
ORIGINAL PAPER

How should we measure proportionality on relative gene
expression data?

Ionas Erb1,2 • Cedric Notredame1,2

Received: 17 April 2015 / Accepted: 15 December 2015 / Published online: 13 January 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Correlation is ubiquitously used in gene expres-

sion analysis although its validity as an objective criterion is

often questionable. If no normalization reflecting the original

mRNA counts in the cells is available, correlation between

genes becomes spurious.Yet the need for normalization canbe

bypassed using a relative analysis approach called log-ratio

analysis. This approach can be used to identify proportional

gene pairs, i.e. a subset of pairs whose correlation can be

inferred correctly from unnormalized data due to their van-

ishing log-ratio variance. To interpret the size of non-zero log-

ratio variances, a proposal for a scaling with respect to the

variance of onemember of the gene pair was recentlymade by

Lovell et al. Here we derive analytically how spurious pro-

portionality is introduced when using a scaling. We base our

analysis on a symmetric proportionality coefficient (briefly

mentioned in Lovell et al.) that has a number of advantages

over their statistic. We show in detail how the choice of ref-

erence needed for the scaling determines which gene pairs are

identified as proportional. We demonstrate that using an

unchanged gene as a reference has huge advantages in terms of

sensitivity. We also explore the link between proportionality

and partial correlation and derive expressions for a partial

proportionality coefficient. A brief data-analysis part puts the

discussed concepts into practice.

Keywords Co-expression � Data normalization � Gene
networks � Spurious correlation � Log-ratio analysis �
Compositional data

Introduction

The frequently compositional nature of biological data and

its methodological implications (a.k.a. analysis of ‘‘closed’’

data) have not been widely acknowledged yet Lovell et al.

(2011). One prominent example is RNA sequencing data,

where the final readouts (total number of sequenced reads

per library) need to be multiplied by factors depending on

the library to recover the original total amounts of mRNA.

This exact information about absolute quantities of mRNA

can be unavailable or hard to precisely estimate - depending

on the chosen protocols. As a result, assumptions need to be

made with respect to parameter stability across experiments

that will necessarily influence the final interpretation. For

instance, most protocols assume equality of total mRNA

amounts (in the cells) across samples, even though this

(rather strong) assumption can well be violated Lovén et al.

(2012) and lead to inaccurate conclusions. If total mRNA

amounts of origin are not the same between samples, the

dominance of certain transcripts in one condition can lead to

other transcripts yielding lower read percentages even

though their totals remain unchanged between conditions.

This problem has been addressed by ‘‘effective library size’’

normalization Robinson and Oshlack (2012), a method that

needs the weaker (and most parsimonious) assumption that

most genes between samples remain unchanged and thus

retain comparable expression levels. Also here we can think

of many situations where this is not true, and there is simply

no ‘‘magic powder that can be sprinkled on closed data to

make them open’’ Aitchison (2003). In data constrained to

constant sums (e.g. RNA-seq data constrained to a fixed

number of reads) individual readouts are not fully inde-

pendent, and their comparison can easily be confounded,

especially when drawing correlations. In the worst-case

scenario this will result in wrong conclusions.
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Statistics that were developed for unconstrained data

(the most prominent being correlation), can lead to spuri-

ous results when applied to relative data Pearson (1897).

Interestingly, in geochemistry, where data often are per-

centages of chemical compounds in rock samples, this kind

of problem was reported decades ago and eventually

addressed using log-ratio analysis Aitchison (2003). Log-

ratio analysis uses log-ratio transformations to take the data

from the simplex to real space, thus avoiding many of the

problems associated with constrained data. Genomic

research is a prime target for such methods. Their non-

reliance on semi-arbitrary normalization procedures makes

it possible to bypass problems when comparing data pro-

duced across a wide-range of conditions. Such an approach

has the potential to significantly broaden analysis prospects

by allowing the systematic re-analysis and consolidation of

existing data sets. It will be especially useful in situations

where the large number of experimental conditions or the

involvement of different laboratories The ENCODE Pro-

ject Consortium (2011),Lonsdale (2013) make it virtually

impossible to perform all experiments under the exact same

conditions.

Let us now consider an n� d gene-expression data

matrix where d genes correspond to the columns and the n

(multivariate) observations are displayed in the rows.

(Usually, this is a ‘‘fat’’ matrix in the sense that d is one or

two orders of magnitude greater than n.) The observations

are made under different experimental conditions or for a

variety of genotypes, and for each such library, the

expression values sum to a constant that is unrelated with

the absolute amount of mRNA in the cells of origin. Each

row in our matrix is thus considered a composition (to

make each row a composition in the formal sense, we can

divide all entries by the respective row sum, but this is

unnecessary for the analysis proposed here). A row is

denoted by a vector x whose elements xi are the gene

expressions for genes i ¼ 1; . . .; d in the given condition.

Such data are usually counts of sequencing reads mapped

to the genomic locations in question, and their precise

nature is not of interest to us here. The only condition they

have to fulfill is that ratios between values from the same

condition are maintained from the original data (which is

the case after multiplication of a normalization factor but

not after applying a quantile normalization). Additionally,

due to the need for applying logarithms, we may want to

consider the application of pseudocounts to the expression

values or, alternatively, restrict the analysis to submatrices

that do not contain zeroes. To make our treatment suffi-

ciently general, we will consider our matrix an n-sample of

a d-part random composition ðX1; . . .;XdÞ. In this setting, a

gene corresponds to a (compositional) random variable. On

the other hand, a gene j can be visualized as the column

vector of its n observations ðx1j; . . .; xnjÞT (see Fig. 1 a).

To motivate our interest in proportionality, let us con-

sider the underlying absolute data for a moment. Let

xi ¼ ai=s, with ai denoting the absolute mRNA amount

from gene i in the given condition and s the total mRNA

amount in this condition: s ¼
Pd

j¼1aj. We neither know

s nor the ai; but we have xi=xj ¼ ai=aj; so the only infor-

mation maintained from the original absolute amounts is in

the gene expression ratios. Gene pairs for which these

ratios stay constant across conditions can thus be correctly

inferred even on relative data. Taking the log of these ratios

makes them symmetric with their reciprocal values. While

correlations between the columns of our compositional

matrix cannot be defined coherently, the covariance

structure of a compositional data matrix can be summa-

rized considering, for all pairs i, j (i\j), the (sample)

variances of their log ratios logxi
xj
Aitchison (2003). These

will be close to zero if genes i and j maintain an approxi-

mately proportional relationship xi ’ mxj across observa-

tions for some real value m.

In this contribution, we will interpret log-ratio trans-

formations as an attempt to back transform relative data

into absolute data. This point of view is not usually

adopted, but it makes a connection with data normalization,

a well-established field in genome research. In the first

section of this paper, where we profit greatly from the

treatment in Lovell et al. (2015), we show how propor-

tionality can be measured as a kind of scaled log-ratio

variance on absolute data. We then show that doing a log-

Fig. 1 a Relative gene expression data matrix. Each row is considered a composition, the data can be formalized as sampled from a random

composition consisting of random variables Xj. b Data matrix after alr transformation using the u-th column of the original matrix as a reference.
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ratio transformation with a very specific (‘‘unchanged’’)

reference, on relative data we can detect all the propor-

tional pairs defined on absolute data (‘‘absolutely propor-

tional set’’) previously. This transformation, however, in

fact is a normalization, and the information we need to

perform it is usually not available. We show that small

deviations from this unchanged reference will result in a

small adjustment to the cut-off on our measure of propor-

tionality to obtain a subset of the absolutely proportional

set. The following section deals with the more common

case of references that deviate greatly from the unchanged

one. In this case it is hard to approximate the set of

absolutely proportional pairs, and it is more difficult to

avoid pairs that are called proportional although they were

not proportional on the absolute data (‘‘spurious’’ propor-

tionality). We will give an exact result about the conditions

under which prediction on relative data will coincide with

the one on absolute data. In the following section, a slight

generalization of proportionality leads to the concept of

‘‘partial’’ proportionality, a definition adopted from partial

correlations. Finally, in the last section of the paper, we

will apply the discussed concepts to a brief re-analysis of

the data set used in Lovell et al. (2015). Here, in good

agreement with our analytical results, the approach taken

by Lovell et al. leads to a much lower overlap of prediction

between absolute and relative data compared with the

application of an approximately unchanged reference.

