa(k), the

weights of a single agent are normalized and copied to all

agents on the team. In both cases the single, seed agent was

trained to chase prey as closely as possible (recall that a

single predator cannot capture prey, so chasing is the best

starting point possible). Solutions were found in both cases

in under 5,000 evaluations and form the basis for seeding

experiments.

Although the initial seeded team for both methods (that

is, a homogeneous group of predators that can chase prey) is

unlikely to be able to solve the problem directly, such a team

should provide a good starting point for agents to differen-

tiate and then solve the problem. The key difference

between Sarsa(k) and multiagent HyperNEAT in this

respect is that multiagent HyperNEAT can discover a policy

geometry with which to vary this base policy, whereas

Sarsa(k) must independently learn how to change each

agent’s individual behavior to best suit the team’s goal. To

verify that this capability is important, multiagent Hyper-

NEAT and Sarsa(k) are also tested with seeded policies.

4.5 Experimental parameters

Because HyperNEAT differs from original NEAT only in

its set of activation functions, it uses the same parameters

[90]. Experiments were run with a modified version of the

public domain SharpNEAT package [38]. The size of each

population was 150 with 20 % elitism. Sexual offspring

(50 %) did not undergo mutation. Asexual offspring

(50 %) had 0.96 probability of link weight mutation, 0.03

chance of link addition, and 0.01 chance of node addition.

The coefficents for determining species similarity were 1.0

for nodes and connections and 0.1 for weights. The avail-

able CPPN activation functions were sigmoid, Gaussian,

absolute value, and sine, all with equal probability of being

added to the CPPN. Parameter settings are based on stan-

dard SharpNEAT defaults and prior reported settings for

NEAT [90, 92, 94]. They were found to be robust to

moderate variation through preliminary experimentation.

In the Sarsa(k) runs, the standard Sarsa(k) update rule is

used [104] with k ¼ 0:9; � ¼ 0:01, and a = 0.05. In addi-

tion, the implementation uses Sutton’s tile coding software

[105] with five variables (the sensor readings), eight tilings

(different discretizations of the state space), and a tile

width of 0.2 (size of the tiles in the discretizations). These

values were found to produce the best results through

preliminary experimentation.

5 Results

To test the pre-training ability of each method to scale,

teams were trained on sizes 2, 4, 8, 16, 32, 64, 128, and 256

for the line and 4, 8, 16, 32, and 64 for the L. The main

question is whether the methods can continue to find

effective solutions as team size (and also the number of

prey) increases. Note that because the states of the agents

are egocentric and the agents do not see each other, the

state-space does not necessarily grow for individual agents

as in other multiagent problems. However, as more prey

are added, the possibility of more sensors being simulta-

neously activated at different values does increase, mean-

ing that an agent is more likely to encounter a larger

number of more varied states as the number of prey

increase. Additionally, as more agents are added, the

potential for conflicts among agent policies increases.

Figures 10 and 11 show how each method scales with pre-

training (that is, the teams were trained at the desired team

size) on the line and L formations, respectively. In both

figures, the first graph shows the average number of eval-

uations until the first solution was found and the second

graph shows the average number of timesteps during

simulation until all the prey are captured for the best

solution of each run. In both cases lower values are better

and if a bar is at the maximum value (50,000 evaluations or

500 timesteps), it means that no teams were able to solve

the problem at that size for that method.

For the line formation, the most striking result is that

while HyperNEAT is consistently able to find solutions for

teams of up to 256 agents, Sarsa(k) stops being able to find

solutions above only 16 agents. In fact, each time the

number of predators and prey doubles, the number of

evaluations Sarsa(k) requires to solve the problem increa-

ses by an order of magnitude. The results are similar in the

L: multiagent HyperNEAT finds solutions for all tested

sizes, but Sarsa(k) can only find solutions for size four.

Therefore, multiagent HyperNEAT, with the ability to

encode and learn the policies of an entire team and the

relationships among them simultaneously, is better able to

deal with the conflicts that arise in a large multiagent

domain.

For the team sizes that both methods could solve, mul-

tiagent HyperNEAT was only significantly faster in terms

of capture speed at eight and 16 on the line formation and

four for the L (p \ 0.01 according to Mann-Whitley U test

for all), implying that at smaller sizes both methods are

able to refine existing solutions once they are found, but

that actually finding an initial solution with separately-

represented agents is a more difficult problem. Further-

more, for a two-predator team, the smallest size, Sarsa(k)

finds solutions significantly faster (p \ 0.01) than multi-

agent HyperNEAT, implying that reinforcement learning

Evol. Intel. (2013) 6:1–26 15

123

may be more efficient for small teams and demonstrating

that team size is the relevant variable in this comparison.

Note that the fact that HyperNEAT and Sarsa(k) are

comparable up to about eight agents is an important vali-

dation that the Sarsa(k) implementation works. Of course,

an important concern in comparisons between different

approaches is that all are implemented properly; the com-

petitive results at the smaller scales provide evidence that

the disparity at higher scales is not only implementation-

dependent.

Seeding generally improved multiagent HyperNEAT’s

performance, although there are some instances where both

seeded and unseeded teams were able to find an optimal

solution or where seeding hurt performance. With Sarsa(k),

seeding was only beneficial at size 16 on the line, indi-

cating that just having a good seed policy may not be

enough; the way in which these policies are manipulated

during learning is also critical.

Post-training scaling is more challenging: More agents

are added to the team without further training, which

means the policies of the new agents must somehow be

intelligently derived from the old. Because HyperNEAT

encodes the team as a pattern, it can create the policies of

the new agents by querying the CPPN at an intermediate

location, thereby creating an interpolation of the existing

policies. Multiagent Sarsa(k) has no such mechanism to

automatically generate new policies. In this sense it is

difficult to compare them when Sarsa(k) lacks an analo-

gous capability. However, it is still an important question

whether interpolating new policies gains any real

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

HyperNEAT
HyperNEAT Seeded SARSA Seeded

SARSA

E
va

lu
tio

ns
 to

 S
ol

ut
io

n
2
4
8

16
32
64

128
256

(a) Time to Find Solution

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

HyperNEAT
HyperNEAT Seeded SARSA Seeded

SARSA

S
te

ps
 to

 C
ap

tu
re

 A
ll

P
re

y

2
4
8

16
32
64

128
256

(b) Time to Capture Prey

Fig. 10 Line pre-training scaling. The performance of each method

for pre-training scaling on the line formation is shown. In almost all

cases multiagent HyperNEAT teams are able to find better solutions

more quickly than Sarsa(k). After 16 agents, Sarsa(k) can no longer

solve the task, while HyperNEAT is still able to solve it up to 256

agents. Results are averaged over ten runs

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

HyperNEAT
HyperNEAT Seeded SARSA

E
va

lu
tio

ns
 to

 S
ol

ut
io

n

4
8

16
32
64

(a) Time to Find Solution

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

HyperNEAT
HyperNEAT Seeded SARSA

S
te

ps
 to

 C
ap

tu
re

 A
ll

P
re

y

4
8

16
32
64

(b) Time to Capture Prey

Fig. 11 L pre-training scaling. The L formation was more difficult

than the line due to the exploration necessary to solve the problem.

