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Abstract We consider a general model of the sensori-

motor loop of an agent interacting with the world. This

formalises Uexküll’s notion of a function-circle. Here, we

assume a particular causal structure, mechanistically

described in terms of Markov kernels. In this generality, we

define two r-algebras of events in the world that describe

two respective perspectives: (1) the perspective of an

external observer, (2) the intrinsic perspective of the agent.

Not all aspects of the world, seen from the external per-

spective, are accessible to the agent. This is expressed by

the fact that the second r-algebra is a subalgebra of the first

one. We propose the smaller one as formalisation of

Uexküll’s Umwelt concept. We show that, under continuity

and compactness assumptions, the global dynamics of the

world can be simplified without changing the internal

process. This simplification can serve as a minimal world

model that the system must have in order to be consistent

with the internal process.

Keywords Umwelt � Function-circle � Sensorimotor

loop � Embodied agent � Intrinsic perspective � External

observer � r-Algebra

Introduction: the intrinsic view of embodied agents

Uexküll’s function-circle and the sensorimotor loop

A key observation based on many case studies within the

field of embodied intelligence implies that quite simple

control mechanisms can lead to very complex behaviours

(Pfeifer and Bongard 2007). This gap between simplicity

and complexity related to the same thing, the agent’s

behaviour, is the result of two different frames of reference

in the description. Here, the intrinsic view of the agent,

which provides the basis for its control, can greatly differ

from the (extrinsic) view of an external observer. This

important understanding is not new. In the first half of the

last century, Uexküll has conceptualised this understanding

by his notion of Umwelt, which summarises all aspects of

the world that have an effect on the agent and can be

affected by the agent (see Von Uexküll 2014). Further-

more, he has convincingly exemplified this notion in terms

of many biological case studies. These case studies are

presented in his book (Von Uexküll 1934), supplemented

by insightful illustrations (see in Fig. 1, as an example, the

Umwelt of a bee).

Uexküll has developed his Umwelt concept based on the

notion of a function-circle (Funktionskreis, see Fig. 2a). It

graphically represents the causal interaction of an animal

with its surroundings. Nowadays this circle is known as the

sensorimotor loop and it plays an important role within the

field of embodied cognition (see Fig. 2b). However, its

interpretation has not changed, so that Uexküll’s descrip-

tion of the function-circle perfectly applies to the sensori-

motor loop:

‘‘Every animal is a subject, which, in virtue of the

structure peculiar to it, selects stimuli from the
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general influences of the outer world, and to these it

responds in a certain way. These responses, in their

turn, consist of certain effects on the outer world, and

these again influence the stimuli. In this way there

arises a self-contained periodic cycle, which we may

call the function-circle of the animal.’’ (Von Uexküll

1926, page 128)

In this section, we introduce the sensorimotor loop in

terms of a causal diagram (Pearl 2000) of the involved

processes, which describes the interaction of the agent with

the world (Tishby and Polani 2010; Zahedi et al. 2010). In

addition to the causal structure of this interaction, as shown

in Fig. 3, we need to formalise the mechanisms that gen-

erate the individual processes. A very general way of for-

malising mechanisms is provided by the notion of a

Markov kernel, which is also used in information theory for

a mathematical description of a channel. As an example, let

us consider the sensor mechanism denoted by b. Given a

state w of the world, the sensor assumes a state s, which can

be subject to some noise. Therefore, the sensor output is

best described as a probability distribution over the sensor

states, that is bðw; dsÞ. This reads as the probability that the

sensor assumes a state s in the infinitesimal set ds.

Equivalently, we can consider the probability bðw;BÞ that

the sensor assumes a state s in the set B given the world

state w. Clearly, we get this probability of B by integrating

the probabilities of the infinitesimal sets ds contained in B:

bðw;BÞ ¼
R
B
bðw; dsÞ. In addition to the sensor mechanism

b we have the actuator mechanism p, referred to as the

agent’s policy. Finally, the mechanisms a and u describe

the dynamics of the world and the agent, respectively. Note

that the probabilistic description of the mechanisms does

not mean that we exclude deterministic mechanisms. For

instance, one might want to assume that the dynamics of

Fig. 1 The Umwelt of a bee as illustrated in Von Uexküll (1934). a The environment of a bee how we perceive it as an external observer. b The

same bee perceives only particular aspects of the same world, which constitute its Umwelt

Fig. 2 a Uexküll’s function-circle (Funktionskreis) (Von Uexküll 1934), b the sensorimotor loop from the field of embodied cognition (Ay and

Ghazi-Zahedi 2014)
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the world is deterministic. Together with an initial distri-

bution of W0; S0;C0;A0, the Markov kernels a, b, u, and p,

the mechanisms of the sensorimotor loop, specify the dis-

tribution of the overall process Wn; Sn;Cn;An, n 2 N,

consisting of the individual processes of the world (W), the

sensors (S), the agent (C), and the actuators (A).

The causal model of the sensorimotor loop will allow us

to formalise what we mean by intrinsic and extrinsic

frames of reference in terms of r-algebras. These are basic

mathematical objects from measure theory that naturally

describe a set of observables which is assigned to an

observer. Already at this very general level, a description

of the gap between the intrinsic and extrinsic perspective is

possible.

Uexküll’s Umwelt in terms of a r-algebra

With this structure at hand, we can formalise Uexküll’s

agent centric Umwelt. Note that the world considered in the

sensorimotor loop is meant to be the world as it can be seen

from the perspective of an external observer, which is also

referred to as outer world by Uexküll (Von Uexküll 1926).

This perspective is clearly not accessible to the agent. The

agent has its own intrinsic view at this world, which

implies an agent specific world, consisting only of those

objects in the world that the agent can perceive and affect.

