
RESEARCH PAPER

MENNAG: a modular, regular and hierarchical encoding
for neural-networks based on attribute grammars

Jean-Baptiste Mouret Æ Stéphane Doncieux

Received: 17 December 2007 / Revised: 30 March 2008 / Accepted: 25 July 2008 / Published online: 25 September 2008

� Springer-Verlag 2008

Abstract Recent work in the evolutionary computation

field suggests that the implementation of the principles of

modularity (functional localization of functions), repetition

(multiple use of the same sub-structure) and hierarchy

(recursive composition of sub-structures) could improve

the evolvability of complex systems. The generation of

neural networks through evolutionary algorithms should in

particular benefit from an adapted use of these notions. We

have consequently developed modular encoding for neural

networks based on attribute grammars (MENNAG), a new

encoding designed to generate the structure of neural net-

works and parameters with evolutionary algorithms, while

explicitly enabling these three above-mentioned principles.

We expressed this encoding in the formalism of attribute

grammars in order to facilitate understanding and future

modifications. It has been tested on two preliminary

benchmark problems: cart-pole control and robotic arm

control, the latter being specifically designed to evaluate

the repetition capabilities of an encoding. We compared

MENNAG to a direct encoding, ModNet, NEAT, a multi-

layer perceptron with a fixed structure and to reference

controllers. Results show that MENNAG performs better

than comparable encodings on both problems, suggesting a

promising potential for future applications.

Keywords Modular neural-networks �
Evolutionary algorithms � Evolutionary robotics �
Attribute grammars

1 Introduction

Engineers and software developers make great efforts to

subdivide their creations into sub-entities which can be

reused and combined. The similarity between this approach

and biological evolution was famously emphasized by

Simon [56] with the parable of the two watchmakers. The

first craftsman constructed watches so that each part

depended on the others. As a result, if he happened to be

interrupted during assembly, the watches fell to pieces. The

second watchmaker adopted a modular method by dividing

the watch into several sub-parts. Simon then shows that the

first one’s chances of completing a watch are very slim

indeed when compared to the second one’s, so demon-

strating that nature would have followed a similar path.

Since the publication of this seminal paper, modularity has

been widely recognized as an important feature of both

living organisms [26, 61] and artifacts. Many authors

suggest that a modular design could increase both the

evolvability and scalability of evolved systems [61, 62]. In

neuropsychology, double dissociation studies [60], in

which task deficits are mapped to brain damages, largely

suggest a modular organization of animals’ brain. This

hypothesis have been recently refined using functional

magnetic resonance imagery (fMRI [1, 30]) to, for

instance, analyze the object-vision pathway [2].

Recent papers in the evolutionary computation field [28,

33, 42] have clarified the modularity concept by associating

it with regularity (sometimes called repetition) and hier-

archy. Modularity is defined as the structural localization

of function that enables a group of elements to be handled

as a unit. In an evolutionary context, this is related to the

building block hypothesis [27]. Regularity is the repetition

of similar sub-parts in a structure, making it more

compressible. Hierarchy is the recursive composition of

J.-B. Mouret (&) � S. Doncieux

Université Pierre et Marie Curie, Paris 6, FRE 2507, ISIR,

4 place Jussieu, 75005 Paris, France

e-mail: jean-baptiste.mouret@isir.fr

123

Evol. Intel. (2008) 1:187–207

DOI 10.1007/s12065-008-0015-7

sub-structures. Current engineering practices, biological

observations [1, 26, 61] and recent evolutionary algorithm

experiments [28] support the hypothesis that these three

features are required in order to evolve complex systems.

There is no doubt that neural networks constitute such

complex systems. They have proved their efficiency in

many situations but are confronted to scalability and

evolvability problems which could be addressed with a

modular approach. Evolutionary robotics provides numer-

ous examples of such situations, for instance when several

legs have to be moved in a similar and synchronized

manner [38], or when the wings of an artificial bird have to

be carefully controlled [49]. In this work as in many other

instances, complex neuro-controllers with unknown opti-

mal topologies are sought.

Though many papers have described methods to evolve

modular neural networks [3, 5, 14, 18, 24, 54], it would seem

that none of them proposes a process exhibiting the three

previously mentioned features for arbitrary networks. In this

article, we describe a new neural network encoding scheme

called modular encoding for neural network based on attri-

bute grammars (MENNAG) that allows genetic operators to

manipulate modules, repeat them, and hierarchically com-

bine them. While we have focused our work primarily on the

evolution of neural networks, the encoding could be easily

adapted to evolve any graph structure. Modules are explic-

itly modeled in the genotype, noticeably because the

emergence of modularity is a large debate [6, 34, 43] as it

does not emerge in many evolutionary simulations [4].

As previously mentioned, many papers describe methods

to evolve the topology of neural networks. Unfortunately,

the most efficient of these systems involve a large and

complex source code (often not available) as well as many

implementation details neither not described nor justified in

the papers. This complexity prevents researchers to easily

re-implement other encodings to confirm the presented

results. Moreover, it makes difficult the exploration and

evaluation of variants of the encodings to distinguish its

crucial features from the small refinements. In a few words,

it is currently difficult to base future work on the literature

because of the lack of a solid basis. Hussain [31] made a

step forward to the establishment of a formalism for neural

network encodings by demonstrating how some published

encodings can be formally expressed using attribute gram-

mars [36], a formalism designed to specify both the syntax

and the semantics of programming languages. Following

Hussain’s proposition, the encoding we propose in this

article is based on abstract syntax trees (AST), similarly to

[24, 44, 38], which are described and interpreted using an

attribute grammar.

We assessed the performance of the proposed encoding

by comparing results with three current methods from lit-

erature [14, 58, 64]; on the classic cartpole problem [16,

21, 22, 32, 47, 52, 58, 64], and on the control of a planar

robotic arm, which requires repetition of the same struc-

ture. To our knowledge, only a few papers have attempted

to benchmark the available methods to evolve neural net-

works [23, 25, 32, 55, 58].

This paper is organized in seven parts. First, we briefly

review the literature concerning the evolution of neural

networks. Next, we introduce the new encoding scheme

followed by the associated operators. The fourth part

describes the results of each of the compared methods on

the cartpole problem. Then results concerning the robotic

arm problem are presented. A short discussion and some

ideas about future work xconclude this paper.

2 Evolving neural networks

As pointed out by Yao [65], evolution can be involved in

the design of a neural network at three different levels:

synaptic weights choice (or more generally parameters

choice), topology design and learning rules selection. In

this paper, we are primarily interested in methods that

evolve both synaptic weights and neural network structure,

without any restriction on the reachable topologies. Two

kinds of encoding strategies have been explored [37]:

direct and indirect encodings. With a direct encoding, there

exists a bijection between genotype and phenotype so that

each neuron and each connection appears independently in

the genome. An indirect encoding is a more compact rep-

resentation; for instance, using development rules. More

recently a new kind of encoding has been proposed:

implicit encodings. These encodings are based on an

analogy with gene regulation networks. The genome is a

sequence of characters where specific tokens delimit neu-

rons’ description [45, 46]. These encodings seem to

facilitate the evolvability of neural networks [53], but their

ability to generate modular networks has not been studied

yet. Yao [65] and Cantu-Paz and Kamath [8] provide a

large overview of the combination of neural networks and

evolutionary algorithms in a broader context.

Many systems have been suggested to directly encode a

neural network. Binary strings have been used to describe a

connectivity matrix [48] or variable-length lists of neurons

and connections [9]. Some other authors have used a

sequence of parameters [52]. Mutation of these genomes

can easily be defined in most cases, but cross-over is sel-

dom used due to the complexity of combining graphs

efficiently. NEAT [58] offers an original solution by the

introduction of innovation numbers, markers uniquely

attributed when a new connection is created during the

evolutionary process. These integers are employed to

exchange similar connections— because historically

derived from the same mutation and consequently

188 Evol. Intel. (2008) 1:187–207

123

supposed to share a common functionality—during the

cross-over. Such numbers avoid the need to run compli-

cated graph-matching algorithms. Moreover, these

numbers can be used to compute a distance that is exploited

to create ecological niches [12], aimed at preserving

diversity. Although these direct encodings gave good

results on simple problems, they cannot generate hierar-

chical regular and modular neural networks.

During biological development, the complex process

that links DNA code to phenotype allows the reuse of the

same gene in many contexts, and many pleiotropic effects.

This compactness makes it possible to describe complex

individuals with comparatively little information. Indirect

encodings try to broadly copy this principle by using var-

ious generative representation schemes. The graph-

generating grammar, introduced by Kitano [35], used

rewriting rules on the connectivity matrix. This research

was pursued by Gruau who defined the cellular encoding

[24] in which a chromosome is a development program

syntactically specified by a context-free grammar.

Instructions in this language are neuron-centered: they

divide neurons in different manners, like a mitosis, and

create connections between them. The representation in the

form of an AST allows us to employ the genetic operators

defined for genetic programming [39], such as, for

instance, sub-tree swapping. Drawing inspiration once

again from genetic programming, Gruau added some

primitive automatically defined functions (ADF). None-

theless, as highlighted in [44], swapping two sub-trees in

cellular encodings is not the equivalent of swapping two

sub-networks in the phenotype, because the instructions are

execution-order dependent. Moreover, Gruau does not

provide any elegant way to specify synaptic weights. This

led Luke and Spector to define a similarly inspired

encoding, but edge-based instead of node-based. The same

approach has been followed in [29], in which the authors

explored body-brain evolution by combining L-Systems

[41] and edge encoding. At the same time, SGOCE [38]

extended cellular encoding by situating cells in a geometric

substrate and in two or three dimensions, thus enabling

development instructions to take account of the relative

positions of neurons in the substrate.

The concept of geometric substrate has also been

exploited in [7] where an axon growth process was pro-

posed. The genotype is made up of a list of cells, each one

of them containing parameters such as the length of the

axon or the development angle. Vaario [17] relied on

another development scheme on a plane by explicitly

taking into account the environment. In this model, each

cell observes its neighborhood to execute one or several

production rules. More recently, D’Ambrosio and Stanley

[10] and Gauci and Stanley [20] exploited NEAT to evolve

compositional pattern producing networks (CPNNs), a

development abstraction able to represent repetitive pat-

terns in a Cartesian space. These CPNNs are used to

compute the connectivity and the synaptic weights between

neurons situated on a plane.

The tree structure and the substrate concept are

implicitly modular but, to our knowledge, no experiments

have been carried out to evaluate the modularity of the

networks obtained using the encodings described above.

Repetition has been explored by Gruau [24] using a pre-

defined number of sub-structures. It seems that with these

encodings, hierarchy has never been studied explicitly.

An explicit repetition mechanism could be applied in

order to efficiently reuse a sub-network or to exchange it

during the cross-over, as proposed in the ModNet encoding

[15]. A chromosome is made up of a list of model–modules,

a list of modules and a list of links between those modules.

