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Abstract
Measles, a highly contagious infection caused by the measles virus, is a major public health problem in China. The reported 
measles cases decreased dramatically from 2004 to 2012 due to the mandatory measles vaccine program started in 2005 
and the goal of eliminating measles by 2012. However, after reaching its lowest level in 2012, measles has resurged again 
since 2013. Since the monthly data of measles cases exhibit a seasonally fluctuating pattern, based on the measles model in 
Earn et al. (Science 287:667–670, 2000), we propose a susceptible, exposed, infectious, and recovered model with periodic 
transmission rate to investigate the seasonal measles epidemics and the effect of vaccination. We calculate the basic reproduc-
tion number 

0
 , analyze the dynamical behavior of the model, and use the model to simulate the monthly data of measles 

cases reported in China. We also carry out some sensitivity analysis of 
0
 in the terms of various model parameters which 

shows that measles can be controlled and eventually eradicated by increasing the immunization rate, improving the effective 
vaccine management, and enhancing the awareness of people about measles.
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Introduction

Measles, a highly contagious disease caused by the measles 
virus, is spread by coughing and sneezing via close interper-
sonal contact or direct contact with secretions. It is one of the 
leading causes of death among young children globally, despite 
the availability of a safe and effective vaccine. Approximately 
134,200 people died from measles in 2015, mostly children 
under the age of 5. Since there is no specific treatment for mea-
sles, routine measles vaccination for children is the key public 
health strategy to prevent the disease (WHO 2017).

Measles virus continues to circulate and cause significant 
morbidity in China which accounts for a large proportion of 
the measles cases reported in the Western Pacific Region 
(WHO 2009). In 1978, China established the national 
Expanded Programme on Immunization and began to imple-
ment a standard schedule for routine immunization that 
included a dose of measles vaccine administered at 8 months 

of age. In 1986, a second routine dose of measles vaccine, 
at 7 years of age, was recommended (Ma et al. 2011). The 
mean annual measles incidence reported in China was 
572.0/100,000 population in the 1960s, 355.3/100,000 popu-
lation in the 1970s, 52.9/100,000 population in the 1980s, 
and 7.6/100,000 population in the 1990s (Wang et al. 2003). 
A nationwide measles supplementary immunization activ-
ity was conducted in 2010, and the incidence of measles in 
mainland China subsequently reached its lowest reported 
level in 2012 (6,183 cases, 0.46/100,000 population). How-
ever, in 2013, a nationwide resurgence of measles occurred 
primarily among young, unvaccinated children with 27,647 
cases and an incidence rate 2.05/100,000 population, and 
in 2014, there were 52,628 cases and the incidence reached 
3.88/100,000 population (National Health and Family Plan-
ning Commission of PRC 2017; Ma et al. 2014) (see Fig. 1). 
This outbreak was believed to be a result of measles vacci-
nation coverage gaps among young children and adults, and 
insufficient hospital isolation of cases (Zheng et al. 2016).

The transmission dynamics of measles epidemics have 
been extensively modeled and studied (measles is prob-
ably the first and the most studied infectious disease using 
mathematical models). Hamer (1906) studied the regu-
lar occurrence of measles in London. Soper (1929) was 
the first to propose a mathematical model to explain the 
periodic occurrence of measles. Bartlett (1957) observed 
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that the number of localized extinctions of measles was 
related to the population size of the community. Later, 
Bartlett (1960) and Bolker and Grenfell (1996) observed 
that in small communities epidemics are often followed 
by extinction of disease as the chain of transmission 
breaks down by mass vaccination. Bolker and Grenfell 
(1993) and Keeling and Grenfell (1997) found that the 
critical community size above which measles can persist 
may depend on the spatial structure and connectedness of 
the regional population. Many researchers have studied 
the periodic reoccurrence of measles which is believed 
to be strongly related to the seasonal forcing (Bartlett 
1957; London and Yorke 1973; Yorke and London 1973; 
Anderson and May 1983, 1991; Hethcote 1983; Conlan 
and Grenfell 2007). In fact, sinusoidal functions have 
been extensively used to describe the seasonal factor in 
modeling measles (Dietz 1976; Schenzle 1984; Earn et 
al. 2000). Various mathematical models have also been 
developed to study the transmission dynamics of measles 
in different countries and regions (Bartlett 1960; Bolker 
and Grenfell 1996; Earn et al. 2000; Ferrari et al. 2008; 
McLean and Anderson 1988; Pang et al. 2015).

