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Abstract
Mathematical models of cancer and bacterial evolution have generally stemmed from a gene-centric framework, assuming 
clonal evolution via acquisition of resistance-conferring mutations and selection of their corresponding subpopulations. More 
recently, the role of phenotypic plasticity has been recognized and models accounting for phenotypic switching between 
discrete cell states (e.g., epithelial and mesenchymal) have been developed. However, seldom do models incorporate both 
plasticity and mutationally driven resistance, particularly when the state space is continuous and resistance evolves in a 
continuous fashion. In this paper, we develop a framework to model plastic and mutational mechanisms of acquiring resist-
ance in a continuous gradual fashion. We use this framework to examine ways in which cancer and bacterial populations 
can respond to stress and consider implications for therapeutic strategies. Although we primarily discuss our framework in 
the context of cancer and bacteria, it applies broadly to any system capable of evolving via plasticity and genetic evolution.
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Introduction

Therapeutic resistance is well recognized as one of the 
major contributors to treatment failure and poor outcomes 
in patients (Housman et al.  2014;  Frieri et al.  2017; Vasan 
et al.  2019; Zaman et al.  2017). Traditionally, resistance is 
thought to emerge from the selection of subpopulations of 
cells that have acquired one or more resistance-conferring 
mutations (Hanahan and Weinberg 2011). However, recent 
studies also show the importance of phenotypic plasticity as 
a mechanism for mediating resistance, e.g., by cells entering 
a polyaneuploid, mesenchymal, inflammatory, or stem-like 
state (Amend et al. 2019; Chin and Lim 2019; Gonzalez 
et al.  2022; Katsuno et al.  2019; Li et al.  2019; Pienta 
et al.  2020; Pienta et al.  2021; Weng et al.  2019; Yuan et al.  
2022; Zhou et al.  2020).

In order to develop novel therapeutic strategies for bacte-
rial and cancer extinction or control, a deep understanding of 
their ecological (population), evolutionary (resistance), and 
demographic (state) dynamics is required. To this end, many 
mathematical models have been constructed and analyzed to 
elucidate various aspects of therapeutic resistance via plas-
ticity and clonal evolution. However, most models consider 
only one of these mechanisms (Bukkuri and Brown 2021; 
Dhawan et al.  2016; Forouzannia et al.  2020; Toneka-
boni et al.  2017). For the few models that incorporate both 
(Bukkuri et al. 2022a; Bukkuri et al.  2022b; Cunningham 
et al.  2021), plastic transitions are usually assumed to occur 
within a discrete state space.

In this paper, we use integral projection models (IPMs) 
to develop a method to model the ecological, evolutionary, 
and demographic (hereafter referred to as eco-evo-demo) 
dynamics of populations that evolve resistance in the face 
of therapy via continuous phenotypic transitions and clonal 
evolution. IPMs developed as an offshoot from matrix pop-
ulation models (Bukkuri and Brown 2023; Caswell 2001; 
Caswell 2012; Caswell 2019; de Vries et al.  2020) as a way 
to deal with population structure of a continuous nature, 
relaxing the requirement that organisms in a population must 
be classified into a set of discrete states (Easterling et al.  
2000; Rees et al.  2014). These models allow ecologists and 
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demographers to understand how continuous state structure 
impacts a population’s eco-evolutionary dynamics (Coul-
son 2012; Coulson et al. 2010). IPMs are typically con-
structed from regression models that infer how an organ-
ism’s state and environment impacts its survival, growth, 
and reproduction (Adler et al. 2010; Dahlgren  and Ehr-
len 2009; Dalgleish  et al.  2011; Merow et al.  2014; Nicolè 
et al.  2011). Such models have been used in a variety of eco-
logical contexts, to help us understand and control invasive 
species (Erickson et al. 2018; Goodsman  et al. 2018), the 
adaptation of insects and plants to climate change (Schwartz 
et al.  2016), herbivore–plant interactions (Hegland et al.  
2010; Miller et al.  2009; Rose et al.  2005; Williams et al.  
2010), optimal flowering size in plants (Hesse et al.  2008; 
Metcalf et al.  2003; Miller et al.  2012; Rees and Rose 2002; 
Williams et al.  2009), and host–parasite dynamics (Metcalf 
et al.  2016). We port over a more qualitative version of this 
framework to the cellular level and investigate the eco-evo-
demo dynamics in populations subjected to environmental 
stress. We also investigate two facultative mechanisms by 
which cell populations may modulate their stress-induced 
responses depending on their condition in the environment: 
stress-induced mutagenesis (Badyaev 2005; Bjedov et al.  
2003; Foster 2007; Fitzgerald  et al.  2017) and facultative 
plasticity (Aiello et al.  2018; Amend et al. 2019; Fisher 
et al.  2017;  Zañudo 2019; Liau et al.  2017; Pienta et al.  
2020; Pienta et al.  2021; Pienta et al.  2020a; Pienta et al.  
2020b;  Rabé et al.  2020; Sharma et al.  2010; Shen and 
Clairambault 2020). Using this knowledge, we then examine 
the efficacy of intermittent and adaptive therapy strategies 
(Gatenby et al. 2009; West et al.  2020).

