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Abstract Clonal selection algorithms are computational

methods inspired by the behavior of the immune system

which can be applied to solve optimization problems.

However, like other nature inspired algorithms, they can

require a large number of objective function evaluations in

order to reach a satisfactory solution. When those evalua-

tions involve a computationally expensive simulation

model their cost becomes prohibitive. In this paper we

analyze the use of surrogate models in order to enhance the

performance of a clonal selection algorithm. Computa-

tional experiments are conducted to assess the performance

of the presented techniques using a benchmark with 22

test-problems under a fixed budget of objective function

evaluations. The comparisons show that for most cases the

use of surrogate models improve significantly the perfor-

mance of the baseline clonal selection algorithm.

Keywords Clonal selection � Artificial immune system �
Optimization � Surrogate model

1 Introduction

Artificial Immune Systems (AISs) are computational

methods inspired by the biological immune system and

have found applications in many domains. One of them,

optimization, is a key ingredient to design and operational

problems in all types of engineering, as well as a tool for

formulating and solving inverse problems such as system

identification in scientific and engineering situations. From

the optimization perspective, the AISs are stochastic pop-

ulation-based search methods which do not require a con-

tinuous, differentiable, or explicit objective function, and

do not get easily trapped in local optima. However, AISs,

as well as other nature-inspired search techniques, usually

require a large number of objective function evaluations

in order to reach a satisfactory solution. As new applica-

tions require the development of increasingly complex

and computationally expensive simulation models, this

becomes a serious drawback to the application of AISs in

areas such as Structural Mechanics, Reservoir Simulation,

Fluid Dynamics, Molecular Dynamics, and others. As a

result, the user’s computational budget places a strong

upper limit on the number of calls to the expensive simu-

lation model adopted. It is then necessary to modify the

search process in order to increase its convergence speed in

the sense of attaining a given level of solution quality with

less calls to the expensive simulation model. The strategy

considered here is the use of a surrogate model (or meta-

model), capable of providing a relatively inexpensive

approximation of the objective function, thus replacing the

computationally intensive original simulator evaluation.

The idea of reducing the number of computationally

expensive function evaluations appeared early in the evo-

lutionary computation literature [22] and efforts in this

direction continue (see, for example [17, 18, 28, 34, 36, 38]).
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e-mail: hcbm@lncc.br

URL: http://www.lncc.br/*hcbm

H. S. Bernardino

e-mail: hedersb@gmail.com

URL: http://www.lncc.br/*hedersb

H. J. C. Barbosa � L. G. Fonseca

Universidade Federal de Juiz de Fora, UFJF,

Campus Universitrio, 36036-330 Juiz de Fora, MG, Brazil

L. G. Fonseca

e-mail: leonardo.goliatt@ufjf.edu.br

123

Evol. Intel. (2011) 4:81–97

DOI 10.1007/s12065-011-0056-1



One may also mention additional reasons for using surrogate

models in evolutionary algorithms: (a) to smooth the fitness

landscape [47], (b) to alleviate user fatigue in interactive

design systems [41], and (c) in noisy environments [24].

Many surrogate models are available in the literature,

such as polynomial models [22], artificial neural networks

[15], Kriging or Gaussian processes [14], Radial Basis

Functions [19, 21], and support vector machines [25].

Alternatively, several surrogates may be derived from

physical or numerical simplifications of the original model,

in which case they are more strongly problem-dependent.

In this paper we extend the results of a previous con-

ference paper [5] by proposing and comparing the perfor-

mance of an artificial immune system (AIS) assisted by (1)

a similarity-based surrogate model (SBSM) based on the

nearest-neighbors idea, and (2) a locally defined linear

approximation model.

The idea is to use a pre-defined number of expensive

simulations and allow the AIS to perform additional

(approximate) objective function evaluations (via surrogate

model), in order to (hopefully) obtain a final solution which

is better than the one the baseline algorithm would find

using only that fixed number of expensive simulations.

This paper is organized as follows. AISs for optimiza-

tion are discussed in Sect. 2. Sections 3 and 4 present the

surrogate models and the surrogate-assisted AIS, respec-

tively. A discussion of the computational results is given in

Sect. 5, and the paper ends with some concluding remarks

and suggestions for future work.

2 Artificial immune systems for optimization

When exposed to antigens organisms develop an efficient

immune response where specific antibodies are produced

to attack these antigens. The best performing immuno-

logical cells multiply (by cloning) and are improved (by

hypermutation and replacement) while new cells, pro-

duced by the bone marrow, are generated. This scheme of

adaptation is known as clonal selection and affinity mat-

uration by hypermutation or, more simply, clonal selec-

tion [20].

Artificial immune systems for optimization problems [6]

are inspired by natural immune systems concepts and

mechanisms, such as clonal selection, immune network

theory, vaccination, and others. In general, an AIS opti-

mization algorithm will have a population of antibodies

(candidate solutions) and another set composed by the

antigens (objectives) that the antibodies attempt to reach or

match (optimize). The main differences among the AIS

techniques applied to optimization reside in which natural

immune mechanism is considered to evolve the antibodies,

i.e., how the candidate solutions evolve.