Now let us be a bit more precise. Assume that we have

two world states w and w0 that are distinguishable from the

perspective of an external observer. The agent’s sensori-

motor apparatus, however, may not be rich enough for this

distinction. The agent would then perceive w and w0 as

being the same world state. By this identification, the

original set of world states is partitioned into classes that

represent the states of the agent’s world, its Umwelt. This

partition is illustrated in Fig. 4.

Let us first assume that we have only finitely many of

these classes, say A1;A2; . . .;An, which represent the

internal states of the agent. Given a world state w, the agent

will assume one of these classes as internal state, the one

that contains w, which we denote by A(w). Now consider

an arbitrary subset A of world states. We call A a distincion

(that the agent can make with its internals states) if the

following holds for all world states w: Knowing the

internal state A(w) is sufficient to decide whether or not w

is contained in A. Clearly, the individual classes themselves

are distinctions. But these are not the only ones. For

example, A ¼ A1 [ A2 is also a distinction. To see this we

have to consider three cases: (1) w 2 A1: then w 2 A, (2)

w 2 A2: then w 2 A, (3) w 2 Ai for some i[ 2: then w 62 A.

Thus, if we know to which class w belongs then we know

whether or not w is contained in A. More generally, we

have the following set A of distinctions that the agent can

make with the internal states A1; . . .;An:

A ¼ Ai1 [ Ai2 [ . . . [ Aik : 1� i1\i2\. . .\ik � nf g:
ð1Þ

This set is closed under natural operations. Clearly, if A is a

distinction, then the complement Ac of A is also a dis-

tinction. Furthermore, unions and intersections of distinc-

tions are also distinctions. Having such a set A of

distinctions, we can recover the class to which a world state

w belongs by

AðwÞ ¼ ½w�A :¼
\

A2A
w2A

A: ð2Þ

This correspondence between partitions into classes and

sets of distinctions is one-to-one in the finite case. How-

ever, if we drop that assumption the correspondence does

not hold anymore, and we have to work with sets of dis-

tinctions in the first place, as they encode more information

than the corresponding partitions. Extending our reasoning
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Fig. 3 The causal diagram of

the sensorimotor loop. In each

instant of time the agent

(C) takes a measurement from

the world (W) through its

sensors (S) and affects the world

through its actuators (A)
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Fig. 4 Clustering of world states
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to possibly infinitely many distinctions, we have to assume

that the set A of distinctions an agent can make with its

sensorimotor apparatus satisfies the conditions of a r-al-

gebra, that is:

1. ; 2 A,

2. A 2 A ) Ac 2 A,

3. A1;A2; . . . 2 A )
S1

i¼1 Ai 2 A.

Clearly, as a special case, the set (1) forms a r-algebra.

Given an arbitrary r-algebra A, we can use formula (2) in

order to define the classes that it generates. As already

mentioned, this set of classes alone contains less infor-

mation than the set A of distinctions. This is the reason

why we consider in this article state sets together with r-

algebras on these state sets, leading to the notion of so-

called measurable spaces.

Note that we do not address the problem of how the

sensorimotor apparatus of the agent might instantiate a set

of distinctions. In this regard, we want to highlight the

following problem of information integration. Let us asso-

ciate with a distinction A a sensor of the agent that is active

if the world state w is in A, and inactive if it is not. Then

consider two of such sensors corresponding to the distinc-

tions A1 and A2. In principal, knowing that w is in A1,

through the first sensor, and knowing that w is also in A2,

through the second sensor, implies that w 2 A1 \ A2. But

this implication is a purely logical one. It is not clear whe-

ther there should be an instance in the system that actually

makes the distinction A1 \ A2 through a corresponding third

sensor. Note also, that we do not assume that the agen’s

distinctions imply any kind of conscious experiences.

In our motivation of r-algebras as the right model for

describing the intrinsic perspective of an agent we did not

explicitly specify the mapping from the world states to

internal states. Clearly, this has to be done based on the

formal model of the sensorimotor loop as shown in Fig. 3.

In order to explain how we are going to use r-algebras in

the context of the sensorimotor loop, consider, for

instance, the sensor mechanism b, which generates a

sensor state s, given a world state w (Note that b is meant

to incorporate all sensors of the agent, not only one.) In

general, s will contain information about the world state,

which will allow the agent to distinguish it from other

world states. One can assign to b a set of distinctions, a r-

algebra, that describes the world as seen through the

immediate response s of the sensor b. This r-algebra is

denoted by rðbÞ and referred to as the r-algebra gener-

ated by b. Note, however, that rðbÞ does not contain all

distinctions that the agent can make. There are further

distinctions, mediated through the time evolution, which

incorporates the actuator process of the agent. Therefore,

the distinctions that we are going to study are based on

both, the sensors and actuators of the agent. The intention

of the article is to define a r-algebra of distinctions in the

world that describe Uexküll’s notion of an agent centric

world, the agent’s Umwelt. In what follows, we address

the following two natural problems:

1. Which structure in the world is used by the mecha-

nisms of the sensorimotor loop?

2. Which structure of the world is visible from the

intrinsic perspective of the agent?

We will show that these problems can be appropriately

addressed by defining corresponding r-algebras. The nat-

ure of the main results requires some technical knowledge.

We assume basic knowledge from measure and probability

theory and refer to the comprehensive volumes (Bogachev

2007a, b) on measure theory and to the textbook (Bauer

1996) on probability theory. However, the technical part

will be complemented by an extended summary and con-

clusions section on the results and how they relate to

Uexküll’s work. The reader interested in the results at a

less formal level might want to first read ‘‘Summary and

conclusions’’.

Minimal r-algebras of the world

Minimal separately measurable r-algebra

We consider measurable spaces W, S, C, and A as state

spaces of the sensorimotor process Wn; Sn;Cn;An, n 2 N.

