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Abstract In this paper, we study the global properties of a

computer virus propagation model. It is, interesting to note

that the classical method of Lyapunov functions combined

with the Volterra–Lyapunov matrix properties, can lead to

the proof of the endemic global stability of the dynamical

model characterizing the spread of computer viruses over

the Internet. The analysis and results presented in this

paper make building blocks towards a comprehensive study

and deeper understanding of the fundamental mechanism

in computer virus propagation model. A numerical study of

the model is also carried out to investigate the analytical

results.
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Introduction

By development of computer technologies and network

applications, the Internet has become a powerful mechanism

for propagating computer virus. Because of this, computers

connected to the Internet become much vulnerable to digital

threats. Computer viruses, including the narrowly defined

viruses and network worms, are loosely defined as malicious

codes that can replicate themselves and spread among

computers. In this scenario, the large number of existing

computer viruses and their high level of destructivity appear

as an important risk factor for corporations and individuals.

Developing a mathematical model for the computer viral

propagation is of critical importance not only for under-

standing better the behavior of computer virus but also for

stopping the spread of the virus. These models lead to a

better understanding and prediction of the scale and speed of

computer virus propagation (Murray 1988; Yang and Yang

2015; Piqueira et al. 2008). Due to the high similarity

between computer virus and biological virus, some classic

epidemic models were established for computer virus

propagation, such as the SIRS model (Han and Tan 2010;

Ren et al. 2012; Bradley et al. 2008), the SEIR model (Yuan

and Chen 2008), the SEIRS model (Mishra and Saini 2007),

and the SEIQV model Wang et al. (2010), which share a

common assumption that an infected computer in which the

virus resides is in latency can not infect other computers

(Yang et al. 2013; Li and Knickerbocker 2007).

The study of the endemic global stability is not only

mathematically important, but also essential in predicting the

evolution of the disease in the long run, so that prevention and

intervention strategies can be effectively designed, and public

health administrative efforts can be properly scaled. There are

some methods, i.e., those based on the monotone dynamical

systems (Li et al. 1999), and Lyapunov functions (Chong

et al. 2014; Liu et al. 2015), to conduct global stability anal-

ysis for epidemic models (Xu and Ma 2010; Bhunu and

Mushayabasa 2013; Imran et al. 2014). In addition, the

method of Lyapunov functions has been known for many

decades. The challenge in the application of this method is that

there is no systematic way to construct Lyapunov functions

(particularly, the determination of the appropriate coefficients
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is often a matter of luck), so that its success largely depends on

trial and error as well as on specific problems. In this paper, we

apply the method of Lyapunov functions combined with the

Volterra–Lyapunov matrix properties which lead to the proof

of the endemic global stability (Redheffer 1985a, b; Rinaldi

1990; Wang and Liao 2012; Chavez et al. 2002). In fact, we

incorporate the Volterra–Lyapunov matrix theory (Rinaldi

1990) into Lyapunov functions, under certain conditions,

which can leverage the difficulty of determining specific

coefficient values, and, as such wider application of Lyapunov

functions to dynamical systems could be promoted. Although

the method of Lyapunov functions has been widely applied to

various dynamical systems, the main contributions of our

analysis is based on the less well-known results of Volterra–

Lyapunov stable matrices. We are able to investigate more

complex model systems with nonlinear incidence rates, with

the aid of the Volterra–Lyapunov matrix properties.

Recently, Yang et al. (2013) proposed a computer virus

propagation model, which incorporates the two features

mentioned above. One major difficulty in studying the

qualitative properties of this model lies in the construction of

suitable Lyapunov functions. They used linear combinations

of quadratic functions in independent variables as the can-

didate Lyapunov functions. Equipped with this tool, it is

proved that the dynamic behavior of the model is deter-

mined by a threshold R0: Specifically, the virus-free equi-

librium is globally asymptotically stable if R0 � 1; whereas

the viral equilibrium is locally asymptotically stable if

R0 [ 1: In the present work, we employ the Volterra–Lya-

punov metod, to investigate the endemic global stability for

the computer virus propagation model (Yang et al. 2013).

We organize the remainder of this paper as follows. In

section ‘‘Model formulation’’, we analyze the computer virus

propagation model and investigate the mathematical analysis

of this model. In section ‘‘Some notations and preliminaries’’,

we investigate the global stability of the model. Finally, we

close the paper by conclusions and discussion.