According to the clonal selection theory—the immune

mechanism used by the algorithm considered here—there

is a selection process which leads to the evolution of the

immune system repertoire during the lifetime of the indi-

vidual. Furthermore, on binding with a suitable antigen,

activation of lymphocytes occurs and clones of the acti-

vated lymphocyte are produced expressing receptors

identical to the original one that first encountered the

antigen. The clonal selection culminates in the increase in

the average affinity between the antibodies and antigens

due to the somatic hypermutation and selection mecha-

nisms of clonal expansion. That is responsible for the fact

that upon a subsequent exposure to the antigen, a stronger

immune response is produced [3]. The affinity maturation,

as it is also known, is a mutation of the individuals

occurring at a high rate, which is inversely proportional to

the fitness of the antibody (antibody-antigen affinity),

unlike the standard mutation of Evolutionary Algorithms

(EAs). Thus, inferior individuals are more strongly modi-

fied than the better ones, which require a finer tuning. To

avoid a random search, a selection method is necessary to

keep the good solutions, eliminate the worst ones, and

maintain diversity.

2.1 Clonal selection algorithm

Inspired by the clonal selection theory, de Castro and von

Zuben proposed an AIS algorithm (CLONALG [9]) that

performs computational optimization and pattern recogni-

tion tasks. In this method, each antibody is cloned,

hypermutated, and those with higher affinity are selected.

The main features of this technique are (1) the mutation

rate, usually inversely proportional to the affinity of the

antibody with respect to the antigens, and (2) the absence

of a recombination operator (such as crossover in GAs).

Algorithm 1 shows CLONALG’s pseudocode which is

inspired by the algorithm presented in [6].

Algorithm 1 A CLONALG’s pseudocode for optimization problems
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In Algorithm 1, affinities contains the values of the

objective function to be optimized (fitness) and antibodies

contains the population of candidate solutions. Also, b is

the number of clones that each antibody will be allowed to

generate, q is a parameter used to compute the mutation

rate, nAffinities (�f ) contains the affinities of the antibodies

normalized (by function ‘‘normalize’’) in the interval

½0; 1�; pRandom is the percentage of new cells that are

randomly generated (representing the mesenchymal stem

cells generated by the bone marrow), clones contains the

population of clones generated by the function ‘‘clone’’,

and cA contains the corresponding affinities. The function

‘‘initializePopulation’’ initializes, usually randomly, a

population of cells, ‘‘evaluate’’ calculates the antibody-

antigen affinity, ‘‘hypermutate’’ performs the somatic

hypermutation, ‘‘select’’ selects the best candidate solution

among an antibody and its clones to compose the anti-

bodies population [11], and finally, ‘‘genNew’’ randomly

generates, evaluates and includes new antibody cells in the

candidate solutions population.

3 Surrogate models

Surrogate modeling, or metamodeling, can be viewed as

the process of replacing the original evaluation function (a

complex computer simulation) by a substantially less

expensive approximation. The surrogate model should be

simple, general, and keep the number of control parameters

as small as possible [8].

In contrast to ‘‘eager’’ learning algorithms, such as

neural networks, which generate a model and then discard

the inputs, the Similarity-Based Surrogate Models

(SBSMs) store their inputs and defer processing until a

prediction of the affinity value of a new candidate solution

is requested. Thus, SBSMs can be classified as ‘‘lazy’’

learners or memory-based learners [2] because they gen-

erate the output value by combining their stored data using

a similarity measure. Any intermediate structure or result is

then discarded.

In the proposed algorithm, the individuals evaluated by

the original function (i.e., solutions evaluated exactly) are

memory cells which are stored in a database. In the bio-

logical immune system, memory cells are kept (even

without an antigen invasion) and play a relevant role in

speeding up the response of the immune system against a

similar invader. The population of memory cells is used to

construct a surrogate, based on similarity, which is used

along the optimization process to perform extra (surrogate)

evaluations, resulting in a larger number of total (surrogate

plus exact) evaluations. Those extra surrogate evaluations

involve a simple procedure, with a negligible computational

cost when compared to the cost of an exact evaluation using

the simulation model.

The following section describes in detail the surrogate

models used here.

3.1 Nearest neighbors

Two variants of the nearest neighbors technique are studied

here as a relatively inexpensive surrogate of the original

expensive objective function. The difference between these

variants is the way of obtaining the nearest neighbors, that

is, the querying algorithm used. Here we have:

1. k-Nearest Neighbors (k-NN) [37], in which the k

nearest candidate solutions are selected for use in the

surrogate evaluation;

2. r-Nearest Neighbors (r-NN) [23], where the set of

neighbors is taken from a certain hyperbox in the

search space.

The idea of using a Nearest Neighbors technique to

assist an evolutionary algorithm was previously explored in

[16, 32, 33] to reduce the number of exact function eval-

uations required during the search, and in [10, 17, 18] to

extend the number of generations guiding the search

towards improved solutions.

