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Abstract This work investigates an artificial immune

optimization system suitable for single and multi-objective

constrained optimization. In this optimizer, an evaluation

index, which can decide the importance of individual in the

current population, is developed to accelerate population

division; the niching-like proliferation scheme is intro-

duced to strengthen the diversity of population. Thereafter,

those diverse antibodies, with the help of immune evolu-

tion operations, evolve their structures along different

directions. Theoretical results show that such optimization

system is convergent with low computational complexity.

Experimentally, one such optimizer is sufficiently exam-

ined by a suite of single and multi-objective test problems.

Comparative experiments illustrate that the optimizer with

some striking characteristics is a potentially alternative

optimization tool for constrained omni-optimization.

Keywords Constrained omni-optimization �
Artificial immune systems � Clonal selection �
Convergence � Computational complexity

1 Introduction

With the development of evolutionary computation, some

representative evolutionary algorithms only suitable for

either single or multi-objective optimization problems have

been proposed in the literature [1–6]. Nevertheless, in

practice, because of different requirements and goals, many

optimization problems, e.g., university timetable, engi-

neering design, flow-shop scheduling, and so on, frequently

change their type of optimization; in other words, they

sometimes include only one objective within some time

span but multiple conflicting objectives within another time

span. This requires that a single search method could deal

concurrently with single and multi-objective optimization

so-called omni-optimization. Thus, some advanced omni-

optimization techniques are desired when concurrently

finding the optimal solution(s) and Pareto-optimal solutions

for such kind of problem, but fewer achievements are

reported in the literature.

Although lots of researchers still focus on exploring

evolutionary algorithms for single or multi-objective opti-

mization problems, the research on omni-optimization is in

progress. Deb et al. [7] made an encouraging attempt to

develop the concept of omni-optimization. In their work,

an omni-optimizer, based on the well-known NSGA-II [3],

was reported. In such optimizer, the classical crowding

distance method included in NSGA-II was modified to

calculate distances between candidates both in the design

space and in the objective space. The purpose of such

modification is to guarantee that the optimizer is effective

for multi-global optimization problems. Especially, when

being degenerated to solve single-objective problems, it is

similar to the standard evolutionary algorithm (l ? k)-ES.

The experimental results in the present work indicate that

such optimizer is competitive for some multi-objective

problems. Additionally, in order to deal with practical

engineering design and simulation-based optimization

problems, several researchers also investigated omni-opti-

mization with discrete variables by developing improved

genetic algorithms [8–10]. For instance, in Klanac and

Z. Zhang (&)

Institute of System Science and Information Technology,

College of Science, Guizhou University, Guiyang 550025,

Guizhou, People’s Republic of China

e-mail: sci.zhzhang@gzu.edu.cn

123

Evol. Intel. (2011) 4:203–218

DOI 10.1007/s12065-011-0064-1



Jelovica [8], constraints were converted into additional

objectives, and the weighting strategy assumed designing

the scheme of fitness. The optimizer is based on vector-

ization and one conventional genetic algorithm. However,

it remains unanswered how to decide the weights of

objectives.

In the field of intelligent optimization, another out-

standing computational paradigm, Artificial Immune Sys-

tems, has been exhaustively studied, especially, immune

optimization. Many researchers made great contribution to

sufficiently excavating the inherent metaphors of the

immune system in order to solve multi-modal optimization

problems, and accordingly, lots of immune genetic or

immune optimization algorithms were developed [11–15].

These algorithms are designed specially to deal only with

either single or multi-objective problems. As associated to

the relation between bio-inspiration and existing immune-

based optimization algorithms, one can easily know that

the immune metaphors of density and vaccine are usually

cited to improve evolutionary algorithms [16, 17], and also

that three immune principles of negative selection, clonal

selection and immune network are borrowed to explore

immune optimization algorithms.

The negative selection principle and the concept of

vaccine have been preliminarily taken into account for

function optimization [18–20], especially constrained

optimization. For instance, in Aragón [18], a T-cell model,

based on the process of T-cell response, was presented in

the context of constrained optimization. In this model, a

dynamic tolerance factor was designed specially to identify

the constraint-violation degree of an individual, while

several mutation operators were developed to evolve dif-

ferent types of cells so that those better cells were found as

fast as possible. In [20], the concept of vaccine was utilized

skillfully to design an artificial immune system for multi-

modal function optimization, in which, after the design

space was divided into equal subspaces, the vaccine was

randomly picked up in each subspace. The authors claimed

that it was able to achieve the promising performance.

The clonal selection principle is an extremely useful

bio-inspiration in artificial immune systems. A large

number of immune characteristics and mechanisms such as

learning, memory, diversity and affinity maturation have

been widely cited to investigate immune optimization. The

first optimization algorithm for multi-modal function

optimization, clonal selection algorithm originally pro-

posed by de Castro and Von Zuben [21], was originated

from the principle. After such pioneering work, a series of

immune-based optimization techniques for single or multi-

objective problems were established [22, 23]. Especially,

some original artificial immune models were reported [24–

32], among which a few constraint-handling techniques

had been successfully applied to constrained multi-

objective problems [31, 32]. More details can be found in

[26, 27]. In addition, more recent studies indicate that

multi-objective immune optimization is a competitive and

active research topic [33–37].

As associated to the clonal selection principle and

immune network theory, de Castro and Von Zuben [38]

suggested an artificial immune network (aiNet) solving

data analysis and clustering. Thereafter, in order to handle

multi-modal function optimization with static or dynamic

environments, their group, together with Timmis, exten-

ded aiNet into two valuable versions (opt-aiNet and dopt-

aiNet) with slight differences [39, 40]. Nevertheless,

although immune optimization was investigated inten-

sively, few achievements useful for omni-optimization

have been found in the literature. Coelho and Von Zuben

[41] suggested an improved artificial immune network

(omni-aiNet) for such kind of optimization which exten-

ded the version of opt-aiNet [39]. omni-aiNet and opt-

aiNet share some main mechanisms, but there are some

essential differences. In omni-aiNet, one reported mecha-

nism, Gene Duplication, is introduced to enhance the

ability of evolution. The fundamental experiments in the

present study hint that this algorithm is potential for sin-

gle-objective problems with fewer constraints, but it also

exposes some drawbacks when solving multi-objective

problems.

In the present work, an artificial immune optimization

system for omni-optimization with nonlinear constraints,

simply written as omni-AIOS, is developed. It is not an

extension version of the previous work, and especially, it

differs from omni-optimizer and omni-aiNet [7, 41]. More

details can be found in Sect. 4.3. In omni-AIOS, in order

that the current population can be divided rapidly into

subclasses with different levels, an evaluation index is first

designed specially to decide the importance of individual in

the population, which helps omni-AIOS enhance the speed

of sorting. Second, after each subclass is required to

eliminate redundant individuals by means of a suppression

radius index, those survival individuals in each subclass

proliferate their clones, where the size of clones for each

individual is the number of individuals suppressed by it.

