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Abstract
In this paper, a deterministic model for transmission of an epidemic has been proposed by dividing the total population into 
three subclasses, namely susceptible, infectious and recovered. The incidence rate of infection is taken as a nonlinear func-
tional along with time delay, and treatment rate of infected is considered as Holling type III functional. We have structured 
a deterministic transmission model of the epidemic taking into account the factors that affect the epidemic transmission 
such as social and natural factors, inhibitory effects and numerous control measures. The delayed model has been analyzed 
mathematically for two equilibria, namely disease-free equilibrium (DFE) and endemic equilibrium. It is found that DFE is 
locally and globally asymptotically stable when the basic reproduction number (R

0
) is less than unity. It has also been shown 

that the delayed system for DFE at R
0
= 1 is linearly neutrally stable. The existence of an endemic equilibrium has been shown 

and found that under some conditions, endemic equilibrium is locally asymptotically stable, and is globally asymptotically 
stable when R

0
> 1 . Further, the endemic equilibrium exhibits Hopf bifurcation under some conditions. Finally, an undelayed 

system has been analyzed, and it is shown that at R
0
= 1 , DFE exhibits a forward bifurcation.

Keywords  Epidemic · Delay SIR model · Holling type III treatment rate · Nonlinear incidence rate · Stability · Bifurcation

Introduction

The structure of deterministic mathematical models for 
observing and controlling the spread of various human dis-
eases is of public health interest in the light of the fact that 
the mathematics helps to formulate effective mechanisms 
for controlling their spread. Since the first compartmental 
model is given by Kermack and McKendrick (1927), various 
mathematical models involving some complex assumptions 
(Gumel et al. 2006; Korobeinikov and Maini 2005; Kumar 
and Nilam 2018, 2019a; b, 2019; Dubey et al. 2013, 2015; 
Cui et al. 2017; Xiao and Ruan 2007; Li and Zhang 2017; 
Huang et al. 2010; Goel and Nilam 2019; Hattaf and Yousfi 
2009; Hattaf et al. 2013; Zhou and Fan 2012; Dubey et al. 

2016; Naresh et al. 2009; Xu and Ma 2009; Wang and Ruan 
2004; Wang 2002; Li Michael et al. 1999; Zhang and Suo 
2010) have been proposed and considered, for instance, SIR, 
SIS, SEIR and SEIRS models. In recent times, considerable 
attention has been paid to study the dynamics of epidemic 
models with epidemiologically meaningful time delays. In 
the context of disease transmission, delays can be caused 
by a variety of factors. The most well-known reasons for a 
delay are (1) the latency of the infection in a vector and (2) 
the latency of the infection in an infected host (Huang et al. 
2010; Li and Liu 2014). In these cases, some time should 
elapse before the level of infection in the infected host or 
the vector reaches a sufficiently high level to transmit the 
infection further.

It is well known that disease transmission progress plays 
a vital role in epidemic dynamics; that is, applying differ-
ent incidence rates can potentially change the behaviors of 
the system. In many epidemic models, numerous incidence 
functions with or without delay are widely used in different 
epidemiological backgrounds (Li and Liu 2014). The inci-
dence rate can also be modeled by many other kinds of more 
general functions. It is interesting whether the functional 
form of the incidence rate can change the epidemic dynamics 
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or not. Liu et al. (1986) suggested a nonlinear saturated inci-
dence function �SIl∕

(
1 + �Ih

)
 to model the impact of behav-

ioral changes to certain communicable diseases, where �SIl 
describes the infection force of the disease and 1∕

(
1 + �Ih

)
 

measures the inhibition effect from the behavioral change 
of the susceptible people when the number of infectious 
people increases; l, h and � are all positive constants, and � 
is a nonnegative constant. The case l = h = 1 , i.e., the func-
tion �SI∕(1 + �I) , was used by Capasso and Serio (1978) to 
represent a “protection measure” in modeling the cholera 
epidemics in Bari in 1973.

The resources of the health system available to the public 
determine how well the diseases are controlled. Particularly, 
the capacity of the hospital setting and the effectiveness and 
efficiency of treatment may influence the recovery rate (Cui 
et al. 2017). In this manner, consideration of the treatment 
rate is very important. For this, numerous authors (Kumar 
and Nilam 2018, 2019a, b; Kumar et al. 2019; Dubey et al. 
2013, 2015) have suggested various treatment rates such as 
Monod–Haldane functional type and Holling type I and II. To 
contribute to the study of saturated treatment, we incorporate 
the Holling type III (Dubey et al. 2013, 2016) treatment rate, 
which characterizes the case in which removal rate initially is 
rapid with increment in infectives, and afterward, it develops 
gradually, finally settling to a saturated value. Any subse-
quent expansion in infectives will not influence the recovery/
removal rate. This case relates to a known disease which has 
re-emerged and has available treatment methods.