Methods

Analytical framework

We construct our modeling framework using IPMs. First, we 
outline the ecological dynamics for the most simple case in 
the form of an integrodifference equation:

where n is the population distribution, u is the drug resist-
ance trait, z ∈ Z = [0, 1] is the current state of the cell, and z′ 
is state at the next time step. The states z ∈ Z may represent 
the state of cells on epithelial to mesenchymal, adrenergic 
(ADRN) to mesenchymal (MES), or aneuploidy continua, 
for example. We assume that population density is � peaked 
in u space around the mean drug resistance value, ū , so the 
ecological, demographic, and evolutionary dynamics are all 

(1)nū,t+1(z
�) = ∫ Kū,t(z, z

�)nū,t(z)dz

dependent on solely ū . The kernel K can be decomposed into 
survival, plasticity, birth, and fecundity as follows:

The first term is the growth kernel, often denoted by 
Gū(z, z

�) , and the second term is the fecundity kernel, R(z�, z) . 
The survival and birth functions, sū,t(z) and b(z), are called 
individual components, whereas the growth and fecundity 
kernels, G(z, z�) and R(z, z�) , are state-redistribution compo-
nents. Under this formulation, we assume that drug resist-
ance, u, only impacts the survival of the cells—in the future 
sections, we will relax this assumption. The specific forms 
for each of these components are

First, consider the state-redistribution components, G(z, z�) 
and R(z, z�) . We approximate the movement of cells through 
state space and the production of progeny using a Gaussian 
distribution. Although this is a fairly standard assumption in 
integral projection modeling (Easterling et al.  2000; Ellner  
and Rees 2006; Merow et al.  2014; Rees et al.  2014) (and 
indeed, G function (Bukkuri and Brown 2021; Vincent et al.  
2005) and adaptive dynamics (Diekmann 2004; Kisdi  and 
Geritz 2010) modeling), the distribution can be tailored to 
specific situations or fitted to data if required. In our case, 
the normal distribution is appropriate since cells tend to pro-
duce progeny very similar to themselves with most muta-
tions having a small phenotypic effect. Similarly, cells tend 
to stay within similar cell states and only rarely drastically 
shift to the tail ends of their distribution.

Next, we turn our attention to the individual components. 
Consider the survival function, sū(z) . Bounded below by 
zero, the survival of cells is reduced by two factors. The first 
term, dk, captures the natural death rate and assumes a linear 
cost of evolvability, k. In other words, we assume that the 
natural death rate of a cell increases as its evolvability 
increases, e.g., due to mutational meltdown (Bukkuri 2022), 
and enforce d > 0 and k ≥ 0 . The second term, m

exp(𝜙z)+𝛽ū
 , 

captures death due the effect of drug via a Michae-
lis–Menten-like formulation (Bukkuri and Brown 2021; 
Bukkuri et al.  2022a; Bukkuri et al.  2022b), where m(t) ≥ 0 
represents drug dosage at time t, 𝜙 > 0 is the impact of the 
cell state on survival, and 𝛽 > 0 represents the impact of 
resistance on survival. Finally, consider the birth function, 
b(z). The maximal birth rate of the cell is captured by b1 . 