Simulation illustrates that omni-AIOS is a competitive

optimizer for omni-optimization with nonlinear constraints.

2 Preliminaries and basic theoretical results

2.1 Problem formulation and basic concepts

Consider the following constrained omni-optimization (P):

Min
x2X

fðxÞ ¼ f1ðxÞ; f2ðxÞ; . . .; fMðxÞð Þ
s:t:; giðxÞ� 0; hjðxÞ ¼ 0; 1� i� I; 1� j� J;
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with M C 1, where fi(x) is the i-th sub-objective function

with 1 B i B M, and gj(x) and hk(x) are the nonlinear

constraint functions with 1 B j B I and 1 B k B J; X is a

bounded and closed domain in Rp. x 2 X is said to be a

feasible solution if it satisfies the above constraints;

otherwise, it is called an infeasible solution. For x; y 2 X,

it is said that x dominates y in the objective space, simply

written as x �f y, if fi(x) B fi(y) with 1 B i B M, and there

exists l such that fl(x) \ fl(y) with 1 B l B M; especially,

when M ¼ 1; x �f y is equivalent to f(x) \ f(y). Notice

that it is easy to prove that the relation of dominance

between candidates is of the transitive property. Next,

assume that CðxÞ is a penalty-based violation function

which measures the magnitude of violations of the

constraints for candidate x. For simplicity, define it as

follows in this paper.

CðxÞ ¼
XI

i¼1

maxfgiðxÞ; 0g þ
XJ

j¼1

h2
j ðxÞ: ð1Þ

Here, if CðxÞ\CðyÞ, candidate x is said to be better than

candidate y. Thereafter, the concept of constraint-domi-

nance [42] is cited to compare two candidates for problem

(P).

Definition 2.1 Let x; y 2 X, it is said that x constrained-

dominates y (simply written as x �c y), if one of the fol-

lowing conditions holds:

(a) x and y are feasible, and x �f y;

(b) x is feasible but y is not;

(c) x and y are infeasible, and CðxÞ\CðyÞ.

Based on the above definition, one can see that for

arbitrary candidates x and y in X, only one is true among

x �c y; y �c x and x|cy, where x|cy denotes x 6�c y and

y 6�c x.

Definition 2.2 x 2 X is called an optimal solution

(M = 1) or a Pareto-optimal one (M [ 1) if and only if

there does not exist y 2 X, s.t. y �c x. Let X be a finite

subset in X; x 2 X is said to be a best or nondominated

individual with respect to X only if there is not y 2 X, s.t.

y �c x.

2.2 Evaluation index and basic properties

One can easily see from Definition 2.1 that the relation of

constraint-dominance �c is of the transitive property, i.e.,

if x �c y and y �c z, then x �c z. Further, let m(x) stand

for the set of remembers dominated by x in the finite subset

X in the sense of constraint-dominance, and accordingly

one can obtain mðyÞ � mðxÞ if x �c y. Also, let X0 repre-

sent the set of feasible candidates in X. Based on such

preliminaries, define a bivariate function Better(x, y),

Betterðx;yÞ ¼
1 x 2 X0;x �c y;

0 x 2 X0;x 6�c y_ x 62 X0;x �c y;

�1 x 62 X0;x 6�c y: ð2Þ

8
><

>:

This way, an evaluation index function Levelð:Þ : X! R,

which decides the importance of individual in X, is given

by

LevelðxÞ ¼
X

z2X

betterðx; zÞ: ð3Þ

Especially, by Definition 2.1, one knows that Eq. 3 is

equivalent to the following formula,

LevelðxÞ ¼
jmðxÞj; x is feasible;
jmðxÞj � jXj; x is infeasible;

�
ð4Þ

where |Z| represents the number of elements in set Z. Fol-

lowing the design of the evaluation index, the following

properties are acquired, among which only the proof of

Theorem 2.1 is given in ‘‘Appendix 1’’.

Theorem 2.1 Given x; y 2 X, if Level(x) [ Level(y), then

y 6�c x:

This theorem hints that x is not worse than y if

Level(x) [ Level(y). Further, one can conveniently decide

whether a candidate is superior to another one in X through

the following corollary.

Corollary 2.1 Given x; y 2 X; there are the following

properties according to whether x and y are feasible:

(a) if x is feasible, then Level(x) C 0; otherwise, there

must be Level(x) \ 0;

(b) if x and y are feasible, x �c y, LevelðxÞ[ LevelðyÞ;
and x|cy , Level(x) = Level(y);

(c) if x and y are infeasible, LevelðxÞ� LevelðyÞ ) x 6�c y:

3 Clonal selection principle

The natural immune system is one of the most important

organisms for living bodies. When an antigen intrudes the

immune organism, the receptors of the specific lympho-

cytes, e.g., B, T and memory cells, commence responding

to the antigen, owing to the intrinsic functional of

immune protection. The repetitive process of recognition,

proliferation, learning, memory and combat against one
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such antigen guarantees that a large number of plasma

and memory cells can be created. During this process of

immune response, some maturated B cells can be found

in that the active ones suffer a repetitive process of

affinity maturation after cloning. Thereafter, such matu-

rated B cells secrete antibodies capable of neutralising

the intruding antigen, among which some antibodies

become memory cells which circulate between blood,

lymph, or tissues. If the living bodies encounter the same

or similar antigens once again, memory cells can rapidly

destruct them. Such response can be explained by the two

well-known principles of clonal selection and immune

network. The clonal selection principle formulates a pro-

cess of immune evolution, which B cells react to the

invading antigen. To this point, some B cells that best

match to the antigen are first selected to proliferate by

cloning. Further, the clones differentiate into plasma and

memory cells. The memory cells can urge the immune

system to make a faster response. Second, the plasma cells

suffer a process of affinity maturation. Subsequently, a

suppression mechanism is taken to eliminate those redun-

dant cells.

The above immune response theory is a useful bio-

inspiration capable of being utilized to investigate omni-

AIOS for omni-optimization. To achieve such goal, the

self-maintenance of diversity based on suppression is

devoted to find diverse candidates, and the metaphors of

antibody evolution above are contributed to search

simultaneously for multiple high-quality candidates.

4 Formulation of omni-AIOS and designs

of mechanisms

4.1 omni-AIOS’ formulation

Let antigen Ag stand for problem (P) as in Sect. 2.1, and

antibody Ab be viewed as a real-coded feasible or infea-

sible candidate. Memory cells represent those best anti-

bodies without any constraint violation found until the

current population. omni-AIOS can be described in detail

below.

In the above formulation, steps 5 and 6 aim at rapidly

sorting the current population into subclasses, in which the

elements of each subclass have the same importance. Step

10 eliminates the same or similar elements through the

information on antibody distribution, while proliferating

some clones by means of the survival antibodies. Steps 10

to 11 create new antibodies for each subclass. Steps 4 to 16

constitute a loop of immune evolution which finds the

desired solutions.