Methods and results

Scaling log-ratio variance on absolute data

In this section we show how we can identify a set of

proportional gene pairs on (usually unavailable) absolute

data. We will later investigate to what extent we can

identify this set on the (available) relative data. Let us start

with defining the ‘‘absolute’’ random variables Ai ¼
logðsXiÞ; where s was defined in the introduction as the

original absolute mRNA amount in a given condition. As

each draw of the random variables Ai ði ¼ 1. . .dÞ corre-

sponds to a condition, we now have to redefine s as a

random variable s :¼
Pd

i¼1e
Ai . Note also that we want to

find proportionality between sXi and sXj, but it is more

convenient to work with the logs.

Unlike correlation, but similar to covariance, the log-

ratio variance var(Ai � Aj) has no intrinsic scale that makes

its size intuitive to the analyst. Aitchison’s own proposal

Aitchison (2003) to use 1� expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAi � Aj

p
Þ just

achieves to limit the range to values between zero and one.

With the stochasticity of gene expression data in mind,

however, it is much more interesting to put log-ratio

variance in relation to the size of the single variances

involved: In the case of high variances, we are likely to

consider higher values of var(Ai � AjÞ still relevant and are

inclined to apply a less stringent cut-off on it. This can be

seen as the idea behind the scaling used in a recent work by

Lovell et al. Lovell et al. (2015), where the following

statistic is proposed:

/ðAi;AjÞ :¼
varðAi � AjÞ

varðAiÞ
¼ 1þ b2 � 2br: ð1Þ

Here, b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAjÞ=varðAiÞ

p
, and r is the correlation

coefficient between Ai and Aj. (Like Lovell et al. we drop

the indices i, j from b and r. For convenience, we repro-

duce their derivation in the ‘‘Appendix’’.) Interestingly, b
happens to be the absolute value1 of the estimated slope

when plotting Ai and Aj against each other. This estimate of

the slope is known as standardized major axis estimate

Taskinen and Warton (2011). / thus establishes a direct

connection with line fitting for the scatter plot Ai vs. Aj,

where both b and r have to be one for full proportionality

(see Fig. 2a). Note that the centred n-sample vectors in our

data matrix have a squared length corresponding to their

variance. If logarithms are taken, log-ratio variances cor-

respond to the squared lengths of difference vectors, which

allows for intuitive representations such as the ones in

Fig. 2.

A better alternative to / is also mentioned in Lovell

et al. but is not used there. It is defined by

qðAi;AjÞ ¼
2covðAi;AjÞ

varðAiÞ þ varðAjÞ
: ð2Þ

This is a special case of a coefficient that was proposed in

the context of determining reproducibility of measurements

Lin (1989). The slightly more general ‘‘concordance cor-

relation coefficient’’ also takes into account the shift due to

the intercept, something irrelevant to detecting propor-

tionality, as it only affects the size of the proportionality

factor. The coefficient given in (2) can be understood as a

scaling of the covariance that is similar to the one used

when evaluating the correlation coefficient (with the geo-

metric mean of the variances replaced by their arithmetic

mean). The measure has the advantage of being symmetric

in its arguments, of having a range from -1 to 1 (where -1

is attained for sXi reciprocal to sXj), and also of having a

simpler relationship with b and r. All in all, it seems a more

generic measure that can be generalized more easily (as

will be done in ‘‘Partial proportionality’’). We collect some

(straight-forward) identities involving this ‘‘proportionality

coefficient’’ in the following

1 Note that we slightly differ from the expression in Lovell et al.

(2015) in that we define b without a sign.
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Proposition 1

(i) qðAi;AjÞ ¼ 1� var Ai�Ajð Þ
varðAiÞþvarðAjÞ,

(ii) qðAi;AjÞ ¼ 2r
bþ1=b,

(iii) qðAi;AjÞ ¼ 1� 2

1þ1=~b2
¼ 1�~b2

1þ~b2
,

(iv) qðAi þ Aj;Ai � AjÞ ¼ 1�b2

1þb2
,

where for (iii) we defined ~b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvarðAi�AjÞ=ðvarðAiþAjÞ

p
:

(See ‘‘Appendix’’ for the proofs of all propositions.)

The first statement gives a direct relationship with log-

ratio variance and shows the similarity of q with / [more

explicitly, we have / ¼ ð1� qÞð1þ b2Þ�: Given that

var(Ai � Aj) can reach a maximum of twice the sum of

both variances (in the case of reciprocal sXi, sXj), it

makes sense to use this sum for scaling it. The second of

the identities above shows that we can obtain q from the

correlation coefficient by multiplying by a factor involv-

ing b. This factor is the geometric mean divided by the

arithmetic mean of the variances, a function that attains

one in case of equality of the variances and otherwise is

smaller one. Statement (iii) shows that we can even

express q as a function of a single parameter ~b. This

parameter equals b in its functional form but depends on

transformed variables that are the sum and the difference

of the original ones. These transformed variables can be

understood geometrically as the diagonals of the paral-

lelogram spanned by the original vectors. Their variances

can be understood in terms of a decomposition of total

variance into group variance and within-group variance.

Interestingly, their ratio is all we need, so the scaling of

proportionality can be interpreted as relating within-group

variance with group variance. Statement (iv) finally

reveals an interesting duality involving the proportionality

coefficients of the transformed variables and the original

variables.

Detecting proportional pairs on relative data using

an unchanged reference

The problem with a scaling or a cut-off on log-ratio vari-

ance that depends on the individual variances is that these

variances cannot be defined in a useful way on composi-

tional data. Only variances of ratios can be defined

coherently with respect to subcompositions, so we have to

put Xi and Xj in relationship with a third variable or a term

involving other variables. A first step in compositional data

analysis is thus to do a log-ratio transformation of the data

matrix and by this removing its constant-sum constraint.

For this, a number of options are available. Perhaps the

most simple and intuitive is to divide each entry by one of

the components (which is thereby chosen as the reference).

This additive log-ratio transformation is applied to each

row in our data matrix by

alrðxÞ ¼ logðx1=xdÞ; . . .; logðxd�1=xdÞð Þ: ð3Þ

It results in vectors with dimension reduced by one com-

pared with the original rows, so the reference is ‘‘sacri-

ficed’’. The j-th column of our alr-transformed data matrix

will now be

cj ¼ logðx1j=x1dÞ; . . .; logðxnj=xndÞ
� �T

: ð4Þ

The column vectors cj we can consider an n-sample of

(transformed) scalar random variables Yj (see Fig. 1b).

While log-ratio variances varðYi � YjÞ ¼ var(logðXi=XjÞÞ
remain unaffected by the transformation, individual vari-

ances varðYiÞ ¼ var(logðXi=XdÞÞ are log-ratio variances

themselves and thus depend on the choice of the reference.

Given a set of all proportional gene pairs inferred on the

absolute data (for a given cut-off on q), are we able to

detect them on the compositional data applying the coef-

ficient discussed in the previous section? For a resounding

yes, we would need a very specific reference that effec-

tively back transforms the data to absolute data (see

Yi

logXi

Ai

logXd-logs

logXj

Yj
Aj

r

(a) (b)

= 1 β = 1

Fig. 2 a Two vectors of observations when their goodness-of-fit

parameters are r ¼ 1 (same direction) and b ¼ 1 (same length),

respectively. Their log-ratio variance is the squared length of the link

connecting them (here, roughly of the same size in both cases). b The

relative data logXi, logXj (black vectors) transformed to (logged)

absolute data Ai, Aj by the normalization -logs (green vectors) and

log-ratio transformed using the reference Xd to Yi, Yj (red vectors).