However, multiagent HyperNEAT was able to find solutions consis-

tently for all tested sizes. Sarsa(k) could only find solutions at the

smallest size of four, and seeded Sarsa(k) was unable to find any

solutions. Note that because the distance between the furthest prey

and the predators doubles each time the size increases, it is also

reasonable for the time to capture the prey to double as well. Results

again are averaged over ten runs

16 Evol. Intel. (2013) 6:1–26

123

advantage over simply duplicating the range of existing

policies to make a larger team. Therefore, to validate the

contribution of role interpolation, scaled Sarsa(k) teams

contain multiple duplicates of the agents in the unscaled

version, as described previously. The post-training results

were obtained by testing all saved champions (that is,

teams that scored better than all previous teams during the

run) on all sizes to determine the best scalers for each run.

This method of testing generalization follows Gruau et al.

[39] and is designed to compare the best overall individ-

uals. In addition to scaling up, scaling down is also tested.

Because the number of opportunities to scale up or down

depends on the training size being tested, teams are tested

and evaluated separately on scaling up and down, but they

are displayed together.

Figures 12 and 13 show post-scaling results on the line

and L formations, respectively. Each graph shows the

number of runs in which the best scaler from each run can

scale to a target size out of ten runs, starting from teams

trained at different sizes. If a method was not able to find a

solution at a particular pre-trained team size then that size

is not included as a starting point for post-scaling training.

For the line, Sarsa(k) was only able to scale at all from the

smallest two-agent size and only some runs were able to

find scalable solutions. In contrast, multiagent HyperNEAT

found scalable solutions from all starting sizes (except in

the case of size 64 on the L, which is the largest L size

possible within the time limit). For small team sizes,

multiagent HyperNEAT was consistently able to find

solutions that can scale at least up to the next team size,

although in most cases teams scaled several sizes up and

down. The results were similar on the L, with the exception

of size 64, from which it is not possible to scale within the

time limit. Scaling up above 128 agents on the line proved

to be difficult for multiagent HyperNEAT, which typically

only found solutions that could scale to such sizes one to

three times out of ten. However, seeded multiagent Hy-

perNEAT was able to rarely find solutions that scaled up to

1,024 agents, a team size that no method could solve when

trained to solve it. Thus policy interpolation produces a

significant new potential to scale already-trained teams.

5.1 Post-training scaling with further learning

While it is interesting from a research perspective that

multiagent HyperNEAT can scale to different team sizes

without further learning, as a practical matter, there is no

reason that the teams cannot continue learning at the new

size to further optimize or correct minor imperfections in

the scaled policy. This approach is similar to incremental

evolution and shaping techniques that have been applied in

other multiagent scenarios [16, 65, 81]. In fact, while many

policies generated by multiagent HyperNEAT are able to

scale to different team sizes, those that do not scale per-

fectly still generally display an appropriate (though not

perfect) strategy based on policy geometry, indicating that

the scaled policy is close to a correct solution but may

exhibit some artifacts in the policy geometry that were not

sampled during training. Previous HyperNEAT research

[96] showed that similar artifacts are present when scaling

the sensors and effectors of a single agent, but that such

artifacts are easily smoothed by additionally learning. To

test that scaled teams trained with multiagent HyperNEAT

can be further trained to correct imperfections, the three

best scaling teams at size 64 are further trained at size 256

(to which no unseeded team trained on 64 agents could

scale without further learning) on the line formation.

Although Sarsa(k) was not able to train a team of 64

agents, to facilitate some comparison, and to test whether

this capability is unique to HyperNEAT, teams trained by

Sarsa(k) with four agents are scaled to eight agents and

further trained.

Multiagent HyperNEAT was able to find solutions that

solved the new size in 1,220 evaluations on average, which

is significantly faster than finding a solution from scratch

on 256 agents (which takes on average 24,650 evaluations).

In contrast, the number of evaluations for Sarsa(k) to find a

solution at the large size after scaling (average 4,764

evaluations) did not differ significantly from the number

required to find a solution for eight agents from scratch

(which takes on average 3,804 evaluations). Thus while it

is possible for multiagent HyperNEAT to find solutions

that scale without further learning, even those that do not

scale perfectly still retain the information necessary to

solve the problem at different scales; the solution simply

must be tweaked through a small amount of additional

learning to accommodate the new size. Additionally, the

fact that Sarsa(k) does not benefit from this bootstrapping

approach implies that policy geometry plays a critical role

in further training after scaling.

5.2 Typical behaviors

This section describes the typical behaviors produced by

both learning methods. These qualitative results are

important because they illuminate why the quantitative

results make sense. Videos of these behaviors can be found

online.1

In the line, on the smallest team sizes (two, four, and

eight), the typical strategies employed by multiagent

HyperNEAT and Sarsa(k) do not differ greatly. The first

solution discovered at these sizes involves one or more

agents moving behind the group of prey and pushing them

towards the remaining agents. On sizes four and eight,

1 http://eplex.cs.ucf.edu/demos/multiagentcompared.

Evol. Intel. (2013) 6:1–26 17

123

http://eplex.cs.ucf.edu/demos/multiagentcompared

(a) 2 Agent Scaling (b) 4 Agent Scaling

(c) 8 Agent Scaling (d) 16 Agent Scaling

(e) 32 Agent Scaling (f) 64 Agent Scaling

(g) 128 Agent Scaling (h) 256 Agent Scaling

 0

 2

 4

 6

 8

 10

HyperNEATSeeded
HyperNEAT

SARSA Seeded
SARSA

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0)

2
4
8

16
32
64

128
256
512

1,024

 0

 2

 4

 6

 8

 10

HyperNEATSeeded
HyperNEAT

SARSA Seeded
SARSA

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0)

2
4
8

16
32
64

128
256
512

1,024

 0

 2

 4

 6

 8

 10

HyperNEATSeeded
HyperNEAT

SARSA Seeded
SARSA

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0)

2
4
8

16
32
64

128
256
512

1,024

 0

 2

 4

 6

 8

 10

HyperNEATSeeded
HyperNEAT

SARSA Seeded
SARSA

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0)

2
4
8

16
32
64

128
256
512

1,024

 0

 2

 4

 6

 8

 10

HyperNEAT Seeded
HyperNEAT

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0)

2
4
8

16
32
64

128
256
512

1,024

 0

 2

 4

 6

 8

 10

HyperNEAT Seeded
HyperNEAT

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0)

2
4
8

16
32
64

128
256
512

1,024

 0

 2

 4

 6

 8

 10

HyperNEAT Seeded
HyperNEAT

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0)

2
4
8

16
32
64

128
256
512

1,024

 0

 2

 4

 6

 8

 10

HyperNEAT Seeded
HyperNEAT

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0)

2
4
8

16
32
64

128
256
512

1,024

Fig. 12 Line post-training scaling (higher is better). The number of

successful scalings (both up and down) out of ten runs for different

team sizes is shown. For each graph the training size is shaded black.