For technical reasons, we assume that these are Souslin

spaces, equipped with their respective Borel r-algebras

BðWÞ, BðSÞ, BðCÞ, and BðAÞ. In the Appendix, we col-

lect a few general results that are used in this article,

thereby also highlighting the special role of Souslin spaces.

In order to address the above problems, we fix the Borel r-

algebras on the ‘‘agent part’’—S, C, and A—of the system.

Based on these internal r-algebras, we consider various

sub-r-algebras of the Borel r-algebra on W that describe

agent related events in the world. In measure-theoretic

terms, we study minimal r-algebras on W that satisfy

natural measurability conditions. The most natural ansatz is

given by the distinctions that are possible only through

sensor measurements. They correspond to the r-algebra

generated by the kernel b, that is rðbÞ. However, this is not

necessarily consistent with the world dynamics given by

the Markov kernel a. Therefore, we consider the following

measurability condition. We call a r-algebra W � BðWÞ
(jointly) measurable if both b and a remain measurable

when W is equipped with W instead of BðWÞ. By general

assumption, BðWÞ is jointly measurable. It turns out that

joint measurability is a quite strong condition. Therefore, it

is natural to consider the following weaker measurability

condition. We call W separately measurable if, when we

108 Theory Biosci. (2015) 134:105–116

123



equip W with W, b is measurable and a is separately

measurable in the sense that for every a 2 A, the Markov

kernel

aa : ðW;WÞ ! PðW;WÞ; w 7!aða;wÞ;

is measurable (‘‘P’’ denotes the set probability distribu-

tions, here on the measurable space ðW;WÞ). Note that,

because a is Borel measurable, the functions a 7!aða;wÞ are

measurable for any W � BðWÞ.
It is straight-forward to construct the unique minimal

(w.r.t. partial ordering by inclusion) separately measurable

sub-r-algebra Wext of BðWÞ.

Lemma 1 Let W0 :¼ rðbÞ and for n 2 N define Wn

recursively by

Wn :¼ r aa : W ! PðW;Wn�1Þ; a 2 Að Þ
¼ r aað � ; BÞ; a 2 A; B 2 Wn�1ð Þ

Then Wext :¼ r
S

n2N Wn

� �
is the unique minimal sepa-

rately measurable r-algebra, i.e.

Wext ¼
\�

W � BðWÞ jW r-algebra; bmeasurable;

aaW-W-measurable for all a 2 A
�

Proof ‘‘�’’: Clearly, any r-algebra W from the set on the

right-hand side has to contain W0 because b is W-mea-

surable. Further, if it contains Wn�1, it also has to contain

Wn, because aa must be measurable for all a 2 A. Thus it

contains Wext.

‘‘�’’: We have to show that Wext is separately

measurable. b is measurable, because Wext � W0 ¼
rðbÞ.

S
n Wn is an intersection stable generator of Wext,

thus for measurability of aa, it is sufficient that aað � ; BÞ is

Wext- measurable for B 2
S

n Wn. But by definition of Wn,

aað � ; BÞ is Wn-measurable for B 2 Wn�1. h

Note that there is no reason why a should be jointly

measurable when we equip W with Wext. When we

are working with a separately but not jointly measurable

r-algebra, we are rather working with a family ðaaÞa2A of

kernels than with a single kernel a. We do not know if a

minimal jointly measurable r-algebra exists in general.

The above construction does not work well for a instead of

aa, because we want a product r-algebra on A�W and

taking products is not compatible with intersections in the

sense that A	 ðW \W0Þ$ðA 	WÞ \ ðA 	W0Þ in gen-

eral. Of course, every jointly measurable r-algebra is

separately measurable and thus has to contain Wext. Also

note that Wext need not be countably generated, which

might cause technical problems when working with Wext.

Next we show that in the ‘‘nice case’’ where Wext is

countably generated, a is jointly measurable.

Proposition 2 If Wext is countably generated, then it is

jointly measurable, and in particular the unique minimal

jointly measurable r-algebra.

Proof Let A :¼ BðAÞ. We have to show that

f : A�W ! ½0; 1�, ða;wÞ7!aða;w; BÞ is ðA 	WextÞ-
measurable for arbitrary choice of B 2 Wext. Because Wext

is countably generated, A	Wext is a countably generated

sub-r-algebra of the Borel r-algebra of the Souslin space

A�W. It follows from Blackwell’s theorem (see Ap-

pendix) and the fact that f is Borel measurable that f is

A	Wext-measurable if and only if it is constant on the

atoms of A	Wext. The atoms are obviously of the form

fag � F, where a 2 A and F is an atom of Wext. Because

aa is measurable w.r.t. Wext, f ða; � Þ is constant on the atom

F. Thus, f is constant on fag � F and therefore jointly

measurable. h

A simple sufficient condition for Wext to be countably

generated is that there are only countably many possible

actuator states, i.e. A is countable.

Corollary 3 Let A be countable. Then Wext is countably

generated and jointly measurable.

Proof Because BðSÞ is countably generated, W0 is

countably generated. If Wn�1 is countably generated, the

same holds for r aa : W ! PðW;Wn�1Þð Þ for any a 2 A.

Because A is countable, Wn is generated by a count-

able union of countably generated r-algebras, thus it is

countably generated, and the same holds for Wext. h

A countably generated, almost jointly measurable

r-algebra in the memoryless case

In this section, we assume that the agent is memoryless, i.e.

Cn is conditionally independent of Cn�1 given Sn. Then we

can concatenate the kernels from W to S, from S to C, and

from C to A to obtain a new kernel c from W to A. We then

have the following situation, where the C and S compo-

nents are marginalised (integrated) out.