Model formulation

We shall study the mathematical model of computer virus

proposed by Yang et al. (2013). A computer is classified as

internal and external depending on weather it is connected

to internet or not. In this model, assumes that only internal

computers are concerned, and all internal computers are

categorized into three classes: uninfected computers (i.e.,

virus-free computers), infected computers that are currently

latent (latent computers, for short), and infected computers

that are currently breaking out (seizing computers, for

short). Due to the fact that in the future, the total amount of

computers in the world would tend to saturation, it is

reasonable to suppose that this total number is constant.

Let S(t), L(t), and B(t) denote, at time t, the percentages of

uninfected, latent, and seizing computers in all internal

computers, respectively. Then, SðtÞ þ LðtÞ þ BðtÞ ¼ 1:

Unless otherwise stated, let S, L, and B stand for S(t), L(t),

and B(t), respectively. By carefully considering the features

of a computer virus, the following hypotheses are made:

(H1) External computers are connected to the Internet at

positive constant rate d, and internal computers are

disconnected from the Internet also at this rate.

(H2) All newly connected computers are virus free.

(H3) The percentage of internal computers infected at

time t increases by bSðLþ BÞ; where b is a positive

constant. This hypothesis says that both seizing and

latent computers have infectivity. In contrast, all the

traditional models assumed that only seizing individuals

have infectivity, i.e., at time t the force of infection can

be described as bSf ðBÞ (Britten 2003).

(H4) Latent computers break out at positive constant rate a:
(H5) Latent computers are cured at positive constant rate

c1, while breaking-out computers are cured at positive

constant rate c2. For the graded cure rates, we have

c2 [ c1 [ 0:

Based on the previous assumptions, one can derive the

following computer virus propagation model:

dS

dt
¼ d� bSðLþ BÞ þ c1Lþ c2B� dS;

dL

dt
¼ bSðLþ BÞ � c1L� aL� dL;

dB

dt
¼ aL� c2B� dB:

ð1Þ

Remark 2.1 From the biological point of view, the spread

of virus is similar to sexually disease, worm is similar to

flu, and logic bomb is similar to HIV. Kephart used the

epidemic models to find out the rule in the computer virus

(Kephart and White 1991) and he focused his attention on

the effect of topological structure of the network on the

spread of the virus.

Now, we will discuss the existence of all possible

equilibria of the model system (1). We found that system

(1) has two possible non-negative equilibria, namely, the

virus-free equilibrium E0 and the viral equilibrium E1:

Virus-free equilibrium E0 and the basic

reproduction number R0

In this subsection, we shall investigate the existence of

equilibria of system (1). The virus-free equilibrium (VFE) is

always feasible, as at this equilibrium the infection eradicates

from the population. We calculate the basic reproduction

number, R0, using the next generation approach, developed

in Van den Driessche and Watmough (2002).
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Let consider the non-negative orthant of Rn by Rn
þ. We

let xðtÞ 2 Rn
þ; where xiðtÞ denotes the number of individ-

uals in compartment i at time t. For ease of notation, we

order the compartments, such that the first m (for m� n)

compartments correspond to the states with infection. Note

that the definition of a state with infection needs to be made

from an understanding of the system being modeled and

not from the infections themselves (and that this definition

may not be unique). For the model

dxi

dt
¼ fiðxÞ; ð2Þ

with non-negative initial conditions, xð0Þ 2 Rn
þ, we define

Xs as the set of all disease-free states

Xs ¼ fx 2 Rn
þjxi ¼ 0; 1� i�mg:

We rewrite the model (2) as

dxi

dt
¼ F iðxÞ � V iðxÞ; ð3Þ

where F iðxÞ is the rate of new infections entering com-

partment i, and

V i ¼ V�
i ðxÞ � Vþ

i ðxÞ;

where Vþ
i ðxÞ is the rate of transfer into compartment i by

any other means, and V�
i ðxÞ is the rate of transfer out of

compartment i. We list five reasonable assumptions for

these functions below.

(A1) If x 2 Rn
þ, then F iðxÞ, Vþ

i ðxÞ, V�
i ðxÞ[ 0 for

1� i� n: This implies that no rate of movement can be

negative.