4.2 Module illustration

In the case of multi-objective optimization as in problem

(P), i.e., M [ 1, Corollary 2.1 as in Sect. 2.2 provides a

guideline for rapidly dividing a finite population Z into

subclasses; however, when M = 1, another segment

method is needed to divide population Z. All these can be

achieved by the following module.
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In the above module, after ranking the antibodies by

means of Eq. 3, An is split into subclasses. Note that in

the case of M [ 1, if there is at least a feasible antibody

in F1, all elements in such subclass are feasible. The

notation of d(x, y) represents the Euclidean distance

between x and y. In addition, from the viewpoint of

computational complexity, the maximal computational

complexity is O(N log2
N), because of the sorting method.

In Update (Memory, F1), those elements in F1 without any

constraint violation are admitted to enter into Memory.

Further, eliminate those identical or dominated elements in

terms of the above concept of constraint-dominance.

Thereafter, if the size of the memory set is beyond Me with

Me B N, the well-known crowding distance method is used

to delete those redundant elements. Notice that the distance

measure in such method is executed in the objective space

but in the design space if a multi-global optimization

problem is solved.

Proliferate (Fj) only keeps those diverse antibodies in Fj

and decide their clonal sizes. To this end, when M [ 1, a

suppression radius qj(x) of x 2 Fj is designed as follows,

qjðxÞ ¼
rj

1þ rj þ dminðxÞ
; ð5Þ

where dmin(x) is the Euclidean distance between x and the

x’s nearest element in Fj; rj is the variance of distances

dmin(x) with x 2 Fj, which reflects the diversity

information on Fj. Subsequently, in relation to Eq. 5, the

set of those antibodies in the neighborhood of x is defined

as

cjðxÞ ¼ fy 2 Fj : dðx; yÞ\qjðxÞg; ð6Þ

so, |cj(x)| is viewed as the clonal size of x. Notice that once

some antibody, e.g. y, belongs to the neighborhood of x,

|cj(y)| is set as 0; in such case, y is said to be suppressed by

x. After so, those antibodies in Fj, which are not suppressed

by others, proliferate their clones through

F0j ¼ fðx; jcjðxÞjÞ : x 2 Fjg: ð7Þ

Besides, when M = 1, pick up the best element in Fj

0
e.g.

x0, and accordingly, Fj

0
= {(x0,|Fj|)}.

In the above scheme, when M [ 1, different antibodies

are allocated different suppression radiuses, which avoids

effectively the difficulty of deciding the adjustable popu-

lation suppression radius. Equations 5 and 6 hint an

important idea: the larger the subclass variance, the more

the suppressed antibodies; conversely, the fewer antibodies

are suppressed.

Mutate (Fj

0
) only keeps those mutated clones. In other

words, all clones in Fj

0
change their genes with the same

mutation rate pm through the polynomial mutation [3],

namely, x0 ¼ xþ cjDmax, where cj is defined as follows:

cj ¼
ð2uÞ

1
gjþ1 � 1; if u\0:5;

1� ½2ð1� uÞ�
1

gjþ1; if u� 0:5;

(
ð8Þ

with uniformly distributed random variable u 2 ð0; 1Þ.
Notice that gj ¼ lð1þ j�1

Lp
Þ with l[ 1, and Lp is the

number of online obtained subclasses in step 6 as in omni-

AIOS.

Select ðF1 [ C	Þ consists of some better and diverse

antibodies from a combinational population F1 [ C	. Let

Ff(X) and Finf(X) be composed of feasible and infeasible
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antibodies in X respectively. Hence, the desired set is

decided through the following pseudo-code.

In the above module, Fnon(X1) comprises of nondomi-

nated antibodies in X1 if M [ 1 and different ones other-

wise. Also, Crowding (X, m) only keeps m antibodies in

X by means of the crowding distance method in which the

distance measure is the same as that in Update (Memory, F1).

4.3 Comparative analysis

This section presents the main differences of omni-opti-

mizer [7], omni-aiNet [41] and omni-AIOS. Besides the

schemes of constraint-handling and mutation, these three

kinds of approaches have apparently different characteris-

tics and performances, due to their bio-inspiration and

design ideas. The major differences are listed below.

• Bio-inspiration. omni-optimizer bases on the theory of

evolution and genetics. omni-aiNet is related to the

clonal selection principle, immune network theory and

DNA-based gene duplication. omni-AIOS is an

immune optimization algorithm only based on the

clonal selection principle. Although omni-aiNet and

omni-AIOS share the biological inspirations of cloning,

hypermutation and selection, their schemes of opera-

tions, except the similar mutation, are greatly different,

which can be known below.

• Parameter settings. omni-AIOS demands 6 parameters,

i.e., population size, memory size, maximal iteration

number, suppression magnitude, distribution index for

mutation and mutation rate, whereas either of omni-

optimizer and omni-aiNet has 7 parameters [41].

Especially, omni-AIOS and omni-optimizer have the

fixed population size, but omni-aiNet performs with a

dynamic population size. Additionally, omni-optimizer

consists of 6 operations: Tournament, Crossover,

Mutation, Ranking, Crowding distance and Sorting;

omni-aiNet is composed of 7 operations: Cloning,

Hypermutation, Gene duplication, Ranking, Grid

procedure, Binary tournament and Random insertion;

omni-AIDOS only includes 5 operations: Memory

update, Fast sorting, Dynamic proliferation, Mutation

and Selection.

• Comparison between individuals. These approaches

adopt the same idea of penalty to handle the constraints.

omni-AIOS performs comparison between individuals

in terms of the concept of constraint-dominance, but

omni-optimizer and omni-aiNet do so through con-

strained e-dominance.

• Population sorting. omni-AIOS utilizes one dominance-

based evaluation index proposed in this work to decide

the levels of individuals in the current population with

computational cost O(Nlog2
N), and then those individ-

uals with the same level are put into the same subclass;

on the other hand, omni-optimizer and omni-aiNet uses

the well-known nondominated sorting method based on

e-dominance to divide the population, where the

computational cost is O(MN2).

• Evolution. In the process of evolution, although omni-

optimizer, omni-aiNet and omni-AIOS share the same

scheme of polynomial mutation, their distribution

indices for mutation, g, are determined with different

fashions. In omni-optimizer, g is a fixed parameter

defined by the user; omni-aiNet determines it dynam-

ically at the interval [5, 20]; omni-AIOS decides it

dynamically at the interval [l, 2l). It should be pointed

out that omni-aiNet and omni-AIOS involve in com-

pletely different proliferation schemes. Namely, omni-

aiNet demands that each individual in the current

population with size N proliferate a clonal subset of

fixed size Nc so that the sum of sizes of clonal subsets is

NNc, whereas omni-AIOS utilizes one niching-like

suppression radius function proposed in this work to

delete those redundant individuals in the current

population; in omni-AIOS, those survival individuals

receive their respective clonal sets with different sizes,

in which the number of clones for a given survival
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individual is the number of individuals suppressed by it,

and hence the number of all clones is N.