Note that if b is W-measurable, the same holds for c, but

the converse need not be true. We introduce yet another

kernel j which is the combination of c and a, i.e.

j : W ! PðA�WÞ, jðwÞ ¼ cðwÞ 	 að � ;wÞ. The reason

to do this is that while kernels mapping from a product

space complicate finding minimal r-algebras (with product

structure), this is not the case for kernels mapping into a
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product space. The variables Wn;An, n 2 N, factorise also

according to the following graphical model.

We can define the minimal r-algebra Wj such that b
and j are measurable in the same way as we defined Wext.

Lemma 4 Let W0
0 :¼ rðbÞ and

W0
n :¼ r j : W ! PðA�W;A	W0

n�1Þ
� �

¼ r jð � ; BÞ; B 2 A	W0
n�1

� �
:

Then Wj :¼ r
S

n2N W0
n

� �
is the unique minimal r-algebra

on W s.t. b and j are measurable. Furthermore, Wj is

countably generated.

Proof Analogous to the proof of Lemma 1 and Corol-

lary 3. h

In the following, consider j as kernel from ðW;WjÞ to

ðA�W;A	WjÞ. Note that because Wj is countably

generated, the quotient space obtained by identifying atoms

of Wj to points is again a Souslin space1 (see Appendix).

Thus it is technically nice and, in particular, we can fac-

torise j into c and some kernel a0 from A�W to W by

choosing regular versions of conditional probability. Then

a0 is jointly measurable. The draw-back is that a0ð � ;wÞ is

only defined cðwÞ-almost surely and we cannot guarantee

that a0 ¼ a is a valid choice, i.e. that a is A	Wj-mea-

surable. We easily get the following.

Lemma 5 Wj is the unique minimal r-algebra onW that

satisfies the following condition. b is measurable and there

exists a (jointly measurable) kernel a0 from A�W to W,

s.t., for every measure l 2 P W;BðWÞð Þ, a ¼ a0 ðl	 cÞ-
almost surely.

Proof The above discussion shows that Wj satisfies the

condition (note that we can w.l.o.g. assume that l is a Dirac

measure). If, on the other hand, a0 as above exists, then j
equals the composition of c and a0. In particular, j is

measurable and Lemma 4 yields the claim. h

The condition a ¼ a0 a.s. w.r.t. every measure of the

form l	 c means that the difference between a and a0 is

not visible regardless of any changes we might impose on

the environment. The situation, however, may change if

the agent changes its policy p, thereby changing the

kernel c. Then the difference between a and a0 can

become important and a0 as well as Wj would have to be

changed.

We trivially have that every jointly measurable r-alge-

bra W on W must contain Wj. In particular, if Wext is

countably generated, Wj � Wext. This is probably not true

in general.

The world from an intrinsic perspective

Sensory equivalence

In what follows we use equivalence relations to coarse

grain the world states and apply the constructions described

in Appendix.

Denote by PaN
S ðwÞ 2 PðSNÞ the distribution of sensor

values when the ‘‘world’’ is initially in the state W1 ¼ w 2
W and the agent performs the sequence aN 2 AN, of

actuator states, i.e. An ¼ an. That is, we modify the agent

policy p in a time-dependent way such that p is replaced by

ðpnÞn2N and pn ignores the memory (and thus the sensors)

and outputs (the Dirac measure in) the value an. The sensor

and world update kernels b and a, however, remain

unchanged. More explicitly, for B ¼ B1 � � � � � Bn�
S� � � � 2 BðSNÞ,

PaN
S ðw1ÞðBÞ ¼

Z
� � �

Z
bðw1;B1Þ � � � bðwn;BnÞ

aan�1
ðwn�1; dwnÞ � � �aan�1ðw1; dw2Þ:

Now we define an equivalence relation 
 s, called sensory

equivalence, on W by

w
 sw
0 :, PaN

S ðwÞ ¼ PaN
S ðw0Þ 8aN 2 AN:

More generally, we obtain the intrinsic r-algebra

W int :¼ r
�
PaN
S ; aN 2 AN

�
;

which describes the information about the world that can in

principle be obtained by the agent through its sensors.

Obviously, the atoms ½��W int
of the intrinsic r-algebra are

given precisely by the sensory equivalence, i.e.

½w�W int
¼ fw0 2 Wjw0 
 swg for allw 2 W.

It turns out (Proposition 6 and Example 7) that the

intrinsic r-algebra leads to a coarser partitioning of the

world than the extrinsic perspective formalised by Wext.

The reason is that the construction of Wext uses knowl-

edge of the mechanisms of the ‘‘world’’, more precisely

the world update kernel a, which is required to remain

measurable when we replace the Borel r-algebra BðWÞ
by Wext. The necessary information about a cannot be

1 More precisely, there exists a Souslin topology such that the Borel

r-algebra coincides with the final r-algebra induced by the canonical

projection from ðW;WjÞ onto the quotient.
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constructed from the sensor values in general, even if

infinitely many observations are possible and all proba-

bilities can be estimated accurately. The difference

between the intrinsic and extrinsic point of view is pre-

cisely that the agent does not know the mechanisms of the

world encoded in a.

Proposition 6 W int � Wext. In particular

½w�Wext
� ½w�W int

¼ fw0 2 Wjw0 
 s wg 8w 2 W:

Furthermore, W int ¼ Wext if and only if W int is separately

measurable, i.e. aa is W int-W int-measurable for every

a 2 A.

Proof b and aa are measurable w.r.t. Wext. Because the r-

algebra on PðSNÞ is generated by the evaluations, and the

cylinder sets form a generator of the r-algebra on SN,

measurability of b and aa implies measurability of the

function PaN
S for every aN 2 AN. Hence W int � Wext. This

directly implies the corresponding inclusion for the atoms.

If W int ¼ Wext, W int is separately measurable by

Lemma 1. Conversely, assume that W int is separately

measurable. Then, again by Lemma 1, Wext � W int and

hence W int ¼ Wext. h

Equality in the above proposition does not hold in

general, as the following example shows.