In this article, we propose and analyze a mathematical 
susceptible—infected—recovered model to gain a better 
understanding of transmission and subsequent control of the 
spread of infectious/communicable disease via a combination 
of nonlinear saturated incidence and Holling type III treat-
ment rates. We incorporate time delay in incidence rate as the 
incubation period of the disease. We discuss the positivity 
and boundedness of the model solution. Further, we find the 
equilibrium points of the model and discuss the local and 
global stability of the equilibria. The stability of equilibria is 
discussed in terms of the basic reproduction number (van den 
Driessche and Watmough 2002), Routh–Hurwitz criterion 
and Lyapunov functional. Moreover, bifurcation analysis and 
an undelayed system are also discussed. Our goal is to study 
the effect of nonlinear incidence along with time delay and 
Holling type III treatment, on the transmission dynamics of 
the infectious disease in the human population.

The remaining part of the manuscript is organized as fol-
lows: In “The mathematical model and its basic properties” 
section, the mathematical model is presented together with 
its basic properties as positivity and boundedness of the 
solutions. In “Equilibria and their stability analysis” sec-
tion, a rigorous analysis of the model is provided including 
the existence and local stability analysis of model equilibria. 
The “Global stability” section analyzes the global stability 

of the equilibrium points. The stability of the undelayed sys-
tem is presented in “Undelayed system” section. Finally, a 
discussion is presented in “Discussion” section.

The mathematical model and its basic 
properties

In this section, we present a deterministic epidemic model 
to prevent an outbreak of an epidemic. We assume that the 
human population under consideration is N(t) . We divide 
N(t) into three isolated compartments or classes X(t), Y(t) 
and Z(t) . Here, X(t) represents the susceptible population, 
Y(t) represents the compartment of infectious individuals, 
and recovered individuals are represented by Z(t) . The useful 
postulates for the model formulation are as follows.

Postulates

	(A1)	 The nonlinear incidence rate is given by the function 
F(Y).

	(A2)	 It is supposed that all the newborns are susceptible.
	(A3)	 The force of infection at any time t  is given by 

�X(t)F(Y(t − �)) (Kumar and Nilam 2018; Naresh 
et al. 2009), because those infected at the time (t − �) 
become infectious � time later.

	(A4)	 The total population is supposed to be large enough 
to be adequately described by a deterministic model 
and is divided into compartments (or classes) based 
on the disease status.

The susceptible population is generated via recruitment 
by birth at a constant rate A . The natural death rate is sup-
posed to be the same for all the individuals and is repre-
sented by � . The contact capable of leading the infection in 
the human population is assumed as a rate � (transmission 
rate of infection). The protection measures (psychological 
or inhibitory effect) are considered at a rate � . The infected 
people also die due to disease-related death at a rate � (dis-
ease–induced mortality). The rate of cure of infection is � , 
and limitation rate in the treatment of infected is � . The 
rate of recovery from infection is � . These assumptions lead 
to the following nonlinear system of the delay differential 
equations to describe the changes in X(t) , Y(t) and Z(t) with 
respect to time t:

(1)

dX(t)

dt
= A − �X(t) −

�X(t)Y(t − �)

1 + �Y(t − �)
,

dY(t)

dt
=

�X(t)Y(t − �)

1 + �Y(t − �)
− (� + � + �)Y(t) −

�Y2(t)

1 + �Y2(t)
,

dZ(t)

dt
=

�Y2(t)

1 + �Y2(t)
+ �Y(t) − �Z(t).
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Here, time lag 𝜏 > 0 represents the incubation period of the 
disease, defined as a fixed time during which the infectious 
agents develop in the vector, and it is only after that time 
that the infected vector can infect a susceptible individual.

For biological reasons, the initial conditions are nonnega-
tive continuous functions as

where H(�) = (x, y, z)T ∈ C, are functions such that 
x, y, z ≥ 0, (−� ≤ � ≤ 0) . C denotes the Banach space 
C
(
[−�, 0],ℝ3

+

)
 of continuous functions mapping the inter-

val [−�, 0] into ℝ3
+
 with the supremum norm

where |⋅| is any norm in ℝ3
+
.

The fundamental theory of functional differential equa-
tions (Hale and Verduyn Lunel 1993) implies for any 
initial conditions (2), system (1) has a unique solution 
(X(t), Y(t), Z(t)) . The non-negativity and boundedness of the 
solution with a positive initial value (2) is guaranteed by the 
following theorem:

Theorem  1  All solutions of model (1) starting in  
ℝ

3
+

 a r e  b o u n d e d  a n d  e n t e r  t h e  s e t 
� =

{
(X, Y , Z) ∈ ℝ

3
+
∶ X(t) + Y(t) + Z(t) = N(t) ≤

A

�

}
.

Proof  We assume that the model-dependent variables and 
parameters are nonnegative. Continuity of the right-hand 
side of system (1) and its derivative imply that the model is 
well posed for N(t) > 0 . The invariant region for the exist-
ence of the solutions can be obtained as given below:

Since N(t) > 0 on [−�, 0] by assumption N(t) > 0 for all 
t ≥ 0 . Therefore, from (3) above, N(t) cannot blow up to 
infinity in finite time. The model system is dissipative (solu-
tions are bounded), and therefore, the solution exists globally 
for all t > 0 in the invariant and compact set 
� =

{
(X, Y , Z) ∈ ℝ

3
+
∶ X(t) + Y(t) + Z(t) = N(t) ≤

A

�

}
 . As 

N → 0,X(t), Y(t) and Z(t) also tend to zero, each of these 
terms tends to zero as N(t) does. It is therefore natural to 
interpret these terms as zero when N(t) = 0.