Given a candidate solution xh and the archive

D ¼ fðxi; f ðxiÞÞ; i ¼ 1; . . .; gg containing g exactly evalu-

ated solutions xi, then the corresponding value bf ðxhÞ �
f ðxhÞ to be assigned to xh is

bf ðxhÞ ¼

f ðx jÞ if xh ¼ x j;
Pk

j¼1
s xh;x

Ih
j

� �p

f x
Ih

j

� �

Pk

j¼1
s xh;x

Ih
j

� �p otherwise

8

>

>

>

<

>

>

>

:

ð1Þ

where s(xh, xi) is a similarity measure between xh and xi

and p is set to 2. When k-NN is used, Ih
j is the j-th element

of the list that stores the individuals in the set D most

similar to xh and k is the number of neighbors used to build

the surrogate function.

When the r-NN technique is used then Ih
j is the j-th

element of the list that stores the individuals from the set D
which belong to the hyperbox centered in xh such that its

i-th ‘‘side’’ has length 2r xu
i � xl

i

� �

. Thus, for the r-NN case,

2r is the fraction of the search space range in each

dimension used to build the hyperbox, and the number of

elements found inside such hyperbox is automatically

attributed to k.

The Nearest Neighbor technique does not require a

predefined functional form nor a probability distribution.

The variables can be either continuous or discrete and the

database is updated whenever it is necessary to add a
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candidate solution. The computational cost for evaluating

an individual is mainly due to the search for the nearest

neighbors.

In the adopted real-coded CLONALG, the similarity

measure is given by

sðxh; xiÞ ¼ 1� dEðxh; xiÞ
dEðxU ; xLÞ ; ð2Þ

where dE(xh, xi) is the Euclidean distance between xh

and xi.

It is easy to see that, for both querying techniques

considered here, only one parameter is needed to be set by

the user: the number of nearest neighbors k or the length of

the ‘‘size’’ of the hyperbox given by the fraction 2r 2 0; 1½ �
of each variable range. Also, it may occur that there are no

candidate solutions inside the hyperbox. In this case, the

two nearest neighbors are used by the surrogate function,

and the 2-NN variant is recovered.

3.2 Simple and weighted local linear regression

Another kind of metamodel technique is local linear

regression [46], considered here in both its simple and

weighted variants.

A general form of a simple linear regression is given by

bf ðxhÞ ¼ h0 þ h1xh
1 þ � � � þ hnxh

n; ð3Þ

or, in matrix format,

bf ðxhÞ ¼ xh
� �T

h with xh
0 ¼ 1; ð4Þ

where the superscript T denotes transposition and one must

compute h 2 Rnþ1. Given a matrix X with a set of candidate

solutions in D and y their corresponding objective function

values, the least squares estimation leads to

h ¼ ðXTXÞ�1XT y; ð5Þ

were (XT X) must be a non-singular matrix.

It is assumed that given the set of a query point’s

neighbors it is possible to obtain a linear approximation

bf ðxhÞ � f ðxhÞ. The number of neighbor points used by the

model is the minimum number of the nearest neighbors

such that (XT X) is a non-singular matrix.

Considering that the closest points/solutions should

contribute more to the surrogate model, then we also used

the weighted version of the linear regression. In this case,

the model is weighted using a diagonal matrix W with

elements given by

wii ¼ 1

dE xh; xið Þ : ð6Þ

It is important to notice that for all surrogate models

considered here, xh is searched in the memory cells before

its fitness value is calculated by the surrogate model. Thus

dE xh; xi
� �

6¼ 0 and wii can always be calculated.

The weighted least squares estimator reads now

bh ¼ XT WX
� ��1

XtWy; ð7Þ

and

bf ðxhÞ ¼ xh
� �T

bh with xh
0 ¼ 1: ð8Þ

Figure 1 shows an example of simple and weighted linear

regression applied over three points in which the exact function

is sin(x). When using the weighted linear regression, the matrix

W is not the same for different points, leading to different

models for each new point. Thus, for this case, we also plot a

curve corresponding to the model generated at x = 1.

It is important to notice that higher order (say quadratic)

polynomial regressors can also be considered in principle,

but, as the number of unknown coefficients in h grows fast

(quadratically for a quadratic polynomial regressor), here

only linear ones were considered due to the high dimen-

sionality of the problems (n � 2).

4 Surrogate-assisted artificial immune system

The next crucial step is to define how the surrogate model

will be incorporated into the search mechanism. Some
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Fig. 1 Example of simple and weighted linear regression applied in

three points exactly calculated by function sinðxÞ

84 Evol. Intel. (2011) 4:81–97

123



possibilities discussed in the literature include incorporat-

ing the surrogate models as (1) local approximators [31],

(2) surrogate-guided evolutionary operators [30], (3) sur-

rogate-assisted local search [27, 44], and (4) a pre-selection

technique [21, 29], as well as the use of multiple surrogates

[1, 27, 35].

To the best of our knowledge, there are few surrogate-

assisted immune algorithms in the literature. In [7], the

authors introduce a surrogate model into the immune

inspired algorithm cycle by means of a stochastic man-

agement procedure which, in each iteration, uses both

surrogate and exact models in a cooperative way. For that

first proposal, called Random Selection, a candidate solu-

tion is evaluated by the exact function according to a user

specified probability.