Example 7 Let W :¼ f1; . . .; 5g, S ¼ f0; 1g and jAj ¼ 1,

i.e. the agent is only observing (a state-emitting HMM).

Let bð1Þ ¼ bð4Þ ¼ bð5Þ ¼ 1
2
d0 þ 1

2
d1, bð2Þ ¼ d0, and

bð3Þ ¼ d1. Further let að1Þ ¼ 1
2
d2 þ 1

2
d3, að2Þ ¼ að3Þ ¼

að4Þ ¼ d4, að5Þ ¼ d5. a can be illustrated as

Then 1
 s4
 s5¿s2; 3 and AtðW0Þ ¼
�
f1; 4; 5g;

f2g; f3g
�

, but

AtðWextÞ ¼ AtðW1Þ ¼
�
f1g; f2g; f3g; f4; 5g

�
:

Thus 1 and 4 are identified by 
 s because they produce

identical sequences of sensor values, but they are not

identified by Wext because they have non-identified suc-

cessors. The definition of Wext requires that a remains

unchanged, while the same sensor values can be produced

with the partition given by 
 s by modifying a to a0, where

a0ð1Þ ¼ a0ð4Þ is an arbitrary convex combination of að1Þ
and að4Þ.

Sensor-preserving modification of the world

Example 7 suggests that one might be able to interpret the

coarser partition given by sensory equivalence as descrip-

tion of the relevant part of the world, provided one is

allowed to modify the world update kernel a in such a way

that the distribution of sensor values is preserved. Intu-

itively, one just has to choose one of the values aa takes on

a given 
 s-equivalence class.

Of course these selections have to be done in a mea-

surable way, and we need technical restrictions to deal with

this problem. Namely, we assume that the world W is

compact, and the sensor kernel b as well as the world

update kernels aa : W ! PðWÞ for every given action a 2
A are continuous. As usual, PðWÞ is equipped with the

weak topology induced by bounded continuous functions.

Note that compactness and metrisability of W also implies

compactness and metrisability of PðWÞ.
Under these assumptions we can prove that it is possible

to modify the world update (and with it the smallest sep-

arately measurable r-algebra Wext) in such a way that the

sensor process is preserved and equality holds in Proposi-

tion 6. Furthermore, the ‘‘new Wext’’ is countably gener-

ated and jointly measurable for the modified system.

Definition 8 Let a0 : A�W ! PðWÞ be an ‘‘alterna-

tive’’ world update kernel.

1. We call a0 equivalent to a if for every w 2 W and

aN 2 AN the sensor process PaN
S ðwÞ coincides with the

sensor process PaN
S;a0 ðwÞ obtained by replacing a with a0.

2. Denote by Wa0
ext the smallest separately measurable

r-algebra of the system where a is replaced by a0.

Remark a0 can be seen as a model for the mechanisms of

the world, which the agent might use. If a0 is equivalent to

a, a0 is a perfect model, as far as the agent’s (possible)

observations are concerned. Of course it can still make

wrong assumptions about aspects of the world that cannot

be inferred by the agent. In Proposition 10, we show (under

a continuity and compactness assumption) that the agent

can always build a perfect model in this sense which is

consistent with his intrinsic r-algebra.

Lemma 9 Assume that aa is continuous for every a 2 A

and b is continuous. Then PaN
S is continuous for every

aN 2 AN.

Proof Easy to see directly or a special case of (Karr

1975, Thm. 1). h

Proposition 10 Let W be compact, b and aa continuous

for every a 2 A. Then there is a kernel

a0 : A�W ! PðWÞ, such that a0 is equivalent to a and
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Wa0
ext ¼ W int: ð3Þ

In particular,

½w�W0
ext
¼ fw0 2 W jw0 
 swg 8w 2 W:

Furthermore, Wa0
ext is countably generated as well as

jointly measurable (for the modified system with a
replaced by a0).

Proof

1. Let X :¼ PðSNÞA
N

be the set of mappings from action

sequences to distributions of sensor sequences,

equipped with product topology. Given an initial state

w of the world, denote by F(w) the corresponding

kernel from action sequences to sensor sequences, i.e.

F : W ! X, FðwÞ ¼ aN 7!PaN
S ðwÞ

� �
. Note that F gen-

erates W int, i.e. rðFÞ ¼ W int. Because every PaN
S is

continuous (Lemma 9) and X carries the product

topology, F is a continuous function from the compact

metrisable space W into the Hausdorff space X. In

particular, the image FðWÞ is also compact and

metrisable.

2. We can apply a classical selection theorem, e.g.

Theorem 6.9.7 in (Bogachev 2007b), and obtain a

measurable right-inverse G : FðWÞ ! W with

F � G ¼ idFðWÞ. Define 1 :¼ G � F. Then 1 is measur-

able, and rð1Þ � rðFÞ. On the other hand,

rðFÞ ¼ rðF � G � FÞ � rð1Þ. Hence,

rð1Þ ¼ rðFÞ ¼ W int: ð4Þ

Define a0a :¼ aa � 1 for every a 2 A.

3. A simple induction shows that a0 is indeed equivalent

to a: For B ¼ B1 � � � � � Bn � S� � � � 2 BðSNÞ and

C :¼ B2 � � � � � Bn � S� � � �, we obtain by induction

over n

PaN
S;a0 ðwÞðBÞ ¼

Z
bðw;B1ÞP

af2;3;...g
S;a0 ð�ÞðCÞ da0a1

ðwÞ

¼ PaN
S 1ðwÞð ÞðBÞ ¼ PaN

S ðwÞðBÞ

4. We claim that Wa0
ext ¼ rð1Þ. Indeed, a0a is rð1Þ-

measurable by definition, and b is rð1Þ-measurable,

because bðwÞ is a marginal of FðwÞðaNÞ for any aN.