Note that the log ratio between Xi and Xj (dashed line) remains the

same under both transformations (colour figure online)
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Fig. 2b). To see this, let us spell out the terms that con-

tribute to the transformed compositional data:

Yi ¼ logXi � logXd ¼ Ai � logs� logXd ¼ Ai

� logsXd ¼ Ai � Ad: ð5Þ

If sXd is constant, we recover the results from the absolute

data. Genes Xd fulfilling this would have a variance just

reproducing the shift s needed to normalize the data, i.e.

they would be unchanged across conditions in the absolute

data (i.e. varðAdÞ ¼ 0Þ: (Note that Ad in Fig. 2b is given by

the link between the vectors corresponding to-logs and

logXd, pointing towards the latter.) Such a reference could

be a housekeeping gene that is known to be unchanged

under the conditions considered. This is of course an ide-

alization, and we need to know what happens when this

reference gene reproduces the shift up to a small error. The

following expansion links the proportionality coefficient

obtained on the absolute data with the one after transfor-

mation of the relative data using such an approximately

unchanged reference:

Proposition 2 Let Ai ¼ logsXi be the original absolute

amounts of the alr-transformed variables Yi ¼ logðXi=XdÞ;
where for the reference we have logXd ¼ �logsþ �: Then

with uð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð2�Þ= varðAiÞ þ varðAjÞ

� �q
we have

qðYi; YjÞ ¼ qðAi;AjÞ � corrðAi þ Aj; �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2ðAi;AjÞ
� �

1� qðAi;AjÞ
� �q

uð�Þ

� ð1� qðAi;AjÞÞ corr2ðAi þ Aj; �Þ 1þ qðAi;AjÞ
� �

� 1

2

� �

u2ð�Þ þ Oðu3ð�ÞÞ:

As can be seen from the expansion, the direction of the

reference with respect to the pair (as given by the corre-

lation coefficient) will decide if the proportionality

increases or decreases. Without this information, the

coefficients of the expansion can still be easily bounded.

They become increasingly small for qðAi;AjÞ close to 1.

Considering pairs with a cut-off qðAi;AjÞ� 0:98 propor-

tional, by how much do we have to raise the cut-off on the

relative data to avoid all pairs with qðAi;AjÞ\0:98 but

qðYi; YjÞ� 0:98 (i.e. false positives)? We have

approximately

qðYi; YjÞ� 0:98þ uð�Þ=35: ð6Þ

For easier interpretation, let us introduce a parameter C

defined as the ratio of the average variance of the gene pair

with the variance of our reference:

C :¼ varðAiÞ þ varðAjÞ
2varð�Þ : ð7Þ

Using C ¼ 1=ð2u2ð�ÞÞ, we find that

qðYi; YjÞ� 0:98þ 1

35
ffiffiffiffiffiffi
2C

p : ð8Þ

Increasing the cut-off to 0.99, we would still avoid pairs

that have a qðAi;AjÞ of almost 0.98 and whose members

have an average variance at least C ¼ 5 times higher than

the reference (see Fig. 3a). This is usually sufficient, as

pairs with variances close to � do not achieve high pro-

portionality coefficients (see also Fig. 7a in the last section)

and can be considered to belong to the set of unchanged

genes. Note however that this is an expansion in u, not in �,
so strictly speaking it applies only if C is sufficiently big

(we will give an exact result for all C in the next section).

Qualitatively, we can see already that taking a sufficiently

high cut-off should lead to a set of pairs that were also

proportional on the absolute data. A similar argument

applies for false negatives (where the required adjustment

should be small, as pairs that are above the cut-off on

relative data in practice have higher C).

Lovell et al. Lovell et al. (2015) propose to use the mean

over the log Xi as a reference. This is known as the centred

log-ratio transformation:

clrðxÞ ¼ logðx1=gðxÞÞ; . . .; logðxd=gðxÞÞð Þ; ð9Þ

with gðxÞ the geometric mean over the genes for the given

condition. The problem with this transformation is that it is

sub-compositionally incoherent Aitchison (2003), so results

will change to some extent when using subsets of genes for

the analysis. In some cases, gðxÞ can approximate an

unchanged reference. This applies whenever the majority of

genes remains unchanged across conditions, so the unchan-

ged genes will dominate the behaviour of the reference. Note

that this is also the condition needed for a normalization by

effective library size Robinson and Oshlack (2012).

Measuring proportionality on relative data using

a changing reference

What if the reference itself is changing on the absolute

data? Depending on (size and direction of) the variance of

the reference, only a part of the pairs that are proportional

on the absolute data can now be identified, and a certain

number of pairs that were not proportional on the absolute

data will be declared proportional on the relative data.

More precisely, we have the following

Proposition 3 Let Ai ¼ logsXi be the original absolute

amounts of the alr-transformed variables Yi ¼ logðXi=XdÞ:
We then have

qðYi; YjÞ � qðAi;AjÞ ¼
1� qðAi;AjÞ
1þ 2=FðAdÞ

; ð10Þ

Theory Biosci. (2016) 135:21–36 25

123



where FðAdÞ ¼ u2ðAdÞ� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qðAi;AjÞ

p
corrðAi þAj;AdÞ�

uðAdÞ and uðAdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð2AdÞ= varðAiÞþ varðAjÞ

� �q
:

If qðYi; YjÞ increases with respect to qðAi;AjÞ, we

maintain pairs that were absolutely proportional, but we

also introduce false positives.

Corollary 1 qðYi; YjÞ� qðAi;AjÞ iff corrðAi þ Aj;AdÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAdÞ

varðAiþAjÞ

q
:

We see that qðYi; YjÞ increases for negative correlations

with the reference, as well as for references having a

variance that exceeds the group variance varððAi þ AjÞ=2Þ
of the pair by a factor 4.

Corollary 2 Let the set of true positives STP; false pos-

itives SFP; true negatives STN and false negatives SFN for a

given cut-off K ð1[K[ 0Þ on the proportionality coeffi-

cient be defined by

STP ¼ ði; jÞ : qðAi;AjÞ�K; qðYi; YjÞ�K
� �

,

SFP ¼ ði; jÞ : qðAi;AjÞ\K� qðYi; YjÞ
� �

,

STN ¼ ði; jÞ : qðAi;AjÞ\K; qðYi; YjÞ\K
� �

,

SFN ¼ ði; jÞ : qðYi; YjÞ\K � qðAi;AjÞ
� �

. Also, let

~K :¼ 2ðK � qðAi;AjÞÞ=ð1� KÞ. Then for a given pair of

genes i, j we have

(i) ði; jÞ 2 STP () FðAdÞ� ~K � 0,

(ii) ði; jÞ 2 SFP () FðAdÞ� ~K[ 0,

(iii) ði; jÞ 2 STN () FðAdÞ\ ~K[ 0;

(iv) ði; jÞ 2 SFN () FðAdÞ\ ~K� 0:

To determine the fate of a gene pair analytically, we

thus have to solve the quadratic equation for FðAdÞ � ~K:

For easier interpretation, we can again replace u by the

parameter C ¼ varðAiÞ þ varðAjÞ
� �

=2varðAdÞ as we did in

(7). In Fig. 3b it is shown, for a gene pair with qðAi;AjÞ ¼

0:98; how F changes with C in case of positive and neg-

ative correlation with the reference. Two boundaries ~K are

shown for cutoffs K ¼ 0:975 and K ¼ 0:985; and the

resulting regimes of FP, TN, TP and FN are indicated. An

important subset of false positive pairs are the ones from

the set of unchanged genes:

Corollary 3 Let � be an error term characterizing the

stochasticity of unchanged genes, i.e. for such genes i we

have varðAiÞ� varð�Þ: Let K ð0\K\1Þ be the cut-off on q
above which genes are proportional on the absolute data.