The list of modules is constituted of model–modules,

directly encoded, which can thus be used several times in

the same network. Modules have only one input and one

output. The cross-over is defined as an exchange of model–

modules between chromosomes. Modular NEAT [54]

constitutes another recent attempt to explicitly use modules.

Modules are sub-networks encoded with NEAT that evolve

symbiotically with a population of blueprints which specify

how to combine them. Since modules cannot contain other

modules, hierarchy is not present and, as a consequence, the

complexity of modules is arbitrarily chosen (a few neurons

in both cases). So far, ModNet has been successfully used to

evolve controllers for cart-poles, lenticular blimps [15], and

flapping-wing animats [49]. ModularNEAT has been tested

on a simplified board game, demonstrating substantially

better performance than NEAT.

The implementation complexity of these methods seems

to have limited empirical comparisons and the number of

problems on which they have been evaluated. Grönroos

[23] compared a direct encoding, the graph-generating

grammar [35], to the substrate-based encoding proposed in

[50]. Working on the encoder problem and a classification

task, the author’s conclusions were similar to Kitano’s: that

the best performances on the encoder problem were

achieved when using the graph grammar. However, he

obtained the best results for the classification task with a

direct encoding. Furthermore, Siddiqi [55] concluded that a

properly set up direct encoding can be as efficient as Kit-

ano’s encoding on the encoder. Cellular encoding has been

compared to direct encoding with a fixed topology in

relation to the cartpole problem (see Sect. 4) and its vari-

ants. Both encodings led to working results but cellular

encoding required less knowledge from the user. In [58],

the number of evaluations required by NEAT has been

compared to the numerical results published in [24]. The

authors concluded that NEAT required about 25 times

fewer evaluations than cellular encoding to obtain similar

Evol. Intel. (2008) 1:187–207 189

123

results. Recently, Gomez et al. [22] compared several

encoding schemes for neural networks on variants of the

cartpole problem. The best results were obtained with

topology-fixed methods, then by NEAT, cellular encoding

ranking last.

This lack of precise comparison stems from the diffi-

culty to implement most neural network encodings. The

reasons are at least twofold: the complexity of the algo-

rithms, which often have many parameters and an

incompletely described inner working, especially in short

articles, and the difficulty of implementation. Both prob-

lems highlight the need for a common formalism that might

lead to generic tools, making the implementation and

testing of proposed algorithms more straightforward. The

formalism introduced by Hussain [31], based on attribute

grammars [36], may fulfill this need. This extension of

context-free grammars adds the capability to formally

specify the semantics of a language. Each symbol is linked

to a set of attributes and each production rule to a set of

evaluation rules of these attributes (Figs. 1, 2). Attributes

are divided into two distinct sets: synthesized attributes,

which are the results of the update rules (and are computed

from the terminals to the root symbol), and inherited

attributes, whose value is issued from the parent node (and

are consequently computed from the root to the terminals).

Many algorithms have been developed to evaluate these

attributes [51].

Individuals generation and development involves the

three following steps:

• If the individual has to be randomly generated (at the

beginning of the evolutionary process), the grammar

makes it possible to generate a syntactically correct

development program (a tree); if the individual is the

result of a cross-over, the grammar is used to choose

the crossing point without breaking the syntax.

• Once the tree has been generated, the attributes are

evaluated.

• The list of connections and the list of neurons are two

synthesized attributes of the start symbol used to build

the neural network.

The operators used in genetic programming can be used

to evolve programs described by an attribute grammar.

Hussain showed that a large class of neural network

encodings can be formally expressed with these grammars,

noticeably cellular encoding and its variants. Nonetheless,

some encodings such as, for instance, NEAT, would

probably be hard to express with such formalism because

of their dependency on the evolutionary algorithm.

We implemented this in SFERES1 [40], a software

framework dedicated to evolutionary robotics experiments.

3 MENNAG: a modular encoding for neural networks

Let us first list our objectives in creating a new encoding

scheme:

1. to encode all topologies (closure property);

2. to be at least as efficient as the current encoding

schemes, particularly on problems of evolutionary

robotics;

3. to enable modularity, hierarchy and regularity in

neural-networks, in the hope that these properties will

improve evolvability and be able to cope with more

complex problems than do current encodings;

4. to implement an efficient way of exchanging sub-

networks during cross-over;

Fig. 1 Example of an attribute

grammar which defines a

language to add integers. The

attributes res are synthesized, id
are inherited. The result of the

evaluation of programs is the

value START.res. id attributes

are only shown to illustrate

inherited attributes behavior

Fig. 2 Example of an abstract syntax tree for the expression ‘‘2 ? 3

? 6’’, using the language defined by the attribute grammar of Fig. 1.

Attributes are computed for each node, resulting in START.res = 11 1 http://sferes.lip6.fr.

190 Evol. Intel. (2008) 1:187–207

123

http://sferes.lip6.fr

5. to be as formal as possible in order to allow easy re-

implementation by other researchers and facilitate the

exploration of variants.

ModNet and ModularNEAT enable modularity and

repetition but are not formally specified and do not work

with hierarchy of modules. Moreover, ModNet is limited to

modules with only one input and one output. Cellular

encoding and edge-encoding can be good inspiration

sources, because they can be formalized using a context-

free grammar, but their efficiency to allow repetition,

modularity and regularity has not been demonstrated. The

need to formalize and the possibility of exploiting tree-

based genetic operators suggest using the framework

described by Hussain. It is possible, with a correctly

designed attribute-grammar, to ensure that exchanging a

sub-tree corresponds to exchanging a sub-network.

Consequently, in this work we defined a new encoding

scheme based on an attribute grammar that explicitly

enables modularity, hierarchy and regularity. We called the

new encoding MENNAG. Moreover, we had to create a

new mutation operator, less destructive than the one used

by Hussain.

Figure 3 outlines the different steps from MENNAG’s

attribute grammar to a modular, repetitive and hierarchical

neural network. The genetic operators and the random

generation of individuals rely on the MENNAG grammar

to create syntactically correct parse trees (genotypes). The

attributes are then evaluated to create a list of neurons and

a list of connections, which is subsequently translated to a

neural network. The following section details how the

designed grammar defines individuals with the desired

properties.

3.1 The mechanisms of the grammar

In this section, we present the main mechanisms used in

our attribute grammar. The complete grammar can be

consulted in the ‘‘Appendix’’. As most of the inner work-

ings of the encoding are described by the grammar (except

the mutation and cross-over operators), it appears quite

complex at first glance, which is why we have chosen to

present it step by step.

3.1.1 Neurons

The main structure of MENNAG’s grammar relies on the

non-terminals DIV and CELL, which respectively create a

new module (DIV) and a new neuron (CELL), similarly to

the Cellular Encoding. Each DIV level in the tree defines a

module. These modules can be manipulated (exchanged,

for instance) as independent units. An identifier, coded as a

binary string, is given to each DIV and CELL as a function

of the path within the tree linking it to the root node.2

These identifiers are unique, and enable us to reference a

module or a cell in order to create connections or duplicate

a given module. The corresponding set of rules is depicted

in Fig. 4. A sample syntax tree is shown in Fig. 4b.

3.1.2 Connections

Connections are made up of the identifiers of the neurons

they connect and, contrary to Cellular Encoding, they have

their own creation rules. The identifiers are represented as

bitstrings, seen as constants by the attributes during the

syntax tree interpretation but able to mutate during evo-

lution, thanks to a bit-flip operator. To promote modularity,

each DIV is associated with a list of connections that can

only connect neurons created in the sub-trees of the DIV.3

Synaptic weight is an attribute of each connection, mutated

using Gaussian mutation. A connection is created using the

rule in Fig. 5.

An overall direction can be given to connections to make

networks more feed-forward. To that aim, it is easy to define

rules that produce connections, for example, from the left

sub-tree to the right. The rules are similar to the ones used

for standard connections but ‘‘0’’ is added to the identifiers

of the source neuron before concatenating it with the DIV’s

identifiers; and ‘‘1’’ to those of the target neuron. Thus, the

source neuron is always in the left sub-tree and the target in

the right, so creating an implicit direction in the computa-

tion flow from neurons created in the left part of the tree

toward neurons created in the right. We have defined such a

rule in our grammar, together with a simple rule without this

constraint and tune selection probabilities (see sect. 3.2) so

that these rules may control the aspect of the networks (see

the complete grammar in ‘‘Appendix’’ for more details).

3.1.3 Inputs/outputs

We investigated two different ways to define input/output

(I/O) connections: by creating a list of I/O attached to the

root node, or by linking them to the leaves (i.e. to the

neurons). In the first case, it is easy to ensure that each I/O

is connected since the list is handled globally. But I/O do

not belong to any module, and so cannot be exchanged

during cross-over with the sub-graphs to which they are

linked. Moreover, this approach prevents them from being

correctly handled when a module is duplicated by a clone,

2 For each DIV instruction, ‘‘0’’ is concatenated to its identifier to

obtain that of its left son and ‘‘1’’ for its right one.
3 To obtain this behavior, the identifier of the DIV is passed down to

the CONN symbol. The DIV identifier is then concatenated to the

evolved bit-strings representing source and target neurons, thus

guaranteeing that these connected neurons belong to one the two sub-

trees of the DIV.

Evol. Intel. (2008) 1:187–207 191

123

(a)

(b) (c) (d)

(e) (f)

(h) (g)

Fig. 3 The defined grammar

(a) is used by genetic operators

(b–d) to create new

syntactically correct genotypes,

defined as parse trees (e).

Attributes are attached to each

node of the tree, according to

the grammar. The attributes

START.allC (all connections)

and START.allN (all neurons)

are then evaluated (f). These

attributes are easily transformed

to a neural network (g) by

scanning the two lists. Last, a

modular view of the phenotype

can be built using neurons’

identifiers because they reflect

the modular and hierarchical

structure of the parse tree.

Network (h) exhibits most of

the presented features. Module

000 is repeated to define module

00. These modules are

combined with two other

modules to create the module 0.

This module is itself repeated. A

connection belonging to module

00 links a neuron from module

000 and one from module 001.

Similarly, a connection created

at the top level links neuron

0011 from module 0 to neuron

10000 from module 1. I/O are

randomly swapped during each

clone operation

DIV DIV DIV CONNS
string CONNS.divId = DIV.id
string DIV_1.id = concatenate(DIV_0.id, "0")
string DIV_2.id = concatenate(DIV_0.id, "1")
set DIV.allC = union(DIV_1.allC, DIV_2.allC, CONNS.allC)
set DIV.allNodes = union(DIV_1.allNodes, DIV_2.allNodes)

DIV CELL CELL
set DIV.allNodes = union(CELL_0.node, CELL_1.node)
string CELL_0.id = concatenate(DIV.id, "0")
string CELL_1.id = concatenate(DIV.id, "1")

CONNS CONN CONNS
set CONNS.allC = union(CONNS_1.allC, CONN.allC)

CONNS end
set CONNS.allC = createset()

CONN end

(a)

(b)

Fig. 4 a The main structure of

the MENNAG grammar relies

on a binary tree made of DIV

instructions (modules) as node

and of CELL instructions

(neurons) as leaves. Functions

used to update attributes are

described in ‘‘Appendix C’’.