Therefore, rð1Þ is separately measurable in the mod-

ified system and Wa0
ext � rð1Þ. On the other hand,

PaN
S ¼ PaN

S;a0 is Wa0
ext-measurable, thus the same holds

for F and rð1Þ ¼ rðFÞ � Wa0
ext. Hence W int ¼ Wa0

ext

follows from (4).

5. Since 1 is a function into a space with countably

generated r-algebra, Wa0
ext ¼ rð1Þ is countably

generated. In particular, it is jointly measurable by

Proposition 2.

h

Remark (Non-compact W) For a non-compact world W,

we can still obtain an equivalent a0 satisfying (3) if we

relax the condition that a0 needs to be Borel measurable.

Instead, it is only universally measurable, i.e. l-measurable

for every l 2 PðWÞ. To see this, just replace the selection

theorem used in the proof of Proposition 10 by a selection

theorem for Souslin spaces, e.g. Theorem 6.9.1 in (Bo-

gachev 2007b). The drawback is that the universal r-al-

gebra is not countably generated and we do not obtain joint

measurability of Wa0
ext.

Summary and conclusions

Summary of our definitions and results

We started with the mathematical description of the agent’s

interaction with the world in terms of a causal diagram.

This lead us to the definition of the agent’s sensorimotor

loop (see Fig. 3), which formalises Uexküll’s fundamental

notion of a function-circle. The sensorimotor loop con-

tains, as part of the description, a reference world, referred

to as the outer world by Uexküll. It is considered to be

objective in the sense that it sets constraints on the dis-

tinctions that any observer can make in that world. This is

formalised in terms of a ‘‘large’’ r-algebra which contains

all reasonable distinctions (the Borel r-algebra of the

world). We defined sub-r-algebras Wext and W int that

represent two agent specific perspectives. The first one,

introduced in ‘‘Minimal separately measurable r-algebra’’,

is based on two requirements:

1. First, we assume that Wext contains the distinctions in

the world that the agent can make based on the

immediate response of its sensors. As the correspond-

ing mechanism is encoded by the Markov kernel b, this

means that the r-algebra generated by b should be

contained in Wext, that is rðbÞ � Wext (see Lemma 1).

These distinctions seem to be closely related to

Uexküll’s world-as-sensed (translation of the original

term einfache Merkwelt (Von Uexküll 1926), page

132). In addition to these aspects of the world, the

agent is capable of making also mediated or distal

distinctions. We believe that the mediated distinctions

correspond to those aspects of the world that Uexküll

describes as the higher grades of the world-as-sensed

(translation of the original term höhere Stufen der
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Merkwelt (Von Uexküll 1926), page 140). In order to

incorporate these mediated distinctions, we impose the

next condition on Wext.

2. With this second condition we basically assume that

the system is closed in the sense that all mediated

distinctions in the world are taken into account. This is

formalised by the iteration formula for Wn in

Lemma 1. The main insight of this lemma is that the

closedness is equivalently expressed by the invariance

condition

a�1
a ðWÞ � W; a 2 A: ð5Þ

Stated differently, incorporating all mediated distinc-

tions, based on an initial set of prime distinctions, is

equivalent to enlarging this set until the condition (5) is

satisfied. Our r-algebra Wext is then the smallest r-

algebra W that contains rðbÞ and satisfies this invari-

ance. Condition (5) is related to the closedness of

dynamical systems studied in (Pfante and Ay 2015;

Pfante et al. 2014).

The definition of Wext is quite natural and might appear as

the right formalisation of Uexküll’s Umwelt in terms of a

r-algebra of distinctions. However, the invariance condi-

tion requires knowledge about the mechanisms of the

world, formalised in terms of the Markov kernel a.

Therefore, in ‘‘Sensory equivalence’’ we introduced

another r-algebra, which does not require this knowledge

and is defined in an intrinsic manner. It is based on the

following sensory equivalence relation: We identify two

world states w and w0 if they induce the same sensor pro-

cess, given any sequence a1; a2; . . . of actuator states. We

define W int to be the r-algebra associated with this rela-

tion. It consists of those distinctions the agent can make in

the world that involve both the sensors and actuators. In

this sense, W int takes into account Uexküll’s perceptual

world (Merkwelt, referred to as world-as-sensed in (Von

Uexküll 1926)) and effector world (Wirkwelt, referred to as

world of action in (Von Uexküll 1926)). We do not,

however, separate these two worlds as they are intertwined

and define, together, W int.

‘‘We no longer regard animals as mere machines, but

as subjects whose essential activity consists of per-

ceiving and acting. We thus unlock the gates that lead

to other realms, for all that a subject perceives

becomes his perceptual world and all that he does, his

effector world. Perceptual and effector worlds toge-

ther form a closed unit, the Umwelt.’’ (Von Uexküll

1934, page 320)

In ‘‘On decompositions of the Umwelt into Merkwelt

and Wirkwelt’’ below, we comment on other ways to

combine the perceptual world and the effector world. But

first, let us address the following question: How does W int

relate to Wext? Their relation is actually quite interesting.

First of all, as one would like to have, W int � Wext, which

is the main content of Proposition 6. This means that one

can attribute more distinctions to the agent, if the mecha-

nism a of the world is known. Or, stated differently, the

agent can operate on the basis of distinctions that are not

internally indentifiable in terms of its sensors and actuators.