(2)Kū,t(z, z
�) = sū,t(z)

���
Survival

Growth Kernel

���

G(z, z�) + b(z)
���

Birth

Fecundity Kernel

���

R(z, z�)

(3)

G(z, z�) ∼ N(z, 𝜎2
G
)

R(z, z�) ∼ N(z, 𝜎2
R
)

su,t(z) = max
(

0, 1 − dk −
m(t)

exp(𝜙z)+𝛽ū

)

b(z) = b1exp(b2z)
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This proliferation rate is tempered by the cell’s state with the 
multiplicative exponential term. Namely, we assume that 
higher cell states lead to lower birth rates (enforced by 
b2 < 0 ). This survival-birth trade-off is worth stressing. 
Higher cell states (e.g., mesenchymal, inflammatory, or high 
ploidy) attain higher survival under therapy than lower cell 
states (e.g., epithelial, adrenergic, proliferative, or low 
ploidy). But this comes at a cost: a lower birth rate. This 
trade-off, visualized in the heatmap below (Fig. 1), is experi-
mentally observed in a multitude of contexts across bacterial 
and cancer evolution (Amend  et al.  2019; Chin and Lim 
2019; Katsuno et al.  2019; Liau et al.  2017; Shun et al.  
2019; Sánchez-Danés et al.  2018; Shen et al.  2019; Zhou 
et al.  2020).

From these ecological dynamics, we can then derive the 
evolutionary dynamics of resistance via Fisher’s fundamen-
tal theorem of natural selection (Li 1967; Basener  and San-
ford 2018; Frank  and Slatkin 1992; Lessard 1997), sensu the 
G function framework (Bukkuri and Brown 2021; Vincent 
et al.  2005). This approach states that evolution is the prod-
uct of evolvability (the capacity to generate heritable varia-
tion upon which natural selection can act), and the selection 
gradient. Namely, for the discrete-time case, we have

where ū represents the mean drug resistance value in the 
population, � is the per-capita growth rate or fitness func-
tion calculated as the spectral radius of the kernel operator 
(Bukkuri and Brown 2023), and �(�, �, ��) is the sensitivity 
of the fitness function to perturbations in the kernel operator, 

(4)

Δū =
k

𝜆̄

𝜕𝜆

𝜕u

=
k

𝜆̄

(∫ ∫ 𝜕𝜆

𝜕K

𝜕K

𝜕s

𝜕s

𝜕u
dzdz�

)

=
k

𝜆̄

(∫ ∫ �(�, �, ��)P(z, z�)
𝛽m

(𝛽u+exp(𝜙z))2
dzdz�

)

calculated as the normalized inner product of the reproduc-
tive and stable state distribution eigenvectors. Note that if 
drug resistance levels impact components other than just 
survival, this equation will need to be modified to incorpo-
rate the other terms via a basic application of the chain rule 
as shown above. Under this framework, we allow cells to 
respond to therapeutic stressors via both plasticity (changing 
cell state in a continuous and reversible fashion) and genetic 
evolution (evolving higher levels of resistance, u).

Numerical implementation

There are two technical points to note concerning the numer-
ical implementation of our model. The discretized IPM ker-
nel used in the simulations is the result of overlaying a mesh 
over the operator, treating it as a large finite-dimensional 
matrix. Thus, rather than dealing with the integrodifference 
equation in Equation 1 directly, we treat it as a high-dimen-
sional, discrete-time matrix population model (Bukkuri and 
Brown 2023; Caswell 2001) and simply project it forward 
in time using matrix multiplication. The choice of mesh 
size (and thereby dimensionality of the resulting matrix) 
is a trade-off between accuracy and computational cost: 
The smaller the mesh size, the more accurate the numerical 
results, but the greater computational effort. In our case, we 
used a 100x100 matrix. Another aspect to consider are the 
boundary conditions. Since we defined a bounded interval 
for our state distribution, Z, we must correct for eviction, 
whereby individuals diffuse outside these boundaries due 
to the Gaussian nature of our size-redistribution kernels. To 
do this, we return all cells that occupy states outside Z to the 
boundary from which they were evicted (Merow et al.  2014) 
(see (Williams et al.  2012) for alternative corrections).

Fig. 1   Survival-Birth Trade-off: higher cell states (z) confer a greater survival under therapy but come with a lower birth rate. Assuming no cost 
of resistance, resistance levels (u) allow for higher survival under therapy and do not impact birth rates
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Another consequence of our modeling assumptions is the 
existence of a small subpopulation of highly resistant cells 
occupying high cell states prior to drug exposure. Due to 
the Gaussian nature of our kernels, these cells can indeed 
become or generate drug-sensitive cells and vice versa. This 
observation has found experimental support, e.g., Shaffer 
et al. identify a rare population of melanoma cells that tran-
siently display high expression of AXL in the absence of 
therapy. These cells are resistant to anti-BRAF therapy and 
have been found to stochastically give rise to drug-sensitive 
cells (Shaffer et al.  2017).