Remark  In the region �  , the elementary results, for example 
local existence, uniqueness and continuity of solutions, are 
valid for model (1). Therefore, there exists a unique solution 
(X(t), Y(t), Z(t)) of model (1) starting in the interior of �  

(2)X(�) = x(�); Y(�) = y(�); Z(�) = z(�),

H = sup
�∈[−�,0]

|H(�)|,

(3)
d[X(t) + Y(t) + Z(t)]

dt
=

dN(t)

dt
≤ A − �N(t)

(4)

⇒ 0 < lim inf N(t) ≤ lim sup N(t) ≤
A

𝜇
(as t → ∞).

that exists on a maximal interval [0,∞) if solutions remain 
bounded (Naresh et al. 2009).

Since the first two equations of model (1) are independ-
ent of R(t), it is convenient to study the first two equations 
of system (1) for theoretical analysis. The reduced model is 
as follows:

The initial conditions are

Theorem 2  All state variables (X(t), Y(t)) of the reduced 
model (5) with the initial condition (6) are nonnegative.

Proof  First we show that X(t) is nonnegative for all t ≥ 0 . On 
the contrary, it is assumed that there exist t1 > 0 be the first 
time such that X

(
t1
)
= 0 , and then by the first equation of 

system (5), we have X�
(
t1
)
= A > 0 , and hence, X(t) < 0 for 

t ∈
(
t1 − �, t1

)
 , where 𝜀 > 0 is sufficiently small. This contra-

dicts X(t) > 0 for t ∈
[
0, t1

)
 . It follows that X(t) > 0 for t > 0 . 

Now, we prove that positivity of solution Y(t) . Integrating 
the second equation of system (5) from 0 to t for 0 < t ≤ 𝜏 , 
by applying the variation of constant formula and the step-
by-step integration method, we obtain:

where F(X(�), Y(� − �), Y(�)) =
(

�X(�)Y(�−�)

(1+�Y(�−�))Y(�)
−

�Y(�)

�Y2(�)+1

)
.

It is easy to see that Y(t) > 0 for all 0 ≤ t ≤ � . Integrating 
the second equation of system (5) from � to t for 𝜏 < t ≤ 2𝜏 
gives

Note that Y(t) > 0 for all � ≤ t ≤ 2� , and this procedure can 
easily carry on. It follows that for all t > 0 , we have Y(t) > 0 . 
This completes the proof.

Equilibria and their stability analysis

In this section, we analyze the equilibrium points of system 
(5). The equilibrium solutions of a time-delayed system are 
equivalent to the corresponding system with zero delays 

dX(t)

dt
= A − �X(t) −

�X(t)Y(t − �)

1 + �Y(t − �)
,

(5)

dY(t)

dt
=

�X(t)Y(t − �)

1 + �Y(t − �)
− (� + � + �)Y(t) −

�Y2(t)

1 + �Y2(t)
.

(6)X(�) = x(�); Y(�) = y(�)

Y(t) = Y(0)e−(�+�+�)t ⋅ e

t

∫
0

F(X(�),Y(�−�),Y(�))d�

Y(t) = Y(�)e−(�+�+�)t ⋅ e

t

∫
�

F(X(�),Y(�−�),Y(�))d�
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(Kumar and Nilam 2018). There are only two types of equi-
libria for our model, namely

1.	 Q =
(

A

�
, 0
)
 , disease- or infection-free equilibrium.

2.	 Q∗ = (X∗, Y∗) , endemic or positive equilibrium.

Infection‑free steady state

In this subsection, we analyze system (5) by finding its equi-
libria and their stability analysis. The steady state of system 
(5) satisfies the following system of equations:

Systems (7)–(8) has the infection-free equilibrium 
Q =

(
A

�
, 0
)
 , that is, there is no infection present in the com-

munity and all people are susceptible. The characteristic 
equation (the corresponding matrix 

(
J1
)
 is given in “Appen-

dix”) of system (5) at Q is given by the following equation:

The term �A

�(�+�+�)
e−�� at � = 0 is known as basic reproduc-

tion number denoted as R0 . The threshold parameter R0 is 
helpful in describing the spread of an infectious disease. 
Thus, R0 for the model system (5) is obtained as

Analysis for R
0
≠ 1

One of the roots of (9) is given by �1 = −� , and the other 
roots can be obtained from

Suppose that

If R0 > 1 , it is readily seen that for � real,

Hence, G(�) = 0 has a positive real root if R0 > 1.

(7)A − �X(t) −
�X(t)Y(t)

1 + �Y(t)
= 0

(8)
�X(t)Y(t)

1 + �Y(t)
− (� + � + �)Y(t) −

�Y2(t)

1 + �Y2(t)
= 0.

