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Abstract The dendritic cell algorithm (DCA) is an

immune-inspired algorithm, developed for the purpose of

anomaly detection. The algorithm performs multi-sensor

data fusion and correlation which results in a ‘context

aware’ detection system. Previous applications of the DCA

have included the detection of potentially malicious port

scanning activity, where it has produced high rates of true

positives and low rates of false positives. In this work we

aim to compare the performance of the DCA and of a self-

organizing map (SOM) when applied to the detection of

SYN port scans, through experimental analysis. A SOM is

an ideal candidate for comparison as it shares similarities

with the DCA in terms of the data fusion method

employed. It is shown that the results of the two systems

are comparable, and both produce false positives for the

same processes. This shows that the DCA can produce

anomaly detection results to the same standard as an

established technique.
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1 Introduction

The dendritic cell algorithm (DCA) is an immune-inspired

algorithm, which is the latest addition to a family of

algorithms termed artificial immune systems (AIS). Such

systems use abstract models of particular components of

the human immune system to produce systems which

perform similar computational tasks to those seen in the

human body. Previous approaches drew inspiration from

the adaptive immune system producing algorithms such as

clonal selection [14] and negative selection [33]. The

negative selection approach has been used extensively in

the domain of computer security specifically in the detec-

tion of potential intrusions [44]. Such systems enjoyed

initial success, but have since been plagued with problems

regarding scalability and the generation of excessive

numbers of false positive alerts.

Aickelin et al. [1] proposed an alternative which sug-

gests that successful AIS should be constructed using the

‘danger theory’ as inspiration. The danger theory suggests

that the immune system responds to signals generated by

the host cells (i.e. by the tissue) during cell stress, ulti-

mately leading to the targeting of proteins present under the

conditions of cell stress. It is a competing immunological

theory, though it is still widely debated within immunology

itself. This theory is centred around the detection of

‘danger signals’, which are released as a result of unplan-

ned cell death, a process termed necrosis. Upon the

detection of danger signals, the immune system can be

activated. In the absence of necrosis, cells may die in a

controlled manner as part of the regulatory processes found

within the tissue, in a process called apoptosis. Dendritic

cells (DCs) are sensitive to both signal types and have the

ability to stimulate or suppress the adaptive immune sys-

tem. DCs are the intrusion detection agents of the human

J. Greensmith (&) � J. Feyereisl � U. Aickelin

School of Computer Science, University of Nottingham,

Wollaton Road, Nottingham NG8 1BB, UK

e-mail: jqg@cs.nott.ac.uk

J. Feyereisl

e-mail: jqf@cs.nott.ac.uk

U. Aickelin

e-mail: uxa@cs.nott.ac.uk

123

Evol. Intel. (2008) 1:85–112

DOI 10.1007/s12065-008-0008-6



immune system, policing the tissue for potential sources of

damage in the form of signals and for potential culprits

responsible for the damage in the form of ‘antigen’.

Antigens are proteins which can be ‘presented’ to the

adaptive immune system by DCs, and can belong to

pathogens or to the host itself.

The DCA incorporates danger-based DC biology to

form an algorithm that is both truly bio-inspired and is

capable of performing anomaly detection. It is a population

based algorithm, where multiple DCs are programmed to

process signals and antigen. ‘Signals’ are mapped to con-

text information, such as the behaviour of a monitored, e.g.

CPU usage or network traffic statistics. ‘Antigens’ are

mapped as potential causes for the changes in behaviour,

e.g. the system calls of a running program. The DCA

correlates the antigen and signal information across the

population of cells to produce a consensus coefficient value

which is assessed to determine anomalous antigen.

The DCA has been successfully applied to a subset of

intrusion detection problems, focussing on port scan

detection. Port scans are used to establish network layout

and to uncover vulnerable computers. The detection of the

scanning phase of an attack can be highly beneficial, as

upon its detection the level of security can be increased

across a network in response. The DCA has been applied to

both ping scans and SYN scans in realtime and offline [25,

27]. The algorithm produced high rates of true positives

and low rates of false positives.

While the performance of the DCA on these problems

appears to be good, thus far no direct comparison has been

performed with another system on the same port scan data.

The need for a rigorous comparison is necessary to truly

demonstrate the capabilities of this algorithm. The signal

processing component housed within the DCA bears some

resemblance to the function of a neural network [13].

Given these superficial similarities, the obvious next-step

for the development of the DCA is to compare its perfor-

mance to that of a neural network based system, such as a

SOM [47].

Self organizing map is a clustering method of unsuper-

vised learning where high dimensional data is mapped to a

lower dimensional space to create a feature map. This map

is constructed from training data and consists of a series of

interconnected nodes. Upon the analysis of the test data,

the incoming data items are matched against nodes in the

map with similar characteristics. SOM uses a similar pro-

cess to a single-layer neural network to generate the map,

and a simple distance metric is used to match the incoming

test data to the most appropriate node. This technique can

be used for anomaly detection as the training data can

consist of normal data items, with unclustered data repre-

senting a potential anomaly. SOM is an excellent choice

for comparison as it has a history of application within

computer security and can be manipulated to use similar

input data as used with the DCA.

The aim of this paper is to compare the DCA with a

SOM. To achieve this aim the two algorithms are applied

to the detection of an outbound SYN-based port scan using

data captured from previous real-time experiments per-

formed with the DCA [25]. The results of this comparison

indicate that the DCA and SOM are both equally as

effective at detecting SYN based port scans, and appear to

make similar false positive errors. As a baseline a k-means

clustering algorithm is applied to the signals in isolation.

This paper is structured as follows. In Sect. 2, the rel-

evant background and context information is given

regarding problems in computer security and how these

problems relate to port scanning in addition to a summary

of current port scanning techniques. In Sects. 3 and 4,

descriptions are given of the DCA and SOM, respectively,

including details of their implementations. In Sect. 5, the

two approaches are compared experimentally. In Sect. 6 we

perform an analysis and comparison between the two

systems based on the obtained results and debate their

differences and similarities, further validated by a baseline

series. In the final sections we discuss the results of these

comparisons and present the implications for the future of

the DCA.

2 Related work

2.1 Overview

As this paper encompasses a variety of techniques and

concepts, this section is subdivided into three parts. Firstly,

the problems associated with port scans are described fol-

lowed by a description of current scan detection

techniques. This is followed by the related computer

security work in AIS, including the development of the

DCA and the motivation for its development. This section

continues with a brief overview of the use of various SOM

algorithms in computer security.

2.2 Port scanning and detection

2.2.1 Introduction to port scanning

Insider attacks are one of the most costly and dangerous

attacks performed against computerised systems, with a

large amount of known intrusions of intrusions attributed to

internal attackers [6]. This type of intrusion is defined

through the attacker being a legitimate user of a system

who behaves in an unauthorised manner. Such insider

attacks have the potential to cause major disruption given

that a large number of networks do not employ internal
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firewalling with many security countermeasures focussing

on the detection of external intruders. Insiders frequently

know and have access to network topology information. As

insiders operate from within an organisation, this provides

them with scope to abuse a weak link in the security chain,

namely the end users. Having knowledge and relationships

with other network users brings with it the potential to

coerce passwords from legitimate users for the purpose of

gaining access across multiple machines on a network. This

information can be used to steal sensitive data, to cause

damage to the network or to disguise the identity of the true

attacker.

Such attacks frequently involve multiple stages. The

initial stage is the information gathering stage, which is

followed by monitoring of potential victims, finally

involving an intrusion. The information gathering stage

involves scouting the network for potential victim host

machines to suit the nature of the attack. For example, the

insider may wish to exploit an FTP service and would

therefore search the network for hosts running FTP. Port

scanning is used in the information gathering stage to

retrieve which hosts are currently running on the network,

the IP addresses and DNS names of each host, which ‘ports’

are currently ‘open’ and named running host services.

It is wise for an attacker to understand the network in

question, to avoid wasting time trying to exploit machines

which are not receptive to an attack. It is pointless

attempting to attack a host which is no longer connected to

the network! While scanners are not an ‘intrusion’ in the

classical sense, they are often a pre-cursor to an actual

attack, and evidence of sufficient scanning across a net-

work can suggest that an attack may soon follow [39].

A port is a specific endpoint on a network, which is a

virtual address as part of a virtual circuit. It is important to

note that a port in this context is an abstract concept, not to

be confused with a physical port such as a serial port. Ports

allow for the direct exchange of information between two

hosts. It is similar to a telephone number and is more

specific than an IP address as it provides a direct connec-

tion between two endpoints. Probing a port with a packet

leads to information on the state of the port and its host.

Ports can be in three states if the scanned host is available,

namely open, closed or filtered. Port scanning tools such as

nmap [17] can be used to send packets to various ports on

remote hosts to gain understanding regarding the status of

the scanned host. The type of packet used to perform such

probes can be one of a number of types, including Internet

control message protocol (ICMP) ping, TCP, and UDP.

According to Bailey-Lee et al. [4], TCP SYN scans are the

most commonly observed scan, accounting for over half of

all scans performed.

Additionally the scans themselves can be performed in a

number of different ways, varying the number of hosts

scanned, the number of ports scanned, the IP address of the

sender and the rate at which packets are sent. The combi-

nation of the number of hosts (IP addresses) scanned and

the number of ports gives rise to three combinations of

scan:

• Horizontal scans A wide range of IP addresses are

scanned, though only one port per host is probed. This

kind of scan can be used if a particular service is to be

exploited, such as an FTP exploit whose success would

depend on finding a host running the particular version

of an FTP server/client.

• Vertical scans A range of ports are specified for a single

IP address. This is a scan of a single host, where

multiple services can be searched for. Example usage

of this type of scan includes characterising a specific

target such as a web server to assess if any exploitable

services are currently running.

• Block scans This is a combination of both types of scan,

where multiple ports are probed across a range of IP

addresses. This search is especially good for uncover-

ing the topology of a network, for locating servers,

printers, client hosts etc.

A SYN scan, apart from being the most prevalent scan,

can be used to retrieve a substantial amount of information

regarding the status of a host or a network. SYN scans

exploit the ‘3-way handshake’ employed by the TCP pro-

tocol. The 3-way handshake describes the specific manner

in which two endpoints communicate with each other and

is the initial step in opening a TCP data stream. For

example two hosts are connected to one another via a

switched ethernet, host A and host B. To initiate TCP

connections between A and B, A sends a TCP SYN (syn-

chronisation) packet to B. Provided that B can receive such

TCP packets, B sends a SYN/ACK (synchronisation/

acknowledgement) packet to A in response to the initial

SYN request. Host A then replies with ACK packets which

are sent until all data in the transmission stream is trans-

ferred. Upon completion, A sends B a FIN (finish) packet,

signalling that the data transfer is complete. Port scans

based on TCP SYN packets exploit a flaw in this 3-way

connection method.

Instead of completing the 3-way handshake of ‘SYN,

SYN/ACK, ACK’, upon receipt of the SYN/ACK packet,

the scanning host does not send an ACK packet in

response: depending on the initial response of remote host

B depends on how the scanning host behaves. The various

responses to SYN requests are depicted in Fig. 1.