(A2) If xi ¼ 0; then V�
i ðxÞ ¼ 0. If there are no individ-

uals in a compartment, there can be no movement of

individuals out of that compartment.

(A3) F iðxÞ ¼ 0 for i[m: There can be no infections

entering classes that are defined as noninfectious.

(A4) If x 2 Xs; then F iðxÞ ¼ 0 and Vþ
i ðxÞ ¼ 0 for

1� i�m: If there is no infection in the population,

there can be no input into the infectious populations.

(A5) if F(x) is set to 0, then all eigenvalues of the

corresponding Jacobian of (2) evaluated at a disease-free

equilibrium point xdfe, have negative real part. Note that

the disease-free equilibrium point is not required to be

unique.

For a disease-free equilibrium point, xdfe, of (2), where

xdfe and f(x) satisfy assumptions (A1)–(A5), we define m�
m matrices, F and V

Fij ¼
oF i

oxj
jxdfe

; 1� i; j�m;

Vij ¼
oV i

oxj
jxdfe

; 1� i; j�m:

For this model, the matrices F and V, for the new

infection and the remaining transfer, are, respectively,

given by

F ¼
b b

0 0

� �

and

V ¼
c1 þ aþ b 0

�a c2 þ d

� �
:

Then, the basic reproduction number is defined, as the

spectral radius of the next generation matrix, FV�1. For

this model, the basic reproduction number, which is

defined as the number of previously uninfected computers

that are infected by a single infected computer during its

life cycle, can be derived as

R0 ¼ bðc2 þ aþ dÞ
ðc2 þ dÞðc1 þ aþ dÞ :

Clearly, system (1) always has a virus-free equilibrium

E0 ¼ ð1; 0; 0Þ:

The endemic equilibrium

A positive equilibrium of (1), if one exists, is called an

endemic equilibrium, and denoted by

E1 ¼ S�; L�;B�ð Þ;

satisfy the following equilibrium equations:

d� bS�ðL� þ B�Þ þ c1L
� þ c2B

� � dS� ¼ 0;

bS�ðL� þ B�Þ � c1L
� � aL� � dL� ¼ 0;

aL� � c2B
� � dB� ¼ 0;

ð4Þ

where,

S� ¼ 1

R0

¼ ðc2 þ dÞðc1 þ aþ dÞ
bðc2 þ aþ dÞ ;

L� ¼ ðR0 � 1Þðc2 þ dÞ
R0ðc2 þ aþ dÞ ;

B� ¼ aðR0 � 1Þ
R0ðc2 þ aþ dÞ :

8>>>>>>><
>>>>>>>:
The authors in Yang et al. (2013) answered the basic

questions of the stability of the DFE and the local

dynamics of the endemic equilibrium, for the system (1).

The global stability of the endemic equilibrium for this

model, however, is much more difficult to analyze.

Below, we will combine the method of Lyapunov func-

tions and Volterra–Lyapunov stable matrices to address

this challenge.
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Some notations and preliminaries

Our goal here is to show that the endemic equilibrium is

globally asymptotically stable. First, we introduce neces-

sary concepts and notations that will facilitate our global

stability analysis.

Notation 3.1 We write a matrix A[ 0ð\0Þ if A is

symmetric positive (negative) definite. The following fun-

damental result on matrix stability was originally proved

by Lyapunov:

Lemma 3.2 (Cross 1979). Let A be an n� n real matrix.

Then, all the eigenvalues of A have negative (positive) real

parts if and only if there exists a matrix H[ 0; such that

HAþ ATHT\0ð[ 0Þ:

Definition 3.3 We say a nonsingular n� n matrix A is

Volterra–Lyapunov stable if there exists a positive diago-

nal n� n matrix M, such that MAþ ATMT\0:

The following lemma determines all 2 � 2 Volterra–

Lyapunov stable matrices.

Lemma 3.4 (Rinaldi 1990; Cross 1979). Let

D ¼ d11 d12

d21 d22

� �
be a 2 � 2 matrix. Then D is Volterra–

Lyapunov stable if and only if d11\0; d22\0; and

detðDÞ ¼ d11d22 � d12d21 [ 0:

The characterization of Volterra–Lyapunov stable ma-

trices of higher dimensions, however, is much more diffi-

cult. We need the following definition.