(9)(� + �)

(
� −

�A

�
e−�� + (� + � + �)

)
= 0

R0 =
�A

�(� + � + �)
.

(10)
�A

�
e−�� − (� + � + �) − � = 0

(11)G(�) = � −
�A

�
e−�� + (� + � + �).

G(0) = (� + � + �) −
�A

�
= (� + � + �)

(
1 − R0

)
,

lim
�→+∞

G(�) = +∞.

If R0 < 1, we assume that Re � ≥ 0.

We see that

a contradiction to our assumption. Hence, if R0 < 1 then the 
characteristic root � of (10) has a negative real part.

Thus, the following theorem is proposed:

Theorem 3  The infection-free steady state Q is locally 
asymptotically stable (LAS) when R0 < 1 and unstable when 
R0 > 1 for 𝜏 > 0.

Analysis at R
0
= 1

If R0 = 1 , then � = 0 is a simple characteristic root of (9). 
Let � = a + ib be any of the other solutions, then (10) 
changes into:

By using Euler’s formula and by separating real and imagi-
nary parts, we can write

Observing that R0 = 1 implies �A
�

= (� + � + �) . Moreover, 
if there exists a root satisfying both (13), then it also satisfies 
the equation obtained by squaring and adding them member 
to member,

For (14) to be verified, we must have a ≤ 0 . Thus, we pro-
pose the following theorem:

Theorem 4  The infection-free steady state Q of system (5) 
is linearly neutrally stable if R0 = 1 for 𝜏 > 0.

Endemic steady state

To establish the existence of an endemic equilibrium 
Q∗(X∗, Y∗) , the right-hand side of system (5) is equated to 
zero. Thus, the solution of following a set of algebraic equa-
tions gives the endemic equilibrium point Q∗(X∗, Y∗) for the 
proposed model system:

Re 𝜆 =
𝛼A

𝜇
e−Re 𝜆𝜏 cos Im𝜆𝜏

− (𝜇 + 𝜎 + 𝜃) < (𝜇 + 𝜎 + 𝜃)
(
R0 − 1

)
< 0,

(12)a + ib + � + � + � −
�A

�
e−(a+ib)� = 0

(13)

a + � + � + � =
�A

�
cos b�e−a� , b = −

�A

�
sin b�e−a�

(14)(a + � + � + �)2 + b2 = (� + � + �)2e−2a� .

(15)
A − �X∗ −

�X∗Y∗

1 + �Y∗
= 0,

�X∗Y∗

1 + �Y∗
− (� + � + �)Y∗ −

�Y∗2

1 + �Y∗2
= 0.
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The solution of (15) gives the following:

1.	 X∗ =
A(1+�Y∗)

�+(��+�)Y∗
,

2.	 Y∗.

Here, Y∗ is given by the following cubic equation:

Stability analysis of endemic or positive equilibria

To investigate the local stability of system (5) at endemic 
equilibrium (Q∗) , we linearize system (5) at Q∗ and obtained 
the characteristic equation (the corresponding matrix (J2) is 
given in “Appendix”) which is as given below:

(17)

�2 +M1� + N1 +
(
M2� + N2

)
e−�� = 0

M1 =
(1 + Y∗�)

(
� + 2� + � + Y∗3(� + �(� + 2� + �))�2 + Y∗(� + �(� + 2� + �) + 2(�� + 2�� + �� + �))

)

(1 + Y∗�)2(1 + Y∗�)2

+
(1 + Y∗�)Y∗2

(
2�� + (� + 2� + �)�2 + 2�(�� + 2�� + �� + �)

)

(1 + Y∗�)2(1 + Y∗�)2
,

M2 =
−X∗�

(1 + Y∗�)2
,

N1 =
(1 + Y∗�)(� + Y∗(� + ��))(� + � + �)

(1 + Y∗�)2
,

N2 =
−X∗��

(1 + Y∗�)2
.

where

Next, we propose the following result for the existence of 
endemic equilibrium:

Theorem 5  If R0 > 1, then there are either one or three 
positive endemic equilibria, and if all equilibria are simple 
roots and if R0 ≤ 1 then no positive endemic equilibria exist.

Proof  It is evident from the expressions of K1,K2,K3 and K4 
that K3 is always negative. Suppose R0 > 1(K0 > 0) . The 
leading coefficient K3 is negative. Hence, lim

Y∗→∞
P(Y∗) = −∞ . 

Also, note that P(0) > 0 when R0 > 1 . P(Y∗) is a continuous 
function of Y∗ , and by applying fundamental theorem of 
algebra, it is evident that (16) can have at most three real 
roots. By a geometric argument, it is readily seen that there 
is either one or three positive endemic equilibria, if all equi-
libria are simple roots. However, when R0 < 1 , the coeffi-
cients K0,K1,K2 and K3 all are negative, and then by a fun-
damental theorem of algebra, we know that (16) cannot have 
any positive real root, and when R0 = 1 , the coefficients K0 
is zero and other coefficients K1,K2 and K3 all are negative, 
and then by a fundamental theorem of algebra, we know that 
this polynomial cannot have any positive real root.