In the case of a host with an open port, the victim sends

the attacker a SYN/ACK packet in response to the original

SYN request. Instead of the attacker responding back with

an ACK packet, a RST packet is sent instead. This leaves

the TCP connection ‘half open’. As the conversation
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remains incomplete, it does not appear in system logs,

making the SYN scan stealthy. Should the scanned victim

host have no open ports the attacker receives a RST packet.

This however, informs the attacker that a host is connected

to an IP address. If no host is associated with a scanned IP

address, the connection will time out on the attackers

machine, or the attacker will receive a ‘‘destination

unreachable error’’ from an interim router or firewall.

2.2.2 Port scan detection

Port scan detection components are frequently integrated

with commercial intrusion detection systems such as Snort

[62]. The detection method used involves generating an

‘alert’ upon receiving ‘X’ connections within ‘Y’ seconds

from host IP address ‘Z’. There are three problems with this

method. Firstly, the majority of port scanners are equipped

with the facility to fake the IP address, often called

spoofing, of the source machine, rendering Z unreliable.

Secondly most scanners allow for the randomisation of the

duration between the sending of individual packets,

including slowing the rate of sending to avoid detection.

This makes the detection of the scan difficult if Y is defined

as a constant value. Finally, should the port scan detector

be host based, the performance of a detector in response to

an incoming scan will be impaired for the detection of

horizontal scans, as only a single connection is made to

each host. This problem can be overcome through the

detection of outbound port scans, as per extrusion detection

[6].

To overcome some of these problems a handful of

systems are developed as dedicated port scan detectors. For

example ‘Spice’ developed by Staniford et al. [68]

incorporates an anomaly probability score to dynamically

adjust the duration of Y. This is useful for the detection of

stealthier scans which use randomised or slowed rates of

scan packets sending. This detection technique is termed

reverse sequential hypothesis testing. It is used to further

extent in research performed by Jung et al. [39], where it is

combined with a network based approach and is used to

identify potentially malicious remote hosts in addition to

detecting scanning activity.

In our previous research, the DCA is applied to the

detection of various port scans. The DCA is implemented

as a host based system monitor, detecting the performance

of an outbound port scan, in attempt overcome some of

the problems with using static time windows. Initially the

DCA is applied to the detection of simple ICMP ping

scans [29], where the algorithm was used in real-time and

produced high rates of true positives and low rates of

false positives.

In addition, DCA is used in the detection of a standard

SYN scans, also in a real-time environment [27]. The

results of this study show that the DCA shows promise as a

successful port scan detector. However the results pre-

sented were preliminary and as the experiments were

performed ‘live’ in real-time, certain sensitivity could not

be performed. Therefore, it is necessary to take this

investigation further and explore this application with more

rigour. The experiments described in this paper are

extension experiments from the SYN scan data used in

Greensmith and Aickelin [25].

2.3 Artificial immune systems and security

2.3.1 Immunity by design

Numerous computer security approaches are based on the

principles of anomaly detection. This technique involves

producing a profile of normal host behaviour, with any

significant deviation from this profile presumed to be

malicious or anomalous. Various AIS have been applied as

anomaly detection algorithms within the field of computer

security, given the obvious parallel of fighting computer

viruses with a computer immune system [18]. The research

of AIS in security has extended past the detection of

viruses and has focussed on network intrusion detection

[45].

The AIS algorithms used in security are generally based

on the principles of ‘‘self-nonself discrimination’’. This is

an immunological concept that the body has the ability to

discriminate between self and nonself (i.e. foreign) protein

molecules, termed antigen. The natural mechanism by

which the body learns this discrimination is termed nega-

tive selection. In this process, self-reactive immune cells

are deleted during a ‘training period’ in embryonic

Fig. 1 The TCP/IP packet flow for SYN scans under various

conditions
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development and infancy. This results in a tuned popula-

tion of cells, poised to react against any threat which is

deemed nonself. These principles are used to underpin the

supervised negative selection algorithm. Negative selection

itself is described eloquently in a number of sources

including the work of Hofmeyr and Forrest [32], Ji and

Dasgupta [37] and Balthrop et al. [5].

Following its initial success in the detection of system

call anomalies [32], the negative selection approach was

applied to the detection of anomalous network connections

[44], where potential problems with scaling and excessive

false positive rates were uncovered. These empirical

studies suggest that negative selection might not be a

suitable algorithm for use in computer security, with these

notions confirmed by the theoretical work performed by

Stibor et al. [69]. Further analysis performed by the same

authors has given insights into the theoretical reasons for

negative selection’s problems [70], with more evidence

presented recently by Stibor et al. in [71].

2.3.2 The danger project: the missing link?

The criticisms of negative selection have to some degree

overwhelmed the positive aspects of its development and

have in some respect discredited the use of AIS in security

[66]. Issues such as scaling cannot be ignored, especially as

anomaly detection is often required to be performed in real-

time. The theoretical proofs of these problems are evident

and duly noted by the wider AIS community [72]. The

question of how to overcome these problems remains at the

forefront of AIS research, focussing on the incorporation of

more advanced immunology.

An interdisciplinary approach is presented by Aickelin

et al. [1], developed in 2003 through the Danger Project.

Aickelin et al. believe that some of the problems shown

with negative selection approaches can be attributed to its

biological naivety. It is recognised that the negative

selection algorithm is based on a naive model of central

tolerance developed in the 1950s [12].

Aickelin et al. [1] propose that through close collabo-

ration with immunologists, computer scientists will be able

to develop more biologically realistic AIS which could

potentially overcome the problems of false positives and

scaling observed with negative selection. The DCA is

developed using this interdisciplinary approach [26],

drawing inspiration from DCs as it is now widely accepted

that these cells are a major control unit in the human

immune system.

The Danger Project brought innate immunology in to the

AIS spotlight, as the innate immune system is shown as

responsible for the initial pathogen detection [52]. From

this emerged two streams of research which were based on

innate principles, the dendritic cell algorithm and

thelibtissue system and its related algorithms [73].

The DCA will be explained in detail in Sect. 3, and is based

on an abstract model of the behaviour of natural DCs. The

libtissue system is an innate immune framework imple-

mented as an API (application programming interface)

[75].

2.3.3 Summary

Artificial immune systems have been used within computer

security for over a decade. Despite its initial success, the

negative selection algorithm was not as useful as first

thought due to problems with scaling and the generation of

excessive amounts of false positives. These negative

aspects have been shown both theoretically and experi-

mentally. To remedy this problem, the research proposed

by Aickelin et al. [1] developed into the DCA and the

libtissue framework, both of which have shown

promise in the areas of port scan and exploit detection,

respectively.

2.4 SOM and security

The SOM algorithm was developed by Teuvo Kohonen

more than two decades ago [46], yet its success in various

fields of science, over the years, surpasses many other

neural inspired algorithms to date. The algorithm’s

strengths lie in a number of important scientific domains.

Namely visualisation, clustering, data processing, reduc-

tion and classification. In more specific terms SOM is an

unsupervised learning algorithm that is based on the

competitive learning mechanism with self-organizing

properties. Besides its clustering properties SOM can also

be classed as a method for multidimensional scaling and

projection.

Self organizing map algorithms have been first applied

to computer security applications almost ten years after the

algorithm’s inception [19]. The majority of existing

research however is limited to anomaly detection, partic-

ularly network based intrusion detection [16]. Some work

has been done on host based anomaly detection using

Kohonen’s algorithm, however such work is rare [35],

which is surprising, due to the algorithms suitability to

handle multidimensional, thus multi-signal data. On

numerous occasions SOM algorithms have been used as a

pre-processor to other computational intelligence tools,

such as hidden Markov models (HMMs) [10, 11, 43] or

radial basis function networks [36]. Comparisons of SOM

algorithms with other anomaly detection approaches have

been performed on numerous occasions in the past. Nota-

bly a comparison with HMM [76], AIS [21, 22], traditional

neural networks [8, 38, 49, 50, 63], k-means clustering [42]

as well as adaptive resonance theory [3].
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2.4.1 SOM in intrusion detection

Besides the above mentioned comparisons of SOM algo-

rithms with various computational intelligence techniques,

here we will describe the use of SOM algorithms in areas

related to our comparison or that could be of interest to the

general reader.

A seminal paper on the use of SOM algorithms for

intrusion detection was presented by Ramadas et al. [59].

Their work employed the original SOM algorithm as a

network based anomaly detection module for a larger IDS.

Besides being able to monitor all types of network traffic

including SMTP protocol (email), the authors state that the

SOM algorithm is particularly suitable to detect buffer-

overflow attacks. However, as with the majority of anom-

aly detection systems, the algorithm struggles to recognise

attacks which resemble normal behaviour in addition to

boundary case behaviour, giving rise to false positives.

Buffer overflow [20] attack detection was also tackled

by Rhodes [60] using a multilayer SOM, monitoring pay-

loads. Bolzoni [9] also looked at payload monitoring using

SOM by employing a two-tier architecture system.

Gonzalez and Dasgupta [21] compared SOM against

another AIS algorithm. Their real-valued negative selection

algorithm is based on the original negative selection

algorithm proposed by Forrest et al. [18] with the differ-

ence of using a new representation. The original negative

selection algorithm has been applied to Intrusion Detection

problems in the past and has received some criticism

regarding its ‘‘scaling problems’’ [44]. Gonzalez and Das-

gupta argue that their new representation is the key to

avoiding the scaling issues of the original algorithm. Their

results showed that for their particular problem the SOM

algorithm and their own algorithm were comparable

overall.

Albarayak et al. [2] proposed a unique way of com-

bining a number of existing SOM approaches together in a

node based IDS. Their thesis is of automatically deter-

mining the most suitable SOM algorithm for each node

within their system. Such a decision can be achieved using

heuristic rules that determine a suitable SOM algorithm

based on the nodes environment.

Miller and Inoue [55] suggested using multiple intelli-

gent agents, each of which contains a SOM on its own.

Such agents combine a signature and anomaly based

detection technique in order to achieve a collaborative IDS,

which is able to improve its detection capabilities with the

use of reinforcement learning.

DeLooze [15] employed an ensemble of SOM networks

for the purpose of an IDS as well as for attack character-

isation. Genetic algorithms were used for attack type

generation, subsequently employed as part of an IDS that is

able to discriminate the type of attack that has occurred.

Self organizing map algorithms have also been used for

the analysis of executables. Yoo [78] analysed windows

executables by creating maps of EXE files before and after

an infection by a virus. Such maps have been subsequently

analysed visually and found to have contained patterns,

which can be thought of as virus masks. The author con-

cludes by stating that such masks can be used in the future

for virus detection in a similar manner to current anti-virus

techniques. The difference being that a single mask could

detect viruses from a whole virus family rather than being

able to find only a single variant.