Then pairs of unchanged genes with qðAi;AjÞ\K will be

proportional on the relative data, i.e. qðYi; YjÞ�K for a

reference fulfilling

varðAdÞ�
8varð�Þ
1� K

:

Finally, we can again ask if there is a sufficiently high

cut-off on qðYi; YjÞ to avoid all false positives. Choosing as

an example again qðAi;AjÞ ¼ 0:98, we get an upper bound

on FðAdÞ by

FðAdÞ�
1

2C
þ 2

ffiffiffiffi
C

p : ð11Þ

In the worst case, the gene pair has a low variance almost

of the order of the unchanged set but reaches a qðAi;AjÞ
close to 0.98. Let us assume our reference has a variance

that is five times higher than the average variance of such a

pair. With C ¼ 1=5 (i.e. F� 7) we get

qðYi; YjÞ� 0:98þ 0:02

1þ 2=7
� 0:996: ð12Þ

So even if the reference has a relatively low variance, the

cut-off will get quite close to 1 when trying to avoid pairs

that are not proportional on the absolute data. The situation

can be much worse for false negatives: The function

Fig. 3 a Proportionality
coefficient on relative data as a

function of C according to the

expansion of Proposition 2, for

qðAi;AjÞ ¼ 0:98 and for two

different correlation coefficents

with the reference. b Illustration

of Corollary 2. FðAdÞ as a
function of C is shown for

qðAi;AjÞ ¼ 0:98 and two

different correlation coefficents

with the reference. Two cut-offs

(K ¼ 0:975 and K ¼ 0:985)

result in ~K (dashed lines)

separating different regimes of

accuracy for qðYi; YjÞ (colour
figure online)
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qðYi; YjÞ � qðAi;AjÞ is bounded below by �ð1þ qðAi;AjÞÞ
at F ¼ �ð1þ qðAi;AjÞÞ, which in turn is attained for

uðAdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
or C ¼ 1=ð2ð1þ qðAi;AjÞÞ (c.f. Lemma

1 in the ‘‘Appendix’’). In our example, C is pretty close to

this minimum, and a lower bound on qðYi; YjÞ reaches 0.2,
a cut-off that would give a sensitivity of 100 % but would

be useless in terms of specificity.

Although raising the cut-off will generally lead to sets

of pairs that are more likely to be proportional on the

absolute data, we usually do not have the information to

know what is a good cut-off (and it might be so high

that no pairs remain). We saw that a sufficiently high

absolute variance of our reference introduces propor-

tional pairs that are spurious (in the sense that on the

absolute data they are not proportional). However, usu-

ally we do not have information about the size of the

variance of the reference (on the absolute data). We

ended up in a situation similar to the one described in

the classical work of Pearson Pearson (1897), where it is

shown how spurious correlation is introduced between

two variables due to the common division by a third

variable2. Given that log-ratio analysis sets out to solve

exactly the problem of spurious correlation, the fact that

scaling the log-ratio variance re-introduces a similar

problem (spurious proportionality) appears rather

unsatisfactory.

Partial proportionality

In the previous sections, we were using the fact that the

size of the log-ratios (their variance) is identical on abso-

lute and relative data, and we investigated the effect of a

scaling. Also the direction of the log-ratios is identical on

both types of data. Correlation coefficients between log-

ratios are thus identical between absolute and relative data,

and log-ratio scatter plots are one of the available tools

when analyzing compositional data sets Greenacre

(2010),van den Boogart and Tolosana-Delgado (2013). In

this section, we will show that such correlations can be

interpreted in terms of a slight generalization of

proportionality.

The simple functional relationship with the correlation

coefficient given in Proposition 1 (ii) suggests a straight-

forward extension of our definition along the lines of a

related measure, namely partial correlation. Partial corre-

lations have been used extensively in the construction of

gene networks because, in theory, they allow for

identification of direct pairwise interactions that are not

mediated by other genes, and techniques have been

developed for inverting the (regularized) correlation matrix

Schäfer and Strimmer (2005) to obtain them. Let us restrict

the problem to partialling on a single gene k here. Geo-

metrically speaking, for our transformed data matrix, a

partial correlation between genes i and j wrt. gene k is

obtained from projecting the vectors ci and cj onto the

plane perpendicular to the vector ck. In these projections,

the part of the correlation between ci and cj that was due to

the correlation with ck is removed. In more general terms

of multiple regression, projecting along Yk yields the linear

least squares predictors Ŷi and Ŷj wrt. Yk; and partial cor-

relations are obtained from correlating the projections onto

the orthogonal plane, i.e. correlating the residuals Yi � Ŷi

and Yj � Ŷj: Note that if we talk about projections of scalar

random variables, we have the n-sample vectors in mind.

This is also the way in which Fig. 4 should be understood.

What is the relationship of partial correlation with pro-

portionality? Replacing the correlation coefficient by the

partial correlation coefficient in Proposition 1 (ii), and

adjusting b accordingly, we obtain a natural definition for a

partial proportionality coefficient. More precisely, we have

the following equivalents to the first three identities of

Proposition 1:

Proposition 4 Let Yi; Yj; andYk be scalar random vari-

ables, and let Ŷi and Ŷj be the linear least-squares pre-

dictors of Yi and Yj wrt. Yk:Then

2 Note that there is debate about whether such correlations should be

called spurious because they can be interpreted correctly avoiding an

over-simplified interpretation based on the correlation coefficient and

considering the correct regression model, see the discussion in

Firebaugh and Gibbs (1985)

Yi

Yj

Yk

Ak

Ŷi

Yi

Yj

Ŷi

ŶjŶj

Ad

(a) (b)

Fig. 4 a Direction of the vector corresponding to Yk when it lies in

the same plane as Yi and Yj and the partial proportionality coefficient

is one (green) and minus one (red), repectively. If Yk is parallel to the

difference (log ratio) between Yi and Yj; the linear least squares

predictors Ŷi and Ŷj point in opposite directions (green labeled

vectors), and the residuals Yi � Ŷi; Yj � Ŷj coincide in the green,

unlabeled vector. If Yk is parallel to the sum of Yi and Yj, the linear

least squares predictors Ŷi and Ŷj point in the same direction (red

labeled vectors), and the residuals Yi � Ŷi, Yj � Ŷj have the same

length and point in opposite directions (unlabeled red vectors). b Log

ratios between Xi and Xj and between Xk and Xd are parallel whenever

Yi and Yj are partially proportional wrt. Yk (colour figure online)
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(i) q Yi � Ŷi; Yj � Ŷj
� �

¼ 1

� varðYi�YjÞ 1�corr2ðYi�Yj;YkÞð Þ
varðYiÞ 1�corr2ðYi;YkÞð ÞþvarðYjÞ 1�corr2ðYj;YkÞð Þ :

(ii) q Yi � Ŷi; Yj � Ŷj
� �

¼ 2ðr�rikrjkÞ
ð1�r2

jk
Þbþð1�r2

ik
Þ=b

(iii) q Yi � Ŷi; Yj � Ŷj
� �

¼ 1� 2

1þG=~b2
¼ 1�~b2=G

1þ~b2=G

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYjÞ=varðYiÞ

p
; r ¼ corrðYi; YjÞ;

rik ¼ corrðYi; YkÞ; ~b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvarðYi � YjÞ=ðvarðYi þ YjÞ

p
; and

G ¼ 1� corr2ðYi þ Yj; YkÞ
� �

= 1� corr2ðYi � Yj; YkÞ
� �

:

(The proof follows immediately from some well-known

identities involving variances of the least squares predictor,

see ‘‘Appendix’’.) Clearly, if the direction we are par-

tialling on is perpendicular to the plane of the gene pair, the

partial coefficient coincides with the proportionality coef-

ficient. The interesting cases occur for directions within the

plane of the gene pair. From (i) it follows immediately that

we have partial proportionality between i and j if Yk falls

parallel to their log ratio (see the green vectors in Fig. 4a).

From (ii) it follows that the partial coefficient will vanish if

Yk is parallel with either Yi or Yj. From (iii) it follows that

we have partial reciprocality between i and j if Yk falls

parallel to the sum of Yi and Yj (red vectors in Fig. 4a).