While HyperNEAT is able to find scalable solutions at all sizes

without further learning, Sarsa(k) can only scale from two-agent

solutions (up to at most 16)

18 Evol. Intel. (2013) 6:1–26

123

teams then transition into some or all of the predators

surrounding and capturing the prey agents. At size 16,

Sarsa(k) continues to employ the same strategies

(Fig. 14a–c), but because the prey line is longer and there

are more agents to coordinate it takes much longer to find a

solution and for that solution to capture the prey. In

contrast, while multiagent HyperNEAT also first finds such

solutions, it quickly discovers different strategies that

divide the prey into two groups that the predators inde-

pendently surround (Fig.14d–f), exploiting the symmetry

of the team. Beyond size 16, Sarsa(k) stops solving the

problem because a more coordinated approach is needed.

 0

 2

 4

 6

 8

 10

HyperNEATSeeded
HyperNEAT

SARSA Seeded
SARSA

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0)

2
4
8

16
32
64

128
256
512

1,024

(a) 4 Agent Scaling

 0

 2

 4

 6

 8

 10

HyperNEATSeeded
HyperNEAT

SARSA Seeded
SARSA

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0) 2

4
8

16
32
64

128
256
512

1,024

(b) 8 Agent Scaling

 0

 2

 4

 6

 8

 10

HyperNEATSeeded
HyperNEAT

SARSA Seeded
SARSA

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0)

2
4
8

16
32
64

128
256
512

1,024

(c) 16 Agent Scaling

 0

 2

 4

 6

 8

 10

HyperNEAT Seeded
HyperNEAT

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0) 2

4
8

16
32
64

128
256
512

1,024

(d) 32 Agent Scaling

 0

 2

 4

 6

 8

 10

HyperNEAT Seeded
HyperNEAT

S
uc

ce
ss

fu
l S

ca
lin

gs
 (

ou
t o

f 1
0) 2

4
8

16
32
64

128
256
512

1,024

(e) 64 Agent Scaling

Fig. 13 L post-training scaling (higher is better). Successful scalings

(out of 10) are shown on these graphs for different team sizes. The

training size from which teams are scaled is shown in black.

HyperNEAT was able to find scalable solutions for all sizes that fit

within the time limit, while Sarsa(k) could not scale at all

Evol. Intel. (2013) 6:1–26 19

123

The first solutions multiagent HyperNEAT finds at sizes

32 and 64 tend to be the same strategies as at 16, but at

these sizes they are suboptimal and act as stepping stones

to strategies that divide the prey into multiple groups that

are captured independently (Fig. 15a–c). Multiagent Hy-

perNEAT is able to find such strategies by repeating

coordinate frames within the policy geometry.

Finally, at sizes 128 and 256 simple strategies are no

longer viable due to the length of the line of prey, as seen

by the fact that successful scaling to these sizes from

smaller sizes drops off sharply in Fig. 12. Thus the first

strategies that are found are those that split the prey into

multiple groups. Some runs at these large sizes were also

able to find an alternative strategy wherein every other

predator does nothing and the remaining predators move

forward, causing the prey to bounce between each pair,

until each prey runs into one of the predators while trying

to avoid the other (Fig. 15d–f). Such a strategy is simple

and effective, but would be very difficult to learn if all

agents were represented independently. Seeded and

unseeded versions of the same method did not cause a

significant qualitative difference in behavior; better

behaviors were just found faster.

On the L, at size four, both methods used the same

strategy of surrounding the prey to capture them. At size

eight, Sarsa(k) can no longer solve the problem, but mul-

tiagent HyperNEAT teams learn a strategy to deal with the

vertical portion of the L similar to that of the large teams

on the line, that is, the first and third agent move forward

and capture the entire line by bouncing the agents between

them. The horizontal portion of the line is captured by the

remaining predators through a surround strategy. The

remaining sizes (16, 32, and 64) capture the vertical part of

the line by sending a group of agents down one side of the

prey, pushing them slightly to the right, while another

group charges straight at them. The combination of these

two actions forces the prey into a compact ball that is

pushed downward by the charging predators. When the first

group of predators reach the end of the vertical portion of

the L, they turn right to form a barrier between the charging

predators and the ball of prey, and when the two meet, the

entire ball is captured. The horizontal portion is again

captured by a simple surrounding strategy. There is little

incentive for the predators to improve upon the horizontal

capture speed at these sizes because the time taken to

capture the vertical portion of the prey dominates the

problem. Nevertheless, the results on the L formation show

that multiagent HyperNEAT can discover effective asym-

metric strategies for capturing prey.

The few Sarsa(k) solutions that could scale up post-

training did not typically resemble the solutions they scaled

from, although the only scalable solutions came from two-

predator, one-prey experiments in which the overall policy

is difficult to discern. In contrast, most post-training scaled

multiagent HyperNEAT solutions did resemble the solu-

tions from which they were scaled, but sometimes contain

some inefficiencies such as a predator pushing the prey in

the wrong direction initially. A key factor in determining

whether a team will scale post-training is whether the team

employs a strategy that is effective at a higher level. For

Fig. 14 Typical strategies for 16 predators. At size 16 predators (blue
squares at the top of the pictures), Sarsa(k)-trained teams typically try

to surround the prey (green squares closer to the bottom) by

employing the predators on the edges to move to behind the prey

(a) and push them towards the center (b) where they can be captured

(c). Multiagent HyperNEAT teams also learn this strategy, but

eventually develop a more complex version wherein the predators

divide the prey into two groups (d) and then surround (e) and capture

them independently (f). The multiagent HyperNEAT result is more

efficient because more prey are captured in parallel, and it is more

scalable because eventually the size of the prey lines becomes too

large to traverse within the time limit

20 Evol. Intel. (2013) 6:1–26

123

example, if a team trained at size 16 exhibits the strategy of

positioning a single agent behind all the prey and pushing

each of them towards the predators, the strategy has less of

a chance of transferring to larger teams. However if the

team instead learned how to divide the prey and capture

them as groups at size 16, its chances of scaling are much

greater.

6 Discussion

In the predator–prey domain, the result that heterogeneous

teams trained with multiagent HyperNEAT significantly

outperform teams trained with Sarsa(k) in both training and

scaling demonstrates the importance of exploiting team

geometry in multiagent learning. Whereas teams trained

with Sarsa(k) were unable to solve problems with over 16

agents, pre-trained multiagent HyperNEAT teams solved

up to 256 agents. In this way, the ability to encode patterns

of behavior across a team is critical to success in multi-

agent learning and thereby addresses a major challenge in

the field. Multiagent HyperNEAT allows team behavior to

be represented as variation on a theme encoded in a single

genome, which means that key skills need not be redis-

covered for separate agents, overcoming the problem of

reinvention. Furthermore, because multiagent policies are

represented by a CPPN, they are assigned to separate

agents as a function of their relative geometry, while

simultaneously exploiting the agents’ internal geometries.

The number of evaluations taken by multiagent Hyper-

NEAT to find a solution increases greatly at 128 agents.

This change reflects a fundamental discontinuity in the

policies required to solve the problem at smaller and larger

sizes. At smaller sizes, a common early solution is for a

small subset of agents to capture all the prey while the

others are not involved. While such a solution is subopti-

mal, it is a solution nonetheless and is a stepping stone to

more efficient solutions that make use of the whole team.