Though measles is a serious public health problem, there 
are very few studies on modeling the transmission dynamics 

of measles in China (Bai and Liu 2015). Since the monthly 
measles data from China exhibit periodic pattern, in this 
paper, we adapt the periodic measles model from Earn et al. 
(2000) to study the effect of vaccination and seasonality on 
the transmission dynamics of measles and use the model to 
simulate the monthly data in China from January 2004 to 
December 2016.

The paper is organized as follows. In “Mathematical mod-
eling” section, the periodic measles model will be introduced. 
Mathematical analysis, including the boundedness of solu-
tions, calculation of the basic reproduction number, global sta-
bility of the disease-free equilibrium, and existence of positive 
periodic solutions, is carried out in “Mathematical analysis” 
section. Sensitivity analysis of the basic reproduction number 
and simulation of the measles data from China are given in 
“Simulations and sensitivity analysis” section. A brief discus-
sion is presented in “Discussion” section.

Mathematical modeling

We denote the total numbers of humans by N(t) and clas-
sify the human population into four subclasses: susceptible, 
exposed, infections, and removed, with the numbers denoted 

Fig. 1   Reported human measles a annual data and b monthly data in mainland China from January 2004 to December 2016 (National Health 
and Family Planning Commission of PRC 2017)
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by S(t), E(t), I(t), and R(t) at time t,  respectively. The trans-
mission dynamics associated with these subpopulations are 
illustrated in Fig. 2.

The transmission rate between S(t) and I(t) is described 
�(t) . Since the monthly measles data in China exhibit seasonal 
p a t t e r n ,  w e  u s e  t h e  p e r i o d i c  f u n c t i o n 
�(t) = a[1 + b sin

(
�

6
t + 8

)
] to describe the transmission rate, 

where a is the baseline contact rate and b is the magnitude of 
forcing (Dietz 1976; Zhang et al. 2012). The birth numbers of 
humans per unit time are constant. Natural death rate is � . 
Based on the model in Earn et al. (2000) with periodic trans-
mission rate, we consider the following periodic measles 
model:

where all parameters are positive constants and the interpre-
tations and values are described in Table 1.

(1)

dS

dt
= A(1 − �) − �(t)IS − �S,

dE

dt
= �(t)IS − (� + �)E,

dI

dt
= �E − (� + �)I,

dR

dt
= A� + �I − �R,

Mathematical analysis

Extinction and persistence of the disease

Notice that from the equations in model (1), we have

Letting Λ = {(S,E, I,R) ∣ S > 0,E ≥ 0, I ≥ 0,R > 0,

0 < S + E + I + R <
A

𝜇

}
 , we have the following results.

Theorem  3.1  The region Λ is positively invariant with 
respect to system (1). In particular, (S(t), E(t), I(t), R(t)) 
is  posit ive for all  t > 0 i f  the init ial  values 
S(0) = S0 > 0,E(0) = E0 > 0, I(0) = I0 > 0,R(0) = R0 > 0 
at t = 0.

Proof  On the nonnegativity of solutions of system (1) 
with nonnegative initial conditions, by the continuous 
dependence of solutions with respect to initial values, we 
only need to show that when S0 > 0,E0 > 0, I0 > 0 and 
R0 > 0, (S(t),E(t), I(t),R(t)) is positive for all t > 0 . Let

Clearly, n(0) > 0 . Assuming that there exists a t1 > 0 such 
that n(t1) = 0 and n(t) > 0,∀t ∈

[
0, t1

)
.

If n(t1) = S(t1) , from the first equation of system (1), we 
have

Thus,

which leads to a contradiction.

(2)
dN

dt
= A − �N.

n(t) = min {S(t),E(t), I(t),R(t)}, ∀t > 0.

dS

dt
⩾ −(𝛽(t)I + 𝜇)S, ∀t > [0, t1].