The attributes of the CONN

symbols are detailed in Fig. 5. b
Example of a syntax tree which

follows the grammar (a)

192 Evol. Intel. (2008) 1:187–207

123

as we will see later. On the other hand, if the I/O are

attached to the neurons, the total number of used I/O is not

available locally, which prevents the control of how I/O are

used in the network. One possible solution might be to

choose each I/O to be connected from a stack.4 This

approach has often been used in genetic programming.

Gruau, for instance, used it to manage connection weights.

The problem is that a mutation or a cross-over has many

side effects, and may in particular imply changes in net-

work parts not described by the modified sub-tree. In our

case, this would mean that exchanging sub-trees would not

correspond to exchanging sub-graphs. We then decided to

link I/O connections to neurons, but without using a stack.

The control of I/O connections is ensured by global con-

straints as we will see in Sect. 3.2.

To define I/O connections, we introduced the following

production rules:

CELL IN OUT
IN end
IN IO in_1
...
IN IO in_k
OUT end
OUT IO out_1
...
OUT IO out_l

for a network with k inputs and l outputs, in_i and out_i

referring to input number i and, resp. output number i.

3.1.4 CLONE

The last important part of MENNAG grammar deals with

the non-terminal CLONE, designed to duplicate sub-net-

works. A CLONE copies a module (DIV), which can

contain itself one or more CLONE. We add the rules:

DIV DIV CLONES CONNS
DIV CLONES DIV CONNS
CLONES CLONE CLONES
CLONES CLONE
CLONE end

The principle of the CLONE consists in copying the list

of neurons and the list of connections of the DIV, while

changing the indices.

Two main issues must be resolved if we are to write the

attribute updates corresponding to these rules: to ascribe

new identifiers to the cloned neurons, while preserving the

structure of the sub-graph and handling the I/O connections

contained in the cloned module. A solution to the first issue

consists in concatenating ‘‘1’’ (or ‘‘0’’ if the CLONE

appears before the DIV) before identifiers of neurons and

before target and source neuron bitstrings. Connections and

neurons, once cloned, can thus be added to the synthesized

attributes allC and allN of the DIV from the left-hand side

of the production rule. These cloned connections and

neurons are handled in the same way as any ‘‘standard’’

(non-cloned) ones.

Handling I/O connections means finding them among

the connections to be cloned and swapping them with

‘‘equivalent’’ ones. Imagine that the same treatment (for

instance, computing a derivative) might be applied to a set

of I/O pairs. For instance, input 1 (I1) should be derived to

compute output 1 (O1), input 2 (I2) to compute output 2

(O2), and so on. If the evolutionary process managed to

create a module able to compute the derivative of input 1, it

ought to be able to duplicate this module and replace I1 by

I2. To obtain this behavior, we must find a way to evolve a

permutation of the I/O for each copy.

These permutations are encoded as a vector of real

numbers. If k is the rank of a real number in the vector

(unsorted) and i its rank in the same vector in ascending

order, then k should be permuted with i. For instance, in the

vector [0.5;0.1;0.7], the rank of 0.1 is 1, the one of 0.5 is 2

and the one of 0.7 is 3. This vector could then be associated

with [2;1;3] which is translated as ‘‘I1 is replaced by I2, I2

by I1 and I3 is not changed’’. This simple way to encode a

permutation allows us to exploit the genetic operators

designed for real numbers optimization [11]. A vector

attribute of evolved floats has thus been added to manage

permutations of inputs and another one to manage per-

mutation of outputs in the CLONE symbol (see detailed

grammar in ‘‘Appendix’’).

CONN end
evofloat weight.value = evolved
bitstring targetNode.value = evolved
bitstring sourceNode.value = evolved
string CONN.targetNode = concatenate(CONN.targetNodeBaseId, target.value)
string CONN.sourceNode = concatenate(CONN.sourceNodeBaseId, node.value)
set CONN.allC = createset(createhash(name="sourceNode", value=CONN.sourceNode, name="targetNode",

value=CONN.targetNode, name="weight", value=weight.value)

Fig. 5 Each connection links two neurons, each identified by a

bitstring which can mutate. To ensure that the source and target

neurons are in the same sub-tree as the list of connections, the

identifier of the DIV is concatenated at the beginning of the identifier

of each neuron. Weights are encoded as real numbers (evofloat), able

to mutate

4 the first connection to input is connected to the first input, etc.

Evol. Intel. (2008) 1:187–207 193

123

The complete grammar is made up of the following

production rules (see ‘‘Appendix’’ for the attributes):

START DIV CONNS
DIV DIV CLONES CONNS
DIV CLONES DIV CONNS
CLONES CLONE CLONES
CLONES CLONE
DIV DIV DIV CONNS
DIV CELL CELL CONNS
CELL IN OUT
CLONE end
CONNS CONN CONNS
CONNS end
CONN ICONN
CONN ICONN
ICONN weight node target
IN end
IN IO in1
IN IO in2
OUT end
OUT IO out1
OUT IO out2
IO weight target

3.2 Genetic operators

Hussain [31] and Gruau [24] suggested the use of genetic

programming operators [39]. However, we found that

substantial improvements could be obtained by slightly

modifying the initialization process and the mutation

operators.

3.2.1 Initial population (Fig. 3b)

A selection probability is assigned to each production rule,

enclosed in brackets within the grammar: for instance: [0.1]

DIV) DIV DIV. In order to randomly create individuals,

the basic algorithm begins with a starting symbol (START

in our grammar) and creates a list of the applicable rules,

similarly to the traditional GROW algorithm used in

genetic programming [39]. The selection probability is then

used to bias the choice of one production rule from the list

of applicable rules. This process is run for each freshly

created symbol until each syntax tree’s branch ends with a

terminal symbol.

Managing the properties of the trees created with this

procedure is difficult. For instance, it can be very useful to

create initial individuals with a specified number of neurons

or with a particular mean number of connections. Further-

more, our local management of I/O connections makes it

difficult to control how inputs and outputs are used. Though

some theoretical analyses of the grammar and more pow-

erful algorithms [19] may provide more elegant solutions,

we chose a simpler method in this work: trees are generated

using the procedure described above and those that do not

follow certain constraints are removed. In our work, we

limited the number of neurons and the number of connec-

tions by forcing them to remain within a given range, (see

‘‘Appendix’’ for typical chosen values). These constraints

are fast to compute once the attributes have been evaluated.

Noticeably, they do not require fitness evaluation.

3.2.2 Mutation (Fig. 3c)

Traditional genetic programming mutation relies on vari-

ants of the GROW algorithm applied to a sub-tree: a node

is randomly chosen and the corresponding sub-tree is re-

generated using the same algorithm as is used to create new

individuals. This modification of the syntax tree is not

translated into small changes of the neural-network. An

ideal mutation should at least allow to add/remove a con-

nection; and add/remove a module clone. On the tree side,

the insertion of a module cloning symbol may be obtained

by adding a DIV level using the rule DIV) DIV

CLONES, for instance. In this example, let us add an

identifier to each symbol to make clearer the correspon-

dence before and after insertion. DIV1 denotes the DIV we

would like to clone. DIV0, the DIV symbol on the left hand

side, would be the father of DIV1. A new DIV, DIV3,

would be inserted and DIV1 would replace the DIV on the

right-hand side of the inserted rule. The CLONES sub-tree

would be generated using the GROW-like algorithm

(Fig. 6). Corresponding grammar-rules are:

Before insertion:

...
DIV DIV DIV
...

After insertion:

...
DIV DIV DIV
DIV DIV CLONES
CLONES ...
...

By generalizing this idea, if an execution order-inde-

pendent language is used then symbols can be safely added

in the tree when there exists a recursive production rule to

generate them. Such symbols include CONNS (CON-

NS) CONN CONNS) and DIV (DIV) DIV CLONES

and DIV) DIV DIV).

A new mutation for the attribute grammar-specified

genomes based on this insertion concept has been designed.

To control its behavior precisely, two new numbers (i1 and

i2) are enclosed in the brackets preceding production rules.

They specify respectively the probability of selecting nodes

Fig. 6 Example of an insertion mutation

194 Evol. Intel. (2008) 1:187–207

123

generated by this rule as insertion points and the proba-

bility to extend the tree using this rule. Here is an example

of a full description of a production rule and the associated

selection probabilities: [0.01, i1 = 0.5, i2 = 0.5] DIV

) DIV CLONES CONNS.

The corresponding mutation operator is implemented by

executing the following procedure:

• randomly select an insertion rule r1 used in the

individual by biasing the choice using i1;

• randomly select a recursive rule r2 which will be used

to extend the tree; the left hand side symbol of r2 must

belong to the right hand side symbols of r1; the

probability i2 is used to bias the choice;

• among the nodes generated using r1, randomly select a

node n1 with the same symbol as on the left hand side

of r2;

• create a new node n2 with the same symbol as n1;

• replace n1 by n2 in the list of sons of the father of n1;

• use r2 to randomly generate the sons of n2;

• replace one of the sons of n2 by n1, in a compatible

place.

A symmetrical mutation, which removes a node instead

of adding one, can easily be derived from the same prin-

ciples. This has been implemented in MENNAG.

Moreover, the traditional genetic programming mutation

can still be used with a low probability to create new sub-

trees.

4 Cart-pole experiment

This encoding was first benchmarked on the classical cart-

pole problem (sometimes referred as pole balancing or

inverted pendulum). This task has been chosen to check

that MENNAG can solve a simple non-modular control

task at least as efficiently as other encodings.

A pole, attached to a cart by a hinge, has to be bal-

anced by moving the cart (Fig. 7). The goal is to maintain

the pole in a vertical position while keeping the cart at the

center of the track. This problem has been used to eval-

uate numerous encoding schemes for neuro-controllers

[16, 21, 22, 32, 52, 58, 64] because it is representative of

a wide class of control problems involving unstable sys-

tems. Contrary to some previous work, we do not

consider the cart-pole problem as solved if the pole does

not fall but only if the controller is able to keep the pole

vertically without oscillating, as a classic proportional-

derivative (PD) controller does. This prevents this task to

be solved with a single neuron [63] and makes it more

challenging. For instance, the path between the input and

the outputs should be as short as possible to react as fast

as possible.