According to [7] the use of a surrogate model allows for

increasing the total number of iterations of the algorithm

and, for almost all problems considered, leads to solutions

which are better than those provided by the baseline clonal

selection algorithm (CLONALG). However, the authors

suggested that, for some objective functions, the surrogate

model increases the exploitation of the baseline CLO-

NALG, inducing a faster convergence to local optima.

A different model management, referred as Determin-

istic Selection (DS), was adopted in [5]. In that approach,

all candidate solutions from the initial population are

evaluated exactly and compose the initial archive which

defines the surrogate model. When performing clonal

expansion, all generated clones are evaluated by the sur-

rogate model and only the best clone of each antibody is

evaluated by the exact function. If the exact value is better

than the affinity of the original antibody then the parent is

replaced by this clone.

One should notice that, while the model management

used in [7] leads to a population containing both exactly

and approximately evaluated individuals, using DS the

population contains only exactly evaluated solutions. Also,

in [5] the surrogate model was only used to indicate ways

of improving the candidate solutions. While in [7] the

surrogate model should evaluate as accurately as possible a

candidate solution to be compared with the exact objective

function, in [5] what really matters is that the approxi-

mately evaluated affinity be accurate enough to correctly

sort the hypermutated clones from each antibody. It is not

necessary that the surrogate model accurately approximates

the true function as long as it is able to correctly sort the

generated hypermutated clones from each antibody.

When DS is considered, the use of the surrogate model

can be controlled by the number b of clones defined by the

user. As more clones are generated by each antibody, more

approximate evaluations are performed. It is easy to see

that CLONALG is recovered when the antibodies generate

only one clone (b = 1). Also, if the number of exact

objective function evaluations is used as the stop criterion,

the number of final generations is equal for all b values as

only the better hypermutated clone from each antibody will

be evaluated exactly.

In both cases, using either Random or Deterministic

Selection, every individual evaluated by the exact function

is immediately stored in the archive used by the surrogate

model. In the immunological paradigm, this database of

antibodies corresponds to the memory cells: a set of rep-

resentative cells stored with the objective of improving the

immune system response to subsequent attacks.

The surrogate model used by references [5, 7] was the

k-NN. Although the use of this simple method improved

the performance of the baseline search technique in most

cases, in a few problems the results obtained by the algo-

rithm using this surrogate model were much worse than

those achieved by the baseline technique alone.

Here we study alternative surrogate models trying to

maintain simplicity, namely the r-NN variant, where the

neighbors are those within a certain hyperbox, and linear

regression, considering both simple and weighted versions.

It should be noticed that, as the computational experi-

ments considered a maximum number of exact simulations

as the stop criterium for the clonal selection algorithm, the

use of surrogate models actually increases the total com-

putational time. The greater the number of solutions in the

database, the more expensive is the surrogate model.

However, as it is assumed that the objective function is

computationally expensive, this delay should be insignifi-

cant. Figure 2 shows the delay as a function of the number

of exact simulations for the cases SLR b = 16 (WLR

b = 16 is similar), {r = 0.001, b = 2}, and {k = 16,

b = 16}. It can be seen that the delay is, at most, of a few

seconds. As in expensive real-world situations only a

limited number of exact objective function evaluations are

allowed, the computational cost of the approximations is

really insignificant.
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Fig. 2 Delay caused by the surrogate model
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5 Computational experiments

We will consider here the standard optimization problem

which consists in finding x 2 Rn that minimizes the

objective function f(x), subject to lower and upper bounds

xl B x B xu. We are particularly interested in the situation

where obtaining the value of f for a given x requires a

computationally expensive simulation.

5.1 Definition of the test-problems

In order to assess the performance of the surrogate-assisted

clonal selection algorithms proposed here for expensive

optimization problems, a set F of test-functions fj; j 2
f1; . . .; nf g was collected from [40, 42, 43, 45, 48]. The

functions are specified in column ‘‘Function’’ from Table 1

while their search space bounds (the same one for all

dimensions) and number of exact function evaluations used

by the algorithms are presented in columns ‘‘Bounds’’ and

‘‘nfe’’, respectively. Complementary information for

functions f14; f15, and f16 can be found in Table 2.

Functions f01 to f13 and f17 to f22 correspond to high-

dimensional problems (n = 30). Functions f01 to f05 are

unimodal while f08 to f13 and f18 to f22 are multimodal ones.

Function f06 is the step function, which has one minimum.

Function f07 is a noisy quartic function. They appear to be

the most difficult class of problems for many optimization

algorithms [48]. Functions f14; f15, and f16 are low-

dimensional functions (n ¼ 4; n ¼ 6, and n = 4, respec-

tively) which have only a few local minima. Finally,

Function f17 is a Fast Fractal ‘‘DoubleDip’’ Function.

It is clear that these problems do not require expensive

simulations. The idea is to assess the relative performance

of the proposed technique, when a fixed number of

objective function evaluations is allowed, in a larger

number of test-problems than it would have been possible

in the case of using expensive real-world problems.