0 = S(t1) ⩾ S0e
− ∫

t1
0
(𝛽(t)I+𝜇)ds

> 0,

A(1−ρ)
�

S
β(t)SI−−−−→ E σI−−−−→ I

γI−−−−→ R
Aρ←−−−−

µS

� µE

� µI

� µR

�

Fig. 2   Flowchart of measles transmission in a population

Table 1   Parameters in model 
(1)

Para. Value Unit Interpretation Source

A 1.34 × 10
6 Month−1 Human birth rate NBSC (2016)

� 0.00053 Month−1 Human natural mortality rate NBSC (2016)
i 0.5 Month Human incubation period China CDC (2017)
� 2 Month−1 1

i
China CDC (2017)

� 0.8216 Month−1 Human vaccination rate Estimation
a 1.2527 × 10

−9 None The baseline contact rate Estimation
b 0.3346 None The magnitude of forcing Estimation
j 0.6333 Month Human ill period China CDC (2017)
� 1.579 Month−1 1

j
China CDC (2017)
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If n(t1) = E(t1) , since I(t) ≥ 0 and S(t) ≥ 0 for all 
t ∈

[
0, t1

]
 , from the second equation of system (1), it fol-

lows that

Hence,

which also leads to a contradiction.
Similar contradictions can be deduced in the 

cases of n(t1) = I(t1) and n(t1) = R(t1) .  Therefore, 
S(t) > 0,E(t) > 0, I(t) > 0 and R(t) > 0 for all t > 0.

Concerning (2), we have N(t) = A

�
+ N0e

−�t, where 

N0 = S(0) + E(0) + I(0) + R(0) . Hence, N(t) is bounded for 
all t ⩾ 0 and

which implies S(t), E(t), I(t), and R(t) are also bounded for 
all t > 0 . This completes the proof. 	� □

It is easy to see that system (1) has one disease-free 
equilibrium

where Ŝ =
A(1−𝜌)

𝜇
, R̂ =

A𝜌

𝜇
 . Now, we deduce the basic repro-

duction number 0 for model (1) following the definition of 
Bacaër and Guernaoui (2006) and the general calculation 
procedure in Wang and Zhao (2008). Firstly, we can verify 
that model (1) satisfies the conditions (A1) − (A7) given in 
Wang and Zhao (2008).

Denote

Let Y(t, s) be the 2 × 2 matrix solution of the following initial 
value problem

Further, let � = 12 and C
�

 be the ordered Banach 
space of all �−periodic continuous functions from 
ℝ to ℝ2 with maximum norm ‖⋅‖ and positive cone 
C+

�
∶=

{
� ∈ C

�
∶ �(t) ⩾ 0,∀t ∈ ℝ

}
 . Suppose � ∈ C+

�
 is the 

initial distribution of infections individuals, then F(s)�(s) 
is the rate of new infection produced by the infectious indi-
viduals who were introduced at time s, and Y(t, s)F(s)�(s) 
represents the distributions of those infection individuals 

dE

dt
⩾ −(𝜎 + 𝜇)E, ∀t > [0, t1].

0 = E(t1) ⩾ E0e
−(𝜎+𝜇)t1 > 0,

lim sup
t→∞

N(t) =
A

�
,

P0 =

(
Ŝ, 0, 0, R̂

)
,

F(t) =

(
0 𝛽(t)Ŝ

0 0

)
, V(t) =

(
𝜎 + 𝜇 0

−𝜎 𝛾 + 𝜇

)
.

{ dY(t,s)

dt
= −V(t)Y(t, s),

Y(s, s) = I.

who were newly infected at time s and remain in the infected 
compartments at time t for t ⩾ s . Naturally,

is the distribution of accumulative new infections at times 
t produced by all those infected individuals �(s) introduced 
at times previous to t. Then, we define a linear operator 
L ∶ C

�
→ C

�
 as follows

L is called the next infection operator.
By the definition of Bacaër and Guernaoui (2006) 

and the general calculation procedure in Wang and Zhao 
(2008), the basic reproduction number 0 for the model 
(1) is defined as the spectral radius �(L) of operator L, 
that is,

Employing Theorem 2.1 and Theorem 2.2 given in Wang 
and Zhao (2008), we can deduce the following results with 
respect to 0 and the locally asymptotical stability of the 
disease-free equilibrium P0 for model (1).

Theorem 3.2  On the basic reproduction number 0 of model 
(1), we have

	 (i)	 0 < 1 if and only if 𝜌(ΦF−V (𝜔)) < 1;
	 (ii)	 0 = 1 if and only if �(ΦF−V (�)) = 1;
	 (iii)	 0 > 1 if and only if 𝜌(ΦF−V (𝜔)) > 1.

Moreover, P0 is locally asymptotically stable if 0 < 1 and 
unstable if 0 > 1 , where ΦF−V (t) is the monodromy matrix 
of the linear �-periodic system du

dt
= [F(t) − V(t)]u.