Besides the original single network SOM algorithm, the

previously described newer SOM variations were

employed for various security research scenarios. A num-

ber of papers discuss the advantages of using multiple or

hierarchical SOM networks in contrast to a single network

SOM. These include the work of Sarasamma et al. [64],

Lichodzijewski et al. [51] and Kayacik et al. [30, 41] who

all used various versions of the Hierarchical SOM or

employed multiple SOM networks for the purpose of

intrusion detection. Kayacik et al. [41] state that the best

performance is achieved using a 2-layer SOM and that their

results are by far the best of any unsupervised learning

based IDS to date.

2.4.2 Visualisation using SOM in IDS

Due to the SOM algorithm’s capability of visualising

multidimensional data in a meaningful way, its use lends

itself ideally to its application in visualising computer

security problems. Gonzalez et al. [23] use this ability to

visualise the self non-self space that they use for anomaly

detection. This visualisation presents a clear discrimination

of the different behaviours of the monitored system.

Hoglund et al. [34] on the other hand employed visual-

isation of user behaviour. In their work various host based

signals were used for monitoring of users. A visual repre-

sentation was subsequently presented to administrators in

order for them to be able to make an informed decision in

case of unacceptable user behaviour.

3 The dendritic cell algorithm

3.1 Natural DCs

The DCA is based on the observed functions of natural

dendritic cells. DCs are natural intrusion detection agents,

who monitor the host tissue for evidence of damage. In the

human body, DCs have a dual role, as garbage collectors for

tissue debris and as commanders of the adaptive immune

system. DCs belong to the innate immune system, and do

not have the adaptive capability of the lymphocytes of the
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adaptive immune system. DCs exist in three states of dif-

ferentiation, immature, semi-mature and mature, which

determines their exact function [52]. Modulations between

the different states are dependent upon the receipt of signals

while in the initial or immature state. Signals which indicate

damage cause a transition from immature to mature. Those

signals indicating good health in the monitored tissue cause

a transition from immature to semi mature. The signals in

question are derived from numerous sources, including

pathogens, from healthy dying cells, from damaged cells

and from inflammation. Each DC has the capability to

combine the relative proportions of input signals to produce

its own set of output signals. Input signals processed by DCs

are categorised based on their origin:

PAMPs pathogenic associated molecular patterns are

proteins expressed exclusively by bacteria, which can be

detected by DCs and result in immune activation [56]. The

presence of PAMPS usually indicates an anomalous

situation.

Danger signals signals produced as a result of unplan-

ned necrotic cell death. On damage to a cell, the chaotic

breakdown of internal components form danger signals

which accumulate in tissue [53]. DCs are sensitive to

changes in danger signal concentration. The presence of

danger signals may or may not indicate an anomalous sit-

uation, however the probability of an anomaly is higher

than under normal circumstances.

Safe signals signals produced via the process of normal

cell death, namely apoptosis. Cells must apoptose for

regulatory reasons, and the tightly controlled process

results in the release of various signals into the tissue [54].

These ‘safe signals’ result in immune suppression. The

presence of safe signals almost certainly indicate that no

anomalies are present.

Inflammation various immune-stimulating molecules

can be released as a result of injury. Inflammatory signals

and the process of inflammation is not enough to stimulate

DCs alone, but can amplify the effects of the other three

categories of signal [67]. It is not possible to say whether

an anomaly is more or less likely if inflammatory signals

are present. However, their presence amplifies the above

three signals.

Dendritic cells act as natural data fusion agents, pro-

ducing various output signals in response to the receipt of

differing combinations of input signal. The relative con-

centration of output signal is used to determine the exact

state of differentiation, expressed by the production of two

molecules, namely the mature and semi-mature output

signals. During this phase they are exposed to varying

concentrations of the input signals. Exposure to PAMPs,

danger signals and safe signals causes the increased pro-

duction of CSM, and a resulting removal from the tissue

and migration to a local lymph node.

DCs translate the signal information received in the

tissue into a context for antigen presentation, i.e. the anti-

gen presented in an overall ‘normal’ or ‘anomalous’

context. The antigen collected while in the immature phase

is expressed on the surface of the DC. Whilst in the lymph

node, DCs seek out T-lymphocytes (T-cells) and attempt to

bind expressed antigen with the T-cells variable region

receptor. T-cells with a high enough affinity for the pre-

sented antigen are influenced by the output signals of the

DC. DCs exposed to predominantly PAMPs and danger

signals are termed ‘mature DCs’; they produce mature

output signals, which activate the bound T-cells. Con-

versely, if the DC is exposed to predominantly safe signals

the cell is termed semi-mature and antigens are presented

in a safe context, as little damage is evident when the

antigen is collected. The balance between the signals is

translated via the signal processing and correlation ability

of these cells. The overall immune system response is

based on the systemic maturation state average of the

whole DC population on a per antigen basis. An abstract

view of this process is presented in Fig. 2.

3.2 Algorithm overview

The purpose of the DCA is to correlate disparate data-

streams in the form of antigen and signals and to label

groups of identical antigen as ‘normal’ or ‘anomalous’.

This algorithm is population based with each ‘cell’

expressed as an ‘agent’. The DCA is not only a classifi-

cation algorithm, it also shares properties with certain

filtering techniques. It provides information representing

Fig. 2 An abstract view of DC maturation and signals required for

differentiation where cytokines are molecular messengers between

immune system cells
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how anomalous a group of antigens are, not simply if a data

item is anomalous or not. This is achieved through corre-

lating a time-series of input signals with a group of antigen.

The signals used are pre-normalised and pre-categorised

data sources, which reflect the behaviour of the system

being monitored. The co-occurrence of antigen and high/

low signal values forms the basis of categorisation for the

antigen data. The primary components of a DC based

algorithm are as follows:

1. Individual DCs with the capability to perform multi-

signal processing.

2. Antigen collection and presentation.

3. Sampling behaviour and state changes.

4. A population of DCs and their interactions with signals

and antigen.

5. Incoming signals and antigen, with signals pre-cate-

gorised as PAMP, danger, safe or inflammation.

6. Multiple antigen presentation and analysis using

‘types’ of antigen.

7. Generation of anomaly coefficient for various different

types of antigen.

Whilst in the immature state, the DC has three functions,

which are performed each time a single DC is updated,

with the exact nature of this processing given in Sect. 3.4:

1. Sample antigen the DC collects antigen from an

external source (in our case, from the ‘tissue’) and

places the antigen in its own antigen storage data

structure.

2. Update input signals the DC collects values of all input

signals present in the signal storage area.

3. Calculate interim output signals at each iteration each

DC calculates three temporary output signal values

from the received input signals, with the output values

then added to form the cell’s cumulative output

signals.

The signal processing used to transform the input to

interim output signals is shown in Fig. 3, with the implica-

tions of each output signal given in Table 1. Costimulatory

molecule (CSM) signal is used to limit the sampling dura-

tion of an individual cell. Each cell is assigned a migration

threshold value upon creation. The CSM values are incre-

mented each time a cell receives signal input. Once the CSM

exceeds the cell’s migration threshold the cell is removed

from the sampling population for analysis. Different cells

sample for different durations as each cell is assigned a

random migration threshold value (within a range to match

the normalised range of the input signals). This leads to a

‘time-window’ effect which adds robustness to the algo-

rithm, as the migration is signal dependent with no fixed

time dependency. During periods where signal values are

large the rate of migration is higher and therefore tighter

coupling is given to the signal and antigen data. This effect

is explored in more detail in Oates et al. [58] where a the-

oretical analysis is provided.

Upon transition to a matured state, the DCs output sig-

nals are assessed to form the context of all antigen collected.

A higher ’mature’ output signal value results in the

assignment of a context value of 1 to the DC, whereas a

higher ‘semi-mature’ output signal value results in a context

value of 0. All antigen sampled by the DC over its lifetime

are output with the assigned context value. Upon comple-

tion of all data processing the mean context in which the

antigens are presented is calculated deriving an anomaly

coefficient value per antigen type. Each antigen (suspect

data item) is not unique, but several identical antigens are

sampled. The mature context antigen value (MCAV), is

used to assess is a particular antigen type is anomalous. The

derivation of the MCAV per antigen type is shown in Eq. 1,

MCAVx ¼
Zx

Yx
ð1Þ

where MCAVx is the MCAV coefficient for antigen type x,

Zx is the number of mature context antigen presentations

OutputsInputs

Fig. 3 A representation of the three calculations performed by each

DC, per update cycle, to derive the cell’s outputs through fusing

together the signal inputs. Two sample notations for the weights are

shown. The inflammation signal (if any) applies to all transformations

shown and is therefore not depicted. Details of the notation are given

in Sect. 3.4

Table 1 Table of cumulative output signals and their associated

implications for the dendritic cell algorithm (DCA)

Output signal Function

CSM signal Assessed against a threshold to limit the

duration of DC signal and antigen

sampling, based on a migration

threshold

Semi-mature signal Terminal state to semi-mature if greater

than resultant mature signal value

Mature signal Terminal state to mature if greater than

resultant semi-mature signal value
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for antigen type x and Yx is the total number of antigen

presented for antigen type x.

The effectiveness of the MCAV is dependent upon the

use of antigen types. This means that the input antigens are

not unique in value, but belong to a population in them-

selves. For example, the ID value of a running program is

used to form antigen, with each antigen generated every

time the program sends an instruction to the low level

system. Therefore a population of antigen is used, linked to

the activity of the program and all bearing the same ID

number.

To process signals, antigens and cells the DCA uses two

virtual compartments: tissue and lymph nodes. The tissue is

used as storage for antigens and signals and the lymph node

is used for MCAV generation. The tissue consists of anti-

gen and signal containers from which the DCs sample the

input data. Signals are updated at regular intervals and are

not removed upon sampling by a DC. Antigens are input in

an event-driven manner and are removed from the tissue

antigen store upon sampling by a DC.

We suggest that the updates of antigen, signals and cells

are performed independently, based on previous experience

with this algorithm. This is represented in Fig. 4. The three

updates need not occur simultaneously: this temporal cor-

relation between asynchronously arriving data is performed

by the processing of the cells themselves. The population

dynamics are used to perform the actual anomaly detection.

The ultimate classification of a particular type of antigen is

derived not from a single DC, but from an aggregate

analysis produced across the DC population over the

duration of an experiment.

3.3 Libtissue

The Danger Project [1] has produced a variety of research

outcomes alongside the DCA. Such outcomes include the

development of danger theory and DC based immunology

[77]; a framework for developing immune inspired algo-

rithms called libtissue [75]; an investigation into the

interactions between the innate and adaptive immune

system; artificial tissue [7] and the application of a naive

version of the DCA for the security of sensor networks.

Libtissue is the API used within the Danger Project

for the testing of ideas and algorithms, as shown in the

works of Twycross [73, 75] and Greensmith et al. [28,

29].

Libtissue is a library implemented in C which assists

the development of immune inspired algorithms on real-

world data. It is based on principles of innate immunology

[74, 75], through the use of techniques from modelling,

simulation and artificial life. It allows researchers to

implement algorithms as a collection of cells, antigen and

signals, interacting within a specified compartment. The

implementation has a client/server architecture which

separates data collection using clients, from data process-

ing on a server, as shown in Fig. 5.