(16)P(Y∗) = K0 + K1Y
∗ + K2Y

∗2 + K3Y
∗3 = 0

K0 = A� − �� − �2 − �� = �(� + � + �)
(
R0 − 1

)
,

K1 = −(� + ��)(� + � + �) − ��,

K2 = �(� + � + �)�
(
R0 − 1

)
− (� + ��)�,

K3 = −(� + ��)(� + � + �)�.

Theorem 5  For 𝜏 > 0, system (5) at Q∗ is locally asymp-
totically stable if M2

1
− 2N1 −M2

2
> 0 and N2

1
− N2

2
> 0 are 

satisfied simultaneously.

Proof  At endemic equilibrium Q∗ , the characteristic equa-
tion of the system for 𝜏 > 0 is given by (17):

For 𝜏 > 0 , by corollary 2.4 in Ruan and Wei (2003), it follows 
that a characteristic root of (17) must cross the imaginary axis 
for the occurrence of instability for a specific value of the delay 
� . Accordingly, we assume that 𝜆 = i𝜔,𝜔 > 0 is the root of the 
characteristic (17). Putting � = i� in (17) gives the following:

Using Euler’s formula and separating the real and imaginary 
part of (18), we get

Squaring and adding both sides of Eqs. (19) and (20) yields

Setting �2 = Z1 , (21) becomes

�2 +M1� + N1 +
(
M2� + N2

)
e−�� = 0.

(18)
− �2 + N1 +M2� sin�� + N2 cos��

+ i
(
M2� cos�� − N2 sin�� +M1�

)
= 0

(19)M2� sin�� + N2 cos�� = �2 − N1

(20)M2� cos�� − N2 sin�� = −M1�

(21)�4 +
(
M2

1
− 2N1 −M2

2

)
�2 +

(
N2
1
− N2

2

)
= 0

(22)Z2
1
+MZ1 + T = 0.
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Here, M =
(
M2

1
− 2N1 −M2

2

)
 and T =

(
N2
1
− N2

2

)
.

C l e a r l y ,  i f  M =
(
M2

1
− 2N1 −M2

2

)
> 0  a n d 

T =
(
N2
1
− N2

2

)
> 0 are satisfied simultaneously, and then 

by Routh–Hurwitz Criterion (22) will always have roots 
with the negative real part. It contradicts our assumption for 
instability that � = i� is a root of (17). Hence, Q∗ is locally 
asymptotically stable for 𝜏 > 0.

Hopf bifurcation analysis

In this section, we discuss the Hopf bifurcation of system 
(5).

If T =
(
N2
1
− N2

2

)
 in (22) is negative, then there is unique 

positive �0 satisfying (22), i.e., there is a single pair of 
purely imaginary roots ±i�0 to (22).

From Eqs. (19) and (20), �n corresponding to �0 can be 
obtained as

Endemic equilibrium Q∗ is stable for 𝜏 < 𝜏0 if transversality 
condition holds true, i.e., if d

d𝜏
(Re(𝜆))

|||𝜆=i𝜔0

> 0.

Differentiating (17) with respect to � , we get

=
2�2

0
+(M2

1
−2N1−M

2
2)

(M2�0)
2
+N2

2

 [s ince,  f rom Eqs.   (19) ,  (20) , 
(
�2
0
− N1

)2
+
(
M1�0

)2
=
(
M2�0

)2
+ N2

2
].

(23)�n =
1

�0

arccos

((
N2 −M1M2

)
�2
0
− N1N2

M2
2
�2
0
+ N2

2

)
+

2n�

�0

, n = 0, 1, 2,… .

(24)

(
2� +M1 +M2e

−�� −
(
M2� + N2

)
�e−��

)d�
d�

= �
(
M2� + N2

)
e−��

(
d�

d�

)−1

=

(
2� +M1 +M2e

−�� −
(
M2� + N2

)
�e−��

)

�
(
M2� + N2

)
e−��

=

(
2� +M1

)

�
(
M2� + N2

)
e−��

+
M2

�
(
M2� + N2

) −
�

�

(
d�

d�

)−1

=

(
2� +M1

)

−�
(
�2 +M1� + N1

) +
M2

�
(
M2� + N2

) −
�

�

d

d�
(Re(�))−1

||||�=i�0

= Re
(
d�

d�

)−1||||�=i�0

= Re

( (
2i�0 +M1

)

−i�0

(
−�2

0
+ iM1�0 + N1

) +
M2

i�0

(
iM2�0 + N2

) −
�

i�0

)

= Re

(
1

�0

( (
2i�0 +M1

)
(
�2
0
− N1

)
i +M1�0)

+
M2(

−M2�0 + iN2

) + i�

))

=
1

�0

(
2�0

(
�2
0
− N1

)
+M2

1
�0(

�2
0
− N1

)2
+
(
M1�0

)2 −
M2

2
�0(

M2�0

)2
+ N2

2

)

Under the condition M2
1
− 2N1 −M2

2
> 0 , we have 

d

d𝜏
(Re(𝜆))

|||𝜆=i𝜔0

> 0.