Lemma 3.3  For an arbitrary positive number � , there exists 
t1 > 0 such that for all t > t1, S(t) ≤ Ŝ + 𝜃.

Proof  From the first two equations of system (1), we have

which implies that

(3)
∫

t

−∞

Y(t, s)F(s)�(s)ds =
∫

+∞

0

Y(t, t − a)F(t − a)�(t − a)da

(4)

(L�) =
∫

+∞

0

Y(t, t − a)F(t − a)�(t − a)da,∀t ∈ ℝ,� ∈ C
�
.

(5)0 = �(L).

d(S + E)

dt
= A(1 − �) − �S − (� + �)E

≤ A(1 − �) − �S − �E

= A(1 − �) − �(S + E)

lim sup
t→∞

(S(t) + E(t)) ≤
A(1 − �)

�
.
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Because E ≥ 0 , it follows that

Thus, there is t1 > 0 , such that for all t > t1, S(t) ≤ Ŝ + 𝜃 for 
arbitrary positive number � . 	�  □

Theorem 3.4  The disease-free equilibrium P0 is globally 
asymptotically stable when 0 < 1.

Proof  If 0 < 1 , we know that 𝜌(ΦF−V (𝜔)) < 1 and P0 is 
locally asymptotically stable by Theorem 3.2. We can choose 
𝜃 > 0 small enough such that 𝜌(ΦF−V+M

𝜃

(𝜔)) < 1 , where

Considering the region X and using Lemma 3.3, when t > t1 , 
we have

with the following comparison system

that is,

By Lemma 2.1 in Zhang and Zhao (2007), it follows 
that there exists a positive �−periodic functions ĥ(t) 
such that h(t) = eptĥ(t) is a solution of system (8), where 
p =

1

�
ln �(ΦF−V+M

�

(�)) . We know that 𝜌(ΦF−V+M
𝜃

(𝜔)) < 1 
when 0 < 1 . Therefore, we have h(t) → 0 as t → ∞ , which 
implies that the zero solution of system (7) is globally 
asymptotically stable. Applying the comparison principle 
(Smith and Waltman 1995), we know that for system (1), 
E(t) → 0 and I(t) → 0 as t → ∞ . By the theory of asymptotic 
autonomous systems (Thieme 1992), it is also known that 
S(t) → Ŝ and R(t) → R̂ as t → ∞ . So P0 is globally attractive 
when 0 < 1 . It follows that P0 is globally asymptotically 
stable when 0 < 1 . 	�  □

lim sup
t→∞

S(t) ≤
A(1 − 𝜌)

𝜇
= Ŝ.

M
�
=

(
0 �

0 0

)
.

(6)

{
dE

dt
≤ 𝛽(t)(Ŝ + 𝜃)I − (𝜎 + 𝜇)E,

dI

dt
= 𝜎E − (𝛾 + 𝜇)I.

(7)

{
dE

dt
= 𝛽(t)(Ŝ + 𝜃)I − (𝜎 + 𝜇)E,

dI

dt
= 𝜎E − (𝛾 + 𝜇)I,

(8)
dh

dt
= (F(t) − V(t) +M

�
)h(t), h(t) = (E(t), I(t))T.

Existence of positive periodic solutions

Define

Let u(t, x0) be the unique solution of system (1) with the ini-
tial value x0 = (S0,E0, I0,R0) . Let P ∶ X → X be the Pincaré 
map associated with system (1), i.e.,

where � = 12 is the period. Applying the existence-
uniqueness theorem (Perko 2001), we know that u(t, x0) is 
the unique solution of system (1) with u(0, x0) = x0 . From 
Theorem 3.1, we know the X is positively invariant and P is 
point dissipative.

Lemma 3.5  When 0 > 1 , then there exist a 𝛿 > 0 such that 
when

for any (S0,E0, I0,R0) ∈ X0 , we have

where P0 = (Ŝ, 0, 0, R̂).

Proof  If 0 > 1 , we obtain 𝜌(ΦF−V (𝜔)) > 1 by Theorem 2.2 
in Wang and Zhao (2008). Choose 𝜖 > 0 small enough such 
that 𝜌(ΦF−V+M

𝜖

(𝜔)) > 1 , where

Now, we proceed by contradiction to prove that

If not, then

for some 
(
S0,E0, I0,R0

)
∈ X0 . Without loss of generality, 

we assume that d
[
Pm

(S0,E0, I0,R0),P0

]
< 𝛿 for all m ≥ 0 . 