Note that there is one apparent limitation of W int: It is not

invariant in the sense of (5), which means that it does not

describe a closed system. On the other hand, making it

invariant by extending it sufficiently already leads to our

previous r-algebra Wext. However, the violation of (5) can

only be seen from outside. The agent has no access to the

mechanism a from its intrinsic perspective, and it simply

does not see whether or not (5) is statisfied. It is quite

surprising that, according to our Proposition 10, it is pos-

sible for the agent to imagine a mechanism a0 that is

compatible with W int in the sense that it satisfies (5) where

a is replaced by a0. With this modification of the mecha-

nism, we have W int ¼ Wa0
ext, where Wa0

ext is defined in the

same way as Wext but with the mechanism a0 instead of a.

Even if the agent is actually operating on the basis of

distinctions that are not identifiable from its intrinsic per-

spective, it is always possible to imagine different mech-

anisms that only involve the identifiable distinctions. This

is why we think that W int is the right object for describing

the Umwelt of an agent.

On decompositions of the Umwelt into Merkwelt

and Wirkwelt

Our approach starts with a set of prime distinctions and

extends this set by taking into account mediated distinc-

tions that are generated in terms of the actuators of the

agent. This way, the perceptual world (Merkwelt) and the

effector world (Wirkwelt) are incorporated into the

Umwelt in an asymmetric manner. One could also try to

define both worlds separately and integrate them in a

symmetric way. Our impression is, however, that this

approach has limitations, which we are going to briefly

explain.

As argued above, Wmerk :¼ rðbÞ already models the

world-as-sensed, which we consider, for the moment, to be

the same as the perceptual world, as both terms are

translations of Merkwelt (note, however, that world-as-

sensed denotes its simple form, einfache Merkwelt). Con-

structing a corresponding effector world as r-algebra on W

appears less natural. To see this, compare in Fig. 3 the

causal link from the world state Wn to the sensor state Sn
with the causal link from the actuator state An�1 to the

world state Wn. One is directed away from and one toward
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Wn. Generally, it is natural to ‘‘pull back’’ distinctions, as

we did for the sensor kernel. But without further assump-

tions there is no natural way to ‘‘push forward’’ distinc-

tions, which would be required for the definition of an

effector world as r-algebra on W. Instead of specifying

these assumptions and discussing related technical prob-

lems, let us simply assume that we already have both, the

perceptual world Wmerk and the effector world Wwirk. How

would one combine them so that they ‘‘form a closed unit’’

as Uexküll describes it in the above quote? There are two

natural ways to combine the two r-algebras: The inter-

section W\ :¼ Wmerk \Wwirk, which consists of all dis-

tinctions, that are contained in both worlds, and the union,

W_ :¼ rðWmerk [WwirkÞ, which is the smallest set of

distinctions so that both worlds are contained in it. We

argue that both choices are limited by applying them to two

special cases of the senserimotor loop: In case one, we

assume that the agent can only observe but not act, which

we refer to as a passive observer. Any reasonable definition

of the r-algebra Wwirk should lead to a trivial effector

world in this case, that is Wwirk ¼ f;;Wg. In case two, we

assume that the agent can act but has no sensors to perceive

the consequences of its actions. We refer to this second

agent as a blind actor. For the blind actor, we obviously

have a trivial perceptual world, that is Wmerk ¼ f;;Wg.

The following table summarises the various resulting

Umwelten for these two cases:

W\ W_ W int

Passive

observer

No Umwelt Equals

Merkwelt

Contains

Merkwelt

Blind actor No Umwelt Equals

Wirkwelt

No Umwelt

Let us discuss and compare these simple but instructive

outcomes. First, we see that for both, the passive observer

and the blind actor, the intersection W\ is the trivial r-

algebra f;;Wg, which we interpret as a trivial or no

Umwelt. We argue, however, that one should attribute a

non-trivial Umwelt to a passive observer, if the observed

world is rich enough. The reason is that the agent is

capable of making distinctions based on its sensors,

without the involvement of its actuators. How about the

union W_? In this case, we argue that the outcome for the

blind actor is not satisfying. A blind actor generates

effects in the outer world which are, in principle, visible

from the perspective of an external observer in terms of

his own set of distinctions. But the blind actor himself has

no instantiation of these distinctions made from outside.

Would one still attribute these distinctions to the Umwelt

of the blind actor? We think that this should not be the

case. Finally, as already stated, our definition W int treats

the two worlds in an asymmetric way. This asymmetry is

also expressed by the fact that the passive observer has a

possibly non-trivial Umwelt (the distinctions are made by

the passive observer himself), whereas the blind actor has

a trivial one (the effects are visible only in terms of

distinctions made by an external observer). Our way of

integrating sensing and acting in conceptually different

from the way sketched in this section and can be sum-

marised as follows: The prime object is the perceptual

world! Starting with an initial perceptual world (world-

as-sensed), the agent can generate more and more dis-

tinctions by utilising its actuators. Thereby, the perceptual

world is gradually enlarged until it incorporates all dis-

tinctions of the agent’s Umwelt (higher grades of the

world-as-sensed).

How to treat the case of multiple agents

We conclude with a rough description of how one can

study multiple agents based on the developed tools of this

article. For this, we have to couple the individual sensori-

motor loops, which Uexküll beautifully describes as

follows:

‘‘The function-circles of the various animals connect

up with one another in the most various ways, and

together form the function-world of living organisms,

within which plants are included. For each individual

animal, however, its function-circles constitute a

world by themselves, within which it leads its exis-

tence in complete isolation.’’ (Uexküll 1926, page

126)

We sketch our ideas on this subject by considering the

case of only two agents. The diagram in Fig. 5 shows how

the sensorimotor loops of two agents are intertwined. Note

that each agent i has its own mechanisms bðiÞ, uðiÞ, pðiÞ,
except that there is only one mechanism a which governs

the transitions of the common world given the actuator

states of both agents. Let us first take the perspective of

agent one. From this perspective, the outer world includes

agent two, that is the variable W
ð1Þ
n contains Wn, S

ð2Þ
n , C

ð2Þ
n ,

and A
ð2Þ
n (see Fig. 6a). The perspective of agent two is

symmetric. Here, the outer world W
ð2Þ
n of agent two

includes the corresponding variables Wn, S
ð1Þ
n , C

ð1Þ
n , and A

ð1Þ
n

(see Fig. 6b). Obviously, in principle the two outer worlds

are not contained in each other and, in particular, they are

not identical. Furthermore, they share the process W which

can be considered as a common world of the two agents.