Thus, the transversality condition holds and Hopf bifurca-
tion occurs at � = �0, � = �0.

By summarizing the above analysis, we arrive at the fol-
lowing theorem.

Theorem 6  The endemic equilibrium (EE) of system (5) is 
locally asymptotically stable for � ∈

[
0, �0

)
 , and it exhibits 

Hopf bifurcation at � = �0.

Global stability

We suppose that

To prove our results, we need the following assumptions:

	(H1)	 H(0) = F(0) = 0;H�(X) > 0, for all X, Y > 0.
	(H2)	 F�(Y) > 0;

𝜕2F(Y)

𝜕Y2
≤ 0, for all X, Y > 0.

	(H3)	 F(Y)

F(Y∗)
≤ 1;

(�+�+�)Y+
�Y2

1+�Y2

H(X∗)F(Y)
≥ 1  o r 

F(Y)

F(Y∗)
≥ 1;

(�+�+�)Y+
�Y2

1+�Y2

H(X∗)F(Y)
≤ 1 for all X, Y > 0.

H(X(t)) = �X(t), F(Y(t)) =
Y(t)

1 + �Y(t)
.
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Theorem  7  Suppose that assumptions (H1–H3) are 
satisfied.

1.	 If R0 > 1, the endemic equilibrium Q∗(X∗, Y∗) is globally 
asymptotically stable (GAS) for any � ≥ 0.

2.	 I f  R0 ≤ 1, t he  i n fec t i on - f ree  equ i l i b r ium 
Q
(
X0, 0

)
= Q

(
A

�
, 0
)
 is globally asymptotically stable 

(GAS) for any � ≥ 0.

Proof  (1) Let us consider any solution (X(t), Y(t)) of system 
(5) with the initial conditions. For any � ≥ 0, we define the 
function U1(t) as follows:

Korobeinikov and Maini (2005) showed that Q∗ is the 
only internal stationary point and the minimum point of 
U1(t) → ∞ at the boundary of the positive quadrant. There-
fore, Q∗ is the global minimum point, and the function is 
bounded from below.

Let

It easy to see that U2 ≥ 0 and U2 = 0 if and only if 
Y(t − �) = Y∗ for all � ∈ [0, �] . For any positive Y(t − �) for 
� in [0, �] , U2 will be finite and can be differentiated. Then, 
the derivative of U2 satisfies

Now, we study the behavior of Lyapunov functional

The derivative of V1 along the solution of (5) is given by:

U1(t) = X(t) −
X(t)

∫
X∗

H(X∗)

H(�)
d� + Y(t) −

Y(t)

∫
Y∗

F(Y∗)

F(�)
d�.

U2 =
�

∫
0

[
F(Y(t − �))

F(Y∗)
− 1 − ln

F(Y(t − �))

F(Y∗)

]
d�.

dU2

dt
=

d

dt

�

∫
0

[
F(Y(t − �))

F(Y∗)
− 1 − ln

F(Y(t − �))

F(Y∗)

]
d�

=
�

∫
0

d

dt

[
F(Y(t − �))

F(Y∗)
− 1 − ln

F(Y(t − �))

F(Y∗)

]
d�

= −
�

∫
0

d

d�

[
F(Y(t − �))

F(Y∗)
− 1 − ln

F(Y(t − �))

F(Y∗)

]
d�

= −

[
F(Y(t − �))

F(Y∗)
− 1 − ln

F(Y(t − �))

F(Y∗)

]�
�=0

= −
F(Y(t − �))

F(Y∗)
+

F(Y(t))

F(Y∗)
+ ln

F(Y(t − �))

F(Y)
.

V1 = U1(t) +

(
� + � + � +

�Y∗

1 + �Y∗2

)
Y∗U2

By noting that

and

it is easy to see that

Here,

dV1

dt
=

(
1 −

H(X∗)

H(X)

)
Ẋ(t) +

(
1 −

F(Y∗)

F(Y)

)
Ẏ(t)

+

(
𝜇 + 𝜎 + 𝜃 +

𝜔Y∗

1 + 𝜑Y∗2

)
Y∗

dU2

dt

=

(
1 −

H(X∗)

H(X)

)
(𝜇X∗ + H(X∗)F(Y∗)

−𝜇X − H(X)F(Y(t − 𝜏))) +

(
1 −

F(Y∗)

F(Y)

)

×

(
H(X)F(Y(t − 𝜏)) − (𝜇 + 𝜎 + 𝜃)Y −

𝜔Y2

1 + 𝜑Y2

)

−

(
𝜇 + 𝜎 + 𝜃 +

𝜔Y∗

1 + 𝜑Y∗2

)
Y∗

×

(
F(Y(t − 𝜏))

F(Y∗)
−

F(Y)

F(Y∗)
− ln

F(Y(t − 𝜏))

F(Y)

)
.

ln
F(Y(t − �))

F(Y)
= ln

H(X∗)

H(X)
+ ln

H(X)F(Y(t − �))

H(X∗)F(Y)
,

(
� + � + � +

�Y∗

1 + �Y∗2

)
Y∗ = H(X∗)F(Y∗),

dV1

dt
=

�

H(X)
(H(X) − H(X∗))(X∗ − X) + H(X∗)F(Y∗)

×

�
1 −

H(X∗)

H(X)
+ ln

H(X∗)

H(X)

�
+ H(X∗)F(Y∗)

×

�
1 + ln

H(X)F(Y(t − �))

H(X∗)F(Y)
−

H(X)F(Y(t − �))

H(X∗)F(Y)

�

+ H(X∗)F(Y∗)

��
F(Y)

F(Y∗)
− 1

�

×

⎛⎜⎜⎝
1 −

(� + � + �)Y +
�Y2

1+�Y2

H(X∗)F(Y)

⎞⎟⎟⎠

⎞⎟⎟⎠
.