By the continuity of the solutions with respect to the initial 
values, we obtain

X ∶ = {(S,E, I,R) ∈ X ∶ S > 0,E ≥ 0, I ≥ 0,R > 0},

X0 ∶ = {(S,E, I,R) ∈ X ∶ E > 0, I > 0},

𝜕X0 = X ⧵ X0 = {(S,E, I,R) ∈ X ∶ E = I = 0}.

P(x0) = u(�, x0), ∀x0 ∈ X,

‖‖(S0,E0, I0,R0) − P0
‖‖ ≤ �

lim sup
m→∞

d
[
Pm

(S0,E0, I0,R0),P0

]
≥ �,

M
�
=

(
0 �

0 0

)
.

lim sup
m→∞

d
[
Pm

(S0,E0, I0,R0),P0

]
≥ �.

lim sup
m→∞

d
[
Pm

(S0,E0, I0,R0),P0

]
< 𝛿

‖‖‖u
(
t1,P

m
(S0,E0, I0,R0)

)
− u(t1,P0)

‖‖‖ ≤ �, ∀m ≥ 0,∀t1 ∈ [0,�].
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For any t ≥ 0 , let t = m� + t1 , where t1 ∈ [0,�] and m =

[
t

�

]
 , 

which is the greatest integer less than or equal to t
�
 . Then, 

we have

for any t > 0 , which implies that when t ≥ 0 , we have 
Ŝ − 𝜖 ≤ S(t) ≤ Ŝ + 𝜖, 0 ≤ E(t) ≤ 𝜖, 0 ≤ I(t) ≤ 𝜖 . Then, for 
‖‖(S0,E0, I0,R0) − P0

‖‖ ≤ � , we have

Next, we consider the linear system

Once again by Lemma 2.1 in Zhang and Zhao (2007), it 
follows that there exists a positive �−periodic function ĝ(t) 
such that g(t) = (E(t), I(t)) = eptĝ(t) is a solution of system 
(10), where p =

1

�
ln �(ΦF−V+M

�

(�)) . Because 0 > 1 and 
𝜌(ΦF−V+M

𝜖

(𝜔)) > 1 , when g(0) > 0 , g(t) → ∞ as t → ∞ . 
Applying the comparison principle (Smith and Waltman 
1995), we know that when E(0) > 0, I(0) > 0,E(t) → ∞ and 
I(t) → ∞ as t → ∞ . This is a contradiction. The proof of the 
lemma is complete. 	�  □

Theorem 3.6  If 0 > 1 , then system (1) admits at least one 
positive periodic solution.

Proof  We need to prove that P is uniformly persistent with 
respect to (X0, �X0) . First of all, we claim that X0 and �X0 
are positively invariant with respect to system (1). In fact, 
for any (S0,E0, I0,R0) ∈ X0 , solving the equations of system 
(1), we have

‖‖u(t, (S0,E0
, I

0
,R

0
)) − u(t,P

0
)‖‖

=
‖‖‖u

(
t
1
,P

m
(S

0
,E

0
, I

0
,R

0
)

)
− u(t

1
,P

0
)
‖‖‖ ≤ �

(9)

{
dE

dt
≥ 𝛽(t)(Ŝ − 𝜖)I − (𝜎 + 𝜇)E,

dI

dt
= 𝜎E − (𝛾 + 𝜇)I.

(10)

{
dE

dt
= 𝛽(t)(Ŝ − 𝜖)I − (𝜎 + 𝜇)E,

dI

dt
= 𝜎E − (𝛾 + 𝜇)I.

(11)

S(t) = e− ∫
t

0
(𝛽(t)I+𝜇)dt

[
S0 +

�

t

0

A(1 − 𝜌)e∫
t

0
(𝛽(t)I+𝜇)dtdt

]

> A(1 − 𝜌)e− ∫
t

0
(𝛽(t)I+𝜇)dt

�

t

0

e∫
t

0
(𝛽(t)I+𝜇)dtdt > 0, ∀t > 0,

(12)

R(t) = e−𝜇t
[
R0 +

∫

t

0

(A𝜌 + 𝛾I(t))e𝜇tdt

]