Results

We ran a series of simulations capturing the eco-evo-demo 
dynamics of populations under therapy. The parameter val-
ues used in the simulations can be found in Table 1. These 
parameters were chosen to be biologically plausible, numeri-
cally convenient for simulation purposes, and to clearly 
show differences among stress-responses and therapeutic 
outcomes. Although many of these parameters can quanti-
tatively alter results (e.g., a higher birth rate and evolvability 
or a lower drug dosage and natural death rate can promote 
the survival of the cell population under therapy), the same 
broad qualitative trends hold.

In all simulations, the population is initialized with den-
sities of 0.5 across all cell states for a total population size 
of 50 cells. This choice of initial condition is relatively 
arbitrary and can be customized for specific applications. 
Here, we assume that at time 0, the cancer is initiated as a 
speciation event from normal somatic cells. As such, it is far 
from a demographic equilibrium (Pienta et al.  2020a; Pienta 
et al.  2020b). Therapy will be administered as a constant 
dose through time once the population reaches one million 
cells and the simulation will be stopped once the population 
recovers back to the one million cell threshold or once the 

population size is less than 10 (an arbitrary threshold). Note 
that, when the cancer is detected and treatment is adminis-
tered, the population has yet to reach its demographic equi-
librium. This is in accordance with clinical practice and 
ongoing experimental studies that suggest that cancer cell 
populations often are not near their demographic equilib-
rium when treatment is given. Key summary statistics are 
provided in Table 2: final drug resistance level, minimum of 
population, time of therapeutic application, time to progres-
sion (TTP: number of time steps between the start of therapy 
and when the population reaches one million cells again), 
and time to treatment failure (TTF: number of time steps 
between the start of therapy and when the population starts 
increasing in size).

Model exploration

First, we run a series of simulations to explore the dynam-
ics of our model. We consider the following cases: baseline 
(parameters given in Table 1), no evolvability ( k = 0 ), high 
evolvability ( k = 4 ), low growth variance �G = 0.01 , and 
high growth variance ( �G = 0.1 ) (Fig. 2 and Table 2). First, 
note the similarities among the simulations. Since cells in 
lower cell states proliferate more rapidly than those in higher 
cell states, the average cell state in the population decreases 
before therapy is administered. Once the population size 
passes the one million cell threshold and therapy is adminis-
tered, the population’s demography shifts toward higher cell 
states, allowing the cells to minimize the effects of therapy 
at the cost of proliferating more slowly. This demographic 
transition buys time for adaptive genetic evolution to occur 
(Diamond and Martin 2016; Fox et al.  2019; Merilä and 
Hendry 2014). As resistance develops and treatment begins 
to fail, the population shifts toward pre-therapy demography, 
leading to higher proliferation rates and the eventual pro-
gression of the tumor (Table 2). However, if cells are unable 
to evolve resistance (i.e., k = 0 ), the population remains in 
a high cell state. For the parameter values chosen here, this 
shift in demography is not enough for the population to 
avoid extinction.

There are also key differences among our simulations as 
a result of differences in evolvability and variance. Starting 
with the former, note that due to the cost of evolvability, it 
takes more evolvable populations longer to surpass the one 
million cells threshold, leading to a delayed start of therapy 
(Table 2). Although highly evolvable populations still shift 
their demography to higher cell states upon administration 
of therapy, this demographic transition is less extreme due 
to the rapid evolution of resistance. Finally, as one might 
expect, the rapid evolution of resistance leads to a higher 
minimum of the population and a shorter TTP and TTF than 
other cases (Table 2).

Table 1   Parameter definitions and baseline values used in simulations

Parameter Interpretation Value

d Natural death rate 0.01 h −1

m Drug dosage 1 h −1

� Impact of state on drug death 1.5
� Impact of strategy on drug death 1.5
b1 Maximal intrinsic growth rate 0.3 h −1

b2 Birth-state scaling term −0.6
�R Standard deviation of fecundity kernel 0.05
�G Standard deviation of growth kernel 0.05
k Evolvability 1
Z State interval [0,1]
u Drug Resistance Level [0,∞)
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Now, consider the impact of variance. For biological 
realism and simplicity, we fix the variance in the fecundity 
kernel and solely consider changes to the growth kernel. 
An increase in the variance of the fecundity kernel can be 
considered a form of saltational evolution (Willis 1923), 
sensu Goldschmidt’s “hopeful monster" macromutations 
(Goldschmidt 1933) (a rather controversial theory (Dietrich 
2003), particularly at the cellular level). Combining this with 
the fact that the fecundity kernel produces variance across 
states, not the resistance trait, we choose to focus solely on 
the impacts of variance in the growth kernel. However, due 
to the structure of our model, results for fecundity variance 

are qualitatively similar to those of growth variance, with 
quantitative differences arising from the magnitude of the 
difference between survival and birth probabilities and the 
interplay with evolutionary dynamics (survival is dependent 
on strategy but birth is not).