Input data is processed using libtissue clients,

which transform raw data into antigen and signals. Algo-

rithms can be implemented within the libtissue server,

as it provides all the required components such as the

ability to define different cell types, specifying receptors,

compartments and internal signals. Antigen and signal

sources can be added to libtissue servers, facilitating

the testing of the same algorithm with a number of different

data sources. Input data from the client are passed to and

represented in a compartment contained on a server known

as the tissue compartment. This is a space in which cells,

signals and antigen interact. Each tissue compartment has a

fixed-size antigen store where collected antigens are

placed. The tissue compartment also stores levels of sig-

nals, set by the input clients.

3.4 DCA implementation

The DCA is implemented as a libtissue server. Input

signals are combined with antigen data, such as a program

ID number. This is achieved through using the population

of artificial DCs to perform aggregate sampling and data

Fig. 4 A UML overview of the

processes at the tissue level of

the program, showing the

asynchronous update of cells,

signals and antigen. It also

shows the two main stages of

update and initialisation and

subsequent analysis
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processing. Using multiple DCs means that multiple data

items in the form of antigen are sampled multiple times. If a

single DC presents incorrect information, it becomes

inconsequential provided that the majority of the DCs

population derive the correct cell context represented as the

MCAV coefficient.

The DCA has two main stages: initialisation, and

update. Initialisation involves setting various parameters

and is followed by the update stage. The update stage can

be decomposed into tissue update and cell cycle. Signal

data is fed from the data-source to the tissue server through

the tissue client and is updated at a user defined rate. The

cell cycle involves the regular update of the DC population.

Following the processing of all data, the MCAV coeffi-

cients are calculated for each antigen type. An overview of

this is given in Fig. 6.

The tissue update is a continuous process, whereby the

values of the tissue data structures are refreshed. In this

implementation, signals are updated at regular intervals—

in our case, this is at a rate of once per second. The update

of antigen occurs on an event-driven basis, with antigen

items updated in the tissue each time new raw data appears

in the system. The updated signals provide the input signals

for the population of DCs.

The cell cycle is a discrete process occurring at a user

defined rate of once per second in this research. Signals and

antigen from the tissue data structures are accessed by the

DCs during the cell cycle. This includes an update of every

DC in the system with new signal values and antigen. The

new values are processed and accumulated as the output

vector of signals is generated. The cell cycle and update of

tissue continues until a stopping criterion is reached.

Finally, the aggregation stage is initiated, where all col-

lected antigens are subsequently analysed and the MCAV

per antigen derived. This procedure forms the required

post-processing for use with this algorithm.

3.5 Parameters and structures

The algorithm is described formally using the following

terms.

– Indices:

i = 0,...,I input signal index;

j = 0,...,J input signal category index;

k = 0,...,K tissue antigen index;

l = 0,...,L DC cycle index;

m = 0,...,M DC index;

n = 0,...,N DC antigen index;

p = 0,...,P DC output signal index.

– Parameters:

I number of input signals per category (e.g. PAMP,

danger, safe);

J number of categories of input signal;

K number of antigen in tissue antigen vector;

L number of DC cycles;

M number of DCs in population;

N DC antigen vector size ;

antigen

response

signal

antigen store

signal store

compartment

cells (AIS, DCs)

clients server

systrace

signal collector

Fig. 5 Architecture used to support the DCA. Input data is processes

via signal and antigen clients [75]. The algorithm utilises this data and

resides on a server

Fig. 6 Illustration of the DCA showing data input, continuous

sampling, the maturation process and aggregate analysis
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P number of output signals per DC;

Q number of antigens sampled per DC, per cycle;

R number of DC antigen receptors;

Tmax tissue antigen vector size.

– Data structures:

T {S, A}—the tissue;

S tissue signal matrix;

sij a signal index i, category j in the signal matrix S;

A tissue antigen vector;

ak antigen k in the tissue antigen vector;

DCm fsðmÞ; aðmÞ; �opðmÞ; tmg—a DC within the

population;

s(m) signal matrix of DCm;

a(m) antigen vector of DCm;

op(m) output signal p of DCm;

�opðmÞ cumulative output signal p of DCm;

tm migration threshold of DCm;

wijp transforming weight from sij to op.

opðmÞ ¼
X

i

X

j6¼3

wijpsijðmÞ 8p ð2Þ

Each DCm transforms each value of s(m) to op(m). In

Eq. 2, a specific example is given for use with four input

signals, with one signal per category and consists of some

additional components. Additionally, the j = 3 component

implies that signal category index is not summed with the

other three signal categories i.e. inflammation is not treated

in the same manner as the other signals, as shown in this

equation. The interrelationships between the weights,

determined through practical immunology, are shown in

Table 2.

The tissue has containers for signal and antigen values,

namely S and A. In this example version of the DCA, there

are four categories of signal (J = 3) and one signal per

category (I = 0). In this instantiation s0,0 = PAMP signals,

s0,1 = danger signals and s0,2 = safe signals and s0,3 =

inflammation. An antigen store is constructed for use

within the tissue cycle where all DCs in the population can

collect antigen.

The cell update component maintains all DC data

structures including the DC population of set size M. Each

DC has an input signal matrix, antigen vector, cumulative

output signals and migration threshold. The internal values

of DCm are updated, based on current data in the tissue

signal matrix and antigen vector. The DC input signals, s(m)

use the identical mapping for signal categories as tissue s

and are updated every cell cycle iteration. Each s(m) for

DCm is updated via an overwrite every cell cycle. These

values are used to calculate output signal values, op(m), for

DCm, which are added cumulatively over a number of cell

cycles to form �opðmÞ; where p = 0 is costimulatory value,

p = 1 is the semi-mature DC output signal and p = 2 is the

mature DC output signal. With each cell update, DCs

sample R antigens from the tissue antigen vector A.

After the internal values of a DC are updated, o0 is

assessed against tm the cell’s migration threshold. If o0 is

greater than tm, the DC is ‘removed’ from the tissue. Here,

‘remove’ means that the DC is de-allocated the receptors

needed to sample the signal matrix and to collect antigen.

On the next update cycle, the remaining output signals are

checked and the analysis procedure is initiated.

In this implementation, each DC is assigned a random

value for tm, within a specified range. The random value

Table 2 Derivation and interrelationship between weights in the

signal processing equation, where the values of the PAMP weights are

used to create all other weights relative to the PAMP weight

wijp j = 0 j = 1 j = 2

p = 0 W1 W1
2

W1 9 1.5

p = 1 0 0 1

p = 2 W2 W2
2

-W2 9 1.5

W1 is the weight to transform the PAMP signal to the CSM output

signal and W2 is the weight to transform the PAMP signal to the

mature output signal
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adds some diversity to the DC population. The value of o0

is increased on exposure to any signal and proportionately

to the strength of the input signal. By using randomly

assigned migration thresholds, each DC samples the signal

matrix a different number of times throughout its lifetime.

Some exist for a short period sampling once or twice,

others can persist for longer, dependent on the strength of

the signals. This creates a variable time window effect for

the sampling.

Pseudocode for this specific instantiation of the DCA is

given in Algorithm 1. This pseudocode shows both the

update of the tissue and the individual DCs. The stages of

the algorithm are shown, namely initialisation, update and

analysis. While this provides the detail of the DC update

mechanisms, this pseudocode does not encapsulate the

asynchronous nature of the update stages. As libtissue
is a multithreaded framework, the three updates are con-

trolled by three different processes, therefore, the three

updates occur asynchronously. This architecture is partic-

ularly suited for real time data processing as updates occur

as and when they are required.

3.6 Antigen aggregation

Once DCm has been removed from the population, the

contents of a(m) and values �opðmÞ are logged to a file for

the aggregation stage. Once completed, s(m), a(m) and

�opðmÞ are all reset and DCm is returned to the sampling

population. The re-cycling of DCs continues until the

stopping condition is met (l = L). Once all data has been

processed by the DCs, the output log of antigen-plus-con-

text is analysed.

The same antigen is presented multiple times with dif-

ferent context values. This information is recorded in a log

file. The total fraction of mature DCs presenting said

antigen (where �o1 [ �o2Þ is divided by the total amount of

times the antigen was presented namely �o1=ð�o1 þ �o2Þ: This

is used to calculate the mean MCAV. Equation 1 describes

this process.

3.7 Signals and antigen

An integral part of DC function is the ability to combine

multiple signals to produce context information. The

semantics of the different categories of signal are derived

from the study of the influence of the different signals

on DCs in vitro. Definitions of the characteristics of each

signal category are given below, with an example of an

actual signal per category. This categorisation forms

the signal selection schema. Any number of sources

of information can be mapped using the outlined

principles.

• PAMP—si0, e.g. the number of error messages gener-

ated per second by a failed network connection:

1. A signature of abnormal behaviour, e.g. an error

message.

2. A high degree of confidence of abnormality

associated with an increase in this signal strength.

• Danger signal—si1, e.g. the number of transmitted

network packets per second:

1. Measure of an attribute which significantly

increases in response to abnormal behaviour.

2. A moderate degree of confidence of abnormality

with increased level of this signal, though a low

signal strength can represent normal behaviour.

• Safe signal—si2 e.g. the inverse rate of change of

number of network packets per second. A high rate

of change equals a low safe signal level and vice

versa:

1. A confident indicator of normal behaviour in a

predictable manner or a measure of steady-

behaviour.

2. Measure of an attribute which increases signal

concentration due to the lack of change in strength.

Signals, though interesting, are inconsequential without

antigen. To a DC, antigen is an element which is carried

and presented to a T-cell, without regard for the structure

of the antigen. Antigen is the data to be classified and

works well in the form of an identifier, be it an anomalous

process ID or the ID of a data item [26]. At this stage,

minimal antigen processing is performed and the antigen

presented is an identical copy of the antigen collected.

Detection is performed through the correlation of antigen

with fused signals.

4 Self-organizing maps

4.1 Biological inspiration for SOM

Various properties of the brain were used as an inspiration

for a large set of algorithms and computational theories

known as neural networks. Such algorithms have shown to

be successful, however a vital aspect of biological neural

networks was omitted in the algorithm’s development. This

was the notion of self-organization and spatial organization

of information within the brain. In 1981 Kohonen proposed

a method which takes into account these two biological

properties and presented them in his SOM algorithm [46].

The SOM algorithm generates, usually, two dimensional

maps representing a scaled version of n-dimensional data

used as the input to the algorithm. These maps can be
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thought of as ‘‘neural networks’’ in the same sense as

SOM’s traditional rivals, artificial neural networks

(ANNs). This is due to the algorithm’s inspiration from the

way that mammalian brains are structured and operate in a

data reducing and self-organised fashion. Traditional

ANNs originated from the functionality and interoperabil-

ity of neurons within the brain. The SOM algorithm on the

other hand was inspired by the existence of many kinds of

‘‘maps’’ within the brain that represent spatially organised

responses. An example from the biological domain is the

somatotopic map within the human brain, containing a

representation of the body and its adjacent and topo-

graphically almost identical motor map responsible for the

mediation of muscle activity [47].