Definition 3.5 We say a nonsingular n� n matrix A is

diagonally stable (or positive stable) if there exists a pos-

itive diagonal n� n matrix M, such that MAþ ATMT [ 0:

From Definitions 3.3 and 3.5, it is clear that a matrix A is

Volterra–Lyapunov stable if and only if its negative matrix,

�A, is diagonally stable.

Notation 3.6 For any n� n matrix A, let eA denote the

ðn� 1Þ � ðn� 1Þ matrix obtained from A by deleting its

last row and last column.

The following generalized result was obtained by Red-

heffer (1985a, b) which will be frequently used in our

global stability analysis. For simplicity, we only state the

sufficient condition below.

Lemma 3.7 Redheffer (1985a, b). Let D ¼ ½dij� be a

nonsingular n� n matrix ðn� 2Þ and M ¼
diagðm1; . . .;mnÞ be a positive diagonal n� n matrix. Let

E ¼ D�1: Then, if dnn [ 0; eMfE þð eMfE ÞT [ 0, and

eM eDþð eM eDÞT [ 0 , it is possible to choose mn [ 0 , such

that MDþ DTMT [ 0:

Lemma 3.8 (Chavez et al. 2002). Consider a disease

model system written in the form:

dX1

dt
¼ FðX1;X2Þ;

dX2

dt
¼ GðX1;X2Þ;

G X1 ; 0ð Þ¼ 0;

ð5Þ

where X1 2 Rm denotes (by its components) the uninfected

populations and X2 2 Rn denotes (by its components) the

infectious populations; X0 ¼ ðXE
1 ; 0Þ denotes the disease-

free equilibrium of the system.

In addition, assume the conditions (C1) and (C2) below:

– C1 : For dX1

dt
¼ FðX1; 0Þ; XE

1 is globally asymptotically

stable;

– C2 : GðX1;X2Þ ¼ AX2 � ĜðX1;X2Þ; with ĜðX1;X2Þ� 0

for ðX1;X2Þ 2 X, where the Jacobian matrix A ¼
oG
oX2

ðXE
1 ; 0Þ has all non-negative off-diagonal elements,

and X is the region where the model makes biological

sense.

Then, the DFE X0 ¼ ðXE
1 ; 0Þ is globally asymptotically

stable provided that R0\1:

Global stability of disease-free equilibrium

We will use the theorem by Castillo-Chavez et al. (2002),

to prove the global stability result.

Theorem 3.9 The fixed point E0 ¼ 1; 0; 0ð Þ is a globally

asymptotically stable equilibrium of system (1) provided

that R0\1 and the assumptions in Eq. (5) are satisfied.

Proof Applying Lemma 3.8 to system (1), consider X1 ¼

S; X2 ¼ L

B

� �
:

When L ¼ B ¼ 0; the uninfected subsystem (i.e., the

equation for S) becomes

dS

dt
¼ d� dS; ð6Þ

which has the solution

SðtÞ ¼ 1 þ e�dtðSð0Þ � 1Þ; ð7Þ

obviously, SðtÞ ! 1 as t ! 1 regardless of the initial

value S(0). Therefore, it shows that condition ðC1Þ in

Lemma 3.8 holds for our model.

Next, the right-hand side of the infectious subsystem

(i.e., the equations for L and B) can be written as

172 Theory Biosci. (2017) 136:169–178
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dX2

dt
¼ GðX1;X2Þ ¼

�ðbS� c1 � a� dÞLþ bSB

aL� ðc2 þ dÞB

2
64

3
75

¼
bð�c1 � a� dÞ b

a � ðc2 þ dÞ

� � L

B

2
64

3
75

�
�bSLþ bL� bSBþ bB

0

2
64

3
75

¼ AX2 � ĜðX1;X2Þ;

where

A ¼
bð�c1 � a� dÞ b

a � ðc2 þ dÞ

� �
;

and

ĜðX1;X2Þ ¼
bLð1 � SÞ þ bBð1 � SÞ

0

� �
:

It is obvious that, S� 1, hence, it is clear that condition

ðC2Þ holds for our model. We also notice that the matrix

A is an M matrix, since all its off-diagonal elements are

non-negative. Hence, this proves the global stability of the

DFE ðE0Þ: h

Global stability of the endemic equilibrium

of the model system (1)

Our goal here is to show that the endemic equilibrium of

the model system (1) is globally asymptotically stable. It is,

however, interesting to note that the classical method of

Lyapunov functions combined with the Volterra–Lyapunov

matrix properties Redheffer (1985a, b) can lead to the

proof of the endemic global stability. The details are pro-

vided below.