We see that lower variance kernels move closer to the 
tails of their distributions more effectively than higher vari-
ance kernels, a phenomenon that is paralleled in the pre-
therapy demographic dynamics. This allows them to attain 
a lower average cell state and higher population size when 
therapy is administered. After therapy is given, the high 
growth variance population is able to shift its demography 

Fig. 2   Impact of evolvability and growth variance on eco-evo-demo 
dynamics. Blue, black, red, green, and brown lines capture dynamics 
of populations with no evolvability, baseline conditions, low growth 
variance, high growth variance, and high evolvability, respectively. 

Higher growth variances and evolvabilities lead to higher population 
minima and faster times to progression and treatment failure (color 
figure online)

Table 2   Model exploration 
summary

Baseline Low variance High variance No evolvability High evolvability

Drug resistance 3.850 4.068 3.556 0 4.868
Minimum of population 38,443 24,375 68,137 9 203,847
Start of therapy 48 48 48 46 53
Time to progression 84 90 74 NA 33
Time to treatment failure 29 32 25 NA 10
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toward high cell states the most rapidly, reaching the highest 
average cell state among the evolvable populations. These 
factors dampen the selective pressure on the high growth 
variance population to evolve resistance. Thus, although 
this population progressed and reached treatment failure 
the quickest, it also evolved the least resistance (Table 2).

Facultative stress‑induced responses

With a basic understanding of how variance and evolvability 
impact eco-evo-demo dynamics, we now examine faculta-
tive stress-induced responses that populations may undergo. 
Throughout this paper, we have discussed two mechanisms 
by which cells can adapt to a therapeutic stressor: by chang-
ing their cell state (plasticity) and by evolving higher resist-
ance levels (genetic evolution). However, both of these 
adaptations come with a cost. A shift in demography toward 
higher cell states leads to lower proliferation rates, and a 
faster rate of evolution (via a high evolvability) leads to a 
higher death rate. Thus, it is natural to ask: What if popula-
tions could modulate their degree of plasticity and evolv-
ability depending on their condition? In other words, what 
if cells could increase their plasticity and evolvability when 
they are stressed and decrease them when they are stable? 
In this section, we consider how facultative plasticity and 
adaptive mutagenesis impact the eco-evo-demo dynamics 
of populations under therapy (Fig. 3 and Table 3).

Plasticity, the process by which cells transiently adopt a 
distinct phenotypic identity in a non-genetic fashion, is a 
commonly observed stress response in cancer and bacteria. 
Critically, these plastic transitions are completely reversible. 
In bacteria, a slow-cycling drug-tolerant persister (DTP) 
state plays such a role, providing a stepping-stone toward 
more permanent genetic resistance (Sharma et al.  2010). A 
similar DTP state was detected in non-small cell lung cancer, 
melanoma, and glioblastoma (Biehs et al.  2018; Liau et al.  
2017; Marion et al.  2020; Rambow et al.  2018; Sánchez-
Danés et  al.  2018; Shen et  al.  2019). In addition, the 
ADRN–MES transition in neuroblastoma, epithelial-to-
mesenchymal transition, and polyaneuploid transition (PAT) 
have all been shown to contribute to therapeutic resistance 
in cancer (Amend et al.  2019; Chin and Lim 2019; Katsuno 
et al.  2019; Shun et al.  2019; Pienta et al.  2020; Pienta 
et al.  2021; Weng et al.  2019; Xiaojun et al.  2022; Zhou 
et al.  2020). To implement facultative plasticity, we use the 
same parameter values as in Table 1, but let the variance in 
the growth kernel depend on the cell’s condition: 

�G = .01 + .15exp
(

−
.3

ddrug

)

 where ddrug =
m

exp(�z)+�u
 represents 

the drug-induced death rate for a cell in state z with resist-
ance level u. In addition to the eco-evo-demo dynamics, we 
plot the change in average growth variance over time 
(Fig. 3).