(25)

1 −
H(X∗)

H(X)
+ ln

H(X∗)

H(X)
≤ 0; for all X > 0, and

1 + ln
H(X)F(Y(t − 𝜏))

H(X∗)F(Y)

−
H(X)F(Y(t − 𝜏))

H(X∗)F(Y)
≤ 0; for all Y(t − 𝜏) > 0, X > 0.
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For monotonically increasing function H(X),H(X) ≥ H(X∗) 
holds when X ≥ X∗ , and hence, the following inequalities 
hold:

Hence, by condition (H3) and inequalities (25)–(26), all 
the conditions of corollary 5.2 of Kuang (1993) hold true. 
Hence, Q∗ is globally asymptotically stable for any � ≥ 0 
when R0 > 1.

(2) We consider the Lyapunov functional

Let

The derivative of U3 is

Hence, we obtain

It holds that lim
t→∞

dV2

dt
= 0 , which yields lim

t→∞
X(t) = X0 and 

lim
t→∞

Y(t) = 0.

Now,

and the condition (H2) ensures that F(Y) ≤ �F(0)

�Y
Y  for all 

Y > 0. Hence,

(26)(X∗ − X)(H(X) − H(X∗)) ≤ 0.

(27)

V2 = X(t) −
X(t)

∫
X0

H
(
X0

)
H(�)

d� + Y(t) + H
(
X0

) �

∫
0

F(Y(t − �))d�.

U3 =
�

∫
0

F(Y(t − �))d�.

dU3

dt
=

�

∫
0

d

dt
F(Y(t − �))d� = −

�

∫
0

d

d�
F(Y(t − �))d�

= −F(Y(t − �)) + F(Y(t)).

dV2

dt
=

(
1 −

H
(
X0

)
H(X)

)
Ẋ(t) + Ẏ(t) + H

(
X0

)dU3

dt

=

(
1 −

H
(
X0

)
H(X)

)
(𝜇X∗ − 𝜇X − H(X)F(Y(t − 𝜏)))

+

(
H(X)F(Y(t − 𝜏)) − (𝜇 + 𝜎 + 𝜃)Y −

𝜔Y2

1 + 𝜑Y2

)

− H
(
X0

)
F(Y(t − 𝜏)) + H

(
X0

)
F(Y(t))

= −
𝜇

H(X)

(
X − X0

)(
H(X) − H

(
X0

))
−

𝜔Y2

1 + 𝜑Y2

+ (𝜇 + 𝜎 + 𝜃)

(
H
(
X0

)
F(Y(t))

(𝜇 + 𝜎 + 𝜃)
− Y

)
.

(28)
(
X − X0

)(
H(X) − H

(
X0

))
≥ 0,

Therefore, R0 < 1 ensures that dV2

dt
≤ 0 for all X(t), Y(t) ≥ 0 . 

Hence, again from corollary 5.2 of Kuang (1993), we have 
that Q is stable.

Furthermore, also for R0 = 1,
dV2

dt
= 0 implies that 

X(t) = X0 . Hence, it can be shown that Q
(
X0, 0

)
 is the larg-

est invariant set in 
{
(X(t), Y(t))|V̇2 = 0

}
 . With the help of 

the classical Lyapunov–LaSalle invariance principle (Hale 
and Verduyn Lunel 1993; Sastry 1999), Q is globally stable.

This completes the proof of Theorem 7.

Undelayed system

In this section, we consider the case of instantaneous trans-
mission of primary infection. We perform a qualitative 
analysis of system (5) without delay, i.e., we set τ = 0. This 
analysis has interest in itself and will also allow getting some 
information on the stability of coexistence equilibrium in the 
case with delay.

It is useful to investigate the stability properties of sys-
tem (5), without delay, near the criticality (that is, at Q and 
R0 = 1). To this aim, we use the bifurcation theory approach 
developed in Buonomo and Cerasuolo (2015), which is 
based on the center manifold theory (Sastry 1999). In par-
ticular, we are interested to assess if there is a stable coexist-
ence equilibrium bifurcation form Q, and Q changes from 
being stable to unstable. This behavior is called forward 
bifurcation (Buonomo and Cerasuolo 2015).

Now, for the undelayed system, we propose the follow-
ing result:

Theorem 8  When τ = 0, system (5) exhibits a forward bifur-
cation at Q and R0 = 1.