However, only the first of the described cases has a simple

relationship with the absolute data: Partial proportionality

between i and j wrt. k when their common reference is d

implies that the log ratio between Ai and Aj is parallel to the

one between Ak and Ad (see Fig. 4b).

Data analysis

In this section we will put into practice our theoretical

considerations of the previous sections. We will use the

data set provided in Marguerat et al. (2012) and re-ana-

lyzed by Lovell et al. Lovell et al. (2015), where we profit

from the excellent documentation including the R-code

made available in the latter. The data are from fission yeast

cells entering quiescence after time point zero. The data at

time point zero are counts obtained by RNA-seq that are

supposed to be roughly proportional to the original abso-

lute mRNA amounts. The data from the 15 subsequent time

points are abundances relative to time point zero and were

obtained by microarray. For biological and technical

details we refer the reader to the original publication. The

data set is not typical in the sense that we have both the

relative data and an approximation of the absolute data at

our disposal (Fig. 5). It is thus well suited to validate our

theoretical considerations, especially regarding the overlap

of predicted proportionality on absolute and relative data

obtained by alternative analysis approaches. Note that the

approach we propose differs from the one in Lovell et al. in

two respects: in the use of the proportionality coefficient

instead of the / statistic, and in the application of an

alternative log-ratio transformation. While the coefficient

has some clear advantages over / in that it is symmetric,

has a limited range, can also detect reciprocality and allows

for the definition of a partial coefficient, we will see that

Fig. 5 Absolute and relative gene expression data box plots. Each

box summarizes the distribution of logged gene expressions in a given

condition (time point) and, in the case of the relative data,

corresponds to one row of the data matrix. Left panel: Overall

absolute expression is going down with time, with (approximately)

unchanged and geometric mean references behaving accordingly on

the absolute data (the green horizontal line denotes the mean log

expression of the unchanged gene). Right panel On the relative data,

the unchanged reference appears to be going up, while the geometric

mean reference appears to remain unchanged. To recover the absolute

data, each box has to be shifted by an amount approximated by the

distance of the green dots from the value indicated by the green

horizontal line in the left panel (colour figure online)
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the main difference in outcome of our approach comes

from the proposed log-ratio transformation.

As log-ratio transformations need non-zero entries

throughout the data matrix, we follow Lovell et al. in using

a subset of 3031 genes fulfilling this condition in all 16

time points. We start with studying the goodness of fit with

the expected behaviour for proportional (and reciprocal)

genes on the absolute data. Scatter plots for a variety of

values of qðAi;AjÞ (all for the same Ai) are shown in Fig. 6.

As proportionality between genes is a property of the

original data (where no logarithm is taken), we are not

showing logarithmic scatter plots here, although the

‘‘goodness of fit’’ measures r and b are used for fitting

logarithms. To nevertheless give an impression of the

quality of the fit, red lines with a slope corresponding to the

variance ratio between the genes are drawn through the

origin. This way both effects, the shift with respect to a

zero intercept and how well the expected slope is repro-

duced can be studied independently. (For negative coeffi-

cients we divide the slope by the values of the gene on the

horizontal axis instead of multiplying them.) We conclude

that for absolute values of the coefficient increasingly close

to one, the data seem to reproduce better and better the

desired behaviour outlined by the red curves.

We next study the effect of the scaling of log ratios

which the proportionality coefficient should achieve. In

Fig. 7a, we show a scatter of proportionality coefficient vs.

log ratio for gene pairs all containing one of three genes

with different variances. It can be seen clearly that the gene

with highest variance achieves higher values of the pro-

portionality coefficient for the same log ratios. In fact, pairs

involving the gene with the lowest variance do not make

the cut-off of 0.98, although they reach log ratios that are

closer to zero than those of pairs involving the high-vari-

ance gene. In practice, high cut-offs should make sure that

pairs of unchanged genes achieving small log-ratios by

chance due to their random fluctuations will not be called

proportional. As desired, the gene with intermediate vari-

ance shows an intermediate slope. It attains, however, the

smallest log ratios and highest coefficients due to its great

number of partners that have a similar variance.

We then set out to study the relative data, which is truly

compositional in the sense that it is normalized to one

following Lovell et al. (2015). To do an alr transformation

of this relative data matrix, we looked for a good candidate

for an unchanged reference. We inspected the genes with

lowest coefficient of variation on the absolute data by eye

and chose the one with lowest bias towards a particular

condition (green dots in Fig. 5). Interestingly, although the

resulting gene Rev7 (SPBC12D12.09) can possibly be

considered housekeeping (it is a subunit of DNA poly-

merase zeta), it is none of the usual candidates of

unchanged genes (like Act1, Srb4, Rip1, Wbp1 used in the

Affymetrix Yeast Genome Array 2.0), which are all

changing greatly on this data set. The data is special in the

sense that the set of unchanged genes is extremely small.

Fig. 6 Absolute gene expression scatter plots of the gene

SPAC1002.02 with various other genes and the corresponding

proportionality coefficients. The red lines are fits of the slope

(through the origin, corresponding to b ¼ 1), where the slope is

estimated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðexpðAjÞÞ=varðexpðAiÞÞ

p
. In the case of negative

coefficients, this number is divided by expðAiÞ instead of being

multiplied by expðAiÞ. Note that the goodness of fit measures b and

r determining the size of the coefficient are for the logged data, which

is not shown here (colour figure online)
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This gives us, however, the opportunity to compare our

reference with the geometric mean reference used by the

clr transformation. The latter rather reflects the general

downward trend observed by the majority of genes (see the

red dots in Fig. 5).

The unchanged reference has a variance var(AdÞ ¼ 0:014

on the (logged) absolute data. Its variance on the relative

data corresponds roughly to the shift log(s) due to the nor-

malization, its value is var(logXdÞÞ ¼ 0:49 (while the true

var(log(sÞÞ ¼ 0:45). Clearly, the situation is rather the

opposite for the geometric mean reference: its variance on

the relative data var(logðgÞÞ ¼ 0:005, while on the absolute

data it achieves a variance of 0.51. Once the two log-ratio

transformations are obtained, we can study again scatter

plots corresponding to certain values of the proportionality

coefficient, this time on the transformed data and with the

red lines depicting the ideal slope of b ¼ 1. In the upper two

panels of Fig. 7 b , data for a gene pair under the two

transformations is shown (it is the same pair as in the upper

left panel of Fig. 6). While under the alr transformation the

value of the coefficient remains almost unchanged, it drops

to 0.97 under the clr transformation. Taking the cut-off at

0.98, this results in a false negative. Another situation is

shown in the lower panels. While the gene pair shown has a

proportionality coefficient of 0.82 on the absolute data,

under the alr transformation it slightly drops to a value of

0.79, while under the clr transformation it goes up to 0.98,

thus resulting in a false positive.

To obtain a general idea about the accuracy of our

conclusions on relative data regarding proportionality on

absolute data, we plotted values on transformed data versus

values on absolute data for three measures: the propor-

tionality coefficient under the two transformations as well

as the statistic / under the clr transformation considered by

Lovell et al. (see Fig. 8). Venn diagrams in the insets of all

panels show the precise numbers of FP, TP, and FN. The

breadth of the scatters under clr transformations indicates

the problems we face for references of high (absolute)

variance and is in good agreement with our theoretical

conclusions in the previous sections. While specificity for

the clr transformation is rather good for the cut-offs con-

sidered (positive predictive value (PPV) is 96 % for / and

95 % for q), the sensitivity (0.17 % for / and 0.16 % for

q) is very low. The situation is quite different under the alr

transformation: The scatter shows a tight correlation.