• Selection. omni-optimizer picks up N better and diverse

individuals in a combinational population of size 3N to

constitute the next population, relying upon the

crowding distance method of which Euclidean dis-

tances are calculated both in the design space and in the

objective space. In omni-aiNet, the process of selection

is carried out in a combinational population of size

N(1 ? Nc), by means of the conventional nondominat-

ed sorting method and the grid procedure. However,

omni-AIDOS selects N better individuals in a combi-

national population of size 2N through the evaluation

index above and the crowding distance method in

which Euclidean distances are taken into account in the

object space or only in the design space (when a multi-

global optimization problem is solved).

4.4 Computational complexity and convergence

In this subsection, two theoretical results are given, whose

proofs are displayed in ‘‘Appendix 1’’. Following the

description of omni-AIOS above, one can see that steps 5,

6, 7, 10 and 15, which decide omni-AIOS’ computational

complexity, need to compare those antibodies or calculate

their objectives and constraints.

Theorem 4.1 The maximal complexity of omni-AIOS is

O(N(N(M ? I ? J) ? p)), where M, I, J, and p are men-

tioned in Sect. 2.1.

In order to analyze omni-AIOS’ convergence, let S be

the antibody space (i.e., design space), and suppose that

S is a finite set. Let SBN represent a state space composed of

antibody populations whose sizes are not beyond N. Each

element of the state space is called a state. omni-AIOS can

be formulated by the evolution chain,

An ! ðF1;F2; . . .Þ ! ðF01;F02; . . .Þ ! C	 ! Anþ1:

Since its operations are independent of n, the above chain

is a Markov chain. Further, let Mf ðS;�cÞ be the set of the

optimal or Pareto-optimal solution(s) of problem (P) as in

Sect. 2.1. This way, the following conclusion can be

acquired.

Theorem 4.2 omni-AIOS is convergent for any initial

population distribution, i.e.,

lim
n!1

Pr An \Mf ðS;�cÞ 6¼ ;
� �

¼ 1: ð9Þ

5 Performance criteria

Three criteria [1, 31], suitable for multi-objective optimi-

zation, are cited below. Assume that two algorithms A and

B are executed respectively K times on a given multi-

objective problem. Accordingly, two serials of solution sets

are acquired, {Ak}k=1
K and {Bk}k=1

K .

• Average coverage ratio (ACR). ACR is a criterion

which measures the whole difference of the optimized

qualities for algorithms A and B, defined as

ACRðA;BÞ ¼ 1

K2

XK

i;j¼1

CðAi;BjÞ; ð10Þ

where

CðAi;BjÞ ¼
jfy 2 Bj : 9x 2 Ai; s:t:x �c ygj

jBjj
: ð11Þ

Equation 10 means that algorithm A has the globally better

solution quality than algorithm B if ACR(A, B) [
ACR(B, A).

• Average density (AD) and average coverage scope

(ACS). AD can be used to evaluate the average

distribution performance of the solution sets found,

given by

AD ¼ 1

K

XK

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jAij � 1

XjAij

j¼1

ð�di � dijÞ2
vuut ; ð12Þ

where

dij ¼ min
j 6¼l;1� l� jAij

fdðxj; xlÞjxj; xl 2 Aig; �di ¼
1

jAij
XjAij

j¼1

dij:

Equation 12 hints that the solution sets gotten by algorithm

A have good distribution if AD is small. Average coverage

scope ACS is the average coverage width of all the solution

sets obtained by such algorithm.

6 Numerical experiments

This section examines omni-AIOS’ performances including

its searching effect, efficiency and computational com-

plexity, relying upon sixteen single and multi-objective,

uni-global benchmark problems and two single and multi-

objective, multi-global test problems listed in detail in

‘‘Appendix 2’’. All experiments are executed on a personal

computer with CPU/3.0 GHz and RBM/2.0 GB. Two rep-

resentative omni-optimization techniques, i.e., omni-opti-

mizer and omni-aiNet proposed by Deb and Tiwari [7] and

by Coelho and Von Zuben [41], respectively, are chosen to

compare against omni-AIOS. In order to list the statistical

results, the memory set of Memory as in Sect. 4.2 is also

inserted into omni-optimizer and omni-aiNet. It is used to

store and update the solutions found. In addition, omni-

AIOS and omni-optimizer have the same population size
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60; in omni-aiNet, the initial population size is also given

60; the number of generations between suppressions is

designated as 1, for which the purpose is to require that the

three approaches have the same terminational criterion. The

same terminational iteration of such three methods is

specified according to different kinds of optimization

problems below. The remaining parameter settings of omni-

optimizer and omni-aiNet are taken from the references [7,

41]. For omni-AIOS, by experimental tuning the rational

value ranges of b, l and pm are obtained for all the test

problems, i.e., b 2 ð0:1; 0:6Þ; l 2 ½5; 10� and pm 2 ½0:8; 1�.
The values of such parameters are different according to

different kinds of test problems, which can be found in the

following subsections.

6.1 Single-objective, uni-global constrained

optimization

In this subsection, the three algorithms are tested on eight

benchmark problems g01 to g08 given in ‘‘Appendix 2’’;

especially, the dimensions of g02 and g03 are taken 20.

Since the problems g01 to g04 are solved relatively easily,

all the algorithms take their terminational iterations 2000

for these four problems and 5000 otherwise; the size of

Memory is 1. In omni-AIOS, take b = 0.5, l = 10 and

pm = 0.8. Following these preliminaries, the three algo-

rithms are respectively executed 100 runs on each test

problem. The acquired statistical results are listed in

Tables 1 and 2 below.

Through the Tables 1 and 2, the approaches can all deal

effectively with g01, g03 and g08. For g02 and g04, omni-

aiNet and omni-AIOS can acquire the better effects than

omni-optimizer. Notice that although g05 has not any

feasible solution, omni-optimizer and omni-AIOS can all

find the suboptimal solutions, and omni-AIOS presents the

relatively stable searching effect because of the values on

Mean and SD; however, omni-aiNet can only acquire some

solutions with somewhat large constraint violations. When

solving g06, omni-aiNet can get the best effect, and omni-

AIOS is secondary; when dealing with g07, either omni-

optimizer or omni-aiNet can find better solutions than

omni-AIOS, but the values on Best and Mean illustrate that

omni-AIOS can acquire the stable effect for 100 runs. On

the other hand, through the runtime of each algorithm as in

Tables 1 and 2 for each test problem, one can see that the

spent runtime of omni-AIOS is at most 63.29% of that

required by omni-aiNet for any of g01, g02, g03 and g04,

and 33.78% for each of the other test problems. It is also

easy to see that omni-AIOS is globally faster than omni-

optimizer when solving the test problems.