Adaptive mutagenesis is a widely recognized phenome-
non in bacterial (Bjedov et al.  2003; Foster 2007; Fitzgerald  
et al.  2017; Rosenberg et al.  2012), yeast (Galhardo  et al.  
2009; Hastings et al.  2004; Layton  and Foster 2003; Lom-
bardo et al.  2004; Lovett 2006; Petrosino et al.  2009), and 
(albeit to a lesser extent) cancer (Hall 1995; Finch and 
Goodman 1997; Rosenberg et al.  1994; Strauss 1986) evolu-
tion. Also known as stress-induced mutations, adaptive 
mutations describe the generation of heritable variation that 
occurs in response to the environment (Rosenberg 2001). To 
implement adaptive mutagenesis, we use the same parame-
ters in Table 1, but let evolvability be a function of the cell’s 
condition: k = 5exp

(

−
.1

ddrug

)

 . In addition to the eco-evo-
demo dynamics, we plot the change in average evolvability 
over time (Fig. 3).

Before drug exposure, the variance in growth kernel and 
mutation rate is low. This allows the population to reach 
lower average cell states and proliferate more quickly or 
minimize natural cell death, respectively. Once therapy is 
applied, the population quickly increases its growth vari-
ance or evolvability. In the former case, facultative plasticity 
allows cells to quickly move toward higher states, whereas in 
the latter case, adaptive mutagenesis allows for rapid evolu-
tion of resistance. In both, the population drop is less severe 
(Table 3). Once the initial burst of adaptation or evolution 
has occurred, the population decreases its growth variance 
or evolvability. This allows for continued modest evolution 
of resistance, while allowing for higher proliferation rates or 
lower natural death rates. These aspects contribute to a faster 
rate of evolution and a shorter TTP and TTF.

Therapeutic strategies

Throughout this paper, we have seen how the potent combi-
nation of plasticity and genetic evolution allows populations 
to evolve and adapt to stressful conditions. This leads to the 
natural question: How can we develop therapeutic strategies 
to effectively control or drive populations to extinction given 
the complex interplay among ecological, evolutionary, and 
demographic dynamics? As done in our past work and as 
suggested by others, one approach is to use a life-history 
enlightened approach (Bukkuri et al.  2022a; Bukkuri et al.  
2022b; Shen and Clairambault 2020) by attempting to block 
plastic transitions toward drug-resistant phenotypes. Such 
approaches, at the epigenetic, intracellular pathway, and 
microenvironmental levels, have shown promise in a variety 

Fig. 3   Impact of facultative stress-induced responses on eco-evo-
demo dynamics. The ability of a population to modulate the extent 
of its plasticity or nature of its mutations in response to its condition 
leads to faster proliferation/higher survival pre-therapy, higher min-
ima, and shorter times to progression and treatment failure

◂
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of cancers, including glioblastoma, breast cancer, melanoma, 
and prostate cancer (Guler et al.  2017; Liau et al.  2017; 
Roswall et al.  2018; Rusan et al.  2018; Sánchez-Danés 
et al.  2018; Straussman et al.  2012; Wallner et al.  2006). 
Similarly, efforts have been made to develop drugs to target 
cell states that are resistant to traditional therapies (Boshui-
zen et al.  2018; Hangauer et al.  2017; Rambow et al.  2018; 
Tsoi et al.  2018; Viswanathan et al.  2017). In this section, 
we focus on therapeutic strategies assuming that neither of 
these options exist.

Specifically, we will investigate the efficacy of intermit-
tent and adaptive therapy protocols when cells can adapt to 
the stressor in both plastic and genetic ways. For simplicity, 
we will implement therapy solely on the baseline case (see 
Table 1) here. Under both protocols, we let therapy begin 
once the population size exceeds one million cells. We focus 
on three statistics: minimum of population, TTF, and TTP. If 
extinction is the goal, the minimum of the population is the 
metric of most importance. If the physician is aiming at con-
trol and only has one drug, TTP is most relevant. However, 
if the goal is control, several drugs are available, TTF is key.