If the angle and the position of the cart are the only

inputs, the controllers have to derive the input signals to

avoid oscillating behaviors. Automatically discovering a

neural-network able to perform such computation is the

main challenge of this problem. In the following experi-

ments, we did not provide the networks with velocities:

pole angle and cart positions were the only inputs. The

networks have a single output, which controls cart accel-

eration.5 Although modular properties are not mandatory to

solve the problem, it has been shown that they may help by

allowing the propagation of a derivative module [15].

Equations enabling the simulation of an inverted pen-

dulum are widely available (e.g., [13, 52, 64]).

These experiments were carried out with the fitness

described in [15]. Let us first define the mean normalized

error for the angle h and the position x during the duration

T:

ehðgÞ ¼
1

T

XT

t¼1

ehðt; gÞ

exðgÞ ¼
1

T

XT

t¼1

exðt; gÞ

where eh(t, g) and ex(t, g) denote the normalized errors at

step t.

The fitness is the sum of two terms, a decimal and an

integer:

f ðgÞ ¼ pðgÞ þ 1

2
ð1� ehðgÞÞ þ ð1� exðgÞÞð Þ

where p(g) denotes the percentage of evaluation time the

pendulum spent before going beyond the boundaries

(±0.2 rad and ±2 m). This fitness, which varies between 0

and 101, ensures that controllers that maintain the cart-pole

within the boundaries have a better fitness than the others,

whatever the sum of errors may be.

Fig. 7 Cart-pole problem. The pole has to be maintained in a vertical

position while keeping the cart as close as possible to the center of the

track

5 Neuron output belongs to the [-1, 1] interval and is mapped to a

force ranging between -10 and 10 N.

Evol. Intel. (2008) 1:187–207 195

123

Many encodings have been tested on the double cartpole

problem [58, 64], in which two poles are attached to the

same cart. We did not benchmark MENNAG using this

task because bootstrapping the evolutionary algorithm is

especially difficult, making the task as much a problem of

random generation and selection pressure than a problem

of encoding. Moreover, our first tests with published en-

codings have shown that in many cases the evolutionary

process was not able to fully solve the simple cart-pole

task, being only able to prevent the pole from falling.

4.1 Results

We ran a set of 15 experiments for each encoding using the

fitness previously described, a population of 100 individuals

and a standard steady-state evolutionary algorithm. Figure 8

shows the obtained fitness with the MENNAG encoding,

ModNet, a direct encoding similar to [52] and NEAT, using

the original source code, (see ‘‘Appendix D’’ for detailed

parameters used in this comparison. For reference, we added

the fitness obtained using classic P and PD controllers tuned

using a basic evolutionary search and those obtained with a

simple multi-layer perceptron with one hidden layer (3

hidden neurons, 18 weights). An implementation of the

cellular encoding based on the work of Hussain [31] was set

up but we did not manage to get solutions with an efficiency

at least similar to published results.

For all the encodings, the synaptic weights were enco-

ded by a real number with Gaussian mutation.

Results are plotted on Fig. 8. NEAT obtains working

controllers, with a fitness greater than 100, at the first

generation. This is not surprising since it starts with a

topology capable of emulating a P controller. While some

MENNAG runs get good results in a few generations,

about 60 generations are needed to obtain a fitness greater

than 100 for all the runs. The most surprising result is the

low performance of the multi-layer perceptron (MLP):

despite the smaller search space, more generations are

needed to achieve working controllers. This highlights an

interesting case where evolving a topology is more efficient

than using a fixed one. One of the main reasons may lie in

the incremental path followed by evolution while evolving

topologies. As a simple proportional link is sufficient to

prevent the pole from falling, the individuals of the first

generations use very simple networks with a few weights to

tune. Evolution then improves behavior by adding neurons

and connections. The multi-layer perceptron, on the con-

trary, starts with a complex and poorly-adapted topology

with 18 weights to optimize simultaneously.

The results obtained with NEAT may be surprising

given previously published results [58]. Although we tried

to find the best parameters, we cannot claim that it would

be impossible to improve the efficiency of NEAT on the

investigated problem by using a different set of parameters.

In [58], the authors investigated the cart-pole problem and

their findings suggested than NEAT was very efficient in

solving it. However, they did not focus their attention on

fine control; they concentrated on the cartpole remaining in

the boundaries and consequently ‘‘solved’’ the problem. In

our benchmarks, NEAT led to working controllers in all

runs, confirming the published results, but the more finely

observed behavior was not as good as that obtained with a

PD controller or MENNAG. We tried to use more gener-

ations but it did not improve the results.

All the encodings led to better fitness than the simple P

controller but only MENNAG managed to produce at least

one neural network as good as a PD controller, which

prevents the pole from oscillating. Overall, MENNAG led

(a)

 100.76
 100.8

 100.84
 100.88
 100.92

 100.96
 101

direct-base

m
odnet

m
lp

m
ennag

neat
P PD

Fitness values for 15 runs of 500 generations

min median max

(b)

Fig. 8 a Mean fitness over 15 runs for the different encodings. b Min,

median and max fitness values over 15 runs of 500 generations, for

each encoding. No initial module was given to ModNet. P reference

controller prevents the pole from falling, but cannot reduce the

oscillations in the pole angle or in the cart position. PD reference

controller quickly centers the cart with the pole in an upward position.

All differences are statistically significant (p \ 0.05, Wilcoxon–

Mann–Whitney test ; see ‘‘Appendix A’’), except between MENNAG

and ModNet (p = 0.074)

196 Evol. Intel. (2008) 1:187–207

123

to significantly better results than the other methods.

ModNet found some good controllers but certain runs

failed even to generate a good P corrector.

Figure 9 depicts the best neural network obtained with

each encoding. The genotype corresponding to the neural

network obtained with MENNAG is seen in Fig. 10.

Although this structure exploits the modular and hierar-

chical features of MENNAG, it has not created

‘‘derivative’’ modules and cloned them from one input to

the other. Instead, it built the whole structure by cloning a

simple module six times and by adding connections

between the cloned modules.

MENNAG was able to generate several neuro-controllers

as efficient as a PD-controller and more than half of the runs

lead to better results than the best individuals obtained using

the other encodings. Although the difference in fitness

between the different solutions is small (a few hundredths),

the qualitative difference on the behavior is not negligible:

100.858 corresponds to an oscillating behavior with an

increasing amplitude, while 100.965 corresponds to a fast

control without any oscillations at all (Fig. 11). At any rate,

the reasons for this difference are unclear and require further

study. Although we tried to tune the different encodings to

obtain the best possible results, it is possible that some slight

modifications reduce the gap between the solutions. The best

neural networks generated with MENNAG use modularity,

hierarchy and regularity, but it remains to be proved whether

these features are effectively critical for this application, or

000010+01

011

-0.032-0.032

000011+01

-0.316

12

-0.9141000010+0

-0.105

-0.868

010

-0.316

1010+0

0.5195

-0.914

-0.868

001010+01

001011+01

-0.316

1001010+0

0.0134

-0.914

-0.868

1011+0

-0.032 -0.032

1000011+0

-0.316

-0.914

-0.868

-0.316

-0.914

-0.868

1001011+0

-0.316

-0.914

-0.868

i0

-0.118

-0.118

i1

-0.118 -0.118

-0.118 -0.118

o0

i0

i1

-1.46636

o0

33.0069

49

-1.41772

107

1.43369

135

-1.27624

148

0.856639

5.80228

-2.31768 -1.97401

-7.3511

0.15274

3.87582

1.33205

0.0215277

-0.322814

-1.80468

1.26655

1.04091

-5.56783

-0.295178

2.72241

-1.40482

-0.919904

 3

 4

-0.57

 0

4.75

8.06 6.25 -6.14

o0

 2

 5

-0.80

 1

3.37

6.75 4.97 -8.39

3.37 6

-0.80

6.75 4.97 -8.39

i0

i1

i0

5

0

o0

0

3

6.27 | 3

7

5.36 | 9

0

-3.22 | 8

i1

2

0

6.47 | 13

6.36 | 11 -3.58 | 15

-9.93 | 18 7.65 | 4

-0.63 | 6

1

9.50 | 14

0.42 | 5

10 | 16

8

-9.65 | 24 3.40 | 7

9

-3.46 | 21

3.38 | 19

2.63 | 10

-0.80 | 12

6

-0.00 | 17

9.05 | 20

-5.62 | 22

4 -1.73 | 23

(a)

(c)

(b)

(d)

Fig. 9 Best neural networks after 1,500 generations with the

compared encodings, for the cart-pole problem. i0 is the angle input

and i1 the position input. o0 is the network output. a MENNAG

(fitness: 100.967); b NEAT (fitness:100.89); c ModNet (fitness:

100.93); d direct encoding (fitness: 100.899)

Evol. Intel. (2008) 1:187–207 197

123

whether the good performances can be explained by other

factors, like connections management, for instance.

We will now focus on another experiment in which the

modular aspect of MENNAG should be even more decisive

and more easily observed.

5 Robotic arm experiment

One of the main features of MENNAG is its ability to

exploit the same sub-structure several times to solve sim-

ilar sub-tasks. To evaluate the efficiency of this behavior,

we designed a toy-problem based on the control of a simple

robotic arm with three degrees of freedom (Fig. 12a) and

simulated with the widely used dynamics library ODE.6

The evolved neural networks have to drive each motor to a

target position T = (a1,a2,a3) while knowing only T and its

current position P = (b1, b2, b3). The motivation in the

choice of this problem is twofold. First, the benefit of a

repetitive encoding is obvious given the similarity between

the degrees of freedoms. MENNAG should easily find

good solutions whereas direct encodings are expected to be

less efficient. Second, this problem is a simplified instance

of many robotics tasks in which several degrees of freedom

have to be controlled using similar strategies. Legged

robots, in which each leg looks like the other ones, and

industrial robot arms are simple examples.

The robotic arm problem can easily be solved by com-

puting the difference between ai and bi (i [[1;3]) to obtain

the angular position error. This error can then be multiplied

by a proportional factor to create a basic proportional

controller (Fig. 12b). The same sub-network can be used to

control each degree of freedom, making the problem

completely decomposable. It should be noted that a

network combining three times the structure of Fig. 12b

should efficiently solve the problem. Such a network is a

sparsely connected multi-layer perceptron and, conse-

quently, a multi-layer perceptron should be able to control

the arm.

This task is surprisingly hard for evolved neuro-con-

trollers. For each degree of freedom, the algorithm has to:

• choose the right pair of inputs to connect to the right

output;

• choose exactly opposite weights to compute a

difference;

• find a proportional coefficient.

Most evolutionary algorithms for neural networks could

easily find such a solution for one degree of freedom.

However, if they are unable to repeat the structure previ-

ously found, they would have to find it three times over in

the same network. The ability to manipulate modules in

MENNAG should help to discover the ’difference’ struc-

ture once and go on to clone it twice.