5.2 User defined parameters

The baseline CLONALG, defined by Algorithm 1 from

Sect. 2.1, has four user defined parameters, namely, the

number of clones (b), the decay of the mutation potential

(q), the number of new candidate solutions randomly

generated in each iteration (pRandom), and the population

size (populationSize). All CLONALG variants (see Sect.

5.2.2) use the same values for these parameters which are:

q ¼ 5; pRandom ¼ 0, and popula-tionSize = 50. The

exception is the parameter b which has its sensibility tested

in the experiments assuming the values 2, 4, 8, or 16 (the

value 1 is also considered by the baseline CLONALG)

5.2.1 Hypermutation

Hypermutation is the operator responsible for modifying

the candidate solutions in the search for improvements. The

hypermutation operator used here is similar to the one

presented by [12] where the mutation potential must be

calculated first. We used the one proposed by [9], where

the mutation potential is given by a ¼ e�q�f and �f is the

normalized affinity of the original antibody. The number of

mutations is given by an. Once that is calculated, a ran-

domly chosen variable i from the clone xC is modified as

xC
i ¼ 1� m½ �xi þ mxj;

where m is a random number uniformly distributed in (0,1)

and j is another randomly chosen design variable. Although

that seems to be a good operator for most objective

functions considered here, since they have optimal

solutions with variables assuming the same value, that is

not usually true. Thus, here we modify a clone in the

following way

xC
i ¼ 1� m½ �xi þ myi; ð9Þ

where y is an antibody randomly chosen from the

population.

It can be noticed that the hypermutation is fully random,

although weighted by the quality of the candidate solution.

We also generate another clone which is symmetrically

placed with respect to the parent solution (also known as

two-way mutation [26]): while one clone is hypermutated

by the procedure above, the other one is modified as

xC
i ¼ 2xi � xC

i ; i ¼ 1; 2; . . .; n: ð10Þ

Except for the baseline CLONALG, which uses b = 1,

the hypermutation process, including the symmetric clone,

is the same for all CLONALG variants in our experiments.

5.2.2 Variants

A set of CLONALG variants corresponding to different

values of b and other parameters for each surrogate model

was considered.

– Baseline—since the only parameter is b they are

referred to as b = 2i, where i 2 f0; . . .; 4g;
– k-NN—as in this case the parameters are b and the

number of nearest neighbors to be used by the surrogate

model, these variants are defined as {k = 2i, b = 2j },

where i; j 2 f1; . . .; 4g;
– r-NN—the parameters are b and the range for the

neighbors of the surrogate model. Thus, they are

labeled as {r = 10-i, b = 2j }, where i 2 f2; 3; 4g and

j 2 f1; . . .; 4g;
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Table 1 Description of the functions in the benchmark

Function Bounds nfe

f01ðxÞ ¼
P
n

i¼1

x2
i

�100; 100½ � 15 9 103

f02ðxÞ ¼
P
n

i¼1

xij j þ
Q

xij j
�10; 10½ � 20 9 103

f03ðxÞ ¼
P
n

i¼1

P
i

j¼1

xj

 !2 �100; 100½ � 40 9 103

f04ðxÞ ¼ max
i2 1;n½ �
f xij jg �100; 100½ � 40 9 103

f05ðxÞ ¼
P
n�1

i¼1

100 xxþ1 � x2
i

� �

þ xi þ 1ð Þ2
h i �30; 30½ � 40 9 103

f06ðxÞ ¼
P
n

i¼1

bxi þ 0:5c �100; 100½ � 15 9 103

f07ðxÞ ¼
P
n

i¼1

ix4
i þ Uð0; 1Þ �1:28; 1:28½ � 30 9 103

f08ðxÞ ¼
P
n

i¼1

�xi sin
ffiffiffiffiffiffi

xij j
p� � �500; 500½ � 40 9 103

f09ðxÞ ¼
P
n

i¼1

x2
i � 10 cos 2pxið Þ þ 10

� � �5:12; 5:12½ � 40 9 103

f10ðxÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

P
n

i¼1

x2
i

s !

� exp 1
n

P
n

i¼1

cos 2pxið Þ
	 


þ 20þ e
�32; 32½ � 15 9 103

f11ðxÞ ¼ 1
4000

P
n

i¼1

x2
i �

Q

cos xi
ffi

i
p
� �

þ 1
�600; 600½ � 20 9 103

f12ðxÞ ¼
p
n

10 sin2 pyið Þ
X
n�1

i¼1

yi � 1ð Þ 1þ 10 sin2 pyiþ1ð Þ
� �

yn � 1ð Þ2
( )

þ
X

n

i¼1

u xi; 10; 100; 4ð Þ

yi ¼ 1þ 1

4
xi þ 1ð Þ

u xi; a; k;mð Þ ¼
k xi � að Þm; xi [ a;

0; �a� xi� a;

k �xi � að Þm; xi\� a

8

>

<

>

:

�50; 50½ � 15 9 103

f13ðxÞ ¼
0:1 sin2 3pxið Þ

P
n�1

i¼1

xi � 1ð Þ2 1þ 10 sin2 3pxiþ1ð Þ
� �

þ xn � 1ð Þ 1� sin 2pxnð Þ½ �
� �

þu xi; 5; 100; 4ð Þ

�50; 50½ � 15 9 103

f14ðxÞ ¼
P
11

i¼1

ai �
x1 b2

i þbix2ð Þ
b2

i þbix3þx4

	 
2 �5; 5½ � 40 9 103

f15ðxÞ ¼ �
P
4

i¼1

ci exp �
P
6

j¼1

aij xj � pij

� �2

" #

0; 1½ � 2 9 103

f16ðxÞ ¼ �
P
10

i¼1

x� aið ÞT x� aið Þ þ ci

� ��1 0; 10½ � 1 9 103

f17(x) is the Fast fractal ‘‘DoubleDip’’ function from [43] �1; 1½ � 15 9 103

f18ðxÞ ¼
P
n

i¼1

106
� � i�1

n�1z2
i � 450

�100; 100½ � 30 9 103

f19ðxÞ ¼
P
n�1

i¼1

F zi; ziþ1ð Þ þ F zn; z1ð Þ � 300, where F x; yð Þ ¼ 0:5þ sin2
ffiffiffiffiffiffiffiffiffi

x2þy2
p� �

�0:5

1þ0:001 x2þy2ð Þ½ �2
�100; 100½ � 30 9 103

f20(x) is the Hybrid composition function from [40] �5; 5½ � 30 9 103

f21(x) is the Non-continuous rotated hybrid composition function from [40] �5; 5½ � 30 9 103

f22(x) is the F101 function from [45] �512; 512½ � 15 9 103

U(0,1) denotes a random number uniformly distributed in (0,1) and z ¼ x� oð ÞM where the definition of o and M can be found in [39]. Also, we

have used n = 30 in the computational experiments
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– Linear Regression—it is referred to as SLR b = 2i,

when simple linear regression is used, and WLR

b = 2i, when we have the weighted one instead. For

both cases i 2 f1; . . .; 4g.

The sensibility analysis of the surrogate-assisted

parameters is important because as this technique improves

exploitation with respect to the baseline CLONALG, it also

makes it easier to get trapped in local minima. Then a good

balance between exploration and exploitation should be

achieved. Also a sensibility analysis with respect to the

baseline’s b parameter is made to verify the performance of

the symmetric mutation.

5.3 Performance profiles

The most common way of assessing the relative perfor-

mance of a set V of variants vi; i 2 f1; . . .; nvg is to define

a set F of representative test-functions fj; j 2 f1; . . .; nf g
and then test all variants against all problems measuring

the performance tf,v of variant v 2 V when applied to

function f 2 F. The performance indicator to be maxi-

mized here is the inverse of the minimum objective

function value found by variant v in test-function f

averaged over 30 runs.

Now a performance ratio can be defined as

rf ;v ¼
tf ;v

minftf ;v : v 2 Vg ð11Þ

It is interesting to be able to assess the performance of

the variants in V on a potentially large set of test-functions

F in a compact graphical form. This can be attained

following Dolan & Moré [13] and defining

qvðsÞ ¼
1

nf
ff 2 F : rf ;v� sg








where :j j denotes the cardinality of a set. Then qv(s) is the

probability that the performance ratio rf,v of variant v 2 S is

within a factor s C 1 of the best possible ratio. If the set F

is large and representative of problems yet to be tackled

then variants with larger qs(s) are to be preferred. The

performance profiles thus defined have a number of useful

properties [4, 13]:

1. qv(1) is the probability that variant v will provide the

best performance in F among all variants in V. If

qV1(1) [ qV2(1) then variant V1 was the winner in a

larger number of problems in F than variant V2,

2. the area under the qv curve (AUCv ¼
R

qvðtÞdt) is an

overall performance indicator/measure for variant v in

the problem set F: the larger the AUC the higher the

variant efficiency, and

3. a measure of the reliability of variant v is its

performance ratio in the problem where it performed

worst: Rv ¼ supfs : qvðsÞ\1g. As a result, the most

reliable variant is the one that minimizes Rv; that is, it

presents the best worst performance in the set F:

v� ¼ arg min
v2V

Rv ¼ arg min
v2V

supfs : qvðsÞ\1g

5.4 Results

The CLONALG variants from Sect. 5.2.2 are evaluated

against the functions presented in Sect. 5.1 The best vari-

ants with respect to each surrogate model used by the

search mechanism and the baseline are selected to simplify

the final comparisons. We used performance profiles (see

Sect. 5.3) to find those best variants

Table 2 Complementary data for functions f14; f15, and f16

i ai bi
-1

1 0.1957 0.25

2 0.1947 0.5

3 0.1735 1

4 0.1600 2

5 0.0844 4

6 0.0627 6

7 0.0456 8

8 0.0342 10

9 0.0323 12

10 0.0235 14

11 0.0246 16

i aij ci

1 10 3 17 3.5 1.7 8 1

2 0.05 10 17 0.1 8 14 1.2

3 3 3.5 1.7 10 17 8 3

4 17 8 0.05 10 0.1 14 3.2

i pij

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

i aij ci

1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 3 3 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5
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The performance profiles which compare the baseline

CLONALG variants are presented in Fig. 3. It is easy to

see that the variant b = 2 performs better than the other

ones. Also notice that the b = 2 variant uses the two-way

mutation (see Sect. 5.2.1) unlike the one with b = 1,

indicating the efficiency of this mutation operator which

keeps the idea, usually adopted in immune algorithms

found in the literature, that few clones should be generated.