However, if learning is first to succeed only with a subset

of the team, a subset of predators must be able to visit each

of the prey. Yet when there are 128 predators, the line of

prey becomes longer than the distance a single predator can

traverse in the time limit. Thus, at large sizes, such sub-

optimal policies represent local optima that cannot lead to

efficient solutions and the only viable strategies are the

more complex coordinated ones that employ more

Fig. 15 Multiagent

HyperNEAT Strategies for

Large Teams. For larger teams

such as the team of 64 predators

in this figure, multiagent

HyperNEAT typically continues

the strategy of dividing the prey

into groups (a), surrounding (b),

and capturing them (c). The

difference from smaller sizes is

that they are divided into more

and more groups so that larger

numbers of prey can still be

efficiently captured by the

predators. However, at the very

largest trained size of 256,

multiagent HyperNEAT

sometimes found a strategy

wherein every other predator

does nothing and the remaining

predators move forward (d).

This strategy causes the prey to

bounce between the charging

predators (e) until they are all

eventually captured (f). Such a

tactic is extremely efficient at

this problem size and requires

the strict cooperation of almost

every agent to be successful

Evol. Intel. (2013) 6:1–26 21

123

predators and take longer to find. While HyperNEAT can

find these with effort, the required coordination is too much

for Sarsa(k). There do exist specific approaches for

encouraging coordination, such as allowing agents to make

inferences about the behaviors of their team mates [51].

However, such approaches add complexity to the individ-

ual agent policies and become intractable when agents

must consider large numbers of cooperating agents.

Seeding was generally beneficial to both methods after

size 8. While performance was generally unaffected or

even hurt at smaller team sizes, where simple solutions

were easily found and some of the seeded behavior may

need to be unlearned, it generally improved at the larger

sizes. This capability captures the idea that real-life teams

(for example, in soccer) often share a critical basic skill set

that can be learned faster by an individual agent than by an

entire team, thereby exploiting the team’s position on the

continuum of heterogeneity. While HyperNEAT naturally

encodes variations on a theme, finding the right underlying

theme can initially be challenging. Seeding bootstraps the

process, providing a mechanism to inject domain knowl-

edge. In the future, the sophistication of team behavior can

be increased by evolving seeds on many subgoals, such as

running, passing, shooting, and defending in soccer, which

can be duplicated across the entire team and then allowed

to vary by role.

Multiagent HyperNEAT was able to create teams of

agents that could perform well at sizes orders of magnitude

larger than the training size without further training. Such

scaling is prohibitive for Sarsa(k) and other traditional

heterogeneous multiagent learning techniques, which do

not implement interpolated scaling, yet multiagent Hyper-

NEAT accomplishes it by representing the teams as pat-

terns rather than as individual agents. Even though these

patterns are sparsely sampled during training (that is, with

orders of magnitude fewer points) the scaled teams exhibit

smooth interpolations between agent roles. A particularly

interesting result is that while multiagent HyperNEAT

could not solve the line problem with 1,024 agents when

starting from scratch, a team trained with 256 agents could

solve the problem at 1,024 when scaled up. Although it was

not common, this result implies that scaling up may offer

more than just the benefit of saving computational time, but

also may allow multiagent HyperNEAT to solve problems

that are prohibitively deceptive or complex. The impact of

deceptive agent interactions for large teams may diminish

at smaller team sizes where such interactions are not as

devastating.

However, it is true that multiagent HyperNEAT could

not always scale up perfectly post-training. As described

above, there are some cases where the policies required to

solve a larger size are fundamentally different than those at

smaller sizes. This observation separates these results from

previous multiagent HyperNEAT scaling attempts [25] in

which the size of the problem (that is, the number of prey),

and therefore the strategy required to solve the problem,

remained constant even as team size increased. However,

even when the number of prey increases as in this paper,

the team at the smaller size may still encode fundamental

regularities that are important to the problem regardless of

scale, such as symmetry or the ability to flank a prey. That

way, this approach to scaling can still be a good starting

heuristic for additional training. Indeed, even when Hy-

perNEAT’s scaling was not perfect, some teams could

nevertheless rapidly adapt to a new size when explicitly

trained further for it. Thus, while the policy geometry

discovered at smaller team sizes may overspecialize or may

contain artifacts that were not sampled at the training size,

the general patterns remain useful at different team sizes

and can be quickly adapted for such different sizes. Sar-

sa(k) was not able to benefit from this capability because

even though it can continue training at new sizes as well, it

is blind to the geometry of the team and therefore cannot

intelligently extrapolate the behavior of the team as a

whole.

In addition to scaling up, teams trained with multiagent

HyperNEAT were able to scale down, which could allow

recalibrating a team after some agents have been damaged.

Scaling down also exemplifies the need for policy geom-

etry because the regularities discovered at larger team sizes

can be maintained at smaller sizes. However, scaling down

did not always work because the algorithm may have

converged onto regularities that are only useful at larger

team sizes, or may have relied on a specific agent position

that no longer exists. Nevertheless, the ability of a team to

sometimes dynamically grown or shrink without further

learning is a beneficial feature imparted by multiagent

HyperNEAT.

The main result is that teams that were seeded and

trained by multiagent HyperNEAT are the most effective.

Such teams exploit the continuum of heterogeneity to

overcome the problem of reinvention by starting with an

existing useful policy and varying it only as much as is

needed through a pattern across the team’s geometry.

Accordingly, the typical results (Sect. 5.2) show the dra-

matic role such regularities play in solutions at large sizes

(which Sarsa(k) could not solve). The major contributions

of this paper are thus (1) to introduce the idea of policy

geometry and show how it can be encoded and exploited to

allow scaling, (2) to introduce the continuum of heteroge-

neity as a response to the problem of reinvention, and (3) to

compare a method that takes advantage of policy geometry

and the continuum of heterogeneity to one that does not.

The hope is that these new concepts and approaches mark

the beginning of a significant new direction in multiagent

learning research that complements prior approaches.

22 Evol. Intel. (2013) 6:1–26

123

Indeed, an unfortunate result of comparison-driven

experiments is often an unwarranted emphasis on deter-

mining the better method. While multiagent HyperNEAT

indeed exhibits greater scalability both during and after

training, of course it was designed from the ground up (that

is, through the scalability of indirect encoding in Hyper-

NEAT) to be able to scale. On the other hand, Sarsa(k) was

not designed with this aim in mind, and thus does not

acquire it in the multiagent case. At the same time, as an

evolutionary approach, HyperNEAT does not offer the

online learning capability inherent in value-function-based

reinforcement learning such as Sarsa(k). Thus rather than a

critique of Sarsa(k), this comparison is better interpreted as

a validation that multiagent HyperNEAT brings something

new to the table through the idea of policy geometry. In

this more cooperative spirit, perhaps a more enlightened

approach to interpreting comparisons is to consider that the

fruits of divergent research areas may sometimes be com-

plementary, and thus present opportunities for cross-fer-

tilization. However, such approaches would likely be non-

trivial, for example, beyond simply adding initial position

to an agent’s state space. The emphasis on scalability and

large size that has been a focus of research in indirect

encoding within evolutionary computation for many years

has of yet attracted little attention in the reinforcement

learning community in general. Perhaps this study can help

to begin to bridge this gap by showing what we all might

gain by beginning to communicate despite our foundational

differences.