To prove global stability result, we propose the fol-

lowing Lyapunov function:

V ¼ w1ðS� S�Þ2 þ w2ðL� L�Þ2 þ w3ðB� B�Þ2; ð8Þ

where w1; w2; and w3 are positive constants. Calculating

the time derivative of V along the trajectories of the system

(1), we obtain

_V ¼ 2w1ðS� S�Þ _Sþ 2w2ðL� L�Þ _Lþ 2w3ðB� B�Þ _B
¼ 2w1ðS� S�Þ½�bSðLþ BÞ þ bS�ðL� þ B�Þ
þ c1ðL� L�Þ þ c2ðB� B�Þ � dðS� S�Þ�
þ 2w2ðL� L�Þ½bSðLþ BÞ � bS�ðL� þ B�Þ
� c1ðL� L�Þ � aðL� L�Þ � dðL� L�Þ�
þ 2w3ðB� B�Þ½aðL� L�Þ � c2ðB� B�Þ � dðB� B�Þ�:

Then, we add the expression bS�L and bS�B into the first

and second square bracket. As a result, we obtain

_V ¼ 2w1ðS� S�Þ½�bSL� bSBþ bS�L� þ bS�B� þ bS�L

� bS�Lþ bS�B� bS�Bþ c1ðL� L�Þ þ c2ðB� B�Þ
� dðS� S�Þ� þ 2w2ðL� L�Þ½bSLþ bSB� bS�L�

� bS�B� þ bS�L� bS�Lþ bS�B� bS�B� c1ðL� L�Þ
� aðL� L�Þ � dðL� L�Þ� þ 2w3ðB� B�Þ½aðL� L�Þ
� c2ðB� B�Þ � dðB� B�Þ�;

therefore, we have

_V ¼ 2w1ðS� S�Þ½ð�bL� bB� dÞðS� S�Þ þ ð�bS� þ c1Þ
ðL� L�Þ þ ð�bS� þ c2ÞðB�B�Þ� þ 2w2ðL� L�Þ

½ðbLþ bBÞðS� S�Þ þ ðbS� � c1 � a� dÞðL� L�Þ
þ bS�ðB�B�Þ� þ 2w3ðB�B�Þ½aðL� L�Þ � ðc2 þ dÞ
ðB�B�Þ� ¼ 2w1ð�bL� bBÞðS� S�Þ2

þ 2w1ð�bS� þ c1ÞðS� S�ÞðL� L�Þ
þ 2w1ð�bS� þ c2ÞðS� S�ÞðB�B�Þ� þ 2w2ðbLþ bBÞ
ðL� L�ÞðS� S�Þ þ 2w2ðbS� � c1 � a� dÞðL� L�Þ2

þ 2w2bS
�ðL� L�ÞðB�B�Þ þ 2w3aðL� L�ÞðB�B�Þ

� 2w3ðc2 þ dÞðB�B�Þ2 ¼ YðWPþPTWTÞYT ;

ð9Þ

where Y ¼ ½S� S�;L� L�;B�B��;W ¼ diagðw1;w2;w3Þ;
and

P ¼
�bL� bB� d � bS� þ c1 � bS� þ c2

bLþ bB bS� � c1 � a� d bS�

0 a � c2 � a

2
64

3
75:

ð10Þ

To discuss the global asymptotic stability of E1 ¼
ðS�;L�;BÞ, we proceed to show that the matrix P defined in

Eq. (10) is Volterra–Lyapunov stable or �P is diagonal

stable. For this goal, we prove the following lemmas.

Lemma 3.10 For the matrix P defined in Eq. (10), �P; is

diagonal stable.