Table 2 Statistical results gotten by omni-optimizer and omni-aiNet with respectively 100 runs

Prob. omni-optimizer [7] omni-aiNet [41]

Best Mean SD AT Best Mean SD AT

g01 -14.9994 -14.944 0.2113 6.24 -15 -14.9995 5.65 9 10-4 4.77

g02 -0.792516 -0.746811 0.0387 10.40 -0.803526 -0.69232 0.05878 10.13

g03 -1 -0.999981 1.52 9 10-5 8.90 -1 -0.9999996 1.47 9 10-6 13.12

g04 -30658 -30577.7 86.0179 3.717 -30665.2 -30592.6 82.7524 6.93

g05 5126.18 5280.47 267.107 10.4 5067.37 5400.59 266.053 63.07

g06 -6810.37 -6704.28 45.397 6.25 -6959.15 -6945.31 8.76529 17.52

g07 24.4788 26.2533 1.41209 17.0 24.329 27.2028 2.03486 17.8

g08 -0.095825 -0.0958249 2.89 9 10-7 7.41 -0.095825 -0.0958249 1.87 9 10-7 18.34

Table 1 Statistical results obtained by omni-AIOS with 100 runs

Algori. Prob. Optimum Best Mean SD AT

omni-AIOS g01 -15 -15 -14.9996 3.1101 9 10-3 2.81

g02 -0.803619 -0.799339 -0.771373 0.0221 6.41

g03 -1.0 -1 -0.999959 1.13 9 10-4 6.16

g04 -30665.539 -30664.2 -30656.8 10.8149 3.77

g05 5126.498 5126.49 5217.5 219.295 13.80

g06 -6961.814 -6924.03 -6921.76 10.7334 5.87

g07 24.306 24.7496 24.7511 5.74 9 10-3 12.46

g08 -0.095825 -0.095825 -0.0958249 9.385 9 10-8 6.18

AT average runtime (second)
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Summarily, omni-AIOS can obtain the relatively satis-

factory effects for all the test problems except g06, while

taking less time to solve each problem. For the two algo-

rithms compared, omni-aiNet spends more time to deal

with these problems except g05, and their performance

effects have slight differences.

6.2 Multi-objective, uni-global constrained

optimization

Depending on the three performance criteria as in Sect. 5, the

three algorithms are examined their abilities of solving

constrained multi-objective problems by means of a suite of

difficult problems CTP1 to CTP7 and one difficult engi-

neering optimization problem SPR as in ‘‘Appendix 2’’. The

size of Memory is set as 50. Further, each of the above algo-

rithms is continually executed 30 runs on each of the prob-

lems. In omni-AIOS, take b = 0.5, l = 10 and pm = 1. On

one hand, the dimensions of those theoretical test problems

CTP1 to CTP7 are all designated as 100; the purpose doing so

is to observe whether the above three algorithms can effi-

ciently solve high-dimensional optimization problems with

constraints. Especially, take J = 30 in CTP1; namely, CTP1

includes 30 constraints. Thereafter, the statistical values are

listed in Table 3 below, while the nondominated points

found by the three algorithms with respectively only one

execution for each test problem are drawn in Fig. 1 below.

Table 3 and Fig. 1 can draw the following conclusions.

The experimental results illustrate that omni-optimizer,

omni-aiNet and omni-AIOS can all find some feasible

solutions for each of the theoretical test problems CTP1 to

CTP7, but their optimized qualities have significant dif-

ferences. The values on ACR in Table 3 illustrate that each

nondominated set gotten by omni-AIOS can almost cover

98% of that obtained by either of the other two algorithms

for each of the theoretical test problems except CTP1 and

CTP6, and on the other hand, for each of such test problems

except CPT6, each of nondominated sets found by omni-

optimizer can almost cover 92% of that obtained by omni-

aiNet. All these results indicate that omni-AIOS can obtain

the best effects when solving the above high-dimensional

multi-objective optimization problems. Besides, the statis-

tical values on AD and ACS in Table 3 show that the

nondominated points in the objective space found by omni-

AIOS are with satisfactory distribution and wide coverage

scope; especially, one can see that those nondominated

points gained by omni-AIOS and omni-aiNet have similar

distribution for some test problems. It should be pointed out

Table 3 Comparison of statistical results of nondominated sets found with 30 executions. ACR, AD and ACS are mentioned in Sect. 5

Prob. ACR(.,.) (%) omni-optimizer [7] omni-aiNet [41] omni-AIOS AD ACS AT

CPT1 omni-optimizer 0 92.75 17.33 0.21 13.10 40470 0

omni-aiNet 0.07 0 0 0.24 15.59 10460 0

omni-AIOS 51.47 99.76 0 0.14 20.07 540 0

CPT2 omni-optimizer 0 96.22 0.20 0.16 13.41 30280 0

omni-aiNet 0 0 0.07 0.24 15.18 140 0

omni-AIOS 99.53 99.05 0 0.27 15.95 170 0

CPT3 omni-optimizer 0 96.62 0 0.17 13.69 30200 0

omni-aiNet 0 0 0 0.26 15.03 170 0

omni-AIOS 99.87 99.25 0 0.23 15.90 140 0

CPT4 omni-optimizer 0 94.63 0 0.15 13.32 3080 0

omni-aiNet 0 0 0 0.24 15.31 160 0

omni-AIOS 99.67 99.17 0 0.20 15.79 140 0

CPT5 omni-optimizer 0 94.63 0 0.15 13.31 30410 0

omni-aiNet 0 0 0 0.25 15.26 140 0

omni-AIOS 99.93 98.79 0 0.22 15.69 160 0

CPT6 omni-optimizer 0 3.20 1.62 0.16 11.02 3080 0

omni-aiNet 55.25 0 2.47 0.16 6.5 10150 0

omni-AIOS 65.97 39.91 0 0.05 9.32 150 0

CPT7 omni-optimizer 0 97.70 0 0.15 14.12 20450 0

omni-aiNet 0 0 0 0.24 15.21 10210 0

omni-AIOS 99.93 100 0 0.23 14.79 260 0

SPR omni-optimizer 0 0 0 51.95 279.99 370300 0

omni-aiNet 75.00 0 0 94.21 400.68 70300 0

omni-AIOS 100 100 0 6.97 1030.39 40
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Fig. 1 Comparison of

nondominated fronts for CPT 1,

CPT2, …, CPT7 and SPR
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that omni-optimizer seems to be able to find better distrib-

uted nondominated points than either of omni-AIOS and

omni-aiNet for some problems; in fact, many nondominated

points found by it have great similarity, which can be

known in terms of the figures except Fig. 1(8).