> e−𝜇t
∫

t

0

(A𝜌 + 𝛾I(t))e𝜇tdt > 0, ∀t > 0,

So X0 is positively invariant. Clearly, �X0 is relatively closed 
in X. Set

We firstly show that

Note that {(S, 0, 0,R) ∈ X ∶ S > 0,R > 0} ⊆ M
𝜕
 is obvious, 

we only need to prove that

Otherwise, if M
𝜕
�{(S, 0, 0,R) ∈ X ∶ S > 0,R > 0} ≠ � , then 

there exists at least a point (S0,E0, I0,R0) ∈ M
�
 satisfying 

E0 > 0 or I0 > 0.
If E0 > 0 , from the second equation of model (1) and 

Theorem 3.1, we have that for all t > 0

Thus, from the third equation of model (1) and inequality 
(14), we also have I(t) > 0 for all t > 0 . From S0 > 0 and 
inequality (11), we have S(t) > 0 for all t > 0 . Similarly, 
From R0 > 0 and inequality (12), we have R(t) > 0 for all 
t > 0 . Thus, with initial value (S0,E0, I0,R0) , we finally 
obtain that (S(t),E(t), I(t),R(t)) > (0, 0, 0, 0) for all t > 0 , 
which contradicts that (S0,E0, I0,R0) ∈ M

�
 that requires 

Pm
(S0,E0, I0,R0) ∈ �X0,∀m ≥ 0.
If I0 > 0 ,  similarly, we can also prove that 

(S(t),E(t), I(t),R(t)) > (0, 0, 0, 0) for all  t > 0 ,  which 
leads to a contradiction. Therefore, we finally have 
M

𝜕
⊆ {(S, 0, 0,R) ∈ X ∶ S > 0,R > 0} . So the claim (15) 

holds, which implies E0(S, 0, 0,R) is the only fixed point 
of P in M

�
.

Moreover, Lemma  3.5 implies that P0 = (Ŝ, 0, 0, R̂) 
is an isolated invariant set in X and WS

(P0) ∩ X0 = � . By 
the acyclicity theorem on uniform persistence for maps 

(13)

E(t) = e−(𝜎+𝜇)t
[
E0 +

�

t

0

𝛽(t)S(t)I(t)e(𝜎+𝜇)tdt

]

> e−(𝜎+𝜇)t
[

�

t

0

𝛽(t)S(t)I(t)e(𝜎+𝜇)tdt

]
≥ 0, ∀t > 0,

(14)
I(t) = e−(𝛾+𝜇)t

[
I0 +

∫

t

0

𝜎E(t)e(𝛾+𝜇)tdt

]

> e−(𝛾+𝜇)t
∫

t

0

𝜎E(t)e(𝛾+𝜇)tdt > 0, ∀t > 0.

M
�
=

{
(S0,E0, I0,R0) ∈ �X0 ∶ Pm

(S0,E0, I0,R0) ∈ �X0, ∀m ≥ 0
}
.

(15)M
𝜕
= {(S, 0, 0,R) ∈ X ∶ S > 0,R > 0}.

M
𝜕
⊆ {(S, 0, 0,R) ∈ X ∶ S > 0,R > 0}.

E(t) ≥ E0 exp
−(𝜎+𝜇)t

> 0.
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(Theorem 1.3.1 and Remark 1.3.1 in Zhao (2007)), it fol-
lows that P is uniformly persistent with respect to (X0, �X0).

Now, Theorem 1.3.6 in Zhao (2007) implies that P has 
a fixed point

From the first equation of system (1), we have

The periodicity of S∗(t) implies that S∗(t) > 0 for all t > 0 . 
Following the processes as in inequalities (11)–(14), we 
have E∗

(t) > 0, I∗(t) > 0,R∗
(t) > 0 for all t > 0 . Therefore, 

(S∗(t),E∗
(t), I∗(t),R∗

(t)) is a positive �−periodic solution of 
system (1). 	�  □

Simulations and sensitivity analysis

In this section, we firstly use the model (1) to simulate 
the reported measles data of China from January 2004 to 
December 2016, predict the trend of the disease, and seek for 
some control and prevention measures. To do so, we need to 
estimate the parameter values. We obtain the annual number 
of human population using the annual birth and death data 
from the National Bureau of Statistics of China 2016. Then, 
we calculate the average and divide it by 12 to derive the 
monthly human birth population A = 1340000 . For �(t), � 
and � by using the least square fitting of I(t) through discre-
tizing the ordinary differential system (1) as follows:

The least square fitting is to minimize the objective function

which is implemented by the instruction lsqnonlin, a part of 
the optimization toolbox in MATLAB. By the least square 
method, we obtain a = 1.2527 × 10−9, b = 0.3346, and 
� = 0.8216 . The parameter values are listed in Table 1.