First, we begin with the intermittent therapy. Under this 
protocol, therapy follows a fixed administration schedule, 
with both treatment and drug holiday times set constant for 
the entirety of the simulation. Once again, we set the drug 
dosage to be constant for the entirety of the treatment peri-
ods. Using the parameter values from Table 2, we simulate 
a sample intermittent protocol with 8 time steps on therapy 
and 4 time steps off, arbitrarily chosen (Fig. 4). The effects 
of the intermittent nature of the protocol can clearly be seen 
reflected in the ecological, evolutionary, and demographic 
dynamics of the population. Before progression, during 

Table 3   Facultative plasticity and stress-induced mutagenesis results 
summary

Facultative plastic-
ity

Adaptive 
mutagen-
esis

Drug resistance 4.000 3.992
Minimum of population 87,954 283,292
Start of therapy 48 46
Time to progression 62 31
Time to treatment failure 23 11

Fig. 4   Intermittent therapy protocol. Longer holidays/shorter treatment times lead to higher minima, a shorter time to progression, but a longer 
time to treatment failure
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periods of therapy, the population size decreases, resist-
ance evolves, and the population shifts toward lower cell 
states. As cells gain resistance, however, each of these trends 
becomes less severe. Once progression occurs, the popula-
tion is able to proliferate and reduce their cell state even in 
the presence of therapy (albeit in a less effective manner).

To better understand the effects of intermittent therapy, 
we simulate a range of treatment times and drug holidays 
and summarize key statistics in Fig. 5. Greater drug holiday 
durations and lower treatment times lead to higher minima 
as the therapy is not given enough time to reduce the popu-
lation down to its minimum. Longer holidays and shorter 
treatment durations also lead to shorter TTP (since the popu-
lation recovers to higher levels) and a longer TTF (since 
resistance evolves less quickly). Thus, assuming no cost of 
resistance, continuous therapy is more effective for extinc-
tion and control purposes when only one drug is available. 
On the other hand, including drug holidays may be more 
effective for multi-drug control.

Next, we turn to our adaptive therapy protocol. Under 
this protocol, we administer therapy when the population 
increases past a threshold and remove therapy when the pop-
ulation decreases below another threshold. We first create a 
sample adaptive therapy protocol by setting the upper thresh-
old to 800,000 cells and the lower threshold to 400,000 cells, 
arbitrarily chosen (Fig. 6). As before, we can clearly see the 
impacts of treatment times and treatment holidays on the 
eco-evo-demo dynamics of the population. Due to the adap-
tive nature of the dosing, we note that switching treatment on 
and off is more frequent at the beginning of therapy, when 
cells are relatively more sensitive to the drug. As cells gain 
resistance, therapy must be given for longer periods of time 
to push the population below the lower threshold. As before, 
drug dosage is held constant during treatment periods.

To gain a deeper understanding on how the thresholds 
we set impact TTP and TTF, we simulate adaptive therapy 
protocols over a range of thresholds (Fig. 7). As we can 
see, higher thresholds for starting and stopping therapy 

lead to a shorter TTP and a longer TTF. High thresholds 
induce more therapy cycles than lower thresholds because 
less therapy is required to reduce the population down to 
the threshold bounds. This prolongs the time required to 
gain resistance; however, since the population is cycling 
at high levels, progression is not far once the cells escape.

Under this model formulation, we assume no cost of 
resistance. This leads to an infinite improvement model 
of evolution, in which u is monotonically increasing. 
While this is a valid assumption in some cases, many 
cancers exhibit such costs. If we instead include a cost 
of resistance (as exists in many cancers (Gallaher et al.  
2018; Jensen et al.  2015; Kam et al.  2015; Smalley et al.  
2019)), we expect u to decrease during times of drug holi-
days and become re-sensitized, at least to some degree, to 
therapy upon the next administration. This could conceiv-
ably prolong TTP and TTF and may change our qualitative 
observations.

To test this hypothesis, we let b(u,z) = b1exp(b2z + b3u) 
where b3 = −0.2 . This induces a proliferation-resistance 
trade-off. For biological realism, we force u ≥ 0 to prevent 
negative resistance values pre-therapy. Using a drug dosage 
of m = 0.7 , we simulate continuous therapy, intermittent 
therapy, and adaptive therapy protocols (Fig.  8). For inter-
mittent therapy, therapy is on for 8 time steps, then turned 
off for 4 time steps. For adaptive therapy, we use an upper 
threshold of 800,000 cells and a lower bound of 400,000 
cells.