On the other hand, in the case of solving the engineering

optimization problem, although the three algorithms can all

find some feasible solutions, through Table 3 one can know

that omni-AIOS can acquire the best optimized quality in

that each nondominated set found by it covers 100% of that

gotten by either of omni-optimizer and omni-aiNet, which

can also be illustrated by Fig. 1(8). Furthermore, those

nondominated sets gotten by omni-AIOS are with the widest

coverage scope and the satisfactory distribution, in com-

parison with those obtained by the other two algorithms.

Further, for one such problem, omni-aiNet can obtain the

better solution quality than omni-optimizer, as each non-

dominated set gotten by the former covers 75% of that

acquired by the latter. Thus, for this problem, omni-AIOS

can acquire the best effect, and omni-aiNet is secondary.

In addition, the three algorithms all adopt the constraint-

dominance concept to handle the constraints, whereas they

have different efficiencies. Table 3 shows that omni-AIOS

is faster than either of the other two algorithms when

searching for the Pareto-optimal solutions for each test

problem; especially, omni-AIOS’ average runtime is at

most 1/2 of that required by omni-aiNet for CTP1, CTP6,

CTP7 and SPR. When solving each of other problems, the

average runtime demanded by omni-aiNet is almost the

same as that required by omni-AIOS. Further, one can also

see that omni-AIOS spends at most 1/12 of the runtime

required by omni-optimizer to solve each test problem. The

main reason is that the evaluation index proposed in this

work reduces greatly omni-AIOS’ computational com-

plexity. Experiments illustrate that omni-optimizer has high

complexity, because it adopts the crowding distance method

involving both the design space and the object space.

Summarily, for each of the above multi-objective

problems, the three algorithms display their respective

behaviors. omni-AIOS can obtain the more satisfactory

effect and higher efficiency than any of omni-optimizer and

omni-aiNet. On the other hand, omni-optimizer can acquire

the better effect than omni-aiNet, but it results in high-

computational complexity.

6.3 Single-objective, multi-global optimization

Here, an optimization problem G01, proposed by Deb and

Tiwari [7], is listed in ‘‘Appendix 2’’. It includes twenty

optimal solutions 2k � 1
2

with k ¼ 1; 2; . . .; 20. The above

algorithms execute 20 times with the same terminational

iteration number 500. The size of Memory is set as 20. In

omni-AIOS, take b = 0.3, l = 6 and pm = 0.3.

Although the three algorithms can all find the minimum

for a single run, they have subtle differences with respect to

sizes of solution sets found and computational time. omni-

optimizer, omni-aiNet and omni-AIOS acquire in turn 15,

17 and 20 optimal solutions, which can be known from

Fig. 2(1) below. Relatively, omni-aiNet can get more

optimal solutions for some runs. On the other hand, they

spend averagely 1.31, 1.28 and 1.29 s to find optimal

solutions within a run period. Summarily, omni-AIOS is

also competitive for such problem.

6.4 Multi-objective, multi-global optimization

The bi-objective optimization problem G02 with dimen-

sion 10 given in ‘‘Appendix 2’’, proposed by Deb and

Tiwari [7], is cited to examine the above algorithms with

the same terminational iteration 500. The size of Memory

is 50. In omni-AIOS, take b = 0.5, l = 10 and pm = 1.

Similarly solving the test problems as in Sect. 6.2, the

methods can obtain their statistical results listed in Table 4

below. Their Pareto-fronts acquired with respectively only

one execution are drawn in Fig. 2(2) below.

Table 4 indicates that omni-optimizer and omni-aiNet

are difficult in finding the Pareto-optimal solutions in

comparison to omni-AIOS, as their nondominated points
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Fig. 2 (1) comparison of sizes

of solution sets found for G01;
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gotten by omni-optimizer,

omni-aiNet and omni-AIOS,

respectively. (2) nondominated
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found are far from the theoretical Pareto-front, which can

be known through Fig. 2(2). omni-AIOS can acquire the

best effect for such problem, and omni-optimizer is sec-

ondary. In addition, omni-optimizer spends more time to

solve such problem than either of omni-aiNet and omni-

AIOS. All these present that omni-AIOS is useful for

multi-objective, multi-global optimization problems.

7 Conclusions

With the increasing requirement of solving real-world

optimization problems, omni-optimization will become

increasingly popular. Thus, this work suggests an artificial

immune optimization system (omni-AIOS) capable of han-

dling omni-optimization, inspired by the dynamic charac-

teristics and mechanisms of the immune system and also the

existing concept of constraint-dominance. In omni-AIOS, an

efficient population division scheme is developed to

enhance the speed of optimization by means of an evaluation

index proposed in this work, and meanwhile the niching-like

proliferation scheme strengthens the diversity of population

as well as the ability of exploration and exploitation. Further,

the theoretical results demonstrate that omni-AIOS is con-

vergent with low-computational complexity. Experimen-

tally, it is compared against the two existing optimization

algorithms for omni-optimization. The experimental results

demonstrate that: (1) omni-aiNet is more suitable for single-

objective problems but somewhat high-computational

complexity; omni-optimizer is more useful for multi-

objective problems but high-computational complexity, and

(2) in comparison with omni-optimizer and omni-aiNet,

omni-AIOS has low-computational complexity, while being

capable of effectively dealing with omni-optimization with

nonlinear constraints and low or high dimensions.
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Appendix 1: Proof of conclusions

Proof of Theorem 2.1 Assume y �c x. First, if both x and

y are feasible, one can see Level(x) \ Level(y), due to

|m(x)| [ |m(x)|. Second, if y is feasible but x is not, it

follows similarly that Level(x) \ Level(y). Further, if y is not

feasible, x is also so because y �c x, and accordingly one

gets Level(x) \ Level(y), because of |m(y)| [ |m(x)|. These

cases illustrate that the conclusion is true. h

Proof of Theorem 4.1 Only give the proof of computa-

tional complexity for the multi-objective optimization case

(M [ 1). In step 5, each antibody is required to compute

and compare [(N - 1)(M ? I ? J) ? 1] times; step 6

needs to rank those antibodies with N log2
N times. These

antibodies are required to enter into corresponding sub-

classes. This needs (N - 1) times to check which anti-

bodies have the same importance. Therefore, steps 5 and 6

execute to compare and compute an times,

an ¼ N½ðM þ I þ JÞðN � 1Þ þ 1� þ N logN
2 þ N � 1

�NðN � 1ÞðM þ I þ JÞ þ N logN
2 þ 2N: ð13Þ

Hence, the maximal computational complexity for these

two steps is O((M ? I ? J)N2). In step 7, since Memory only

collects feasible antibodies, this step requires bn

comparisons to find at most Me survival memory cells,

bn�ðMe þ jF1jÞ2 þ ðMe þ jF1jÞlogMeþjF1j
2

�ðMe þ NÞ2 þ ðMe þ NÞlogMeþN
2

: ð14Þ

On the right side of Eq. 14, the first term represents the

computational times deleting those identical and dominated

members in Mmemory [ F1; the second term stands for the

number of computations which is used to decide Me

memory cells by the crowding distance method. Therefore,

the maximal computational complexity of step 7 is O(N2),

due to Me B N.