Proof To prove the diagonal stability of �P and based on

Lemma 3.7, we need to show that the following three

conditions are satisfied:

Condition 1. We show that the matrix D ¼ �~P is

diagonal stable. From Eq. (10), we obtain

D ¼ �~P ¼
bLþ bBþ d bS� � c1

�bL� bB � bS� þ c1 þ aþ d

2
64

3
75:

For this purpose, it is necessary to show that �D is Vol-

terra–Lyapunov stable:
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�D ¼
�bL� bB� d � bS� þ c1

bLþ bB bS� � c1 � a� d

� �
:

Clearly, �D11\0: Next, we show �D22\0; according to

(4), we have

bS�ðL� þ B�Þ ¼ ðc1 þ aþ dÞL�;

and it is obvious that

bS�L� � ðc1 þ aþ dÞL�;

hence, �D22\0. Now, we show �D12\0, that is

�bS� þ c1\0;

using (4), (5), we can see that

bS�ðL� þ B�Þ � ðc1 þ dÞL� � ðc2 þ dÞB� ¼ 0;

since 0\c1\c2, we have

bS�ðL� þ B�Þ � ðc1 þ dÞL� � ðc2 þ dÞB�\bS�ðL� þ B�Þ
� ðc1 þ dÞL� � ðc1 þ dÞB�;

therefore

bS�ðL� þ B�Þ[ ðc1 þ dÞðL� þ B�Þ;

hence, �D12\0. It is easy to see �D21 [ 0. Therefore, �D

is Volterra–Lyapunov stable based on Lemma 3.4.

Condition 2. We show that the matrix E ¼ g�P�1 is

diagonal stable. In fact, we show that �E is Volterra–

Lyapunov stable:

�E ¼ �ð g�P�1Þ ¼ 1

detð�PÞ
�E11 � E12

�E21 � E22

� �
;

where

� E11 ¼ �ðc2 þ dÞð�bS� þ c1 þ aþ dÞ þ abS�;

� E12 ¼ �ðc2 þ dÞð�bS� þ c1Þ þ aðbS� � c2Þ;
� E21 ¼ �ðbLþ bBÞðc2 þ dÞ;
� E22 ¼ �ðbLþ bBþ dÞðc2 þ dÞ:

It is obvious that �E21\0 and �E22\0: Below, we show

�E11 ¼ 0 and �E12 [ 0:

The (1, 1) entrie of this �E is writen as

�E11 ¼ �ðc2 þ dÞð�bS� þ c1 þ aþ dÞ þ abS�;

multiplying the (4) by a, and using (5) we have

bS�aL� þ bS�aB� � ðc1 þ aþ dÞaL� ¼ 0: ð11Þ

Therefore

bS�ðc2 þ dÞB� þ bS�aB� � ðc1 þ aþ dÞðc2 þ dÞB� ¼ 0;

ð12Þ

from where

bS�ðc2 þ aþ dÞ ¼ ðc1 þ aþ dÞðc2 þ dÞ; ð13Þ
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Fig. 1 Phase plane portraits of

L vs. S for system (1). The basic

reproduction number is R0 ¼
0:9: The five curves correspond

to different initial conditions

with Lð0Þ ¼
0:1; 0:3; 0:5; 0:7; 0:9;
respectively

174 Theory Biosci. (2017) 136:169–178

123



hence, �E11 ¼ 0.

It is easy to see detð�EÞ[ 0; see the Appendix of this

paper. Therefore, �E is Volterra–Lyapunov stable based

on Lemma 3.4.

Condition 3. It is obvious that �P33 [ 0.

Hence, Lemma 3.7 guarantees that �P is diagonal

stable. h
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Fig. 2 Phase plane portraits of

B vs. S for system (1). The basic

reproduction number is R0 ¼
0:9: The five curves correspond

to different initial conditions

with Bð0Þ ¼
0:1; 0:3; 0:5; 0:7; 0:9;
respectively
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Fig. 3 Phase plane portraits of

L vs. S for system (1). The basic

reproduction number is R0 ¼
1:4: The five curves correspond

to different initial conditions

with Lð0Þ ¼
0:1; 0:3; 0:5; 0:7; 0:9;
respectively
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Theorem 3.11 The matrix P defined in Eq. (10) is Vol-

terra–Lyapunov stable.

Proof Based on Lemmas 3.7 and 3.10, there exists a

positive diagonal matrix W, such that Wð�PÞ þ
ð�PÞTWT [ 0: Thus WPþ PTWT\0: h

Theorem 3.12 The endemic equilibrium, E1 ¼
ðS�; L�;B�Þ; of model (1) is globally asymptotically stable.