This spatial arrangement is vital for the correct func-

tioning of the central nervous system [40]. This is because

similar types of information (usually sensory information)

are held in close spatial proximity to each other in order for

successful information fusion to take place as well as to

minimise the distance when neurons with similar tasks

communicate. For example sensory information of the leg

lies next to sensory information of the sole.

The fact that similarities in the input signals are con-

verted into spatial relationships among the responding

neurons provides the brain with an abstraction ability that

suppresses trivial detail and only maps most important

properties and features along the dimensions of the brain’s

map [61].

4.2 SOM algorithm overview

As the algorithm represents the above described function-

ality, it contains numerous methods that achieve properties

similar to the biological system. The SOM algorithm

comprises of competitive learning, self-organization, mul-

tidimensional scaling, global and local ordering of the

generated map and its adaptation.

There are two high-level stages of the algorithm that

ensure a successful creation of a map. The first stage is the

global ordering stage in which we start with a map of

predefined size with neurons of random nature and using

competitive learning and a method of self-organization, the

algorithm produces a rough estimation of the topography of

the map based on the input data. Once a desired number of

input data is used for such estimation, the algorithm pro-

ceeds to the fine-tuning stage, where the effect of the input

data on the topography of the map is monotonically

decreasing with time, while individual neurons and their

close topological neighbours are sensitised and thus fine

tuned to the present input.

The original algorithm developed by Kohonen com-

prises of initialisation followed by three vital steps which

are repeated until a condition is met:

• Choice of stimulus

• Response

• Adaptation

Each of these steps are described in detail in the next

section.

4.3 Algorithmic detail and implementation

A number of existing software packages that contain an

implementation of the SOM algorithm are available,

however these are not ideal for some types of security

research, such as real-time detection, due to their limited

speed and integratability. For this reason a C++ based

implementation is developed according to the original

incremental SOM algorithm as described by Kohonen [48].

In this section a detailed analysis of the implemented

algorithm and its step by step functional description

follows.

4.3.1 Initialisation

A number of parameters have to be chosen before the

algorithm is to begin execution. These include the size of

the map, its shape, the distance measure used for com-

paring how similar nodes are, to each other and to the input

feature vectors, as well as the kernel function used for the

training of the map. Kohonen suggested recommended

values for these parameters [47], which are used through-

out our experiments. The values used in this paper are

described in Sect. 5, found in Table 8. Once these param-

eters are chosen, a map is created of the predefined size,

populated with nodes, each of which is assigned a vector of

random values, wi, where i denotes node to which vector w

belongs.

4.3.2 Stimulus selection

The next step in the SOM algorithm is the selection of the

stimulus that is to be used for the generation of the map.

This is done by randomly selecting a subset of input feature

vectors from a training data set and presenting each input

feature vector, x, to the map, one item per epoch. An epoch

represents one complete computation of the three vital

steps of the algorithm.

4.3.3 Response

At this stage the algorithm takes the presented input, x and

compares it against every node i within the map by means

of a distance measure between x and each nodes’ weight

vector wi. For example this can be the Euclidean distance

measure shown in Eq. 3, where ||.|| is the Euclidean norm
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and wi is the weight vector of node i. This way a winning

node can be determined by finding a node within the map

with the smallest Euclidean distance from the presented

vector x, here signified by c.

c ¼ argminfjjx� wijjg ð3Þ

4.3.4 Adaptation

Adaptation is the step where the winning node is adjusted

to be slightly more similar to the input x. This is achieved

by using a kernel function, such as the Gaussian function

(hci) as seen in Eq. 4 as part of a learning process.

hciðtÞ ¼ aðtÞ:exp � jjrc � rijj2

2r2ðtÞ

 !
ð4Þ

In the above function, a(t) denotes a ‘‘learning-rate

factor’’ and r(t) denotes the width of the neighbourhood

affected by the Gaussian function. Both of these parameters

decrease monotonically over time (t). During the first 1,000

steps, a(t) should have reasonably high values (e.g. close to

1). This is called the global ordering stage and is responsible

for proper ordering of wi. For the remaining steps, a(t) should

attain reasonably small values (C0.2), as this is the fine-

tuning stage where only fine adjustments to the map are

performed. Both rc and ri are location vectors of the winner

node (denoted by subscript c) and i respectively, containing

information about a node’s location within the map.

wiðt þ 1Þ ¼ wiðtÞ þ hciðtÞ½xðtÞ � wiðtÞ� ð5Þ

The learning function itself is shown in Eq. 5. Here the

Gaussian kernel function hci is responsible for the adjust-

ment of all nodes according to the input feature vector x

and each node’s distance from the winning node. This

whole adaptation step is the vital part of the SOM algo-

rithm that is responsible for the algorithm’s self-

organisational properties.

4.3.5 Repetition

Stimulus selection, response and adaptation are repeated a

desired number of times or until a map of sufficient quality

is generated. For our experiment this was set to a value

suggested by Kohonen [48]. He states that the number of

steps should be at least 500 times the number of map units.

For this reason 100,000 epochs were used in our experi-

ments. Another possible mechanism for the termination of

the algorithm is the calculation of the quantization error,

which is the mean of ||x-wc|| over the training data. Once

the overall quantization error falls below a certain thresh-

old, the execution of the algorithm can stop as an

acceptable lower dimensional representation of the input

data has been generated.

5 Experimental comparison

5.1 Scenarios

For the experiments in this paper, two data sets are

compiled, collected using a system of signal collection

scripts with raw input signal data collected from the Li-

nux/proc filesystem. One data set is termed passive

normal (PN) and contains a SYN scan performed without

normal processes invoked by a user i.e. scan and shell

processes. The second data set is termed active normal

(AN). This data set contains an identical SYN scan but is

combined with simultaneous instances of normal pro-

grams which are used actively by a user throughout the

duration of the session i.e. scan, shell processes and a

firefox web browser.

Block scans are conducted across 254 IP addresses

connecting to multiple ports on each host successfully

probed. Approximately 70 hosts out of the 254 addresses

scanned are available at any one instance during the scan.

For these scenarios, the DCA resides on a client machine

which is connected to the main network. As the scanned

local hosts are part of a university network and the

availability of the hosts is beyond direct control, with the

exception of the host on which the DCA monitors. The

scan performed in both data sets is a standard SYN scan,

with a fast probe sending rate (\0.1 s per probe), facili-

tated through the use of the popular scanning tool, nmap

[17]. The command invoked to perform the SYN scan

using nmap is ‘‘nmap -sS -v xxx.xxx.xxx.1--
254’’.

The AN data set is 7,000 s in duration, with ‘normal’

antigen generated by running a web browser over a sepa-

rate remote ssh session. During browsing, multiple

downloads, chat sessions and the receipt of e-mail occur

representing different patterns of network behaviour. This

actively generated network traffic is provided to observe if

the algorithms can differentiate between two highly active

processes which run simultaneously and modify the net-

working behaviour of the victim host. Having both normal

and anomalous processes running via the monitored ssh

demon may make the detection of the scan more difficult.

This may increase the MCAV for the normal processes as

the DCA relies on the temporal correlation of signals and

antigen to perform detection.

The PN data set is also 7,000 s in duration and com-

prises of a SYN scan and its pseudo-terminal slave (pts)

parent process as anomalous examples. The ssh demon

process acts as normal antigen and is needed to facilitate

the remote login. In addition, a firefox browser runs

throughout the session, but the system calls are run locally

and not through the ssh demon. Therefore this does not

form antigen, but can influence the input signal data.
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5.2 Data pre-processing and signals

The DCA relies on correct mapping of signals, ensured

through the examination of preliminary samples of input

data. For the detection of SYN scans, seven signals are

derived from behavioural attributes of the victim host: two

PAMPs, two danger signals, two safe signals and one

inflammatory signal. Having multiple signals per category

may make the DCA more robust against random network

fluctuations or conversely could impede classification

through conflicting inputs.

The PAMP signals (PAMP-1 and PAMP-2) are both taken

from data sources which indicate a scan specifically. Danger

signals (DS-1 and DS-2) are derived from attributes which

represent changes in behaviour. Safe signals (SS-1 and SS-2)

are also derived from changes in behaviour, but high safe

signal values are shown when the changes are small in

magnitude. The inflammatory signal is simplified to a binary

signal i.e. inflammation present (1) or not (0). All PAMPs,

danger and safe signals are normalised within a range of zero

to 100. A sketch of the input signals throughout the duration

of the two sessions are shown in Figs. 7, 8 and 9 for the AN

data set and in Figs. 10, 11 and 12 for the PN data set.

To devise a set of appropriate signals a number of pre-

liminary experiments must be performed, in addition to the

acquisition of knowledge regarding the effects of scanning

and normal networking usage within a host. Initially a

plethora of system variables are monitored under a variety

of situations. The signals used in this experiment are net-

work based attributes. This kind of system data appears to

be the most variable under scanning conditions. Once the

candidate signals are selected, they are then categorised

using the general principles of signal selection i.e. PAMPs

are signature-based, danger signals are normal at low val-

ues and anomalous at high values etc. Following the

categorisation, the raw values of signals are transformed

into normalised signals.

PAMP-1 is the number of ICMP ‘destination unreach-

able’ (DU) error messages received per second. Scanning

IP addresses attached to hosts which are firewalled against

ICMP packets generate these error messages in response to

probing. This signal is shown to be useful in detecting ping

scans and may also be important for the detection of SYN

scans, as an initial ping scan is performed to find running

hosts. In this experiment, the number of ICMP messages

generated is significantly less than observed with a ping

scan. To account for this, normalisation of this signal

includes multiplying the raw signal value by five, capped at

a value of 100 (equivalent to 20 DU errors per second).

This process is represented in Eq. 6 where raw is the

unmodified system data and signal represents the norma-

lised output signal. These terms apply to all equations

described within this section.

signal ¼ minf100; raw � 5g ð6Þ

PAMP-2 is the number of TCP reset packets sent and

received per second. Due to the nature of the scan, a

volume of RST packets are created in both port status

cases; they are generated from the scanning host if ports are

open and are generated by the remote hosts if ports are

closed. RST packets are not usually present in any

considerable volume, so their increased frequency is a

likely sign of scanning activity. This signal is normalised
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Fig. 7 Line graph of the PAMP (PAMP-1, PAMP-2) signals which

constitute the active normal (AN) data set
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Fig. 8 Line graph of the danger (DS-1, DS-2) signals which

constitute the AN data set
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Fig. 9 Line graph of safe (SS-1, SS-2) signals which constitute the

AN data set
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linearly, with a maximum cap set at 100 RSTs per second.