For example, an intriguing possibility is that indirect

encodings such as CPPNs can be combined somehow with

traditional approaches. That is, perhaps MARL can work at

the level of a team instead of on individual agents and

reinforcement signals can modify the weights of the CPPN.

Yet this prospect can only be realized if a method is

devised to propagate the reinforcement error signal through

the level of indirection between the substrate ANN and the

CPPN that encodes it. At present, no such indirect error

propagation technique exists, though the possibility is

open. Thus, at present, multiagent HyperNEAT is unique in

its capability to scale teams through policy geometry.

In this sense, the major contribution of this work is

conceptual because it offers a novel perspective on multi-

agent learning. In their recent survey of cooperative mul-

tiagent learning, Panait and Luke [67] cite scalability as a

‘‘major open topic‘‘ in the field and go on to say, ‘‘The

‘multi’ in multi-agent learning cries out for larger numbers

of agents, in the range of ten to thousands or more. Two-

and three-agent scenarios are reasonable simplifications to

make theoretical analysis feasible: but the experimental

and empirical literature ought to strive for more.’’ This

paper has shown that perhaps the impediment has been that

it is simply impractical from the traditional perspective of

multiagent learning to strive towards such large sizes given

that each doubling of team size required Sarsa(k) to per-

form an order of magnitude more evaluations to find a

solution. However, by taking an alternative approach and

exploiting the ideas of policy geometry and the continuum

of heterogeneity, multiagent HyperNEAT was able to

create cooperative heterogeneous teams of significant size

that could scale without additional learning, which directly

responds to this calling.

7 Conclusion

This paper presented a new method of training multiagent

teams called multiagent HyperNEAT that overcomes the

problem of reinvention faced by multiagent learning by

exploiting team geometry and the continuum of heteroge-

neity. Multiagent HyperNEAT accomplishes these goals by

representing teams as a pattern of policies, rather than as

several distinct agents. Representing teams in this way also

affords multiagent HyperNEAT the ability to scale team

sizes dynamically up to several orders of magnitude larger

than the size on which they were trained, a novel and

powerful capability for heterogeneous teams. When com-

pared against the traditional learning method multiagent

Sarsa(k), multiagent HyperNEAT significantly outper-

formed it in both training and scaling. Ultimately multi-

agent HyperNEAT offers a new perspective on multiagent

learning that focuses on how agents on a team relate to one

another and how those relationships can be exploited to

foster cooperation.

Acknowledgments This material is based upon work supported by

DARPA through grants HR0011-08-1-0020, HR0011-09-1-0045 and

N11AP20003 (Computer Science Study Group Phases 1, 2, and 3),

and the US Army Research Office under Award No. W911NF-11-1-

0489. It does not necessarily reflect the position or policy of the

government, and no official endorsement should be inferred.

References

1. Aaltonen et al (over 100 authors) (2009) Measurement of the top

quark mass with dilepton events selected using neuroevolution

at CDF. Phys Rev Lett 102(15):2001

2. Altenberg L (1994) Evolving better representations through

selective genome growth. In: Proceedings of the IEEE world

congress on computational intelligence. IEEE Press, Piscataway,

NJ, pp 182–187

3. Angeline PJ, Saunders GM, Pollack JB (1993) An evolutionary

algorithm that constructs recurrent neural networks. IEEE Trans

Neural Netw 5:54–65

4. Baldassarre G, Trianni V, Bonani M, Mondada F, Dorigo M,

Nolfi S (2007) Self-organized coordinated motion in groups of

physically connected robots. IEEE Trans Syst Man Cybern Part

B Cybern 37(1):224–239

5. Bentley PJ, Kumar S (1999) The ways to grow designs: a

comparison of embryogenies for an evolutionary design

Evol. Intel. (2013) 6:1–26 23

123

problem. In: Proceedings of the genetic and evolutionary com-

putation conference (GECCO-1999). Kaufmann, San Francisco,

pp 35–43

6. Bongard J (2000) Reducing collective behavioural complexity

through heterogeneity. Artificial life VII: proceedings of the

seventh international conference on artificial life

7. Bongard JC (2002) Evolving modular genetic regulatory net-

works. In: Proceedings of the 2002 congress on evolutionary

computation

8. Bousquet F, Le Page C (2004) Multi-agent simulations and

ecosystem management: a review. Ecol Model 176(3–4):

313–332

9. Boutilier C (1996) Planning, learning and coordination in mul-

tiagent decision processes. In: Proceedings of the 6th conference

on theoretical aspects of rationality and knowledge. Morgan

Kaufmann Publishers Inc., pp 195–210

10. Bowling M, Veloso M (2002) Multiagent learning using a var-

iable learning rate. Artif Intell 136(2):215–250

11. Bryant BD, Miikkulainen R (2003) Neuroevolution for adaptive

teams. In: Proceedings of the 2003 congress on evolutionary

computation (CEC 2003), vol 3. IEEE, Piscataway, NJ,

pp 2194–2201

12. Bull L, Holland O (1997) Evolutionary computing in multiagent

environments: eusociality. In: Proceedings of the annual con-

ference on genetic programming. Morgan Kaufmann

13. Busoniu L, Schutter BD, Babuska R (2005) Learning and

coordination in dynamic multiagent systems. Technical Report

05-019, Delft University of Technology

14. Busoniu L, Babuška R, De Schutter B (2008) A comprehensive

survey of multi-agent reinforcement learning. IEEE Trans Syst

Man Cybern Part C Appl Rev 38(2):156–172. doi:10.1109/

TSMCC.2007.913919

15. Castelpietra C, Iocchi L, Nardi D, Piaggio M, Scalzo A,

Sgorbissa A (2000) Coordination among heterogeneous robotic

soccer players. In: Intelligent robots and systems, 2000.(IROS

2000). Proceedings. 2000 IEEE/RSJ international conference on,

IEEE, vol 2, pp 1385–1390

16. Christensen A, Dorigo M (2006) Incremental evolution of robot

controllers for a highly integrated task. From animals to animats

9, pp 473–484

17. Claus C, Boutilier C (1998) The dynamics of reinforcement

learning in cooperative multiagent systems. In: Proceedings of

the national conference on artificial intelligence. John Wiley &

Sons Ltd, pp 746–752

18. Clune J, Ofria C, Pennock R (2008) How a generative encoding

fares as problem-regularity decreases. In: Proceedings of the

10th international conference on parallel problem solving from

nature (PPSN 2008). Springer, Berlin, pp 258–367

19. Clune J, Beckmann BB, Pennock R, Ofria C (2009a) HybrID: a

hybridization of indirect and direct encodings for evolutionary

computation. In: Proceedings of the European conference on

artificial life (ECAL-2009)

20. Clune J, Beckmann BE, Ofria C, Pennock RT (2009b) Evolving

coordinated quadruped gaits with the HyperNEAT generative

encoding. In: Proceedings of the IEEE congress on evolutionary

computation (CEC-2009) special session on evolutionary

robotics. IEEE Press, Piscataway, NJ, USA

21. Clune J, Pennock RT, Ofria C (2009) The sensitivity of Hy-

perNEAT to different geometric representations of a problem.