A PPV of 85 % is obtained at 100 % sensitivity. As we

showed analytically, the absence of false negatives could

be caused by a negative correlation of our reference gene

with all proportional gene pairs. The sub-optimal PPV can

be raised to 100 % by increasing the cut-off slightly (to

Fig. 7 a Scaling of log-ratio variance using the proportionality

coefficient. Shown are coefficients of gene pairs involving three genes

with different variances versus their log-ratio variances (absolute

data). The three genes have variances of the logged absolute data of

2.1 (blue), 0.39 (green) and 0.076 (red), respectively. Gene pairs with

higher variance can have higher log-ratio variance to attain the same

value of the coefficient. b Log-ratio (alr and clr) transformed gene

expression scatter plots. The red lines are fits with a slope b ¼ 1 (the

intercept is estimated by the mean over Yj � Yi). Upper panels A gene

pair correctly identified as proportional (left) and incorrectly

discarded (right). The same pair is shown in the first panel of

Fig. 6. Lower panels A gene pair correctly discarded (left) and

incorrectly identified as proportional (right) (colour figure online)
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0.983) while loosing sensitivity (which goes down to

79 %). Of course, the comparison with the clr transfor-

mation is not fair in the sense that for the alr transformation

additional information in form of an unchanged gene is

used. The idea here is of course that it will often be pos-

sible to guess such genes correctly.

Finally, we also calculated partial proportionality coef-

ficients with respect to each of the genes on the absolute

data. While our definition of partial proportionality was for

the transformed data, where we see its main application,

the fact that we do not need a reference on absolute data

reduces the number of possible combinations drastically.

As an exhaustive study of these coefficients would go

beyond the scope of this work, we here limit ourselves to a

demonstration that triples of genes exist that lead to partial

proportionality. This seems to be the case whenever the

gene we are partialling on is behaving ‘‘against the trend’’

of the other genes. In Fig. 9 we show histograms of all

partial proportionality coefficients with respect to two

genes. The left panel is for a gene that is highly correlated

with most genes (see inset) and its partial proportionality

coefficients maintain mostly low values. The right panel

shows the opposite: a gene with low correlation with most

other genes reaches high values of partial proportionality

coefficients.

Discussion

In this contribution we considered log-ratio analysis from

the point of view of the absolute data. From this perspec-

tive, normalizations can be seen as specific log-ratio

transformations allowing to back transform compositional

data to absolute data. With this in mind, proportionality

coefficients can be applied to traditionally normalized gene

expression data and the same conclusions apply without the

need for additional data transformations. This holds

whenever the normalization procedure preserves ratios

between gene expressions, which excludes more invasive

procedures like quantile normalizations. Our view point is

consistent with an analysis of accuracy of prediction of

proportionality comparing results obtained on both types of

data. It can also be argued that proportionality is a well-

defined concept on relative data in its own right, without

the comparison with outcomes on the absolute data. Since

the transformed data have no constraints leading to

ambiguous results when applying measures like correlation

or proportionality, this is a valid point of view that avoids

the notion of spurious results. The interpretation of the

results is, however, less straightforward and would require

the study of the resulting power-law relationships between

all the variables including the reference, as can be done for

log-ratio correlations Greenacre and Aitchison (2002).

The notion of proportionality was introduced by Lovell

et al. to put correlational analysis of relative gene expres-

sion data on a more rigorous footing. As shown here, the

proposed scaling is not without caveats due to its depen-

dence on the chosen reference. We argue that an educated

guess of an approximately unchanged gene or gene set can

lead to an alr transformation with great advantages in terms

of accuracy. Unfortunately, we will not generally be in a

situation where we can evaluate the size and direction of

the reference explicitly. Because of this, it is certainly a

good idea to simply apply high cut-offs for maximum

consistency with absolute outcomes, as suggested by our

analytical results.

Fig. 8 Prediction accuracy for the phi statistic (left), the proportionality

coefficient using a clr transformation (centre) and the proportionality

coefficient using the alr transformation with an unchanged gene (right).

Each grey dot represents a gene pair. The applied cut-offs of 0.05 (for/)
and 0.98 (for q) are denoted by red vertical and horizontal lines, and the
resulting quadrants of false positives (FP), false negatives (FN), true

positives (TP) and true negatives (TN) are indicated. The range was

chosen so as to include all false positives. The insets in the centre are

Venn diagrams, where the left and right circles denote the set of pairs

found on absolute data and on relative data, respectively. Shown are the

numbers of FN, TP and FP. The circle in the intersection denotes the

largest set of pairs having 100 % specificity that can be obtained by just

adjusting the cut-off. Cut-offs for these sets are\0.012,[0.994, and

[0.983, respectively (colour figure online)
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The proportionality coefficient (a special case of the

concordance correlation coefficient) allows for a straight-

forward generalization to a notion of partial proportional-

ity, a simple analogy to partial correlations. Here we just

derived some expressions for this measure and gave some

heuristic interpretations of it. It could be the topic of

another contribution to apply all the discussed relationships

among genes to build co-expressions networks from pairs

(using proportionality and reciprocality), triples (using log-

ratio correlations involving a reference), and quadruples of

genes (using log-ratio correlations involving the reference

and an additional gene, or partial proportionality). This

seems an interesting alternative to current approaches

based on ‘‘crude’’ correlation and partial correlation.

It is to be wished that the concept of proportionality and

log-ratio analysis in general will have a growing impact on

established methodology in genome research. Applications

range from the calculation of correlation networks Fried-

man and Alm (2012) over applying log-ratio transforma-

tions before doing principal component analysis Greenacre

and Aitchison (2002) to alternative normalization proce-

dures of genomic data. Other approaches to correlation on

compositional data have been employed, see Filzmoser and

Hron (2009) for one involving the isometric log-ratio

transformation. Knowledge about the uniformity of

expression of particular genes make gene expression data

suitable for an alr transformation as argued in the present

work. The characteristics of genomic data in general make

them a new object of investigation not yet fully explored

within the framework of log-ratio analysis. Among these

peculiarities are the facts that there are usually many more

components than observations and that the data are often

counts with various sources of stochasticity. We thus see

the necessity for more mathematical and bioinformatic

research to fully exploit the strength of the approach.
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Appendix

Derivation of equation (1):

varðAi � AjÞ ¼ varðAiÞ þ varðAjÞ � 2covðAi;AjÞ

¼ varðAiÞ 1þ varðAjÞ
varðAiÞ

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAjÞ
varðAiÞ

s
covðAi;AjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAiÞvarðAjÞ

p

 !

¼ varðAiÞ 1þ b2 � 2br
� �

:

ð13Þ

Proof of Proposition 1 (i):

2covðAi;AjÞ
varðAiÞ þ varðAjÞ

¼
varðAiÞ þ varðAjÞ � var Ai � Aj

� �

varðAiÞ þ varðAjÞ

¼ 1�
var Ai � Aj

� �

varðAiÞ þ varðAjÞ
: ð14Þ

Fig. 9 Partial proportionality coefficients on absolute data. Coeffi-

cients of all gene pairs with respect to the gene SPAC1296.01c (left

panel) and the gene SPAC11D3.01c (right panel). Red vertical lines

denote the cut-off of 0.98. Insets show the correlations of the

respective gene with all other genes (colour figure online)
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(ii):

2covðAi;AjÞ
varðAiÞ þ varðAjÞ

¼ 2corrðAi;AjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAiÞvarðAjÞ

p

varðAiÞ þ varðAjÞ

¼ 2r=
varðAiÞ þ varðAjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAiÞvarðAjÞ

p ¼ 2r

bþ 1=b
:

ð15Þ

(iii): Plugging varðAi þ AjÞ þ varðAi � AjÞ ¼ 2 varðAiÞð
þvarðAjÞÞ into (i) we find

2covðAi;AjÞ
varðAiÞ þ varðAjÞ

¼ 1�
2var Ai � Aj

� �

varðAi � AjÞ þ varðAi þ AjÞ

¼ 1� 2

1þ 1=~b
¼ 1� 2~b

~bþ 1
¼

~bþ 1� 2~b
~bþ 1

:

ð16Þ

(iv): We start from

2covðAi þ Aj;Ai � AjÞ ¼ varðAi þ AjÞ þ varðAi � AjÞ
� var Ai þ Aj � ðAi � AjÞ

� �

¼ 2varðAiÞ þ 2varðAjÞ � 4varðAjÞ
¼ 2 varðAiÞ � varðAjÞ
� �

: ð17Þ

Thus with the definition of q we find

2covðAi þ Aj;Ai � AjÞ
varðAi þ AjÞ þ varðAi � AjÞ

¼ varðAiÞ � varðAjÞ
varðAiÞ þ varðAjÞ

¼ 1� b2

1þ b2
:

ð18Þ

h

Proof of Proposition 2 From Proposition 1 (iii), we infer

qðAi;AjÞ ¼ ðvarðAi þ AjÞ � varðAi � AjÞÞ=ðvarðAi þ AjÞ
þvarðAi � AjÞÞ: Combining with Eq. (5), we find

qðYi; YjÞ ¼
varðAi þ Aj � 2�Þ � varðAi � AjÞ
varðAi þ Aj � 2�Þ þ varðAi � AjÞ

: ð19Þ

The variance involving � we can now decompose using the

first equality in (13):

¼ varðAi þ AjÞ � varðAi � AjÞ þ termsð�Þ
varðAi þ AjÞ þ varðAi � AjÞ þ termsð�Þ ; ð20Þ

where termsð�Þ ¼ varð2�Þ � 2covðAi þ Aj; 2�Þ. Multiplying

numerator and denominator by varðAi þ AjÞ þ var

ðAi � AjÞ, we get

¼ varðAi þ AjÞ � varðAi � AjÞ þ termsð�Þ
varðAi þ AjÞ þ varðAi � AjÞ

� varðAi þ AjÞ þ varðAi � AjÞ
varðAi þ AjÞ þ varðAi � AjÞ þ termsð�Þ

¼ qðAi;AjÞ þ
termsð�Þ

varðAi þ AjÞ þ varðAi � AjÞ

� �

� 1

1þ termsð�Þ
varðAiþAjÞþvarðAi�AjÞ

0

@

1

A:

ð21Þ

Let us use the shorthand gð�Þ ¼ termsð�Þ
varðAiþAjÞþvarðAi�AjÞ. We can

expand the term in the second pair of brackets:

qðYi; YjÞ ¼ qðAi;AjÞ þ gð�Þ
� �

1� gð�Þ þ g2ð�Þ � � � �
� �

¼ qðAi;AjÞ þ ð1� qðAi;AjÞÞgð�Þ
� ð1� qðAi;AjÞÞg2ð�Þ þ � � �

ð22Þ

Let us now evaluate gð�Þ. We have

gð�Þ ¼ varð2�Þ � 2covðAi þ Aj; 2�Þ
varðAi þ AjÞ þ varðAi � AjÞ

¼ varð2�Þ � 2covðAi þ Aj; 2�Þ
2 varðAiÞ þ varðAjÞ
� � :

ð23Þ

The covariance term can be expressed in terms of

correlation:

covðAi þ Aj; 2�Þ
varðAiÞ þ varðAjÞ

¼ covðAi þ Aj; 2�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAi þ AjÞvarð2�Þ

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAi þ AjÞvarð2�Þ

p

varðAiÞ þ varðAjÞ

¼ corrðAi þ Aj; 2�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qðAi;AjÞ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varð2�Þ
varðAiÞ þ varðAjÞ

s

; ð24Þ

where we used the fact that varðAi þ AjÞ=ðvarðAiÞþ
varðAjÞÞ ¼ 1þ qðAi;AjÞ. Plugging this into (23) and using

the notation uð�Þ defined in the proposition, we find

gð�Þ ¼ u2ð�Þ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qðAi;AjÞ

q
corrðAi þ Aj; 2�Þuð�Þ:

ð25Þ

Let us now return to (22). With the new expression for gð�Þ
we find
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qðYi; YjÞ � qðAi;AjÞ
1� qðAi;AjÞ

¼ u2ð�Þ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qðAi;AjÞ

q
corrðAi þ Aj; 2�Þuð�Þ�

� u2ð�Þ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qðAi;AjÞ

q
corrðAi þ Aj; 2�Þuð�Þ

� �2

þ � � �

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qðAi;AjÞ

q
corrðAi þ Aj; 2�Þuð�Þþ

� 1

2
� 1þ qðAi;AjÞ
� �

corr2ðAi þ Aj; 2�Þ
� �

u2ð�Þ þ � � �

ð26Þ

h

Proof of Proposition 3 Using the definition of ~b of

Proposition 1 (iii), for the relative data we define

~bY :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYi � YjÞ
varðYi þ YjÞ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðAi � AjÞ
varðAi þ Aj � 2AdÞ

s

; ð27Þ

where the equality comes from Eq. (5). We now find

~b2Y ¼ varðAi � AjÞ
varðAi þ AjÞ þ termsðAdÞ

¼ varðAi � AjÞ
varðAi þ AjÞ

varðAi þ AjÞ
varðAi þ AjÞ þ termsðAdÞ

:

ð28Þ

where we used the shorthand termsðAdÞ ¼varð2AdÞ�
2covðAi þ Aj; 2AdÞ. We thus find

~b2Y ¼ ~b2
varðAi þ AjÞ

varðAi þ AjÞ þ termsðAdÞ

� �

¼ ~b2
1þ q

1þ qþ 2gðAdÞ

� �

;

ð29Þ

where the numerator and denominator were divided by

varðAiÞ þ varðAjÞ and the definition of gðAdÞ (c.f. Eq. (23))
was used. From Proposition 1 (iii) it now follows that

qðYi; YjÞ � qðAi;AjÞ ¼
1� ~b2Y
1þ ~b2Y

� 1� ~b2

1þ ~b2
¼ 2ð~b2 � ~b2YÞ

ð1þ ~b2Þð1þ ~b2YÞ
:

ð30Þ

Filling in (29), we obtain

qðYi; YjÞ � qðAi;AjÞ ¼
2~b2 1� 1þq

1þqþ2gðAdÞ

	 


ð1þ ~b2Þ 1þ ~b2 1þq
1þqþ2gðAdÞ

	 


¼ 2~b2

1þ ~b2
2gðAdÞ

ð1þ qÞð1þ ~b2Þ þ 2gðAdÞ
ð31Þ

The prefactor involving ~b2 evaluates to 1� q, and 1þ ~b2

¼ 2=ð1þ qÞ. With this we finally find

qðYi; YjÞ � qðAi;AjÞ
1� qðAi;AjÞ

¼ 2gðAdÞ
2gðAdÞ þ 2

¼ 1

1þ 1=gðAdÞ
: ð32Þ

It remains to show that gðAdÞ ¼ FðAdÞ=2 defined in the

proposition. This follows from (25). h

Lemma 1

(i) FðAdÞ as a function of u takes its minimum value

Fmin ¼ �ð1þ qðAi;AjÞÞcorr2ðAi þ Aj;AdÞ at

umin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qðAi;AjÞ

p
corrðAi þ Aj;AdÞ.

(ii) Let Dq :¼ qðYi; YjÞ � qðAi;AjÞ. Then FðAdÞ�
0 () Dq� 0.

(iii) Dq as a function of F is monotonically increasing

and thus takes its minimum value at Fmin.

Proof of Lemma 1 (i): With the definition of FðAdÞ in

Proposition 3, we find

F0ðuÞ ¼ 2u� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qðAi;AjÞ

q
corrðAi þ Aj;AdÞ: ð33Þ

As the second derivative evaluates to 2[ 0, setting (33) to

0 implies a minimum at umin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qðAi;AjÞ

p

corrðAi þ Aj;AdÞ. Putting this into F yields the value of

Fmin.

(ii): FðAdÞ� 0 ) Dq� 0 is trivial as q� 1.

Dq� 0 ) FðAdÞ� 0: From Proposition 3 it follows that

Dq ¼ ð1� qÞ=ð1þ 2=FÞ. Dq[ 0 leads to 1þ 2=F� 0.

The only way this can be true for negative F is for F\� 2.

But we know from Lemma 1 (i) that F� � ð1þ qÞ
corr2ðAi þ Aj;AdÞ� � 2, so F� 0.