The chosen fitness is the normalized accumulation of

errors between ai and bi, additioned for each degree of

freedom:

FðgÞ ¼ � 1

3T

Xi¼3

i¼1

Xt¼T

t¼0

jaiðtÞ � biðtÞj

where i = 1, 2, 3 and T denotes the number of time-steps.

To ensure that the obtained controllers are able to gener-

alize, five different sets of target position are used during

each evaluation procedure.

5.1 Results

We ran a set of 15 experiments using the fitness

described above, a population of 200 individuals and a

standard steady-state evolutionary algorithm. A total of

START

DIV CONNS

DIV CLONES CONNS

CLONES DIV CONNS

CLONE CLONES

end CLONE

end

CELL CELL CONNS

IN OUT

IO in1

weight target

IO out1

weight target

IN OUT

end IO out1

weight target

CONN CONNS

ICONN

weight node target

end

CONN CONNS

ICONN

weight node target

CONN CONNS

ICONN

weight node target

end

CLONE

end

end

CONN CONNS

ICONN

weight node target

CONN CONNS

ICONN

weight node target

CONN CONNS

ICONN

weight node target

end

Fig. 10 Syntax tree that generates the neural-network of Fig. 9a

6 http://www.ode.org.

198 Evol. Intel. (2008) 1:187–207

123

http://www.ode.org

250 generations and the same parameters were used as in

the former experiment, except concerning the number of

I/Os.

Results are shown on Fig. 13. Among the investigated

encodings, only MENNAG managed to reach the perfor-

mance of a simple controller where each degree of freedom

is connected to a P corrector. Moreover, the median values

for the 15 runs show that these performances are obtained

most of the time. The direct encoding and ModNet found

2-DOFs controllers while NEAT found no good P

controller.

Some preliminary tests have been conducted with more

degrees of freedom to understand how the proposed

method scales up. While some good controllers have been

found with four DOFs using MENNAG, the performance

quickly decreases with more DOFs because of the combi-

natorial problem of selecting the good I/Os for each

module. More details about this topic are available in the

discussion section.

The evolution of the weights of a simple multi-layer

perceptron with one hidden layer gave very good results

and is given as a reference. While this performance may be

surprising, it must be emphasized that the search space is

much smaller when topologies are not explored. A brief

analysis of the robotic arm easily led us to conclude that it

should be efficiently controllable by a feed-forward neural

network. However, by fixing the topology, we added a lot

of information that was not available to the methods that

were seeking efficient topologies.

Figure 14 is a sample of the best neural networks

obtained with each encoding.

Figures 15, 17 and 16 detail one of the best control-

lers, obtained with MENNAG. A P-like structure has

been found then repeated once using a CLONE instruc-

tion, demonstrating the usefulness of MENNAG’s

repetition instructions. This module is then duplicated

using another CLONE instruction, at a higher level. In

consequence, the same sub-structure is repeated four

times (Fig. 16). Most successful networks observed did

not succeed in obtaining precisely three instances of a P

module but relied on a hierarchy of clones to obtain four

instances. This behavior could possibly be improved by a

finer tuning of the selection and insertion probabilities,

but we opted to keep the same parameters for the two

problems.

5.2 Lesion experiments

In order to evaluate the contribution of each component of

the proposed system to the overall performance, we

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

 0 100 200 300 400 500
theta x

-0.25

 0

 0.25

 0.5

 0.75

 0 100 200 300 400 500
theta x

(a) (b)

Fig. 11 Typical behaviors of the position x of the cart and of the

value of 0 for a 100.858 fitness (a) and a 100.965 fitness (b). At t = 0,

the poles starts from 0 = 0.01 rad and x = 0.5 m. The controller has

to drive the pole to 0 = 0 rad and x = 0 m. Controller (a) avoids the

pole from falling during this evaluation, but the increasing amplitude

suggests an imminent fall

(a) (b)

Fig. 12 a Robotic arm with three degrees of freedom. The controllers

have to move each hinge to reach the target position as fast as

possible, without oscillation. The robotic arm is simulated using a

realistic dynamic simulator. b Example of a typical P controller for

one degree of freedom

-0.65
-0.6

-0.55
-0.5

-0.45
-0.4

-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

 0 50 100 150 200 250

direct enc.
MENNAG

ModNet

NEAT
MLP

-0.5

-0.4

-0.3

-0.2

-0.1

 0

direct

m
ennag

m
odnet

neat
M

LP
P-1

P-2
P-3

Fitness value for 15 runs of 250 generations

min median max

(a) (b)Fig. 13 a Mean fitness over 15

runs for the robotic arm

experiment and the different

encodings. b Fitness obtained

after 250 generations. P-1 is the

fitness obtained using one P

controller, P-2 using two P

controllers, P-3 using three P-

controllers. All differences are

statistically significant except

between MENNAG and the

MLP (p B 0.02, Wilcoxon–

Mann–Whitney test; see ‘‘Table

2 in Appendix A’’)

Evol. Intel. (2008) 1:187–207 199

123

performed robotic arm experiments while successively

removing each key part of MENNAG: CLONE instruction,

insertion mutation and cross-over. Moreover, we tried to

add the ‘‘random tree’’ mutation often used in genetic

programming. This approach can be assimilated to the

lesion experiments executed by biologists to understand

living systems.

Results are plotted on Fig. 18. Best fitnesses were

obtained with all the operators enabled excepting the

random tree mutation. This mutation was used with a low

i0

1

o0 o1

i1

3

-0.99 | 8

8

2.89 | 15

i4

0

5

-1.03 | 7

2

2.07 | 13

i5

-0.35 | 10

0.87 | 14

o26

0.46 | 9

4 -0.82 | 111.36 | 12 11

7

-1.97 | 16

 6
 0-1 (0, 0) 3-1 (0, 3)

 7
 1-1 (0, 0) 4-1 (0, 3) 5-1 (0, 0) 0-2 (0, 0) 1-2 (0, 0) 6-2 (0, 1)

-5.91
 0-1 (0, 0) | 0

 0
 3-2 (0, 3) 8-2 (0, 1)

5.19
 3-1 (0, 3) | 7

-5.91
 1-1 (0, 0) | 3

 2
 4-2 (0, 3) 5-2 (0, 0)

5.19
 4-1 (0, 3) | 8

-5.91
 5-1 (0, 0) | 9

 9
 0-3 (0, 0)

-8.64
 0-2 (0, 0) | 1

-2.53
 0-3 (0, 0) | 2

 10
 1-3 (0, 0)

-8.64
 1-2 (0, 0) | 4

-2.53
 1-3 (0, 0) | 5

 5
 2-1 (0, 1)

 1
 2-2 (0, 1) 7-2 (0, 1)

-5.19
 2-1 (0, 1) | 6

o1o2

o0

 11
 5-3 (0, 0)

-8.64
 5-2 (0, 0) | 10

-2.53
 5-3 (0, 0) | 11

 8
 6-1 (0, 1)

-5.19
 6-1 (0, 1) | 12

 4
 7-1 (0, 1)

-5.19
 7-1 (0, 1) | 13

 3
 8-1 (0, 1)

-5.19
 8-1 (0, 1) | 14

i0 i1i2

i3

i4i5

si1

o7

-1.42785

o8

1.16654

o9

0.0840695

64

1.66825

1.41935

-3.14144

-0.157944

-0.506647

si2

-0.989382

0.436644

-2.29584

-1.42766

si3

-5.81529

-1.30534

-0.536686

1.57654.39779

-5.53651

1.68313

0.103123

si4

0.727076

2.72054

1.26737

-0.65562

si5

2.01614

-0.882583

-1.13337

-2.70713

-3.0808 -3.07444

3.57277

-17.177

2.20117

si6

1.17135

2.20933

0.0720336

-1.45475

6.87012

4.55323

-4.58467

(a) (b)

(c)

Fig. 14 Neural networks obtained with the different encoding on the robotic arm problem. a Direct encoding (fitness: -0.161155); b ModNet

(fitness: -0.188119); c NEAT (fitness: -0.395931)

110

111

-0.614

9

0.2797

-0.440

10110+11

10111+11

-0.614

10

0.2797

-0.440

0110+1

0111+1

-0.614

0.2797

-0.440

010110+1

010111+1

-0.614

8

0.2797

-0.440

i3

0.3557

i2

0.8745

i5

0.3557 0.3557

i4

0.8745 0.8745

i0

0.3557

i1

0.8745

o0o1 o2

Fig. 15 Example of a 3-DOFs controller evolved using MENNAG

with a fitness of -0.102298. Identifiers with a ‘‘?’’ symbols are used

to track cloned modules. For instance, the identifier ‘‘10110 ? 11’’

means that this neuron is part of a cloned version of the module ‘‘11’’.

In this network, a P-like corrector connecting i2, i3 and o1 (module

11x, on the left side) has been cloned to link i5, i4 and o3 (module

1011x). These two modules have then been duplicated at level 1 to

obtain the right side of the neural network

200 Evol. Intel. (2008) 1:187–207

123

probability, so we did not expect it to have a strong

influence on the results. Nevertheless, it does not seem to

have improved them. Designed to maintain a diversity in

the population, this operator may still be useful in other

problems. The three degrees of freedom cannot be con-

trolled if the tree’s main components—insert mutation,

CLONE and cross-over—are not used. If we consider the

structure of the problem under investigation, the need for

a CLONE operation seems obvious. The insertion muta-

tion operator allows us to clone a module that has already

been optimized, or at least efficiently tuned by evolution.

CLONE and this operator are then complementary and

reach their full potential when used simultaneously.

Contrary to some other encodings that do not rely on

cross-over, this operator proved to be useful in the pro-

posed encoding. To know whether functional modules

were exchanged, or whether cross-over was only used as

a basic exploration method would require further

investigations.

6 Discussion

This paper aims at two main contributions: proposing an

efficient modular, regular and hierarchical encoding for

neural network and expressing it using an appropriate and

flexible formalism. Both ideas lead to good results but

underline some difficulties.

MENNAG performed better than the comparable enco-

dings we tested on the two simple tasks we investigated.

More benchmarks are needed to gain a better view of what

makes MENNAG more efficient. Modularity and the

repetition features of MENNAG were demonstrated.

Hierarchy was enabled in the presented experiments,

110

111

-0.614 9

0.2797

-0.440

10110+11

10111+11

-0.614 10

0.2797

-0.440

0110+1

0111+1

-0.614

0.2797

-0.440

010110+1

010111+1

-0.614 8

0.2797

-0.440

i3

0.3557

i2

0.8745

i5

0.3557

0.3557

i4

0.8745 0.8745

i0

0.3557

i1

0.8745

o0o1 o2

Fig. 16 Re-arrangement of the

neural network depicted on

Fig. 15 to obtain a better view

of the repeated sub-structures.