In: Proceedings of the genetic and evolutionary computation

conference (GECCO-2009). ACM Press, New York, NY, USA

22. Clune J, Beckmann B, McKinley P, Ofria C (2010) Investigating

whether HyperNEAT produces modular neural networks. In:

Proceedings of the genetic and evolutionary computation con-

ference (GECCO-2010). ACM Press, New York, NY

23. Conitzer V, Sandholm T (2007) AWESOME: a general multi-

agent learning algorithm that converges in self-play and learns a

best response against stationary opponents. Mach Learn 67(1):

23–43

24. Cybenko G (1989) Approximation by superpositions of a sig-

moidal function. Math Control Signals Syst 2(4):303–314

25. D’Ambrosio D, Lehman J, Risi S, Stanley KO (2010) Evolving

policy geometry for scalable multiagent learning. In: Proceed-

ings of the ninth international conference on autonomous agents

and multiagent systems (AAMAS-2010), international founda-

tion for autonomous agents and multiagent system, pp 731–738

26. D’Ambrosio DB, Stanley KO (2008) Generative encoding for

multiagent learning. In: Proceedings of the genetic and evolu-

tionary computation conference (GECCO 2008). ACM Press,

New York, NY

27. D’Ambrosio DB, Lehman J, Risi S, Stanley KO (2010) Evolving

policy geometry for scalable multiagent learning. In: Proceed-

ings of the 9th international conference on autonomous agents

and multiagent systems: volume 1-volume 1, international

foundation for autonomous agents and multiagent systems,

pp 731–738

28. Drchal J, Koutnk J, Snorek M (2009) HyperNEAT controlled

robots learn to drive on roads in simulated environment. In:

Proceedings of the IEEE congress on evolutionary computation

(CEC-2009). IEEE Press, Piscataway, NJ, USA

29. Dupuy TN (1990) The evolution of weapons and warfare. Da

Capo, New York, NY, USA

30. Eggenberger P (1997) Evolving morphologies of simulated 3d

organisms based on differential gene expression. Fourth Euro-

pean conference on artificial life

31. Ficici S, Pollack J (2000) A game-theoretic approach to the

simple coevolutionary algorithm. Lecture notes in computer

science, pp 467–476

32. Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from

architectures to learning. Evol Intell 1:47–62

33. Gauci J, Stanley KO (2007) Generating large-scale neural net-

works through discovering geometric regularities. In: Proceed-

ings of the genetic and evolutionary computation conference

(GECCO 2007). ACM Press, New York, NY

34. Gauci J, Stanley KO (2008) A case study on the critical role of

geometric regularity in machine learning. In: Proceedings of the

twenty-third AAAI conference on artificial intelligence (AAAI-

2008). AAAI Press, Menlo Park, CA

35. Gauci J, Stanley KO (2010) Autonomous evolution of topo-

graphic regularities in artificial neural networks. Neural Comput

22(7):1860–1898

36. Gauci J, Stanley KO (2010) Indirect encoding of neural net-

works for scalable go. In: Schaefer R, Cotta C, Kołodziej J,

Rudolph G (eds) Parallel problem solving from nature—PPSN

XI, vol 6238. Springer, Lecture Notes in Computer Science,

pp 354–363

37. Gomez F, Miikkulainen R (1999) Solving non-Markovian con-

trol tasks with neuroevolution. In: Proceedings of the 16th

international joint conference on artificial intelligence. Kauf-

mann, San Francisco, pp 1356–1361

38. Green C (2003–2006) SharpNEAT homepage. http://sharpneat.

sourceforge.net/

39. Gruau F, Whitley D, Pyeatt L (1996) A comparison between

cellular encoding and direct encoding for genetic neural net-

works. In: Koza JR, Goldberg DE, Fogel DB, Riolo RL (eds)

Genetic programming 1996: proceedings of the first annual

conference. MIT Press, Cambridge, MA, pp 81–89

40. Haasdijk E, Rusu A, Eiben A (2010) HyperNEAT for locomo-

tion control in modular robots. Evolvable systems: from biology

to hardware, pp 169–180

24 Evol. Intel. (2013) 6:1–26

123

http://dx.doi.org/10.1109/TSMCC.2007.913919
http://dx.doi.org/10.1109/TSMCC.2007.913919
http://sharpneat.sourceforge.net/
http://sharpneat.sourceforge.net/

41. Harvey I (1993) The artificial evolution of adaptive behavior.

PhD thesis, School of Cognitive and Computing Sciences,

University of Sussex, Sussex

42. Haynes T, Sen S (1996) Co-adaptation in a team. Int J Comput

Intell Organ 1(4):1–20

43. Hornby GS, Pollack JB (2002) Creating high-level components

with a generative representation for body-brain evolution. Artif

Life 8(3)

44. Hotz P, Gomez G, Pfeifer R (2003) Evolving the morphology of

a neural network for controlling a foveating retina-and its test on

a real robot. In: Artificial life VIII-8th international conference

on the simulation and synthesis of living systems, vol 2003

45. Hsu W, Gustafson S (2002) Genetic programming and multi-

agent layered learning by reinforcements. In: Genetic and evo-

lutionary computation conference, pp 764–771

46. Hu J, Wellman M (2003) Nash Q-learning for general-sum

stochastic games. J Mach Learn Res 4:1039–1069

47. Hu J, Wellman MP (1998) Multiagent reinforcement learning:

theoretical framework and an algorithm. In: Proceedings of 15th

international conference on machine learning. Morgan Kauf-

mann, San Francisco, CA, pp 242–250

48. Iba H (1996) Emergent cooperation for multiple agents using

genetic programming. Parallel problem solving from nature

PPSN IV, pp 32–41

49. Ishiwaka Y, Sato T, Kakazu Y (2003) An approach to the pursuit

problem on a heterogeneous multiagent system using rein-

forcement learning. Robot Auton Syst 43(4):245–256

50. Jim K, Giles C (2000) Talking helps: evolving communicating

agents for the predator-prey pursuit problem. Artif Life 6(3):237–254

51. Kalech M, Kaminka G (2003) On the design of social diagnosis

algorithms for multi-agent teams. In: International joint con-

ference on artificial intelligence, vol 18, pp 370–375

52. Knoester D, Goldsby H, McKinley P (2010) Neuroevolution of

mobile ad hoc networks. In: Proceedings of the 12th annual confer-

ence on genetic and evolutionary computation. ACM, pp 603–610

53. Kobayashi K, Nakano K, Kuremoto T, Obayashi M (2010) A

state predictor-based reinforcement learning system. Electron

Commun Jpn 93(6):8–18

54. Kok J, Hoen P, Bakker B, Vlassis N (2005) Utile coordination:

learning interdependencies among cooperative agents. In: Pro-

ceeding symposium on computational intelligence and games,

pp 29–36

55. Koza JR, Rice JP (1991) Genetic generalization of both the

weights and architecture for a neural network. In: Proceedings of

the international joint conference on neural networks, vol 2

(New York, NY). IEEE, Piscataway, NJ, pp 397–404

56. Kutschinski E, Uthmann T, Polani D (2003) Learning compet-

itive pricing strategies by multi-agent reinforcement learning.