(iii): We have

Dq0ðFÞ ¼ � 1� q

1þ 2=Fð Þ2
�2

F2
¼ 2ð1� qÞ

ðF þ 2Þ2
� 0: ð34Þ

h

Proof of Corollary 1 From Lemma 1 (ii) we know that

Dq� 0 implies FðAdÞ� 0, so we only need to show that

corrðAi þ Aj;AdÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAdÞ

varðAiþAjÞ

q
implies FðAdÞ� 0. We start

with FðAdÞ� 0: From u2 � 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
corrðAi þ Aj;AdÞ

u� 0 it follows that

u� 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
corrðAi þ Aj;AdÞ: ð35Þ

Now we use

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varð2AdÞ
varðAiÞ þ varðAjÞ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4varðAdÞ
varðAiÞ þ varðAjÞ

s

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAdÞð1þ qÞ
varðAi þ AjÞ

s

;

ð36Þ

where the last equality comes from the fact that

varðAi þ AjÞ= varðAiÞ þ varðAjÞ
� �

¼ 1þ q: Putting this

into Eq. (35), we conclude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAdÞ

varðAiþAjÞ

q
� corrðAi þ Aj;AdÞ:

For the other direction of the proof we assume

corrðAi þ Aj;AdÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAdÞ

varðAiþAjÞ

q
: Let us use (36) to infer that

u

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p � corrðAi þ Aj;AdÞ: ð37Þ
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From this it follows that 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
corr(Ai þ Aj;AdÞ�u,

comparing with (35), we conclude F� 0. h

Proof of Corollary 2 Letus look at the situationwhereon the

relative data we equal the cut-off K: Inserting into qðYi; YjÞ ¼
qðAi;AjÞ þ Dq ¼ K the expression for Dq, we obtain

ð1� qðAi;AjÞÞ=ð1þ 2=FÞ ¼ K � qðAi;AjÞ, or ð1�qÞ=ðK�
qÞ�1¼ð1�q�KþqÞ=ðK�qÞ¼ð1�KÞ=ðK�qÞ ¼2=F. So

the value for F when qðYi;YjÞ just equals the cut-off is

F ¼ 2
K � qðAi;AjÞ

1� K
¼ ~K: ð38Þ

Now we know from Lemma 1 (iii) that F� ~K implies

qðYi; Y; jÞ�K and F\ ~K implies qðYi; Y ; jÞ\K. From (38)

we also see that ~K� 0 implies qðAi;AjÞ�K and ~K[ 0

implies qðAi;AjÞ\K. Comparing these statements with the

definitions of STP,SFP, STN and SFN completes the proof.h

Proof of Corollary 3 From the proof of Corollary 2 we

know that qðYi; YjÞ�K iff FðAdÞ� ~K. To show the latter,

we solve FðAdÞ � ~K ¼ 0. We obtain

u� ¼ �p=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2=4þ ~K

q

; ð39Þ

where we used the shorthand p :¼ �2
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p

corrðAi þ Aj;AdÞ. As ~K[ 0 (following from qðAi;AjÞ\K),

only uþ is positive. To show that u[uþ yields F[ ~K,

we insert uþ into the derivative of F given in (33):

F0ðuþÞ ¼ �pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2=4þ ~K

q

þ p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2=4þ ~K

q

[ 0:

ð40Þ

We conclude that FðAdÞ[ ~K for u[uþ. Let us now

bound uþ from above. Let us start with the expression

under the root:

p2=4þ ~K ¼ ð1þ qÞcorr2ðAi þ Aj;AdÞ þ
2ðK � qÞ
1� K

� ð1þ qÞð1� KÞ þ 2ðK � qÞ
1� K

¼ 1þ q� K � Kqþ 2K � 2q
1� K

¼ ð1þ KÞð1� qÞ
1� K

� 4

1� K
:

ð41Þ

We can thus bound uþ by

uþ ¼ �p=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2=4þ ~K

q

�
ffiffiffi
2

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� K

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� KÞ

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� K

p � 4
ffiffiffiffiffiffiffiffiffiffiffiffi
1� K

p :

ð42Þ

According to the assumption, for genes from the unchan-

ged set we have

uðAdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varð2AdÞ
varðAiÞ þ varðAjÞ

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð2AdÞ
2varð�Þ

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2varðAdÞ
varð�Þ

s

:

ð43Þ

Comparing with (42), we see that to exceed the value of uþ
it is sufficient to have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2varðAdÞ
varð�Þ

s

� 4
ffiffiffiffiffiffiffiffiffiffiffiffi
1� K

p : ð44Þ

Squaring and rearranging, this proves the corollary. h

Lemma 2 For scalar random variables Yi; Yk and Ŷi the

linear least-squares predictor of Yi wrt. Yk; we have

(i) varðYi � ŶiÞ ¼ varðYiÞ � varðŶi),
(ii) varðŶiÞ ¼ cov2ðYi; YkÞ=varðYkÞ.

Proof see e.g. Whittaker (2008), chapter 5. h

Proof of Proposition 4 (i): We start from the expression

for q in Proposition 1 (i). Since it contains three similar

variance terms, it suffices to show that

varðYi � ŶiÞ ¼ varðYiÞ 1� corr2ðYi; YkÞ
� �

; ð45Þ

and then substitute Yj and Yi � Yj for Yi (linearity of the

predictor implies dYi � Yj ¼ Ŷi � Ŷj). We now have

varðYi � ŶiÞ ¼ varðYiÞ �
cov2ðYi; YkÞ
varðYkÞ

¼ varðYiÞ 1� corr2ðYi; YkÞ
� �

;

ð46Þ

where the first equality comes from combining the state-

ments in Lemma 2 and the second one from the definition

of the correlation coefficient. This proves the first identity

of the proposition.

(ii): For the second identity, we use the well-known

formula for the partial correlation

corrðYi � Ŷi; Yj � ŶjÞ ¼
corrðYi; YjÞ � corrðYi; YkÞcorrðYj; YkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� corr2ðYi; YkÞÞð1� corr2ðYj; YkÞÞ

p :

ð47Þ

(See e.g. Whittaker (2008).) Combining with the expres-

sion for q in Proposition 1 (ii), we have

propðYi � Ŷi; Yj � ŶjÞ ¼
2corrðYi � Ŷi; Yj � ŶjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYj�ŶjÞ
varðYi�ŶiÞ

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYi�ŶiÞ
varðYj�ŶjÞ

r

¼ corrðYi; YjÞ � corrðYi; YkÞcorrðYj; YkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� corr2ðYi; YkÞÞð1� corr2ðYj; YkÞÞ

p

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYjÞð1�corr2ðYj;YkÞÞ
varðYiÞð1�corr2ðYi;YkÞÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYiÞð1�corr2ðYi;YkÞÞ
varðYjÞð1�corr2ðYj;YkÞÞ

q
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¼
2 corrðYi; YjÞ � corrðYi; YkÞcorrðYj; YkÞ
� �

ð1� corr2ðYj; YkÞÞ
ffiffiffiffiffiffiffiffiffiffi
varðYjÞ
varðYiÞ

q
þ ð1� corr2ðYi; YkÞÞ

ffiffiffiffiffiffiffiffiffiffi
varðYiÞ
varðYjÞ

q :

ð48Þ

(iii): In the expression for q of Proposition 1 (iii), plugging

the new variables into ~b2 evaluates to

varðYi � Ŷi � ðYj � ŶjÞÞ
varðYi � Ŷi þ Yj � ŶjÞ

¼ varðYi � Yj � dðYi � YjÞÞ
varðYi þ Yj � dðYi þ YjÞÞ

¼
varðYi � YjÞ 1� corr2ðYi � Yj; YkÞ

� �

varðYi þ YjÞ 1� corr2ðYi þ Yj; YkÞ
� � ¼

~b2

G
;

ð49Þ

where the first identity follows from linearity of the pre-

dictor, the second one from (46), and the third one from the

definitions of ~b and G. h
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