Proof Based on Lemmas 3.7 and 3.10 and Theorem 3.12,

we obtain dV
dt
\0 when X 6¼ X� and X is not on the S-axis (a

set of measure zero). It implies that the endemic equilib-

rium of the model system (1) is globally asymptotically

stable. h

Numerical results

In this subsection, we carry out numerical simulations and

discuss results. Consider system (1) with a ¼ 0:6; b ¼
0:3; d ¼ 0:1; c1 ¼ 0:1; c2 ¼ 0:3: We plot the phase plane

portrait of L vs. S and B vs. S in Figs. 1, 2 for R0 ¼ 0:9375;

a typical case of R0\1; where the DFE is globally

asymptotically stable. This is evidenced in these figures by

the fact that all the five orbits converge to the DFE at S ¼ 1

and L ¼ B ¼ 0:

In addition, consider system (1) with a ¼ 0:3; b ¼
0:4; d ¼ 0:1; c1 ¼ 0:1; c2 ¼ 0:3: Then, R0 ¼ 1:4 in this

case, and the unique positive endemic equilibrium is

located at S� ¼ 0:71; L� ¼ 0:1 and B� ¼ 0:1: We pick

five different initial conditions, and plot these five

solution curves by the phase plane portrait of L vs. S and

B vs. S in Figs. 3, 4. From which one can see all these

five orbits converge to the endemic equilibrium, showing

the global asymptotic stability of the endemic

equilibrium.

Remark 3.13 The method considered in this paper is

conceptually simple to implement, and can be applied to

different models with nonlinear incidence rates. As can be

expected, the implementation of this method will likely be

hindered for epidemiological models with more complex

incidence rates, or those with even higher dimensions,

though such difficulty remains the same for all other

existing methods in global stability analysis. As far as the

current method is concerned, some symbolic computation

software can be possibly used to leverage some of the

algebraic difficulty.

Conclusion

We study a dynamical model characterizing the spread of

computer viruses over the Internet. It is assumed that all

infected computers possess infectivity, and latent comput-

ers have a lower cure rate than seizing computers. As we

know, a computer user might try to clear viruses sponta-

neously even if he is not sure that viruses are staying in his

computer possibly because:
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Fig. 4 Phase plane portraits of

B vs. S for system (1). The basic

reproduction number is R0 ¼
1:4: The five curves correspond

to different initial conditions

with Bð0Þ ¼
0:1; 0:3; 0:5; 0:7; 0:9;
respectively
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1. he is accustomed to running antivirus program regu-

larly, or

2. he is informed that viruses are spreading over the

Internet.

In this paper, the global stability of a computer virus

propagation model, which incorporates the two features

mentioned above, is investigated. One major difficulty in

studying the qualitative properties of this model lies in the

construction of suitable Lyapunov functions, so that its

success largely depends on trial and error as well as on

specific problems. By combining this classical approach

with the Volterra–Lyapunov matrix analysis, we have

leveraged the difficulty of determining specific coefficient

values, and as such, wider application of Lyapunov

functions to dynamical systems could be promoted. The

method Volterra–Lyapunov stability in this work is

applied for a model of a computer virus propagation

model. The analytical expressions of the stability analysis

are provided and their numerical implementation is

discussed.

Most of us thought that the problem about propagation

of computer viruses should be discussed on network; thus,

the diffusion can be considered as well (Ma et al. 2016;

Song et al. 2016; Yang and Yang 2017; Satorras et al.

2015; Yang et al. 2017). Within our proposed oscillator-

like epidemic model, the spatial effect is homogenized and

considered using the variables using mean field theory. In

the view of network, for example, regular network with

nearest-neighbor connection, small-world type, each node

will suffer from external forcing and stimuli from other

nodes, which can be regarded as external stimuli with

diversity. The local kinetics is critical for collective

behaviors of the network. Our results in this model could

be helpful for further discussion on collective transition of

safety and propagation of computer viruses. In addition, we

wish this problem can be further discussed on network in

the future.
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Appendix

Proof of detð�PÞ[ 0:

detð�PÞ ¼ ðbLþ bBþ dÞ½ðc2 þ dÞð�bS� þ c1 þ aþ dÞ
� abS�� þ ðbLþ bBÞ½ðc2 þ dÞðbS� � c1Þ
þ aðbS� � c2Þ�:

Since gP�1
11 ¼ 0; and gP�1

12\0, we have detð�PÞ[ 0.

Hence, it is clear to see detð�EÞ[ 0. The proof is then

complete. h
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