We can express the fact that the two outer worlds are

different more formally by
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BðWð1ÞÞ ¼ BðWÞ 	BðSð2ÞÞ 	BðCð2ÞÞ 	BðAð2ÞÞ ; ð6Þ

BðWð2ÞÞ ¼ BðWÞ 	BðSð1ÞÞ 	BðCð1ÞÞ 	BðAð1ÞÞ ; ð7Þ

and we have WðiÞ
int � WðiÞ

ext � BðWðiÞÞ, i ¼ 1; 2. The inter-

sections of these sets of distinctions will be contained in the

common world, that is

Wð1Þ
int \Wð2Þ

int � Wð1Þ
ext \Wð2Þ

ext � BðWÞ : ð8Þ

This highlights an important point. The two agents can

share some distinctions in the world. However, these

have to be contained in the common world. Each agent

can make further distinctions in its respective outer

world, so that the Umwelten will be in general different.

If we consider a probability measure, however, then we

can actually identify distinctions A1 2 Wð1Þ
int of agent one

with distinctions A2 2 Wð2Þ
int of agent two if their inter-

section A1 \ A2 has full probability. This way, the two

agents can, in principle, synchronise and reach some

consensus on their respective intrinsic worlds. The more

generic situation will be, that the intrinsic worlds are

similar rather than perfectly identical with respect to the

underlying probability measure. In order to quantify how

close the intrinsic worlds WðiÞ
int, the Umwelten, of indi-

vidual agents are, appropriate distance measures for r-

algebras will be required. Such measures have been

studied in the probability theory and statistics literature

(Boylan 1971; Neveu 1972; Rogge 1974), and might be

applicable to the present context. However, it is not

within the scope of this article to present and discuss

these measures.

Acknowledgments Nihat Ay is grateful for stimulating discussions

with Keyan Ghazi-Zahedi and Guido Montúfar. The authors would
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Fig. 5 The sensorimotor loops

of two agents

Fig. 6 Overlapping but distinct outer worlds of two agents. a Outer world of agent one which includes inner world of agent two, and b outer

world of agent two which includes inner world of agent one
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Appendix: state reduction and quotient
construction

Let ðX;FÞ be a measurable space. The atom of F con-

taining x 2 X and the set of atoms of F are defined as

½x�F :¼
\

x2F2F
F and AtðFÞ :¼

�
½x�F jx 2 X

�
:

Note that if F is countably generated, ½x�F is a measurable

set, ½x�F 2 F . In general, however, ½x�F need not be mea-

surable. We recall Blackwell’s theorem.

Blackwell’s theorem Let X be a Souslin space and

F � BðXÞ a countably generated sub-r-algebra of the

Borel r-algebra. Then

F ¼
n
F 2 BðXÞjF ¼

[

x2F
½x�F

o
:

Corollary 11 Let X be a Souslin space, F � BðXÞ a

countably generated r-algebra, and f : X ! R measurable.

Then f is F -measurable if and only if it is constant on the

atoms of F .

According to Blackwell’s theorem, a countably gener-

ated sub-r-algebra of a Souslin space X is uniquely

determined by the set of it atoms. AtðFÞ is a partition of X

into BðXÞ-measurable sets. Note, however, that not every

partition of X into measurable sets is the set of atoms of a

countably generated sub-r-algebra of BðXÞ.
Given any measurable space ðX;FÞ, we can define the

quotient space XF as the set AtðFÞ of atoms of F equipped

with the final r-algebra XF of the canonical projection

½ � �F : X ! AtðFÞ. Then a set B � XF of atoms is by

definition measurable iff
S
B ¼

S
½x�F 2B½x�F 2 F . Note

that, obviously, B 7!
S
B is a complete isomorphism of

boolean algebras from XF onto F . The following lemma

follows easily from the standard theory of analytic mea-

surable spaces and is one of the reasons why Souslin

spaces, rather than Polish spaces, are the ‘‘right’’ class of

spaces to work with in our setting.

Lemma 12 Let X be a Souslin space and F � BðXÞ a

sub-r-algebra. Then XF is the Borel r-algebra of some

Souslin topology on XF if and only if F is countably

generated.
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Von Uexküll J (2014) Umwelt und Innenwelt der Tiere. In:

Mildenberger F, Herrmann B (eds) Klassische Texte der

Wissenschaft. Springer, New York

Zahedi K, Ay N, Der R (2010) Higher coordination with less control:

a result of information maximization in the sensori-motor loop.

Adapt Behav 18:338–355

116 Theory Biosci. (2015) 134:105–116

123


	The Umwelt of an embodied agent---a measure-theoretic definition
	Abstract
	Introduction: the intrinsic view of embodied agents
	Uexküll’s function-circle and the sensorimotor loop
	Uexküll’s Umwelt in terms of a \sigma -algebra

	Minimal \sigma -algebras of the world
	Minimal separately measurable \sigma -algebra
	A countably generated, almost jointly measurable \sigma-algebra in the memoryless case

	The world from an intrinsic perspective
	Sensory equivalence
	Sensor-preserving modification of the world

	Summary and conclusions
	Summary of our definitions and results
	On decompositions of the Umwelt into Merkwelt and Wirkwelt
	How to treat the case of multiple agents

	Acknowledgments
	Appendix: state reduction and quotient construction
	References