This normalisation process is shown in Eq. 7.

signal ¼ minf100; rawg ð7Þ

DS-1, the first danger signal is derived from the number

of network packets sent per second. Previous experiments

with this signal data indicate that it is useful for the

detection of outbound scans [27]. A different approach is

taken for the normalisation of this signal. A sigmoid

function is used to emphasise the differences in observed

rate, making the range of 100–700 packets/s more

sensitive. This sensitive range is determined through

preliminary data analysis of host behaviour during scans

and normal use, with 750 packets/s found to be the median

value across the plethora of preliminary data. This function

makes the system less sensitive to fluctuations under

100 packets/s, whilst keeping the sensitivity of the higher

values. A cap is set at 1,500 packets/s, resulting in a signal

range between 0 and 100. The general sigmoid function

used for this transformation is shown in Eq. 8, with the

specific function shown in Eq. 9.

f ðxÞ ¼ 1

1þ e�x
ð8Þ

signal ¼ min
1

1þ 2ð7:5�
raw
100Þ

� �
� 100; 100

� �
ð9Þ

DS-2 is derived from the ratio of TCP packets to all

other packets processed by the network card of the

scanning host. This may prove useful as during SYN

scans there is a burst of traffic comprised of almost entirely

TCP type packets, which is not usually observed under

normal conditions. The ratio is normalised through

multiplication by 100, to give this signal the same range

as DS-1. This procedure is shown in Eq. 10.

signal ¼ rawSignalTcp

rawSignalAllPkts

� �
� 100 ð10Þ

SS-1 is the rate of change of network packet sending per

second. Safe signals are implemented to counteract the

effects of the other signals, hopefully reducing the number of

false positive antigen types. High values of this signal are

achieved if the rate is low and vice versa. This implies that a

large volume of packets can be legitimate, as long as the rate

at which the packets are sent remains constant. The value for

the rate of change can be calculated from the raw DS-1 signal

value, though conveniently, the proc file system also

generates a moving-average representation of the rate of

change of packets per second (over 2 s). This raw value can

be normalised between values of 10 and 100 and inverted so

that the safe signal value decreases as the raw signal value

increases. This normalisation process is described in Eq. 11.

signal ¼ min 100;max 0; ð100� rawÞ � 10

9

� �� �
ð11Þ

SS-2 is based on the observation that during SYN scans

the average network packet size reduces to a size of

40 bytes, with a low standard deviation. Preliminary

observations under normal conditions show that the

average packet size for normal traffic is within a range of

70 and 90 bytes. A step function is implemented to derive

this signal with transformation values presented in Table 3.

Preliminary experiments have also shown that a moving

average is needed to increase the sensitivity of this signal.

This average is created over a 60 s period.
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Fig. 10 Line graph of the PAMP (PAMP-1, PAMP-2) signals which

constitute the passive normal (PN) data set
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Fig. 11 Line graph of the danger (DS-1, DS-2) signals which

constitute the PN data set
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Fig. 12 Line graph of the safe (SS-1, SS-2) signals which constitute

the PN data set
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The inflammatory signal is binary and based on the

presence of remote root logins. If a root log-in is detected

through the monitored ssh demon, this signal is assigned a

value of one. When used in the signal processing equation,

this multiplies the resultant values of the other signals by

two, acting as an amplifier for all other signals including the

safe signal. This signal may be useful as to perform a SYN

scan the invocation has to come from a user with root

privileges. While this is a very important feature of the SYN

scan process, it is not suitable for use as a PAMP signal as it

can be easily spoofed. Thorough analysis of the relationship

between inflammation and the DCA is outside of the scope

of this paper and may feature in future work. While this

signal influences the rates of migration of the DCs, it does

not influence the rates of detection as the addition of this

signal increases the output signal values for both the semi-

mature output (o1) and the mature output (o2) signals.

As shown in Figs. 7, 8, 9, 10, 11, 12, the AN signals are

more variable than the PN signals, as many more processes

run during the AN session. In the AN session, the nmap scan

is invoked at 651 seconds. Signals PAMP-1, PAMP-2 and

DS-2 clearly change for the duration of the scan. The

remaining signals are less clear, though some evidence of

changes throughout the scan duration is shown. The changes

are transient and localised in particular to the beginning of

the scan, when the majority of probes are sent to other hosts.

The signals of the PN data set are less noisy. Analysis of

input antigen confirms nearly 99% of these antigen belong

to the anomalous pts and nmap processes. PAMP-1 and

PAMP-2 are responsive to the scan, as shown by their rapid

decline towards the end of the scanning period, at 5,500 s.

Changes in DS-1 are more pronounced in the PN data set,

yet the magnitude of this signal is smaller than expected.

DS-2 appears to be highly correlated with the scan,

yielding values of over 20 throughout the scan duration.

SS-1 performs poorly and only decreases in response to the

scan in a few select places. SS-2 falls sharply in the middle

of the scan, as predicted, but otherwise remains at a con-

stant level of 60 even after the scan has finished.

5.3 Antigen

Process identification numbers (PIDs) form the antigen and

are generated each time a system call is invoked. To

provide antigen, all remote sessions facilitated by ssh are

monitored for this experiment. Using multiple system calls

with identical PIDs allows for the aggregate antigen sam-

pling method, having multiple antigen per antigen type.

This allows for the detection of active processes when

changes in signal values are observed. This technique is a

form of process anomaly detection, but the actual structure

of the PID is not important in terms of its classification, i.e.

no pattern matching is performed, on the actual value of the

PIDs: it is a label for the purpose of process identification.

A graph of the frequency of system calls invoked per

second for the AN data set by the nmap process is shown in

Fig. 13 and for the firefox process in Fig. 14. In these two

figures, individual points represent the frequency of system

calls per second, while the trendline represents a moving

average over 100 points. Summary statistics of the system

call data are given in Table 4, which are generated across

the entire session for both processes.

Table 3 Ranges used in the normalisation function of SS-2

Range Signal value

40–45 0

46–50 10

51–60 50

61+ 100
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Fig. 13 The frequency of system calls invoked by the nmap scan

process for the AN data set. The trendline represents a moving

average over 100 data points. As this figure is presented on a

logarithmic scale, the absence of points indicates a frequency of zero

system calls for that particular second

1

10

100

1000

10000

0 1000 2000 3000 4000 5000 6000 7000

Fig. 14 The frequency of system calls invoked by the firefox web

browser process for the AN data set. The trendline represents a

moving average over 100 data points. This figure is presented on a

logarithmic scale and the absence of points indicates a frequency of

zero system calls for that particular second
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The mean/median frequency of system calls for the

nmap process is higher than the firefox process. To assess

which process is more variable, the means are divided by

the standard deviations, as shown in the summary table.

This value is larger in the case of nmap than for firefox.

This indicates that relatively, the standard deviation of the

firefox process is larger in comparison to the mean than

that of the nmap process. The various proportions of input

system calls are represented as a chart in Fig. 15 and shows

that the nmap process invokes the majority of system calls

in the AN data set.

5.4 Special cases for SOM

For use with the SOM both antigen and signal data must be

correlated explicitly—this is a feature of the DCA that

cannot be translated for use with the SOM. To achieve this

coupling, the timestamps of the signal and antigen data are

used. Each antigen is assigned the set of signals which

occurs within one second of the antigen generation. This

results in what resembles a standard feature vector, where

antigens are the data item ID and signals form seven

attributes. In addition to this pairing, the SOM requires

training data, to assign nodes and to create the map. Unlike

the DCA which uses expert knowledge, SOM requires

training data sets and therefore ten sets are constructed.

Each training set consists of a diverse number of normal

processes which use the networking facility of the host

machine.

5.4.1 Training

Due to the SOM algorithm’s unsupervised learning nature,

training data is required in order to generate a map that is

representative of normal behaviour. As described earlier

this is not necessary for the DCA as there is no training

stage. A set of ten sessions of normal activity are generated

in an identical manner to the testing data except for the fact

that no antigens are generated as the SOM is only trained

on signals. Antigen themselves bring no benefit to the SOM

in the training stage. Each session contains approximately

60 min worth of data. The data contains normal activity

such as internet browsing, chatting, file transfer and other

activities performed by a standard user.

Once the data is collected, it is combined into one data

set, which is subsequently used as the input into the SOM

algorithm. Input feature vectors are then selected from this

data set at random and presented to the map for compu-

tation. The training results in a map which can be seen in

Fig. 16. In this example, the brighter the colour, the greater

the dissimilarity of neighbouring nodes, with the map

representing four clusters. This shows one of the maps that

was generated throughout our experiments. Ten runs were

performed, both for training and detection.

Table 4 Summary statistics of the frequency of system calls for the

nmap and firefox processes

Statistic Nmap Firefox

Mean 2,445 880

Standard deviation 1,243 840

1st quartile 1,796 76

2nd quartile (median) 2,106 792

3rd quartile 2,894 1,479

4th quartile (total) 11,758 7,156

Mean/SD 1.97 1.05

Pts

FF_Parent

FF_Child2

FF_Child1

Nmap

Others

Fig. 15 Proportionate chart of antigen per processes as input data for

the AN data set, where FF_Parent is the parent firefox process and

FF_Child1 and FF_Child2 are the forked children of the parent

process Fig. 16 An example map generated by the original SOM algorithm
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5.4.2 Detection

The SOM algorithm itself cannot perform anomaly detec-

tion without any further processing. A meaningful way has

to be devised in order to be able to classify and make a

decision whether a data item or a set of items are anoma-

lous. The aim of our experiments was to detect whether a

whole process is anomalous or not. Thus a method for

process, rather than signal set anomaly detection calcula-

tion had to be developed.

For informational purposes a simple anomaly detection

can be performed on our data by classifying sets of signals

only. This can be done by firstly using the calculation in

Eq. 3, which will determine the winning node within our

trained map. We will call this the best matching unit

(BMU). Once the BMU is found, the actual Euclidean

distance between the currently observed vector of signals

and the BMU is calculated. The most trivial anomaly

detection is done by choosing a threshold for this dissim-

ilarity. If the currently observed item is too different from

the BMU, then it is deemed anomalous.

In order to perform process anomaly detection, antigen

information has to be correlated with signals from the

testing data. As the SOM is trained on signals only, anti-

gens (PIDs) need to be correctly correlated with the right

signals in order to be able to link anomalous sets of signals

to their respective initiators (processes). Initial correlation

is done by synchronizing antigens with signals using

timestamp information. Any antigen with timestamp t is

assigned a signal set at time t, and for the purpose of

synchronisation t is measured in seconds. Once this syn-

chronisation takes place, the signal set-antigen coupling is

assessed for its anomaly level using the BMU technique

described previously.

As explained later in this section, the output antigen

from the DCA are ‘segmented’ into fixed sized sets for

analysis. These ‘antigen segments’ consist of a specified

number of output antigen used to form the MCAV values.

Multiple MCAV values are produced as a result of this

procedure, which may add additional sensitivity. To get a

more meaningful and easily comparable results to the

DCA, a segmentation post-processing needs to be

employed. This is achieved by selecting a segment size z

which generates the same number of segments as the DCA.

The reason behind the differing segment sizes is the way

that synchronisation of signal and antigen is achieved in the

SOM experiments compared to the way it is achieved by

the DCA. The DCA correlates antigen and signal as part of

the algorithm’s operation whereas the signal and antigen

need to be manually correlated at a pre-processing stage

before analysis using the SOM can occur. In our case z =

1,800; 18,000; 180,000 and 1,800,000. These segment sizes

produce the same number of segments as segment sizes of

100; 1,000; 10,000 and 100,000 respectively, used by the

DCA.