The right neural network has a

vertical axis of symmetry. The

two left networks differ only by

their I/Os

START

DIV CONNS

CLONES DIV CONNS

CLONE

end

CLONES DIV CONNS

CLONE

end

CELL CELL CONNS

IN OUT

IO in4

weight target

IO out2

weight target

IN OUT

IO in3

weight target

IO out2

weight target

CONN CONNS

ICONN

weight node target

end

end

end

end

Fig. 17 Syntax tree (genome)

that generates the neural

network of Figs. 15 and 16

Evol. Intel. (2008) 1:187–207 201

123

although it is unclear whether it improved the evolvability

of the neural networks. As pointed out in [62], designing a

toy problem that would be both modular, hierarchical and

repetitive is a difficult task which requires a deep under-

standing of modularity in complex systems. Moreover,

some other kinds of modularity not easily available in

MENNAG, such as repetition with variation and symmetry

[59], may be required to evolve complex systems. The

evolutionary robotics field could provide some interesting

tasks as many of the envisioned situations imply showing

different behaviors that intuitively require at least func-

tional modularity in order to build up systems of increasing

complexity while exploiting previously generated modules.

The proposed encoding used the attribute grammar

formalism, proposed in the context of neural network

evolution by Hussain [31]. This formalism interacts nicely

with tree-based genotype and consequently with modular

evolution, since trees are almost naturally modular and

hierarchical. By choosing to use attribute grammars, our

main goal was to ground future works on a solid basis by

enabling an easy implementation (and future re-imple-

mentations) and to quickly explore a wide range of

variants, for instance to benchmark different I/O handling

strategies. Furthermore, the genetic operators are com-

pletely decoupled from the neural network problems,

making possible to study them separately on simpler set-

ups. The development of MENNAG proved us that

experimenting with different alternatives was possible by

only slightly altering the grammar, that is compact enough

to be easily manipulated. This leaded to a faster develop-

ment of the encoding. Moreover, as an illustration, we

recently tried to re-implement MENNAG in a new attribute

grammar system. Once the generic attribute grammar

evaluator and the genetic operators were set-up—-both of

them being not specific to neural networks—implementing

and testing MENNAG was only a matter of hours. As a

conclusion, we expect to be able to conduct many future

work with a minimal implementation effort and a rigorous

framework.

Nevertheless, this work brings to light some limitations

of the attribute grammar paradigm for neural network

encoding which should be pointed out. First, tree-based

genotypes are easily expressed but many other genotypes

could probably be used and could interact less nicely with

attribute grammars. For instance, NEAT is very hard to

express in this formalism due to its dependency to a

niching algorithm and its custom cross-over operator.

Another significant drawback is the computational cost of

the attribute evaluation process. Noticeably, it can sub-

stantially slow down the evolutionary process when big

sets are copied at each node of the trees. Nonetheless,

quickly evaluating an attribute grammar is a well studied

process and it should be possible to implement faster sys-

tems than our prototypes.

7 Future work

An important point of this work concerns its possible

generalization. Thanks to the formalization, it is easy to

evolve other structures than neural networks. To use

MENNAG on other weighted directed graphs, one only has

to change the interpretation of the allNodes and allConns

lists. Moreover, many variants, for instance to evolve

undirected graphs, can be designed by slightly modifying

the presented grammar. Such uses will be studied in future

work as well as the test of MENNAG on different neural-

network problems.

The main technical issue revealed by the obtained

results is the difficulty of correctly connecting I/Os when

the dimension of the problem rises. In the robotic arm

problem, there exists 6! 9 3! = 4,320 different ways to

link these I/O to a same, potentially optimal, structure. If

one degree of freedom is added, the solution has to be

found among more than one million different combina-

tions. In consequence the main difficulty soon appears to

lie in a good I/O choice rather than in exploring efficient

modular structures. The proposed encoding has been

designed to explore structures, so it will not be efficient

enough to handle control problems with a high number of I/

O. As a result, although modularity, hierarchy and repeti-

tion can lower the complexity of the search in cases of a

high number of I/Os, for instance by using the same sub-

network several times, they are not sufficient to handle an

arbitrary number of I/Os.

-0.5

-0.4

-0.3

-0.2

-0.1

 0

(a) M
ENNAG

(b) with random
 m

ut.

(c) No insert. m
ut.

(d) No clone

(e) No cross-over

Fitness value for 15 runs of 1500 generations

min mean median max

Fig. 18 Fitness obtained for the robotic arm experiment with

different setups. a MENNAG; b MENNAG without the ‘‘random

tree’’ mutation; c MENNAG without the new insertion mutation; d
MENNAG without the CLONE instruction; e MENNAG without

cross-over. Differences between a and b are not statistically

significant (Wilcoxon–Mann–Whitney test; see ‘‘Table 3 in Appendix

A’’) and differences between MENNAG and the other tests are

significant (p \ 10-4)

202 Evol. Intel. (2008) 1:187–207

123

Two approaches seem conceivable to cope with this

central scalability issue. It has been suggested by some

authors [7, 10, 17, 38] that using a geometric substrate to

localize neurons can reduce the difficulty of the search by

spatially gathering I/O that should work together. By

defining the localization of neurons, users add knowledge

and, consequently, face a trade-off between user-con-

straints and exploration. If users have almost no a priori

information about the structure of the solutions, this sub-

strate approach could be very difficult to use. Another

approach could be to use development to link network

building to I/O creation. This would imply evolving both

morphology and control, as in [57].

8 Conclusion

In this work, we have presented MENNAG, a new

encoding scheme designed to evolve neural-networks while

exploiting modularity, hierarchy and repetition. It has been

formalized by using an attribute grammar whose mecha-

nisms have been described in detail. Compared to previous

work on modular encodings, such as ModNet or Modu-

larNEAT, MENNAG adds essentially hierarchy and

formalization.

The performance of the new encoding has been com-

pared to a direct encoding, NEAT, ModNet and a multi-

layer perceptron in two simple control problems. MEN-

NAG led to better fitness than the other encodings in both

cases. These encouraging results call for further studies of

this new encoding, and further evaluations on new prob-

lems. Modules hierarchy and the way input/output

connections are handled, for instance, ought to be more

extensively tested.

Appendix A: Results of the Wilcoxon–Mann–Whitley

test

See Tables 1, 2 and 3.

Table 1 Cartpole (two tails p
values)

Direct encoding ModNet MLP MENNAG NEAT

Direct encoding 1.000 0.077 0.171 0.011 0.237

ModNet 0.077 1.000 0.025 0.074 0.206

MLP 0.171 0.025 1.000 0.013 0.101

MENNAG 0.011 0.074 0.001 1.000 0.040

NEAT 0.237 0.206 0.101 0.040 1.000

Table 2 Robotic arm (two tails

p values)
MENNAG ModNet Direct encoding NEAT MLP

MENNAG 1.000 0.002 0.019 5 9 10-6 0.395

ModNet 0.002 1.000 0.002 7 9 10-6 4.6 9 10-6

Direct 0.019 0.002 1.000 5 9 10-6 3.07 9 10-6

NEAT 5 9 10-6 7 9 10-6 5 9 10-6 1.000 5 9 10-6

MLP 0.395 5 9 10-6 3 9 10-6 5 9 10-6 1.000

Table 3 Lesion experiments
No clone No cross-over MENNAG (std) No insert. mut. Random mut.

No clone 1.000 0.712 7 9 10-5 0.315 2 9 10-5

No cross-over 0.719 1.000 5 9 10-5 0.130 3 9 10-5

MENNAG (std) 7 9 10-5 6 9 10-5 1.000 10 9 10-5 0.898

No insert. mut. 0.315 0.130 10 9 10-5 1.000 3 9 10-5

Random mut. 2 9 10-5 3 9 10-5 0.898 3 9 10-5 1.000

Evol. Intel. (2008) 1:187–207 203

123

Appendix B: Complete attribute grammar

// allN is the list of nodes
// allC the list of connections
// allI the list of input connections
// allO the list of output connections
[1.0,i1=0.5] START DIV CONNS

string DIV.id = ""
set START.allN = DIV.allN
string CONNS.divId = DIV.id
set START.allC = union(set=DIV.allC, set=CONNS.allC)
set START.allI = DIV.allI
set START.allO = DIV.allO

// n being the depth of the generated tree, this probability decreases when the depth increases.
[1/(n*n)] DIV DIV DIV CONNS

string CONNS.divId = DIV.id
string DIV_1.id = concatenate(DIV_0.id, "0")
string DIV_2.id = concatenate(DIV_0.id, "1")
set DIV.allC = union(set=DIV_1.allC, set=DIV_2.allC, set=CONNS.allC)
set DIV.allN = union(set=DIV_1.allN, set=DIV_2.allN)
set DIV.allI = union(set=DIV_1.allI, set=DIV_2.allI)
set DIV.allO = union(set=DIV_1.allO, set=DIV_2.allO)

//Similarly, this probability increases when the depth of the generated tree increases.
[1.0-1.0/(n*n)] DIV CELL CELL CONNS

string CONNS.divId = DIV.id
string CELL_0.divId = DIV.id
string CELL_1.divId = DIV.id
string CELL_0.id = concatenate(DIV.id, "0")
string CELL_1.id = concatenate(DIV.id, "1")
set DIV.allN = union(set=CELL_0.node, set=CELL_1.node)
set DIV.allC = CONNS.allC
set DIV.allI = union(set=CELL_0.allI, set=CELL_1.allI)
set DIV.allO = union(set=CELL_0.allO, set=CELL_1.allO)

// Implementation of the creation of neuron. The spec could be changed to create another kind of neuron. A
potential input and output connections are associated to each neuron (cell).
[1.0] CELL IN OUT

int CELL.spec = 0

set CELL.node = createset(createhash(name="id", value=CELL.id, name="spec", value=CELL.spec))
set CELL.allI = IN.allI
set CELL.allO = OUT.allO
string IN.divId = CELL.divId
string OUT.divId = CELL.divId
string IN.node = CELL.id
string OUT.node = CELL.id

// i1=probability to select this rule as
// i2=probability to select this rule as
[0.01,i2=0.5,i1=0.5] DIV DIV CLONES CONNS

string DIV_1.id = concatenate(DIV_0.id, "0")
string CLONES.id = concatenate(DIV_0.id, "1")
string CONNS.divId = DIV.id
set CLONES.divN = DIV_1.allN
set CLONES.divC = DIV_1.allC
set CLONES.divI = DIV_1.allI
set CLONES.divO = DIV_1.allO
set DIV.tmp = addattribute(data=CLONES.allN, attname="cloneId", value=DIV_1.id)
set DIV.allN = union(set=DIV_1.allN, set=DIV.tmp)
set DIV.allC = union(set=CONNS.allC, set=DIV_1.allC, set=CLONES.allC)
set DIV.allI = union(set=DIV_1.allI, set=CLONES.allI)
set DIV.allO = union(set=DIV_1.allO, set=CLONES.allO)