Figure 4 presents the comparison between surrogate-

assisted CLONALG variants with k-NN. In this case a

more complex discussion must be made because two

variants have shown superior performance, namely:

{k = 16, b = 8} and {k = 16, b = 16}. The {k = 16,

b = 8} variant is the most reliable since it is able to find

solutions for all problems within about fourteen times

worst than the best performer in any problem. The

{k = 16, b = 16} variant is the most efficient, finding the

best results for about 50% of the objective functions. We

have chosen the {k = 16, b = 16} variant as the ‘‘winner’’

because it presents the largest area under the curve (see the

item (2) in Sect. 5.3).

As in the k-NN case, the comparison between surrogate-

assisted CLONALG variants which use r-NN leads to a

choice of the best one. The performance profiles for the

r-NN variants can be shown in Fig. 5 in which the variants

{r = 0.01, b = 2} and {r = 0.001, b = 2} present the

best performances with respect to efficiency (finding the

best results in about 55% of the objective functions) and

reliability (average results are at maximum about six times

worse than the best performer), respectively. However,

considering the area under the curve, it is easy to verify the

superiority of the {r = 0.001, b = 2} variant.
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Fig. 4 Performance profiles comparing surrogate-assisted CLONALG

variants with k-NN
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Fig. 5 Performance profiles comparing surrogate-assisted CLONALG

variants with r-NN

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β =1
β =2
β =4
β =8
β =16

Fig. 3 Performance profiles comparing baseline CLONALG variants
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Figure 6 shows the performance profiles comparing

surrogate-assisted CLONALG variants with simple linear

regression. The best number of clones for this scenario is

b = 16, while the baseline CLONALG performs better

with b = 2. It is important to notice here that the perfor-

mance is proportional to the use of the surrogate model. It

means that the more calls to the approximated objective

function evaluations are made, the better the results are, in

general.

As with the simple linear surrogate-assisted clonal

selection variants, Fig. 7 shows that the best number of

clones b for WLR is sixteen. Also in this case, the per-

formance is proportional to the use of the surrogate model.

That is important because it shows the stability of the

algorithm with respect to its user defined parameters.

Considering the individual analyses with respect to each

surrogate model we have chosen the following ones to be

used in the comparisons between the different approaches:

b = 2, SLR b = 16, WLR b ¼ 16; fk ¼ 16; b ¼ 16g, and

{r = 0.001, b = 2}. The performance profiles comparing

the results found by these algorithms are presented in Fig. 8.

Some important conclusions can be made from this plot: (1)

all surrogate-assisted CLONALG variants perform better

than the baseline considering all metrics derived from the

performance profiles (efficiency, reliability, or area under

the curve); (2) WLR b = 16 is the most reliable; (3)

{k = 16, b = 16} is the most efficient; and (4) WLR

b = 16’s curve presents the greatest area under the curve.

Also, we compared the performance of the baseline

CLONALG directly with WLR b = 16 and {k = 16,

b = 16} variants. The performance profiles are presented

in Fig. 9 where we can see that while the WLR b = 16

variant found results about 1.2 times worst than the best

ones, the solutions of the {k = 16, b = 16} were about 3

times the best ones. In addition, Fig. 9 shows that WLR

b = 16 found results better than the baseline CLONALG

for more than 80% of the objective functions while the

{k = 16, b = 16} variant achieved about 55%. Summa-

rizing, the WLR b = 16 variant performs better than the

baseline CLONALG that {k = 16, b = 16}, showing a

superior efficiency and reliability with respect to the

improvement of the {k = 16, b = 16} variant over the

same baseline.

We also analyzed each test-problem individually and

the results found by the best variants and the baseline

CLONALG are presented by boxplots in Figs. 10–14.

The boxplots standing for the results found in functions

f01 to f06 are presented by Fig. 10. Here we can see that the

CLONALG variants assisted by simple and weighted linear

regression outperform the baseline one for these objective

functions. The k-NN variant found worst results for the

function f05 while for the r-NN one, that happened for

functions f04 and f05. That shows the superiority of the

CLONALG variants assisted by linear regression, WLR

and SLR, with respect to the baseline algorithm when

solving high dimensional unimodal functions (functions f01
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0.
4

0.
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8
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0
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Fig. 7 Performance profiles comparing surrogate-assisted CLONALG

variants with weighted linear regression
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Fig. 6 Performance profiles comparing surrogate-assisted CLONALG

variants with simple linear regression
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to f05), and also the improvement of all surrogate-assisted

clonal selection algorithms used in the comparisons when

the high dimensional step function is considered. Accord-

ing to the statistical analysis presented in Table 3, all those

differences are statistically significant (based in the non-

parametric Wilcox test). The exception is the perfor-

mance’s decrease caused by the use of the r-NN in the

function f05.