J Econ Dyn Control 27(11–12):2207–2218

57. Lindenmayer A (1974) Adding continuous components to

L-systems. In: Rozenberg G, Salomaa A (eds) L systems, Lec-

ture Notes in Computer Science 15. Springer, Heidelberg,

Germany, pp 53–68

58. Littman ML (1994) Markov games as a framework for multi-agent

reinforcement learning. In: Machine learning: proceedings of the

11th annual conference. Kaufmann, San Francisco, pp 157–163

59. Luke S, Spector L (1996) Evolving graphs and networks with

edge encoding: preliminary report. In: Koza JR (ed) Late-break-

ing papers of genetic programming 1996, Stanford Bookstore

60. Martin AP (1999) Increasing genomic complexity by gene

duplication and the origin of vertebrates. Am Nat 154(2):111–128

61. Matarić M (1997) Reinforcement learning in the multi-robot

domain. Auton Robots 4(1):73–83

62. Miconi T (2003) When evolving populations is better than

coevolving individuals: the blind mice problem. In: Gottlob G,

Walsh T (eds) Proceedings of the eighteenth international joint

conference on artificial intelligence (IJCAI ’03). Morgan

Kaufmann

63. Miller JF (2004) Evolving a self-repairing, self-regulating, French

flag organism. In: Proceedings of the genetic and evolutionary

computation conference (GECCO-2004). Springer, Berlin

64. Montana DJ, Davis L (1989) Training feedforward neural net-

works using genetic algorithms. In: Proceedings of the 11th

international joint conference on artificial intelligence. Kauf-

mann, San Francisco, pp 762–767

65. Nolfi S, Floreano D (1998) Coevolving predator and prey robots:

do arms races arise in artificial evolution? Artif Life 4(4):311–335

66. Oliveira E, Fischer K, Stepankova O (1999) Multi-agent sys-

tems: which research for which applications. Robotics Auton

Syst 27(1):91–106

67. Panait L, Luke S (2005) Cooperative multi-agent learning: the

state of the art. Auton Agents Multi Agent Syst 3(11):383–434.

doi:10.1007/s10458-005-2631-2

68. Panait L, Wiegand R, Luke S (2003) Improving coevolutionary

search for optimal multiagent behaviors. Proceedings of the

eighteenth international joint conference on artificial intelli-

gence (IJCAI), pp 653–658

69. Panait L, Luke S, Harrison JF (2006) Archive-based cooperative

coevolutionary algorithms. In: Proceedings of the 8th annual

conference on genetic and evolutionary computation. ACM,

New York, NY, USA, pp 345–352

70. Panait L, Luke S, Wiegand R (2006) Biasing coevolutionary

search for optimal multiagent behaviors. IEEE Trans Evol

Comput 10(6):629–645

71. Panait L, Tuyls K, Luke S (2008) Theoretical advantages of

lenient learners: an evolutionary game theoretic perspective.

J Mach Learn Res 9:423–457

72. Potter M, De Jong K (1994) A cooperative coevolutionary

approach to function optimization. Lect Notes Comput Sci 866:

249–259

73. Potter M, Meeden L, Schultz A (2001) Heterogeneity in the

coevolved behaviors of mobile robots: the emergence of spe-

cialists. In: International joint conference on artificial intelli-

gence, vol 17. Lawrence Erlbaum Associates Ltd, pp 1337–1343

74. Potter MA, De Jong KA, Grefenstette JJ (1995) A coevolu-

tionary approach to learning sequential decision rules. In: Esh-

elman LJ (ed) Proceedings of the sixth international conference

on genetic algorithms. Kaufmann, San Francisco

75. Price B, Boutilier C (1999) Implicit imitation in multiagent

reinforcement learning. In: Machine learning. Morgam Kauf-

mann Publishers, Inc., pp 325–334

76. Puppala N, Sen S, Gordin M (1998) Shared memory based

cooperative coevolution. In: Evolutionary computation pro-

ceedings, 1998. IEEE world congress on computational intelli-

gence., The 1998 IEEE international conference on, pp 570–574

77. Quinn M, Smith L, Mayley G, Husbands P, Quinn M, Smith L,

Mayley G, Husbands P (2003) Evolving controllers for a

homogeneous system of physical robots: structured cooperation

with minimal sensors. Philos Trans R Soc Lond A Math Phys

Eng Sci 361(1811):2321–2343

78. Ren Z, Williams AB (2003) Lessons learned in single-agent and

multiagent learning with robot foraging. In: IEEE international

conference on systems, man and cybernetics, 2003, vol 3,

pp 2757–2762

79. Risi S, Stanley KO (2010) Indirectly encoding neural plasticity

as a pattern of local rules. In: Proceedings of the 11th interna-

tional conference on simulation of adaptive behavior

(SAB2010). Springer, Berlin

80. Saravanan N, Fogel DB (1995) Evolving neural control systems.

IEEE expert, pp 23–27

81. Schlachter F, Schwarzer C, Kernbach S, Michiels N, Levi P

(2010) Incremental online evolution and adaptation of neural

Evol. Intel. (2013) 6:1–26 25

123

http://dx.doi.org/10.1007/s10458-005-2631-2

networks for robot control in dynamic environments. In:

ADAPTIVE 2010, the second international conference on

adaptive and self-adaptive systems and applications, pp 111–116

82. Secretan J, Beato N, D’Ambrosio DB, Rodriguez A, Campbell

A, Stanley KO (2008) Picbreeder: evolving pictures collabora-

tively online. In: CHI ’08: proceedings of the twenty-sixth

annual SIGCHI conference on Human factors in computing

systems. ACM, New York, NY, USA, pp 1759–1768, doi:

10.1145/1357054.1357328

83. Secretan J, Beato N, D’Ambrosio DB, Rodriguez A, Campbell

A, Folsom-Kovarik JT, Stanley KO (2011) Picbreeder: a case

study in collaborative evolutionary exploration of design space.