[0.01,i2=0.5,i1=1.5] DIV CLONES DIV CONNS
string DIV_1.id = concatenate(DIV_0.id, "1")
string CLONES.id = concatenate(DIV_0.id, "0")
string CONNS.divId = DIV.id
set CLONES.divN = DIV_1.allN
set CLONES.divC = DIV_1.allC
set CLONES.divI = DIV_1.allI
set CLONES.divO = DIV_1.allO
set DIV.tmp = addattribute(data=CLONES.allN, attname="cloneId", value=DIV_1.id)
set DIV.allN = union(set=DIV_1.allN, set=DIV.tmp)
set DIV.allC = union(set=CONNS.allC, set=DIV_1.allC, set=CLONES.allC)
set DIV.allI = union(set=DIV_1.allI, set=CLONES.allI)
set DIV.allO = union(set=DIV_1.allO, set=CLONES.allO)

// list of clones
[0.01,i2=0.5] CLONES CLONE CLONES

string CLONE.id = concatenate(CLONES_0.id, "0")
string CLONES_1.id = concatenate(CLONES_0.id, "1")
set CLONE.divN = CLONES.divN
set CLONE.divC = CLONES.divC
set CLONE.divI = CLONES.divI
set CLONE.divO = CLONES.divO
set CLONES_1.divN = CLONES.divN
set CLONES_1.divC = CLONES.divC
set CLONES_1.divI = CLONES.divI
set CLONES_1.divO = CLONES.divO
set CLONES.allN = union(set=CLONE.allN, set=CLONES_1.allN)
set CLONES.allC = union(set=CLONE.allC, set=CLONES_1.allC)
set CLONES.allI = union(set=CLONE.allI, set=CLONES_1.allI)
set CLONES.allO = union(set=CLONE.allO, set=CLONES_1.allO)

// End of the list of clones
[1.0] CLONES CLONE

string CLONE.id = CLONES.id
set CLONE.divN = CLONES.divN
set CLONE.divC = CLONES.divC
set CLONE.divI = CLONES.divI
set CLONE.divO = CLONES.divO
set CLONES.allN = CLONE.allN

set CLONES.allC = CLONE.allC
set CLONES.allI = CLONE.allI
set CLONES.allO = CLONE.allO

// Implementation of the clone
// permi is the vector of permutation for inputs, permo the one for outputs. 2 is the number of inputs and 1 the
number of outputs. These numbers have to changed if you add new I/Os
// The CLONE.id is concatenated to each id found in the cloned DIV. I/Os are permutated using permo and permi.
[1.0] CLONE end

evofloat[2] CLONE.permi = evolved
evofloat[1] CLONE.permo = evolved
set CLONE.allN = prependtoattributes(data=CLONE.divN, attname="id", value=CLONE.id)
set CLONE.tmp = prependtoattributes(data=CLONE.divC, attname="target", value=CLONE.id)
set CLONE.allC = prependtoattributes(data=CLONE.tmp, attname="node", value=CLONE.id)
set CLONE.tmpii = prependtoattributes(data=CLONE.divI, attname="node", value=CLONE.id)
set CLONE.tmpi = prependtoattributes(data=CLONE.tmpii, attname="target", value=CLONE.id)
set CLONE.allI = map(data=CLONE.tmpi, pushedname="data",

foncteur=setattribute(value=aspermutation(data=CLONE.permi, index=getattribute(data=̂..̂data, attname="spec")),
attname="spec"))

set CLONE.tmpoo = prependtoattributes(data=CLONE.divO, attname="target", value=CLONE.id)
set CLONE.tmpo = prependtoattributes(data=CLONE.tmpoo, attname="node", value=CLONE.id)
set CLONE.allO = map(data=CLONE.tmpo, pushedname="data",

foncteur=setattribute(value=aspermutation(data=CLONE.permo, index=getattribute(data=̂..̂data, attname="spec")),
attname="spec"))
[0.5] CONNS CONN CONNS

string CONN.divId = CONNS.divId
string CONNS_1.divId = CONNS.divId
set CONNS.allC = union(set=CONNS_1.allC, set=CONN.allC)

[0.5] CONNS end
set CONNS.allC = createset()

// This variant of CONN creates a feed-forward connection by forcing the source of the connection to be in the left
branch of the tree and the target to be in right branch. This is implemented by modifying the Ids.
[0.9] CONN ICONN

set CONN.allC = ICONN.allC
string ICONN.targetBaseId = concatenate(CONN.divId, "1")
string ICONN.nodeBaseId = concatenate(CONN.divId, "0")

// This is the basic (not feed-forward) connection
[0.1] CONN ICONN

set CONN.allC = ICONN.allC
string ICONN.targetBaseId = CONN.divId
string ICONN.nodeBaseId = CONN.divId

// Implementation of a connection.
// A connection is made of a source node, a target, a weight and a specification (spec). The spec could be changed
to create different kind of connections.
[1.0] ICONN weight node target

evofloat weight.value = evolved
bitstring target.value = evolved
bitstring node.value = evolved
float weight.float = numericalvalue(weight.value)
string ICONN.target = concatenate(ICONN.targetBaseId, target.value)
string ICONN.node = concatenate(ICONN.nodeBaseId, node.value)
set ICONN.allC = createset(createhash(name="node", value=ICONN.node, name="target",

value=ICONN.target, name="weight", value=weight.float, name="spec", value=0, name="type", value="internal"))
// An empty IN connection (no connection to sensors for this neuron)
[0.5] IN end

set IN.allI = createset()
// Connection to the first sensor.
[0.3,p2=0.1] IN IO in1

int IO.spec = 0
set IN.allI = IO.allC

string IO.divId = IN.divId
string IO.node = IN.node
string IO.type = "in"

// Connection to the second sensor.
[0.0,p2=0.1] IN IO in2

int IO.spec = 1
set IN.allI = IO.allC
string IO.divId = IN.divId
string IO.node = IN.node
string IO.type = "in"

[0.5] OUT end
set OUT.allO = createset()

// Connection to the first actuator
[0.3,p2=0.1] OUT IO out1

int IO.spec = 0
set OUT.allO = IO.allC
string IO.divId = OUT.divId
string IO.node = OUT.node
string IO.type = "out"

// Add here new in and out if needed
// Implementation of IO connections
// The source node is the node passed down when the cell has been created;
[1.0] IO weight target

evofloat weight.value = evolved
bitstring target.value = evolved
string IO.target = IO.node
float weight.float = numericalvalue(weight.value)
set IO.allC = createset(createhash(name="node", value=IO.node, name="target", value=IO.target,

name="weight", value=weight.float, name="spec", value=IO.spec, name="type", value=IO.type))

204 Evol. Intel. (2008) 1:187–207

123

Appendix C: Defined types and functions

Mennag uses a short list of types and functions to handle

attributes. Here is a short reference.

Seven basic types are used in the MENNAG grammar:

• string: character string

• bitstring: string of bits which can mutate (bit flipping)

• float: real number

• evofloat: real number which can mutate (Gaussian

mutation)

• int: integer

• set: a simple set which can handle any type

• hash: a simple hash table

A vector of these types can be defined by adding the size

enclosed in brackets. For instance, ‘‘evofloat[10]’’ defines a

vector of 10 evofloat.

Hash tables are used to emulate a structured type (struct

in C). For instance, a neuron is ‘‘created’’ using ‘‘create-

hash(name = ‘‘id’’, value = CELL.id, name = ‘‘spec’’,

value = CELL.spec)’’.

Some simple functions are built-in:

• union: merge two sets

• concatenate: concatenate two strings

• createset: create an empty set

• createhash: create an empty hash table

• numericalvalue: convert the argument to a real number

• prependtoattributes: concatenate a string in front of all

the specified entries in all the hash tables contained in a

set

• addattribute: add an entry to every hash tables

contained in a set

• map: apply a functor to every elements of a set

• aspermutation: compute the permutation corresponding

to a vector a real numbers

Appendix D: Experimental setup

D.1 MENNAG

• cross rate: 0.3

• min. number of neurons (random generation): 2

• max. number of neurons (random generation): 10

• min. number of connections (random generation): 2

• min. number of connections (random generation): 12

• mutation rate (random tree): 0.05

• insertion mutation rate: 0.2

• mutation delete rate: 0.1

D.2 NEAT

• starting network (cart-pole): each input directly con-

nected to the output

• parameter file: p2nv.ne (available in NEAT’s source

code)

D.3 ModNet

• max. number of modules: 10

• cross rate: 0.6

• no predefined module in the initial module pool

• add model module rate: 0.01

• insert module rate: 0.01

• delete model module rate: 0.005

• mutation module rate: 0.05

D.4 Direct encoding

• max. number of neurons: 12

• min. number of neurons: 2

• max. number of connections: 10

• min. number of connections: 2

• add neuron rate: 0.1

• delete neuron rate: 0.1

• add connection rate: 0.25

• delete connection rate: 0.25

• change connection rate: 0.25

References

1. Anderson JR (2007) How can the human mind occur in the

physical Universe? In: The modular organization of the mind.

Oxford University Press, New York, pp 45–91

2. de Beeck HPO, Haushofer J, Kanwisher NG, et al (2008) Inter-

preting fMRI data: maps, modules and dimensions. Nat Rev

Neurosci 9:123–135

3. Boers JWE, Kuiper H, Happel BLM, Springhuizen-Kuiper IG

(1993) Designing modular artificial neural networks. Technical

report, Rijksuniversiteit te Leiden

4. Bowers CP, Bullinaria JA (2005) Embryological modelling of the

evolution of neural architecture. In: A Cangelosi GB, Borisyuk R

(eds) Modeling language, cognition and action. World Scientific,

Singapore, pp 375–384

5. Buessler JL, Urban JP (2002) Biologically inspired robot

behavior engineering. In: Modular neural architectures for

robotics. Springer, Heidelberg

6. Bullinaria JA (2007) Understanding the emergence of modularity

in neural systems. Cogn Sci 31(4):673–695

7. Cangelosi A, Parisi D, Nolfi S (1994) Cell division and migration

in a ‘genotype’ for neural networks. Netw Comput Neural Syst

5(4):497–515

Evol. Intel. (2008) 1:187–207 205

123

8. Cantu-Paz E, Kamath C (2005) An empirical comparison of

combinations of evolutionary algorithms and neural networks for

classification problems. IEEE Trans Syst Man Cybern Part B

35(5):915–927

9. Cliff D, Harvey I, Husbands P (1992) Incremental evolution of

neural network architectures for adaptive behaviour. Technical

report. Cognitive science research paper CSRP256, Brighton

BN1 9QH, England, UK

10. D’Ambrosio D, Stanley K (2007) A novel generative encoding

for exploiting neural network sensor and output geometry. In:

Proceedings of the 9th annual conference on genetic and evolu-

tionary computation, pp 974–981

11. Deb K (2001) Multi-objectives optimization using evolutionnary

algorithms. Wiley, New York

12. Deb K, Goldberg DE (1989) An investigation of niche and spe-

cies formation in genetic function optimization. In: Proceedings

of the third international conference on genetic algorithms.