Further post-processing is done by using a binary dis-

crimination of how anomalous a signal set-antigen

coupling is. It was observed that the median dissimilarity

value between an input feature vector and the BMU is

approximately 65. Thus this value is chosen as the

threshold for deciding whether a signal set-antigen cou-

pling should be deemed anomalous and thus assigned a

value of 1 or deemed normal and assigned a value of 0.

These binary anomaly values are then used for the calcu-

lation of the mean process anomaly value.

Segment generation is achieved by calculating the

anomaly value for each signal set-antigen coupling as

described above, followed by further analysis of these

results per the various antigen segment sizes of z. Thus for

z = 1,800, the first 1,800 data items were processed in the

following way. For each unique antigen a mean anomaly

value is calculated for that given segment. Once this

calculation is performed, each segment contains a list of

unique antigens with their associated mean anomaly value.

We call this the mean best matching unit (MBMU) value.

This value gives an indication of how anomalous a process

is in the given antigen segment.

5.5 Experiments

Two null hypotheses are used in these SYN scan

experiments:

1. H1 modification of the antigen segment size will not

influence the resultant anomaly coefficient values for

both normal and anomalous processes.

2. H2 the DCA and the SOM will produce results which

are not statistically different.

Both the AN and PN data sets are used in this series.

Each data set is collected using a real-time version of the

DCA, which also provides the opportunity to verify the

detection rate results before an in-depth analysis is per-

formed. Ten runs are performed for each data set and the

mean MCAV values/MBMU values across the ten runs are

recorded. Unlike previous experiments with the DCA, no

system parameters are varied for these experiments. Instead

the number of antigen used in the MCAV calculation is

varied.

For the previous DCA application of ping scan detec-

tion, the sessions used are at most one minute in duration

and generate approximately 3,000 antigen. However, the

AN and PN data sets generate in excess of 100,000 antigen

per process therefore analysis once all data is processed

may not provide meaningful results. Generating the output

coefficient value at the end of the 7,000 s session is too

insensitive to changes which happen over a matter of
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seconds or minutes. Figures are generated showing the

varying coefficients per process as the session proceeds and

comparisons drawn between the performance for the two

data sets.

In terms of assessment, the PIDs with the highest vol-

ume of antigen output are used as the processes of interest.

For the PN data set these processes are the nmap scan

process and the pts parent process of the SYN scan. The

processes of interest for the AN data set include the nmap

scan, pts process and the firefox browser. Graphs are

generated showing the MCAV and MBMU for each pro-

cess of interest per z antigen presented, for the duration of

the experiments for example z = 100. Higher values of

MCAV are expected for the SYN scan process and its

parent process the ssh demon, than for the firefox browser.

It is expected that smaller values of z will yield an

improvement in the precision and accuracy of the detec-

tion, though when z = 100, the system may be too

sensitive and an element of tolerance to false positives

could be lost. The variants of z for the DCA are presented

in Table 5.

All data sets are collected and analyses with the DCA

are performed on an AMD Athlon 1 GHz Debian linux

machine (kernel 2.4.10). A 2.66 GHz Intel Core 2 Duo

Ubuntu linux machine (kernel 2.6.22) is used for the SOM

processing. Data generated from the DCA machine is used

in SOM processing to avoid kernel discrepancies. The

DCA is implemented in C (gcc 4.0.2) with the SOM

implemented in C++ (g++ 4.1.3). All raw signals are

derived using signal collection scripts, with values taken

from the/proc filesystem (PAMP-1, DS-1, SS-1, I), the

tcpstat linux utility (DS-2, SS-2) and a custom developed

packet sniffer (PAMP-2). The system parameters used with

the DCA are shown in Table 6 derived as a result of pre-

vious DCA sensitivity analysis [24]. Weights for the signal

processing of these data are shown in Table 7. These

weights provide a shorter time-window for the duration of

signal sampling per DC, shown to be advantageous for the

detection of ping scans. The migration threshold tm is

assigned a value of 60 ± 30 which is the median signal

value observed across all signals. The parameters used for

the SOM are shown in Table 8 and are chosen based on

recommended values as proposed by Kohonen [47].

Antigens are generated using system calls, captured

through the use of strace and through manipulation

within the antigen tissue client. The normalisation of the

input signals is implemented using the tissue client, antigen

processed using a separate tissue client, with data pro-

cessing and the DCA performed using the tissue server

process. An initial run of this system is performed to col-

lect the input data and to check for any potential coding

errors. Input signals and antigens are collected and recor-

ded in a logfile using the real-time runs. Analysis of the

preliminary real-time results of the output antigen and

empirical analysis of the input data indicate its suitability

for use in these experiments. The libtissue tcreplay
client is used to perform the numerous runs of each data

set. It is important to stress that the system is designed to

Table 5 The various sizes of antigen segment z used for the DCA

and SOM, respectively

DCA SOM

100 1,800

1,000 18,000

10,000 180,000

100,000 1,800,000

1,000,000 –

Table 6 Default parameter settings for the DCA, chosen following

the sensitivity analysis performed previously [24]. Values shown

indexed from zero

Name Symbol Value

Number of signals per category I 0

Number of signals categories J 3

Max number of tissue antigen K 499

Number of cells M 99

Max number of antigen per DC N 49

Number of output signals per DC P 3

Number of DC antigen receptors Q 9

Table 7 Weights used for signal processing, where j represents the

input signal category, i represents an instance of a signal within signal

category j and p is the corresponding output signal

wijp j = 0 j = 1 j = 2

p = 0 4 2 6

p = 1 0 0 1

p = 2 8 4 -12

Table 8 SOM parameters, where a is the ‘‘learning-rate factor’’ and t
is the current epoch

Parameter Global ordering Fine-tuning

SOM size 10 9 10 –

Epoch limit 100,000 –

Initial a 0.9 0.02

a decay scheme Initial a(1-t/1000) –

Neighbourhood size 5 1

Neighbourhood function Gaussian –

Neighbourhood relation Square –
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work in real-time, though tcreplay is used to provide

reproducibility of results, so a rigorous analysis can be

performed.

5.6 DCA results

The results of the DCA applied to the PN data are pre-

sented in Figs. 17, 18, 19 and in Tables 9 and 10. The

results for an antigen segment size z = 100 are shown in

Fig. 17 and represent results generated across ten runs by

the DCA on the same data set. High MCAV values are

shown upon the initiation of the SYN scan for both nmap

and pts processes. The moving average trendline shows

three distinct ‘spikes’ which correlate to the initial sending

out of packets by the SYN scan, the period of targeted

scanning and the final stages where network connections

are terminated and scan results collated by the nmap

process.

While the pts process produces a high MCAV initially,

between antigen segments 100 and 900 no antigens are

presented for the pts process, as it is inactive at this point.

As the trendline is required to clarify the results this indi-

cates that a higher value of z would be preferable to clearly

assess the presence of an anomalous process.

In Fig. 18, the result of the PN data set are presented

where z = 1,000. As with the results presented in Fig. 17,

an initial spike of a high MCAV is shown, implying that

the scan is in its initial stages. While the individual points

on this graph are not as dense as in Fig. 17, the additional

spikes representing the latter stages of the scan are less in

magnitude, though little difference in the initial MCAV for

the nmap processes is shown.

The results for z = 10,000 are plotted in Fig. 19

showing lower values for the pts process and a less

sustained response to the nmap SYN scan process. Sensi-

tivity is lost when the value of z is increased further as

shown in Tables 9 and 10, with the maximum MCAVs

greatly reduced from 1.0 in previous experiments to 0.19

for the nmap process.

The AN results produced by the DCA show similar

features. Figure 20 shows the results using the smallest

antigen segment size of z = 100. In contrast to the PN data

set, the nmap SYN scan is not invoked until antigen seg-

ment 500. As shown on this graph, following the initiation

of this scan, the MCAV of all three processes of interest

(nmap, pts, firefox) are shown to increase.

These increases in MCAV form four spikes throughout

the session duration. The density of the datapoints in this
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Fig. 17 Passive normal results for the DCA for nmap SYN scan and

pts processes. Points represent an average MCAV derived from across

the ten runs performed, where the size of the antigen segment is

z = 100. The trendlines represents a moving average across 50 data

points
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Fig. 18 Passive normal results for the DCA for nmap SYN scan and

pts processes The size of the antigen segments (z) is 1,000. This data

represents an average MCAV derived from across the ten runs

performed. The trendlines represent moving averages per process of

interest across 20 data points
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Fig. 19 Passive normal results for the DCA for all three processes.

Individual points not included for the sake of clarity. The size of the

antigen segments (z) is 10,000. This data represents an average

MCAV derived from across the ten runs performed. The trendlines
represent moving averages per process of interest across ten data

points
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graph makes the correct interpretation of this graph

somewhat difficult. This is improved with the addition of a

trendline, generated through applying a moving average of

50 points across the data. During the scan period, the DCA

presents antigen, irrespective of its source, in the mature

context, as shown through the generation of high MCAV

values for both the nmap SYN scan and firefox browser

processes. This implies that the generation of false posi-

tives occurs when a normal and anomalous process run

simultaneously through the monitored ssh demon.

The results for antigen segments 0–500 are shown in

Fig. 21 for the sake of clarity. During this period the

majority of antigen presented belong to the firefox process

and some modulation of the behaviour of the monitored

system occurs, as seen in the initial 500 s of Fig. 20.

Despite these activities, the MCAVs presented in Fig. 21

are all relatively low. This suggests that the DCA using

these particular signals responds appropriately to normal

processes in the absence of scanning activity.

In Fig. 22, the results are presented for the AN data set

where z = 1,000. In comparison to Fig. 20, the trendlines

of the graph are observably similar. Figure 23 shows that

an antigen segment size of z = 10,000 produces observ-

ably different results to z = 1,000. This is evident as the

major spike peak evident in Figs. 20 and 22 is missing in

Fig. 23. Additionally, the only process technically classed

as ‘anomalous’ (MCAV above 0.5, chosen to reflect the

Table 9 The results for both active (AN) and passive (PN) normal

data sets for the DCA with an antigen segment size of z = 100,000.