Proof  Clearly, from the expression of R0 it can be seen that 
R0 is directly related to α. Subsequently, we choose α as 
the bifurcation parameter. Moreover, R0 = 0 implies that 
� = �∗ =

�(�+�+�)

A
 . Since the linearization technique is not 

applicable to check the stability behavior at R0 = 1 , so we 
use center manifold theory (Sastry 1999). For this, we rede-
fined X = x1 and Y = x2 , and then system (5) takes the form

(29)

H
(
X0

)
F(Y(t))

(� + � + �)
− Y ≤

(
H
(
X0

)
�F(0)

�Y

(� + � + �)
− 1

)
Y =

(
R0 − 1

)
Y .

(30)

dx1

dt
= A − �x1 −

�x1x2(t)

1 + �x2(t)
≡ f1,

dx2

dt
=

�x1x2(t)

1 + �x2(t)
− (� + � + �)x2 −

�x2
2

1 + �x2
2

≡ f2.
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The Jacobian matrix J′ of the model system (30) evalu-
ated at R0 = 1 and � = �∗ around the disease-free equilib-
rium is

J′ has a simple zero eigenvalue while the other eigenvalue 
is negative. The right eigenvector w =

[
w1,w2

]T of J′ corre-
sponding to zero eigenvalue can be obtained as given below:

Similarly, the left eigenvector u =
[
u1, u2

]
 of J′ correspond-

ing to zero eigenvalue is obtained as [0, 1] . The nonzero 
partial derivatives associated with the functions f1 and f2 
evaluated at R0 = 1 and � = �∗ are

Using Theorem 4.1 given in Castillo-Chavez and Song 
(2004), the coefficients a1 and b1 can be computed as

and

J� =

[
−� −

�∗A

�

0 0

]
.

w1 = −
�∗A

�2
, w2 = 1

(
�2f2

�x1�x2

)

Q

=

(
�2f2

�x2�x1

)

Q

= �∗,

(
�2f2

�x2
2

)

Q

= −
2��∗A

�
− 2� and

(
�2f2

�x2��
∗

)

Q

=
A

�
.

a1 =

2∑
k,i,j=1

ukwiwj

(
𝜕2fk

𝜕xi𝜕xj

)

Q

= u2

(
2w1w2𝛼

∗ − w2
2

(
2𝛽𝛼∗A

𝜇
+ 2𝜔

))

= −

(
2
𝛼∗A

𝜇2
𝛼∗ +

2𝛽𝛼∗A

𝜇
+ 2𝜔

)
< 0

b1 =

2∑
k,i=1

ukwi

(
𝜕2fk

𝜕xi𝜕𝛽
∗

)

Q

= u2

(
w2

A

𝜇

)

=
A

𝜇
> 0.

From the expressions of a1 and b1 , it is evident that a1 < 0 
and b1 > 0 . Therefore, from Theorem 4.1 of Castillo-Chavez 
and Song (2004) bifurcation is forward. This completes the 
proof.

Theorem 9  For � = 0, system (5) at Q∗ is locally asymptoti-
cally stable if M1 +M2 > 0 and N1 + N2 > 0 are satisfied 
simultaneously.

Proof  At endemic equilibrium Q∗ , the characteristic equa-
tion of system (5) is obtaining by putting � = 0 in (17) as 
given below:

Clearly, if M1 +M2 > 0 and N1 + N2 > 0 are satisfied simul-
taneously, and then by Routh–Hurwitz Criterion (31) will 
always have roots with the negative real part, and hence, 
system (5) at Q∗ for � = 0 is locally asymptotically stable.

Discussion

In this study, we have proposed and analyzed a novel SIR 
epidemic model along with nonlinear incidence rate, time 
delay (describing the incubation period) and Holling type 
III treatment rate. The analysis of the model has been dis-
cussed in terms of a threshold parameter R0 . The mathemati-
cal analysis has shown that DFE is locally asymptotically 
stable when R0 < 1 and unstable when R0 > 1 for time delay 
𝜏 > 0 which describes that disease can be eliminated from 
the community when R0 < 1 and it will persist when R0 > 1 . 
Further, we have shown that the DFE at R0 = 1 is linearly 
neutrally stable for time delay 𝜏 > 0 which reveals that dis-
ease may persist at a very low level in society and exhibits 
a forward bifurcation for the time delay � = 0 , i.e., there is 
a stable coexistence equilibrium Q∗ bifurcating from Q , and 
Q changes from being stable to unstable. We have shown 
that EE is locally asymptotically stable under the conditions 
stated in Theorems 5 and 9 for 𝜏 > 0 and � = 0 , respec-
tively. Furthermore, conditions for Hopf bifurcation have 
also been discussed. Moreover, it has also shown that both 
DFE and EE are globally asymptotically stable when R0 ≤ 1 
and R0 > 1 respectively.
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(31)�2 +M1� + N1 +
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M2� + N2

)
= 0
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Appendix

1.	 The linearized matrix corresponding to the infection-free 
equilibrium Q(A

�
, 0) is

2.	 The linearized matrix corresponding to the endemic 
equilibrium is 
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