Morgan Kaufmann Publishers, San Francisco, pp 42–50

13. Doncieux S (2003) Évolution de contrôleurs neuronaux pour

animats volants : méthodologie et applications. PhD thesis, LIP6/

AnimatLab, Université Pierre et Marie Curie, Paris, France

14. Doncieux S, Meyer JA (2004a) Evolution of neurocontrollers for

complex systems: alternatives to the incremental approach. In:

Proceedings of the international conference on artificial intelli-

gence and applications (AIA 2004)

15. Doncieux S, Meyer JA (2004b) Evolving modular neural net-

works to solve challenging control problems. In: Proceedings of

the fourth international ICSC symposium on engineering of

intelligent systems (EIS 2004)

16. Doncieux S, Meyer JA (2005) Evolving PID-like neurocontrol-

lers for non-linear control problems. Int J Control Intell Syst

(IJCIS) Spec Issue Nonlinear Adapt PID Control 33(1):55–62

17. Fukutani I, Vaario J (1997) The effect of environment to genetic

growth. In: International symposium on system life, July 21–22,

1997, Tokyo, Japan, pp 227–232

18. Gallinari P (1998) Modular neural net systems, training of the

handbook of brain theory and neural networks table of contents,

pp 582–585

19. Garcı́a-Arnau M, Manrique D, Rı́os J, Rodrı́guez-Patón A (2007)

Initialization method for grammar-guided genetic programming.

Knowl Based Syst 20(2):127–133

20. Gauci J, Stanley K (2007) Generating large-scale neural networks

through discovering geometric regularities. In: Proceedings of the

9th annual conference on Genetic and evolutionary computation,

pp 997–1004

21. Geva S, Sitte J (1993) A cartpole experiment benchmark for

trainable controllers. Control Systems Mag IEEE 13(5):40–51

22. Gomez FJ, Schmidhuber J, Miikkulainen R (2006) Efficient non-

linear control through neuroevolution. In: Proceedings of the

European conference on machine learning (ECML-06, Berlin),

pp 654–662

23. Grönroos M (1999) A comparison of some methods for evolving

neural networks. In: Proceedings of the genetic and evolutionary

computation conference, vol 2. Morgan Kaufmann, Menlo Park,

p 1442

24. Gruau F (1995) Automatic definition of modular neural networks.

Adapt Behav 3(2):151–183

25. Gruau F, Whitley D, Pyeatt L (1996) A comparison between

cellular encoding and direct encoding for genetic neural networks.

In: John Koza R, David Goldberg E, David Fogel B, Rick Riolo L

(eds) Genetic programming 1996: proceedings of the first annual

conference. MIT Press, Stanford University, CA, pp 81–89

26. Hartwell L, Hopfield J, Leibler S, Murray A (1999) From

molecular to modular cell biology. Nature 402(6761):C47–C52

27. Holland JH (1975) Adaptation in natural and artificial systems.

University of Michigan Press, MI

28. Hornby G (2005) Measuring, enabling and comparing modular-

ity, regularity and hierarchy in evolutionary design. In:

Proceedings of the 2005 conference on genetic and evolutionary

computation. ACM Press, New York, pp 1729–1736

29. Hornby G, Pollack J (2002) Creating high-level components with

a generative representation for body–brain evolution. Artif Life

8(3):223–246

30. Huettel SA, Song AW, McCarthy G (2004) Functional magnetic

resonance imaging. Sinauer Associates, Sunderland

31. Hussain T (2003) Attribute grammar encoding of the structure

and behaviour of artificial neural networks. PhD thesis, Queen’s

University

32. Igel C (2003) Neuroevolution for reinforcement learning using

evolution strategies. In: The 2003 congress on evolutionary

computation, CEC’03, vol 4. IEEE Press, Ne wYork, pp 2588–

2595

33. de Jong E, Thierens D (2004) Exploiting modularity, hierarchy,

and repetition in variable-length problems. In: Proceedings of the

genetic and evolutionary computation conference, GECCO-04.

Springer, Heidelberg, pp 1030–1041

34. Kashtan N, Alon U (2005) Spontaneous evolution of modularity

and network motifs. Proc Natl Acad Sci 102(39):13,773–13,778

35. Kitano H (1990) Designing neural networks using genetic algo-

rithms with graph generation system. Complex Syst 4:461–476

36. Knuth D (1968) Semantics of context-free languages. Theory

Comput Syst 2(2):127–145

37. Kodjabachian J, Meyer JA (1995) Evolution and development of

control architectures in animats. Robot Auton Syst 16:161–182

38. Kodjabachian J, Meyer JA (1997) Evolution and development of

neural networks controlling locomotion, gradient-following, and

obstacle-avoidance in artificial insects. IEEE Trans Neural Netw

9:796–812

39. Koza JR (1992) Genetic programming: on the programming of

computers by means of natural selection. MIT Press, Cambridge

40. Landau S, Doncieux S, Drogoul A, Meyer JA (2002) SFERES: un

framework pour la conception de systèmes multi-agents adapta-

tifs. Technique et Science Informatiques 21(4):427–446

41. Lindenmayer A (1968) Mathematical models for cellular inter-

action in development, parts i and ii. Journal of theoretical

biology 18(18):280–315

42. Lipson H (2004) Principles of Modularity, Regularity, and

Hierarchy for Scalable Systems. In: Genetic and evolutionary

computation conference (GECCO’04) workshop on modularity,

regularity and hierarchy

43. Lipson H, Pollack JB, Suh NP (2002) On the origin of modular

variation. Evolution 56(8):1549–1556

44. Luke S, Spector L (1996) Evolving graphs and networks with

edge encoding: preliminary report. In: Late breaking papers at the

genetic programming 1996 conference, pp 117–124

45. Mattiussi C, Floreano D (2004) Evolution of analog networks

using local string alignment on highly reorganizable genomes. In:

Evolvable hardware, 2004. Proceedings of conference on NASA/

DoD 2004, pp 30–37

46. Mattiussi C, Floreano D (2007) Analog genetic encoding for the

evolution of circuits and networks. IEEE Trans Evol Comput

11:596–607

47. Michel O, Clergue M, Collard P (1997) Artificial neurogenesis:

Applications to the cart-pole problem and to an autonomous

mobile robot. International Journal on Artificial Intelligence

Tools 6(4):613–634

48. Miller GF, Todd PM, Hedge SU (1989) Designing neural net-

works using genetic algorithms. In: Proceedings of the third

international conference on artificial intelligence. Morgan Kauf-

mann, Menlo Park, pp 762–767

49. Mouret JB, Doncieux S, Meyer JA (2006) Incremental evolution

of target-following neuro-controllers for flapping-wing animats.

206 Evol. Intel. (2008) 1:187–207

123

In: Nolfi S, Baldassare G, Calabretta R, Hallam J, Marocco D,

Meyer JA, Miglino O, Parisi D (eds) From animals to animats:

proceedings of the 9th international conference on the simulation

of adaptive behavior (SAB), Rome, Italy, pp 606–618

50. Nolfi S, Parisi D (1998) ‘‘Genotypes’’ for neural networks. The

handbook of brain theory and neural networks, pp 431–434

51. Paakki J (1995) Attribute grammar paradigms: a high-level

methodology in language implementation. ACM Comput Surv

(CSUR) 27(2):196–255

52. Pasemann F, Dieckmann U (1997) Evolved neurocontrollers for

pole-balancing. Biol Artif Comput Neurosci Technol Proc IW-

ANN 97:1279–1287

53. Reisinger J, Miikkulainen R (2007) Acquiring evolvability

through adaptive representations. In: Proceedings of the 9th

annual conference on Genetic and evolutionary computation.

ACM Press, New York, pp 1045–1052

54. Reisinger J, Stanley K, Miikkulainen R (2004) Evolving reusable

neural modules. In: Proceedings of the genetic and evolutionary

computation conference (GECCO-2004). Springer, Heidelberg,

pp 69–81

55. Siddiqi A (1998) Comparison of matrix rewriting versus direct

encoding for evolving neural networks. In: The 1998 IEEE

international conference on evolutionary computation, ICEC’98,

pp 392–397

56. Simon H (1962) The architecture of complexity. Proc Am Philos

Soc 106(6):467–482

57. Sims K (1994) Evolving 3d morphology and behavior by com-

petition. In: Brooks RA, Maes P (eds) Proceedings of the fourth

international workshop on artificial life. The MIT Press, Cam-

bridge, pp 28–39

58. Stanley K, Miikkulainen R (2002) Evolving neural networks

through augmenting topologies. Evol Comput 10(2):99–127

59. Stanley KO (2006) Comparing artificial phenotypes with natural

biological patterns. In: Proceedings of the genetic and evolu-

tionary computation conference (GECCO) workshop program,

New York, NY

60. Teuber HL (1955) Physiological psychology. Annu Rev Psychol

6(1):267–296

61. Wagner G, Altenberg L (1996) Complex adaptations and the

evolution of evolvability. Evolution 50(3):967–976

62. Watson R (2005) Modular interdependency in complex dynam-

ical systems. Artif Life 11(4):445–457

63. Widrow B (1987) The original adaptive neural net broom-bal-

ancer. In: International symposium on circuits and systems, pp

351–357

64. Wieland A (1991) Evolving neural network controllers for

unstable systems. In: Proceedings of the international joint con-

ference on neural networks (Seattle, WA). IEEE, Piscataway, pp

667–673

65. Yao X (1999) Evolving artificial neural networks. Proc IEEE

87(9):1423–1447

Evol. Intel. (2008) 1:187–207 207

123

	MENNAG: a modular, regular and hierarchical encoding �for neural-networks based on attribute grammars
	Abstract
	Introduction
	Evolving neural networks
	MENNAG: a modular encoding for neural networks
	The mechanisms of the grammar
	Neurons
	Connections
	Inputs/outputs
	CLONE

	Genetic operators
	Initial population (Fig. 3b)
	Mutation (Fig. 3c)

	Cart-pole experiment
	Results

	Robotic arm experiment
	Results
	Lesion experiments

	Discussion
	Future work
	Conclusion
	Appendix A: Results of the Wilcoxon-Mann-Whitley test
	Appendix B: Complete attribute grammar
	Appendix C: Defined types and functions
	Appendix D: Experimental setup
	D.1 MENNAG
	D.2 NEAT
	D.3 ModNet
	D.4 Direct encoding

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