In steps 10 to 12, for the j-th subclass Fj, since each

antibody is required to find its nearest one, the amount of

computations and comparisons for step 10 is

(M ? 1)|Fj|(|Fj| - 1) ? |Fj|
2 ? |Fj|. On the other hand,

step 11 needs to execute p|Fj|pj times. In addition, step

12 evaluates those mutated clones with (M ? I ? J)|Fj|

times. Therefore, the amount of computations and com-

parisons for these steps is given by

cn ¼
Xl

j¼1

½ðMþ 1ÞjFjjðjFjj � 1Þþ jFjj2þ jFjj

þ pjFjjpjþðMþ Iþ JÞjFjj�
�N½ðMþ 1ÞðN� 1ÞþNþ pþMþ Iþ Jþ 1�: ð15Þ

Table 4 Comparison of statistical results for G02

ACR(.,.) (%) omni-optimizer [7] omni-aiNet [41] omni-AIOS AD AS AT

omni-optimizer 0 96.70 0 0.51.21 12.22 1.080 0

omni-aiNet 1.31 0 0 68.48 10.94 0.350 0

omni-AIOS 96.86 97.78 0 0.10 12.98 0.300 0
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Hence, the maximal complexity of such steps is

O(N(N(M ? I ? J) ? p)).

In step 15, first divide F1 [ C* into two subclasses:

feasible solution set X1 and infeasible solution set X2,

which needs to carry out |F1 [ C*| times; second, if

|X1| [ N, there needs at most (M ? I ? J)|X1|2 times to

find nondominated antibodies and conversely, the crowd-

ing distance method is executed on X2, for which the total

of computations and comparisons is MjX2jlog
jX2j
2 . Thus,

since |X1| and |X2| are not larger than N, this step needs at

most dn times to compute or compare those antibodies,

dn ¼ maxfðM þ I þ JÞjX1j2;MjX2jlogjX2j
2
g

� ðM þ I þ JÞN2:
ð16Þ

Summarily, because of Me B N, the overall worst case

complexity of Omni-AIOS is

OðBÞ ¼ OððM þ I þ JÞN2Þ þ OðMN2Þ
þ OðNðNðM þ I þ JÞ þ pÞÞ þ OððM þ I þ JÞN2Þ

 OðNðNðM þ I þ JÞ þ pÞÞ: ð17Þ

h

Proof of Theorem 4.2 Given X 2 S�N , through steps 6

and 10 there exists ðXj;X
0
jÞ 2 S�N � S�N satisfying

PfFj ¼ XjjAn ¼ Xg ¼ 1;PfF0j ¼ X0j jFj ¼ Xjg ¼ 1: ð18Þ

Further, through the mutation operator and for 8x 2 X and

y 2 S, there exists some j with x 2 Fj. In such case, x can

attain y, provided that l is decided reasonably as in (8).

Thus, P{mutate(x) = y} [ 0, where mutate(x) is obtained

by x through the polynomial mutation. Hence, for Zj 2 S�N

with |Zj| = |Xj

0
|, one can imply that P{Cj

* = Zj

|Fj

0
= Xj

0
} [ 0. So, it is necessary to hold the formula for

8X; Z 2 S�N ,

PfC	 ¼ ZjAn ¼ Xg ¼
Y

j� 1

PfC	j ¼ ZjjFj ¼ Xjg

¼
Y

j� 1

PfC	j ¼ ZjjF0j ¼ X0jg[ 0:

ð19Þ

Further, since the series of {An}n C 1 is monotone, the

above conclusion is true, relying upon Theorem 4 [43].

h

Appendix 2: Test problems

This section presents eight popular single-objective, uni-

global constrained benchmark problems g01 to g08 [44],

one single-objective, multi-global problem G01 [7], eight

popular multi-objective, uni-global benchmark problems

CPT1 to CPT7 and SPR [45, 46], and one multi-objective,

multi-global problem G02 [7].

g01:Min f ðxÞ ¼ 5
X4

i¼1

xi � 5
X4

i¼1

x2
i �

X13

i¼5

xi

s.t.,

g1ðxÞ ¼ 2x1 þ 2x2 þ x10 þ x11 � 10� 0;

g2ðxÞ ¼ 2x1 þ 2x3 þ x10 þ x12 � 10� 0;

g3ðxÞ ¼ 2x2 þ 2x3 þ x11 þ x12 � 10� 0;

g4ðxÞ ¼ �8x1 þ x10� 0;

g5ðxÞ ¼ �8x2 þ x11� 0;

g6ðxÞ ¼ �8x3 þ x12� 0;

g7ðxÞ ¼ �2x4 � x5 þ x10� 0;

g8ðxÞ ¼ �2x6 � x7 þ x11� 0;

g9ðxÞ ¼ �2x8 � x9 þ x12� 0;

0� xi� 1; 1� i� 9; 0� xi� 00; 10� i� 12; 0� x13� 1:

g02:Min f ðxÞ ¼ �
Pn

i¼1 cos4ðxiÞ � 2
Qn

i¼1 cos2ðxiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ix2

i

p
�����

�����

s.t.,

g1ðxÞ ¼ 0:75�
Yn

i¼1

xi� 0; g2ðxÞ ¼
Xn

i¼1

xi � 7:5n� 0;

n ¼ 20; 0\xi� 10; 1� i� n:

g03:Min f ðxÞ ¼ �ð
ffiffiffi
n
p
Þn
Yn

i¼1

xi s.t.,

h1ðxÞ ¼
Xn

i¼1

x2
i � 1 ¼ 0;

n ¼ 20; 0� xi� 1; 1� i� n:

g04:Min f ðxÞ ¼ 5:3578547x2
3 þ 0:8356891x1x5

þ 37:293239x1 � 40792:141

s.t.,

g1ðxÞ ¼ 85:334407þ 0:0056858x2x5 þ 0:0006262x1x4

� 0:0022053x3x5 � 92� 0;

g2ðxÞ ¼ �5:334407� 0:0056858x2x5 � 0:0006262x1x4

þ 0:0022053x3x5� 0;

g3ðxÞ ¼ 80:51249þ 0:0071317x2x5 þ 0:0029955x1x2

þ 0:0021813x2
3 � 110� 0;

g4ðxÞ ¼ �0:51249� 0:0071317x2x5 � 0:0029955x1x2

� 0:0021813x2
3 þ 90� 0;

g5ðxÞ ¼ 9:300961þ 0:0047026x3x5 þ 0:0012547x1x3

þ 0:0019085x3x4 � 25� 0;

g6ðxÞ ¼ �9:300961� 0:0047026x3x5 � 0:0012547x1x3

� 0:0019085x3x4 þ 20� 0;