We need the initial values to perform the numerical simu-
lations of the model. The number of the initial suscepti-
ble population, S(0), is obtained from the China Statisti-
cal Yearbook. However, the numbers of the initial exposed 
population E(0) and the recovered population R(0) cannot be 

(S∗(0),E∗
(0), I∗(0),R∗

(0)) ∈ X0.

S∗(t) = e− ∫
t

0
(𝛽(t)I+𝜇)dt

[
S∗(0) +

�

t

0

A(1 − 𝜌)e∫
t

0
(𝛽(t)I+𝜇)dtdt

]

> A(1 − 𝜌)e− ∫
t

0
(𝛽(t)I+𝜇)dt

�

t

0

e∫
t

0
(𝛽(t)I+𝜇)dtdt

> 0, ∀t ∈ [0,𝜔].

I(ti +△t) = (�E − (� + �)I)△ t + I(ti).

J(𝜃) =
1

n

n∑

i=1

(I(ti − Î(ti)),

obtained. According to the least square method, We estimate 
E(0) and R(0), respectively. The comparison between the 
reported measles data in mainland China from January 2004 
to December 2016 and the simulation of I(t) from model (1) 
is given in Fig. 3.

Moreover, with these parameter values, we can roughly 
estimate that the basic reproduction number 0 = 0.4663 
under the current circumstances in China. From Fig. 4, we 
can see that when 0 < 1 , the number of infected humans 
I(t) tends to 0. On the contrary, when 0 > 1, I(t) tends to 
a stable periodic solution. We can also predict the general 
tendency of the epidemic in a long term according to the 
current situation in China, which is presented in Fig. 5, 
where the basic reproduction number is 0 = 0.4663 . From 
these figures, we can see that the epidemic of measles can 
be relieved in a short time and eradicated by strengthening 
the current prevention and control measures.

Next, we perform some sensitivity analysis to determine 
the influence of parameters � (vaccination rate) and a (the 
contact rate) on 0 . From Fig. 6a, we observe that � has an 
obvious effect on 0 which indicates that immunization is 
an effective measure to control measles. Next, we consider 
the effect of a on 0 , which is depicted in Fig. 6b. Although 
they are linear, a is very small and a slight change of a 
can lead to large variations of 0 . So reducing the contact 
between susceptible and infective individuals is important 
to control measles.

Finally, we consider the combined influence of � and a on 
0 in Fig. 7. From the contour surface, we can see that when 
the increasing of vaccination and the reduction of contact 
are combined, controlling measles will be more effective.

Discussion

Measles virus causes significant morbidity in China which 
accounts for a large proportion of the measles cases reported 
in the Western Pacific Region (WHO 2009). Thanks to the 
national Expanded Programme on Immunization established 
in 1978 and a national plan of action for accelerated mea-
sles control (vaccine coverage of at least 90%) in 1997 (Ma 
et al. 2011). China made significant progress in controlling 
measles and the mean annual measles incidence decreased 
dramatically from 355.3/100,000 population in the 1970s 
to 7.6/100,000 population in the 1990s (Wang et al. 2003).

In 2005, the Regional Committee of WHO Western 
Pacific Region established 2012 as the target date for the 
complete regional elimination of measles (WHO 2009; 
Perry et al. 2014). In 2006, the Chinese Ministry of Health 
initiated mandatory measles vaccination and set a goal of 
accelerating the progress of eliminating measles by 2012 
(Ma et al. 2011). In 2010, a nationwide measles supplemen-
tary immunization activity was conducted, and in 2012, the 
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incidence of measles in China reached its lowest reported 
level (6,183 cases, 0.46/100,000 population). However, in 
2013–2015, a nationwide resurgence of measles occurred in 
China (27,647 cases, 2.05/100,000 population; 52,628 cases, 
3.88/100,000 population; 42,361 cases, 3.11 /100,000 popu-
lation) (National Health and Family Planning Commission 

of PRC 2017). Some believed that this outbreak was a result 
of measles vaccination coverage gaps among young children 
and adults, and insufficient hospital isolation of cases (Zheng 
et al. 2016). Other researchers suggested that multiple highly 
connected foci of measles transmission coexist in China and 