Segment 0 includes antigen 0–99,999; segment 1 includes antigen

100,000 to 199,999 etc

Segment

number

PN

Nmap

PN

Pts

AN

Nmap

AN

Firefox

AN

Pts

0 0.12 0.24 0.16 0.05 0.05

1 0.07 0.05 0.06 0.04 0.06

2 0 0 0.01 0.00 0.00

3 – – 0.05 0.02 0.01

Table 10 The results for the DCA for both active (AN) and passive

(PN) normal data sets with an antigen segment size of z = 1,000,000

Process AN PN

Nmap 0.07 0.19

Pts 0.04 0

Firefox 0.03 n/a

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

Fig. 20 Active normal results for the DCA for nmap SYN scan and

pts processes. Points represent an average MCAV derived from across

the ten runs performed, where the size of the antigen segment is

z = 100. The trendline represents a moving average across 50 data

points

0
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0.8

1

0 50 100 150 200 250 300 350 400 450 500

Nmap

Pts
Firefox
Pts MA
Firefox MA

Fig. 21 Active normal results for initial 500 antigen segments

produced with the DCA to highlight the low MCAVs yielded. Points
represent an average MCAV derived from across the ten runs

performed, where z = 100. The trendline represents a moving average

across 20 data points
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0 50 100 150 200 250 300 350

Fig. 22 Active normal results for all three processes produced with

the DCA. The size of the antigen segments (z) is 1,000. This data

represents an average MCAV derived from across the ten runs

performed. The trendlines represent moving averages per process of

interest across ten data points
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proportion of nmap antigen in the input data) is the nmap

scan, though only briefly. This implies that the larger size

of z increases the rate of false negatives as shown through

the lower values in Fig. 23 and also shown in Tables 9 and

10. For experiments where z = 100,000 and z = 1,000,000,

the MCAVs are also reduced. However, an interesting

effect is that there is a greater difference in the MCAVs of

the normal and anomalous processes.

An example of this is evident in antigen segment zero

presented in Table 9, where the MCAV for the nmap scan

is three times the magnitude of the MCAV of the firefox

process. If the threshold of anomaly is applied at a level of

0.1, this experiment would yield results which detected the

nmap SYN scan as anomalous and the firefox process as

‘normal’. Other examples of this are also shown for the AN

data set in Table 10. This implies that while larger values

of z can produce false negatives, the potential for the

reduction of false positives is also evident.

5.7 SOM results

The PN results for the SOM are presented in Figs. 24, 25

and 26. As with the results of the DCA, high coefficient

values are generated initially for both nmap and pts pro-

cesses. A further ‘spike’ is evident at segment numbers

1,000–1,200 of Fig. 24. These trends are also evident in

Figs. 25 and 26. Trendlines are added to each graph to

represent a moving average per process. At the lowest level

of granularity of z = 1,800 (equivalent in the number of

segments to DCA z = 100), it is unclear as to exactly what

the individual data points imply. Therefore a larger size of

segment may be required, as also found with the DCA.

Again, sensitivity is lost as the size of z is large, as shown

by the results presented in Table 11 where z is 1,800,000.

In a similar manner, the AN results for the SOM pro-

duce initially high coefficients for the nmap process. The

results for z = 1,800 are presented in Fig. 27. This shows a

major spike at the point of the scan commencement (seg-

ments 400–700). Unlike the DCA upon application of a

trendline, it appears that the response to the scan is not

sustained as three peaks are evident, as opposed to the

single peak shown with the DCA. Also, the SOM produces

high coefficient values for the firefox process, suggesting

that discrimination between active anomalous and AN

processes can not be completely achieved by either

algorithm.

The graphs produced for z = 18,000 and 180,000 are

shown in Figs. 28 and 29, respectively. As with the PN

results, the response to the nmap decreases as the value of z

increases. This is evident from both graphs and in

Table 11. Unlike the DCA, which produced MCAVs for

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

Nmap
Firefox
Pts

Fig. 23 Active normal results for all three processes. Individual

points not included for the sake of clarity. The size of the antigen

segments (z) is 10,000. This data represents an average MCAV

derived from across the ten runs performed. The trendlines represent

moving averages per process of interest across ten data points

Fig. 24 Passive normal results for all three processes using the SOM.

The size of the output segments (z) is 1,800. This data represents an

average MBMU derived from across the ten runs performed. The

trendlines represent moving averages per process of interest across 50

data points

Fig. 25 Passive normal results for all three processes using the SOM.

The size of the output segments (z) is 18,000. This data represents an

average MBMU derived from across the ten runs performed. The

trendlines represent moving averages per process of interest across 20

data points
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nmap which are consistently higher than with firefox

(Fig. 23), with the SOM results both the nmap and firefox

coefficients decrease at a similar rate, as exemplified in

Fig. 29. Statistical analysis is presented to verify these

observations in the next section.

6 Discussion: analysis and comparison

6.1 Null hypothesis H1: antigen segments

Performance of Mann–Whitney tests (an unpaired rank-

based statistical test for non-parametric data [31]) com-

paring the results are presented in Fig. 20 with the other

antigen segment sizes. The results of this analysis are

shown in Table 12, which assesses the rejection of null

hypothesis H1. As indicated, in three out of the four tested

cases, the data series are significantly different. This indi-

cates that z does have an influence on the results of the

Fig. 26 Passive normal results for all three processes using the SOM.

The size of the output segments (z) is 180,000. This data represents an

average MBMU derived from across the ten runs performed. The

trendlines represent moving averages per process of interest across

ten data points

Table 11 The results for both active (AN) and passive (PN) normal

data sets for the SOM with a segment size of z = 1,800,000

Segment number PN Nmap AN Nmap AN firefox

0 0.293 0.078 0.028

1 0.135 0.016 0.013

2 – 0.003 0.011

3 – – 0.005

4 – – 0.002

5 – – 0.001

Fig. 27 Active normal results for all three processes using the SOM.

The size of the output segments (z) is 1,800. This data represents an

average MBMU derived from across the ten runs performed. The

trendlines represent moving averages per process of interest across 50

data points
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Fig. 28 Active normal results for all three processes using the SOM.

The size of the output segments (z) is 18,000. This data represents an

average MBMU derived from across the ten runs performed. The

trendlines represent moving averages per process of interest across 20

data points
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Fig. 29 Active normal results for all three processes using the SOM.

The size of the output segments (z0) is 180,000. This data represents

an average MBMU derived from across the ten runs performed. The

trendlines represent moving averages per process of interest across

ten data points
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DCA. Some further work with this concept may prove

fruitful, especially if dynamic antigen segment sizes are

used, linked to process activity. The demonstration of

statistical significance implies that null hypothesis H1 can

be rejected.

As the data is not normally distributed for either algo-

rithm, Mann-Whitney tests are performed on the results of

the SOM, comparing the results of z = 1,800 with all other

results for the AN nmap process. The resultant p values are

presented in Table 13. These results show that the modi-

fication of z produces a statistically significant effect on the

resultant anomaly values. Therefore, null hypothesis H1 is

also rejected for the SOM in addition to its rejection pro-

duced by the DCA.

6.2 Null hypothesis H2: head to head comparison

To assess H2, the results produced by the DCA and SOM

are compared statistically for one selected antigen segment

size. For this purpose DCA z = 1,000 and SOM

z = 18,000 are used as they contain approximately a sim-

ilar number of segments for both nmap and firefox. As

these data are not normally distributed (confirmed by the

application of the Shapiro–Wilk test) and do not form exact

pairs, a one-sided unpaired Mann–Whitney test is used to

perform this comparison. As the sample size is in excess of

300 datapoints, a 99% confidence interval is deemed

appropriate for this assessment.

The results of this comparison for the firefox process

yields a p value of 0.02, which at the given confidence

interval implies that the two sets of results are not

statistically significant. This implies that the algorithms

produce similar results for AN processes. For the firefox

process, null hypothesis H2 cannot be rejected under these

particular circumstances with these given data sets.

Upon performance of the same statistical test, the nmap

process produces a p value of 0.002, which shows that the

two algorithms produce statistically significant differences

in the detection of the scan process. To assess which sys-

tem produces the better performance, an additional two-

sided Mann–Whitney is performed. The results of this test

show that the DCA has the improved performance, pro-

ducing a p value of 0.0001. Therefore null hypothesis H2

can be rejected for the nmap process and that the DCA

shows the better performance on this occasion.

6.3 Baseline

To validate both sets of results and to ensure that both

performances are improved over a baseline, a k-means

classifier is applied to the signal data. The classifier used

belongs to the WEKA suite [65]. In this test 52% of the

signals were classed as belonging to one class while 48% to

another class. This implies that the necessary discrimina-

tion cannot be achieved through classification on the basis

of signals alone. This also shows that this data is non-trivial

to classify and adds value to the results produced for both

the SOM and DCA.

6.4 Conjecture

We have validated the use of the DCA as a serious com-

petitor for anomaly detection applications. Until this

comparison we were still uncertain as to the quality of

results produced by the DCA. This comparison with the

traditional SOM has shown that the DCA shows great

promise as a successful AIS algorithm. The performance

produced by the DCA shows that the algorithm is capable of

performing at a level comparable to a standard technique.

It is interesting that the results for the firefox process are

not statistically different for both algorithms, yet differ-

ences are evident for the nmap process. This may be

attributed to the method by which the signals are pro-

cessed. In the DCA, signals are assigned weights on a per-

category basis. In the SOM, all signals carry equal weight.

Perhaps the fact that the DCA uses heavy weighting for

both PAMP and danger signals is responsible for the

improved rate of nmap detection.

Alternatively, the correlation between antigen and signal

occurs within the DCA but is performed explicitly during

the normalisation stage with the SOM. This activity-

dependent association produced by the DCA may mean

that for the duration of the scan, the coupling between the

signals and antigen for the nmap process is tighter. This

Table 12 The results of the Mann–Whitney test comparing the

results of z = 100 to the results of z = 1,000, z = 10,000 and

z = 100,000

z p value

1,000 \0.0001*

10,000 0.358

100,000 \0.0001*

A confidence interval of 95% is used and data which are statistically

significantly different are marked with an asterisk

Table 13 The results of the Mann–Whitney test comparing the SOM

results of z = 1,800 to the results of z = 18,000, z = 180,000 and

z = 1,800,000

z p value

18,000 \0.0001*

180,000 \0.0001*

1,800,000 \0.0001*

A confidence interval of 95% is used and data which are statistically

significantly different are marked with an asterisk
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could be due to the fact that the amount of processed

antigen is increased. As noted by Oates et al. [57] the

increased DC migration rate may result in greater volumes

of processed antigen. This may result in a tighter coupling

between antigen and signals during periods of high activity

and high signal levels. A theoretical analysis, outside of the

scope of this paper, is necessary to confirm the coupling

mechanism and may provide insight as to the cause and

nature of this effect plus the further reaching consequences

of applicability of the DCA.

7 Conclusions

In this paper we have compared two biologically inspired

algorithms, the immune-inspired DCA and the neurologi-

cal-inspired SOM when applied to the detection of a SYN

port scan. Two constructed data sets are produced for this

purpose consisting of 13 million data items to classify.

Each algorithm was successful at performing anomaly

detection, with the number of antigen, z, used per classi-

fication step varied. It is shown that both algorithms are

sensitive to changes in z. A direct comparison between the

SOM and DCA is provided. For the normal processes, both

algorithms performed equally well, with the DCA pro-

ducing a significantly improved performance at detecting

the anomalous process. As a result, the DCA is shown to be

a competitive anomaly detection algorithm. As further

work, the DCA will be applied experimentally to other

large data sets, including further benchmarking with

computer security data and applications potentially

including large-scale data which requires correlation, such

as data derived from radio telescopes. In addition a theo-

retical analysis of the DCA is required to fully understand

the nature of this relatively novel algorithm and to be able

to assess future successful applications.
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