The same improvement due to the use of linear regres-

sions in CLONALG can be seen in the Fig. 11 which

presents the boxplots corresponding to the results found in

functions f07 to f12. The CLONALG variants with r-NN

only did not present good results for function f08 while the

use of k-NN decrease the performance of the baseline

CLONALG in functions f07; f08, and f09, that is in half of

the functions shown in this figure. Except for the variant

with k-NN, the baseline CLONALG is outperformed by the

surrogate-assisted one in the high dimensional noisy

quartic function and this superiority is significant (see

Table 3).

Boxplots with the results found in functions f13 to f18

are shown in Fig. 12. Here we can see that although

CLONALG variants assisted by linear regressions pre-

sented better results than the baseline one for most of

these objective functions, the variants with WLR and SLR

performed worse in functions f14 and f18, respectively. For

function f17, only the variant with k-NN presents a

decrease with respect to baseline CLONALG. All surro-

gate-assisted variants are outperformed by the baseline

CLONALG in function f14. It is important to highlight that

this is the only function in the benchmark where the

baseline CLONALG was not statistically outperformed by

the use of the WRL metamodel. Also, it should be noted

that the superiority of the baseline CLONALG in function

f14, corresponds to an absolute difference of the means in

the order of 10-4.

The boxplots corresponding to the solutions of the

remaining functions (f19 to f22) are presented in Figs. 13

and 14 where we can see that the baseline CLONALG
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Fig. 9 Performance profiles comparing the baseline CLONALG with

the surrogate-assisted CLONALG with (a) WLR b = 16 and

(b) {k = 16, b = 16}
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Fig. 8 Performance profiles

comparing the bests variants

with respect to each surrogate

model. (a) presents the curves

with s 2 ½1; 2� while in

(b) s 2 ½1; 100�
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performs better than other variants in function f19 despite

the fact that the median of the results found by the variant

with k-NN is superior. Also, this decrease by the use of a

surrogate model is only significant in the variant with

r-NN, as we can see in Table 3. Considering the variant

with SLR and the remaining functions, the results are

inferior to those achieved by the baseline CLONALG in

function f20 while the same happens for the WLR variant in

functions f20 and f22. However, none of these observed

decreases with respect to the use of linear regressors are

statistically significant. A decrease in the performance can

be verified with respect to the variant with the r-NN in the
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function f21 (its median is also worst in function f20).

Finally, the baseline CLONALG found results better than

the variant with the k-NN for all remaining functions.

The results found by the baseline CLONALG and the

surrogate-assisted variants are summarized in Table 3.

Also the statistical significance of the better results and of

the results found by the variants with respect to the baseline

CLONALG are highlighted. The best results are presented

in boldface while * and ? indicate that the difference

observed is not statistically significant with respect to the

best result and the baseline algorithm, respectively. Dif-

ferences in the results are statistically significant when

the p-value from the non-parametric Wilcox’s test is

less than 0.05. It is important to notice that although the
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Fig. 11 Boxplots for functions f07 to f12
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fk ¼ 16; b ¼ 16g variant is the most efficient (best results

in eight functions), their results are statistically worse than

those found by the baseline CLONALG in seven functions,

namely f05; f08; f09; f17; f20; f21, and f22. Another crucial

information is that in addition to the reliability of the WRL

b = 16 variant, f14 is the only function where that variant

is statistically significantly worse than the baseline

CLONALG. Also the difference between the means has an

order of magnitude of 10-4 and the function f14 is the one

with the lowest dimensionality in our benchmark (n = 4).

6 Concluding remarks and future works

In this paper a real-coded clonal selection algorithm is

enhanced by means of (1) the use of the two-way mutation,
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and (2) the use of similarity-based surrogate models,

namely the k- and r-nearest neighbors techniques, and

simple and weighted linear regressors. The objective is to

improve the baseline CLONALG’s performance when

solving optimization problems involving computationally

expensive objective functions.

Computational experiments were conducted to assess

the performance of the proposed procedure using a

benchmark with 22 test-problems from the literature where

a maximum number of objective function evaluations is

prescribed. The results show that the use of surrogate

models improve the results obtained by the baseline

CLONALG for most test-problems. The WRL b = 16

variant showed to be the best one performing statistically

significantly worse than the baseline CLONALG only for

one (low-dimensional) objective function.

As a future work, the extension to constrained optimi-

zation problems is perhaps the most relevant one. Con-

strained optimization problems appear in engineering

design situations, where the constraints are often complex

implicit functions of the design variables.

Another idea that could be pursued in order to improve

efficiency in the scenario of expensive affinity computation

is the immune network theory, aiming at removing similar

antibodies by means of a suppression technique. The

resulting search algorithm would combine the memory and

self-adaptation features of the immune system.

Finally, an adaptive choice of the better surrogate model

for each different situation is an important research avenue.
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Fig. 13 Boxplots for functions f19 to f21
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Fig. 14 Boxplots from the results for the function f22
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