78� x1� 102; 33� x2� 45; 27� xi� 45ð3� i� 5Þ:
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g05:Min f ðxÞ ¼ 3x1 þ 0:000001x3
1 þ 2x2

þ ð0:000002=3Þx3
2

s.t.,

g1ðxÞ ¼ �x4 þ x3 � 0:55� 0; g2ðxÞ ¼ �x3 þ x4 � 0:55� 0;

h1ðxÞ ¼ 1000sinð�x3 � 0:25Þ þ 1000sinð�x4 � 0:25Þ
þ 894:8� x1 ¼ 0;

h2ðxÞ ¼ 1000sinðx3 � 0:25Þ þ 1000sinðx3 � x4 � 0:25Þ
þ 894:8� x2 ¼ 0;

h3ðxÞ ¼ 1000sinðx4 � 0:25Þ þ 1000sinðx4 � x3 � 0:25Þ
þ 1294:8 ¼ 0;

0� x1� 1200; 0� x2� 1200; �0:55� x3� 0:55;

� 0:55� x4� 0:55:

g06:Min f ðxÞ ¼ ðx1 � 10Þ3 þ ðx2 � 20Þ3

s.t.,

g1ðxÞ ¼ �ðx1 � 5Þ2 � ðx2 � 5Þ2 þ 100� 0;

g2ðxÞ ¼ ðx1 � 6Þ2 þ ðx2 � 5Þ2 � 82:81� 0;

13� x1� 100; 0� x2� 100:

g07:Min f ðxÞ ¼ x112 þ x2
2 þ x1x2 � 14x1 � 16x2

þ ðx3 � 10Þ2 þ 4ðx4 � 5Þ2 þ ðx5 � 3Þ2 þ 2ðx6 � 1Þ2

þ 5x2
7 þ 7ðx8 � 11Þ2 þ 2ðx9 � 10Þ2 þ ðx10 � 7Þ2 þ 45

s.t.,

g1ðxÞ ¼ �105þ 4x1 þ 5x2 � 3x7 þ 9x8� 0;

g2ðxÞ ¼ 10x1 � 8x2 � 17x7 þ 2x8� 0;

g3ðxÞ ¼ �8x1 þ 2x2 þ 5x9 � 2x10 � 12� 0;

g4ðxÞ ¼ 3ðx1 � 2Þ2 þ 4ðx2 � 3Þ2 þ 2x2
3 � 7x4 � 120� 0;

g5ðxÞ ¼ 5x2
1 þ 8x2 þ ðx3 � 6Þ2 � 2x4 � 40� 0;

g6ðxÞ ¼ x2
1 þ 2ðx2 � 2Þ2 � 2x1x2 þ 14x5 � 6x6� 0;

g7ðxÞ ¼ 0:5ðx1 � 8Þ2 þ 2ðx2 � 4Þ2 þ 3x2
5 � x6 � 30� 0;

g8ðxÞ ¼ �3x1 þ 6x2 þ 12ðx9 � 8Þ2 � 7x10� 0;

� 10� xi� 10; 1� i� 10:

g08:Min f ðxÞ ¼ � sin3ð2px1Þsinð2px2Þ
x3

1ðx1 þ x2Þ
s.t.,

g1ðxÞ ¼ x2
1 � x2 þ 1� 0;

g2ðxÞ ¼ 1� x1 þ ðx2 � 4Þ2� 0;

0� x1; x2� 10:

G01:Min f ðxÞ ¼ sinðpx1Þcosðpx2Þ0� x1; x2� 40:

CPT1:Min f ðxÞ ¼ ðf1ðxÞ; f ðxÞÞ
s.t.,

f1ðxÞ ¼ x1; f2ðxÞ ¼ gðxÞexpð� f1ðxÞ
gðxÞÞ;

cjðxÞ ¼ f2ðxÞ � ajexpð�bjf1ðxÞÞ� 0; 1� j� J:

gðxÞ ¼ 1þ 1

100

X100

i¼1

½x2
i � cosð2pxiÞ�;

xi 2 ½�5:12; 5:12�; 1� i� 100:

CPT2� CPT7:Min f ðxÞ ¼ ðf1ðxÞ; f ðxÞÞ
s.t.,

f1ðxÞ ¼ x1; f2ðxÞ ¼ gðxÞð1� f1ðxÞ
gðxÞÞ;

cðxÞ ¼ cosðhÞðf2ðxÞ � eÞ � sinðhÞf1ðxÞ
� ajsinðbpðsinðhÞðf2ðxÞ � eÞ þ cosðhÞf1ðxÞÞcÞjd;

gðxÞ ¼ Anþ
Xn

i¼1

x2
i � AcosðxxiÞ;A ¼ 10;

x ¼ 2p; xi 2 ½�5:12; 5:12�; 1� i� n;

where g(x) is the same as the function as in CPT1.

Speed ReducerðSPRÞ:Min f ðxÞ ¼ ðf1ðxÞ; f ðxÞÞ
s.t.,

f1ðxÞ ¼ 0:7854x1x2
2ð

10x2
3

3
þ 14:933x3 � 43:0934Þ

� 1:508x1ðx2
6 þ x2

7Þ þ 7:477ðx3
6 þ x3

7Þ
þ 0:7854ðx4x2

6 þ x5x2
7Þ;

f2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð745x4

x2x3
Þ2 þ 1:69� 107

q

0:1x3
6

;

g1 :
1

x1x2
2x3

� 1

27
� 0; g2 :

1

x1x2
2x2

3

� 1

397:5
� 0;

g3 :
x3

4

x2x3x4
6

� 1

1:93
� 0; g4 :

x3
5

x2x3x4
7

� 1

1:93

� 0; g5 : x2x3 � 40� 0; g6 :
x1

x2

� 12� 0;

g7 : 5� x1

x2

� 0; g8 : 1:9� x4 þ 1:5x6

� 0; g9 : 1:9� x5 þ 1:1x7� 0; g10 : f1ðxÞ� 1300;

g11 :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð745x5

x2x3
Þ2 þ 1:575� 108

q

0:1x3
7

� 1100; 2:6� x1

� 3:6; 0:7� x2� 0:8;

17� x3� 28; 7:3� x4� 8:3; 7:3� x5� 8:3; 2:9� x6

� 3:9; 5� x7� 5:5:
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G02:Min fðxÞ ¼ ðf1ðxÞ; f2ðxÞÞ;
s.t.,

f1ðxÞ ¼
Xn

i¼1

sinðpxiÞ; f2ðxÞ ¼
Xn

i¼1

cosðpxiÞ;

n ¼ 10; 0� xi� 6; 1� i� n:
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