Due to the cost of resistance, during times of therapy, 
u increases, but during times of drug holiday, u decreases, 
leading to resensitization of therapy. In all cases, this leads 
to lower overall levels of resistance and prolongs TTF and 
TTP (Table 4). However, even with this cost, we notice the 
same general trends as before: Continuous therapy is more 
effective at producing a low minimum of the population and 
promotes the longest TTP. On the other hand, intermittent 
and adaptive therapies are effective at keeping resistance 
levels low in the population, promoting a longer TTF.

Fig. 5   Intermittent therapy: minimum of population, time to progression, and time to failure
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Fig. 6   Adaptive therapy protocol. Higher thresholds for starting and stopping therapy leads to a shorter time to progression and a longer time to 
treatment failure

Fig. 7   Impact of thresholds on adaptive therapy protocols: time to progression and time to failure
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Conclusion

In this paper, we developed a novel theoretical framework 
using IPMs to examine stress-induced responses in bacte-
rial and cancer cell populations. This framework allowed 
us to simultaneously consider the roles of plasticity (in a 
continuous, rather than discrete sense) and gradual genetic 
evolution in a population’s ability to respond to stressful 
environments. Currently, few methods exist to model both 
mutationally driven resistance and plasticity apart from 
our prior work on matrix population modeling (Bukkuri 
and Brown 2023; Bukkuri et al.  2022a; Bukkuri et al.  
2022b). The key contribution of this paper is to add to this 

literature of modeling tools for eco-evo-demo dynamics. 
We found that faster evolving (i.e., highly evolvable) and 
more plastic populations (i.e., those with a high growth 
variance) are able to respond to stress effectively, avoiding 
extinction and causing treatment failure and progression 
rapidly. The interplay between plasticity and evolvability 
is a complex and practically relevant one: faster evolving 
species shift cell states less dramatically, and highly plas-
tic populations evolve less mutationally-driven resistance. 
This observation may have implications for therapeutic 
regimens aimed at long-term control and life-history 
enlightened strategies (Bukkuri et al.  2022a). We branched 
into facultative stress-induced responses, in which plastic-
ity and evolvability were condition-dependent. We found 

Fig. 8   Impact of cost of resistance on continuous, intermittent, and 
adaptive therapy protocols. The cost of resistance leads to higher 
times to progression and failure and lower resistance levels across 
the board. However, the same qualitative trends hold, with continu-

ous therapy leading to a lower population minimum and higher time 
to progression, whereas intermittent and adaptive therapies lead to 
higher times to failure

Table 4   Continuous, 
intermittent, and adaptive 
therapy with cost of resistance 
summary

Continuous therapy Intermittent therapy Adaptive therapy

Drug resistance 3.014 0.504 2.660
Minimum of population 52,585 228,928 488,300
Time to progression 391 70 253
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that these mechanisms were even more effective at promot-
ing evolutionary rescue in the population and led to faster 
proliferation pre-therapy, higher minima, and shorter times 
to progression and treatment failure. We then considered 
intermittent and adaptive therapy regimens. Although con-
tinuous therapy is generally more effective if the goal is 
extinction or control with a single drug, introducing drug 
holidays can prolong TTF, an important aspect if the goal 
is multi-drug control.

Our study has several limitations. Being theoretical in 
nature, our parameter values were not informed by data. 
Future work could seek to calibrate and compare models 
with time-series RNA sequencing (at bulk or single-cell 
resolution) and population count data pre-therapy, during 
therapy, and after therapy. Furthermore, complementary 
methods such as agent-based modeling techniques could 
be employed for finer resolution and stochasticity. Differ-
ent forms of the cost of evolvability and resistance, biased 
kernels for adaptive mutations and directed plastic transi-
tions, and density dependence are all things future work 
can consider.

Theoretically, we hope to expand our modeling frame-
work to include several continuous states. For instance, 
we could model the stochastic reversal of evolutionary 
resistance (a plausible outcome when a resistant popula-
tion is left without therapy for extended periods of time) 
by treating resistance as a second state. We also hope to 
include hybrid discrete and continuous states, a notion par-
ticularly important when incorporating a polyploid state 
(Bukkuri et al.  2022b; Bukkuri et al.  2022a) or consider-
ing primary and metastatic tumors or habitat heterogene-
ity within a tumor (Cunningham et al.  2021). Finally, 
we hope that future work will apply this framework to 
the specific problems mentioned here: the epithelial-to-
mesenchymal transition, ADRN–MES transition in neu-
roblastoma, and the PAT transition, as well as additional 
biological conundrums such as the stem-cell paradigm in 
wound healing and macrophage polarization.
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