1/2004 1/2005 1/2006 1/2007 1/2008 1/2009 1/2010 1/2011 1/2012 1/2013 1/2014 1/2015 1/2016 1/2017
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×104

Fig. 3   Comparison between the reported human measles data 
in mainland China from January 2004 to December 2016 and 
the simulation of I(t) from model (1). The dashed curve repre-
sents the monthly measles data, while the solid curve is simu-

lated by using our model. The values of parameters are given 
in Table  1. The initial values used in the simulations were 
S(0) = 1.29 × 10

9
,E(0) = 18527, I(0) = 1754,R(0) = 640000
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Fig. 4   Tendency of the human measles cases I(t) in a long term with different values of 
0
 . A = 1900000 in the upper curve with 

0
= 1.3614 

and A = 1300000 in the lower curve with 
0
= 0.4663 , respectively, and the other parameter values are in Table 1
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that migrant workers likely facilitate the transmission of 
measles across regions (Yang et al. 2017).

The data of human measles cases reported in China 
exhibit seasonal characteristics. In order to study the 
transmission dynamics of measles in China, vaccina-
tion and seasonality of the spreading of the measles were 

incorporated into a SEIR epidemic model with periodic 
transmission rate. Firstly, we calculated the basic repro-
duction number 0 and analyzed the dynamics of the 
model including the global stability of the disease-free 
equilibrium and the existence of periodic solutions. The 
analytical results demonstrate that seasonality plays a key 
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Fig. 5   Tendency of the human measles cases I(t) in a short and b long terms, where the basic reproduction number is 
0
= 0.4663
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in the persistence of the disease in terms of periodic solu-
tions. Then, we used the periodic model to simulate the 
monthly data on the number of measles cases from Janu-
ary 2004 to December 2016 in China and predicted the 
general tendency of disease in China. It was estimated 
that the basic reproduction number 0 = 0.4663 under the 
current circumstances in China. This indicates that the 
epidemic of measles in China can be relieved in a short 
time, but extra efforts are needed in order to eradicate the 
disease. Moreover, we carried out some sensitivity analy-
sis of parameters on 0 to test some control measures and 
found that the vaccination rate � has an obvious effect 
on 0 which indicates that immunization is an effective 
measure to control measles. We also observed that a slight 
change of the contact rate a can lead to large variations of 
0 , so reducing the contact between susceptible and infec-
tive individuals is also important to control measles. Our 
study shows that measles in China can be controlled and 
eventually eradicated by increasing the immunization rate, 
improving the effective vaccine management, and enhanc-
ing the awareness of people about measles.

Since one of the main issues in controlling and elimi-
nating measles is the optimal age to vaccinate children in 
order to have the maximum impact on the incidence of 
measles-related morbidity and mortality for a given rate 
of vaccination coverage, age-structured epidemic mod-
els have been extensively used to study the transmission 
dynamics and control of measles (Schenzle 1984; Tudor 
1985; Greenhalgh 1988; Hethcote 1988; McLean and 
Anderson 1988; Ferguson et al. 1996). Taking the periodic 
and age-dependent transmission rate into consideration, it 
will be interesting to study the following age-structured 
periodic measles model:

with boundary conditions

and initial conditions

where �(t;a, a�) is the rate at which susceptible individu-
als of age a are infected by infectious individuals of age a′ 
and is a time periodic function (Schenzle 1984). Interesting 

(16)

�S

�t
+

�S

�a
= −S(t, a)

∫

∞

0

�(t;a, a�)I(t, a�)da� − (�(a) + �(a))S(t, a),

�E

�t
+

�E

�a
= S(t, a)

∫

∞

0

�(t;a, a�)I(t, a�)da� − (�(a) + �(a))E(t, a),

�I

�t
+

�I

�a
= �(a)E(t, a) − (�(a) + �(a))I(t, a),

�R

�t
+

�R

�a
= �(a)S(t, a) + �(a)I(t, a) − �(a)R(t, a)

(17)S(t, 0) = A, E(t, 0) = 0, I(t, 0) = 0, R(t, 0) = 0

(18)
S(0, a) = S0(a), E(0, a) = E0(a), I(0, a) = I0(a), R(0, a) = R0(a),

properties of the model such as existence and stability of 
periodic solutions, optimal age vaccinations, and so on 
deserve further consideration.
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