Evol Comput 19(3):373–403

84. Servin A, Kudenko D (2008) Multi-agent reinforcement learning

for intrusion detection. Lect Notes Comput Sci 4865:211

85. Shoham Y, Powers R, Grenager T (2004) Multi-agent rein-

forcement learning: a critical survey. In: AAAI fall symposium

on artificial multi-agent learning

86. Sims K (1994) Evolving 3D morphology and behavior by

competition. In: Brooks RA, Maes P (eds) Proceedings of the

fourth international workshop on the synthesis and simulation of

living systems (Artificial Life IV). MIT Press, Cambridge, MA,

pp 28–39

87. Singh S, Kearns M, Mansour Y (2000) Nash convergence of

gradient dynamics in general-sum games. In: In Proceedings of

the sixteenth conference on uncertainty in artificial intelligence

88. Soltoggio A, Bullinaria AJ, Mattiussi C, Dürr P, Floreano D

(2008) Evolutionary advantages of neuromodulated plasticity in

dynamic, reward-based scenarios. In: Bullock S, Noble J, Watson

R, Bedau M (eds) Proceedings of the eleventh international con-

ference on artificial life (Alife XI). MIT Press, Cambridge, MA

89. Stanley KO (2007) Compositional pattern producing networks: a

novel abstraction of development. Genet Program Evol Mach

Special Issue Dev Syst 8(2):131–162

90. Stanley KO, Miikkulainen R (2002) Evolving neural networks

through augmenting topologies. Evol Comput 10:99–127

91. Stanley KO, Miikkulainen R (2003) A taxonomy for artificial

embryogeny. Artif Life 9(2):93–130

92. Stanley KO, Miikkulainen R (2004) Competitive coevolution

through evolutionary complexification. J Artif Intell Res 21:63–100

93. Stanley KO, Bryant BD, Miikkulainen R (2005) Evolving neural

network agents in the NERO video game. In: Proceedings of the

IEEE 2005 symposium on computational intelligence and games

94. Stanley KO, Bryant BD, Miikkulainen R (2005) Real-time

neuroevolution in the NERO video game. IEEE Trans Evol

Comput Special Issue Evolut Comput Games 9(6):653–668

95. Stanley KO, Kohl N, Miikkulainen R (2005) Neuroevolution of

an automobile crash warning system. In: Proceedings of the

genetic and evolutionary computation conference

96. Stanley KO, D’Ambrosio DB, Gauci J (2009) A hypercube-

based indirect encoding for evolving large-scale neural net-

works. Artif Life 15(2):185–212

97. Stone P, Sutton RS (2001) Scaling reinforcement learning

toward RoboCup soccer. In: Proceedings of the 18th interna-

tional conference on machine learning. Morgan Kaufmann, San

Francisco, CA, pp 537–544

98. Stone P, Veloso M (2000) Layered learning. In: Machine

learning: ECML 2000, pp 369–381

99. Stone P, Veloso M (2000) Multiagent systems: a survey from a

machine learning perspective. Auton Robots 8(3):345–383

100. Stone P, Sutton RS, Singh SP (2001) Reinforcement learning for

3 vs. 2 keepaway. In: RoboCup 2000: Robot Soccer World Cup

IV. Springer, London, UK, pp 249–258

101. Stone P, Sutton R, Kuhlmann G (2005) Reinforcement learning

for robocup soccer keepaway. Adapt Behav 13(3):165

102. Suematsu N, Hayashi A (2002) A multiagent reinforcement

learning algorithm using extended optimal response. In: Pro-

ceedings of the first international joint conference on Autono-

mous agents and multiagent systems: part 1. ACM, New York,

NY, USA, pp 370–377

103. Sutton R (1996) Generalization in reinforcement learning: suc-

cessful examples using sparse coarse coding. In: Advances in

neural information processing systems 8, pp 1038–1044

104. Sutton R, Barto A (1998) Reinforcement learning: an intro-

duction. The MIT press, Cambride, MA

105. Sutton RS (2009) Tile coding software, version 2.0, http://

webdocs.cs.ualberta.ca/*sutton/tiles2.html

106. Talvitie E, Singh S (2007) An experts algorithm for transfer

learning. In: Proceedings of the twentieth international joint

conference on artificial intelligence, pp 1065–1070

107. Tan M (1997) Multi-agent reinforcement learning: independent

vs. cooperative agents. Readings in agents, pp 487–494

108. Taylor M, Stone P (2009) Transfer learning for reinforcement

learning domains: a survey. J Mach Learn Res 10:1633–1685

109. Taylor M, Whiteson S, Stone P (2007) Transfer via inter-task

mappings in policy search reinforcement learning. In: Proceed-

ings of the 6th international joint conference on autonomous

agents and multiagent systems, pp 1–8. ACM

110. Taylor ME, Stone P (2005) Behavior transfer for value-function-

based reinforcement learning. In: Proceedings of the fourth

international joint conference on Autonomous agents and mul-

tiagent systems. ACM, New York, NY, USA, AAMAS ’05,

pp 53–59, doi:10.1145/1082473.1082482

111. Taylor ME, Whiteson S, Stone P (2006) Comparing evolution-

ary and temporal difference methods in a reinforcement learning

domain. In: GECCO 2006: proceedings of the genetic and

evolutionary computation conference, pp 1321–1328

112. Verbancsics P, Stanley KO (2010) Evolving static representa-

tions for task transfer. J Mach Learn Res (JMLR) 11:1737–1769

113. Verbancsics P, Stanley KO (2010) Task transfer through indirect

encoding. In: Proceedings of the genetic and evolutionary

computation conference (GECCO 2010). ACM Press, New

York, NY

114. Waibel M, Keller L, Floreano D (2009) Genetic team compo-

sition and level of selection in the evolution of multi-agent

systems. IEEE Trans Evol Comput 13(3):648–660. doi:10.1109/

TEVC.2008.2011741

115. Waskow SJ, Bazzan ALC (2010) Improving space representa-

tion in multiagent learning via tile coding. In: Proceedings of the

20th Brazilian conference on advances in artificial intelligence.

Springer, Berlin, Heidelberg, SBIA’10, pp 153–162

116. Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM

(1987) Molecular biology of the gene, 4 edn. The Benjamin

Cummings Publishing Company, Inc., Menlo Park, CA

117. Whiteson S, Kohl N, Miikkulainen R, Stone P (2005) Evolving

keepaway soccer players through task decomposition. Mach

Learn 59:5–30

118. Wiegand RP (2004) An analysis of cooperative coevolutionary

algorithms. PhD thesis, George Mason University, Fairfax, VA,

USA, director-Kenneth A. Jong

119. Woolley BG, Stanley KO (2010) Evolving a single scalable

controller for an octopus arm with a variable number of seg-

ments. In: Schaefer R, Cotta C, Kołodziej J, Rudolph G (eds)

Parallel problem solving from nature—PPSN XI, vol 6239.

Springer, Lecture Notes in Computer Science, pp 270–279

120. Yao X (1999) Evolving artificial neural networks. Proc IEEE

87(9):1423–1447

121. Yong C, Miikkulainen R (2010) Co-evolution of role-based

cooperation in multi-agent systems. IEEE Trans Auton Ment

Dev 1:170–186

26 Evol. Intel. (2013) 6:1–26

123

http://dx.doi.org/10.1145/1357054.1357328
http://webdocs.cs.ualberta.ca/~sutton/tiles2.html
http://webdocs.cs.ualberta.ca/~sutton/tiles2.html
http://dx.doi.org/10.1145/1082473.1082482
http://dx.doi.org/10.1109/TEVC.2008.2011741
http://dx.doi.org/10.1109/TEVC.2008.2011741

	Scalable multiagent learning through indirect encoding of policy geometry
	Abstract
	Introduction
	Background
	Cooperative multiagent learning
	Traditional approaches
	Alternative techniques

	Evolution and indirect encodings
	Neuroevolution of augmenting topologies (NEAT)
	CPPNs and HyperNEAT

	Approach: multiagent HyperNEAT
	Pure homogeneous teams
	Teams on the continuum of heterogeneity
	Scaling after learning
	Seeding
	Applicability of approach

	Predator--prey experiment
	Predators and prey
	Prey formations
	Scaling
	Seeding
	Experimental parameters

	Results
	Post-training scaling with further learning
	Typical behaviors

	Discussion
	Conclusion
	Acknowledgments
	References

