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Abstract According to a functional definition of the term

‘‘gene’’, a protein-coding gene corresponds to a polypep-

tide and, hence, a coding sequence. It is therefore as such

not yet present at the DNA level, but assembled from

possibly heterogeneous pieces in the course of RNA pro-

cessing. Assembly and regulation of genes require, thus,

information about when and in which quantity specific

polypeptides are to be produced. To assess this, we draw

upon precise biochemical data. On the basis of our con-

ceptual framework, we also develop formal models for the

coordinated expression of specific sets of genes through the

interaction of transcripts and mRNAs and with proteins via

a precise putative regulatory code. Thus, the nucleotides in

transcripts and mRNA are not only arranged into amino

acid-coding triplets, but at the same time may participate in

regulatory oligomotifs that provide binding sites for spe-

cific proteins. We can then quantify and compare product

and regulatory information involved in gene expression

and regulation.

Keywords Gene expression � Gene regulation � RNA �
Combinatorial regulation scheme � Information theory

Introduction

In the terminology of present molecular genetics, the term

‘‘gene’’ can refer to genes conceived either as protein

products, or else as DNA stretches with grouped genetic

information including regulation. The about 20,000 pro-

tein-coding ‘‘genes’’ assumed to exist in the human

genome [13] relate clearly to the latter. In this situation, in

the literature, frequently a new clarification of the gene

definition is called for; see for instance [10]. In fact, in [30,

31], we have already developed a gene definition from the

perspective of the functional products produced in the cell.

Our gene definition clearly distinguishes between the

product and the regulatory aspects. This will provide us

with the conceptual framework to analyze the relationship

between DNA stretches and functional products in a

quantitative information theoretical manner.

In the present paper, we shall only discuss protein-

coding genes, and leave out the issue of genes coding for

functional RNAs, although a similar analysis is possible.

Neither will pseudogenes be considered here. More pre-

cisely, a polypeptide is represented by an mRNA coding

sequence prior to translation, together with the choice of a

translation start site, as in some cases, several such start

sites exist and consequently different polypeptides can be

produced from the same mRNA coding sequence. In

eukaryotic cells in particular, such an mRNA coding

sequence cannot readily be identified with a stretch of

DNA in the genome. Rather, it is assembled in the course

of a complex regulation process from various pieces

(exons) of pre-mRNA that are in turn built up from DNA

transcripts.

Many details are well known, but to set up the frame for

our analysis, we shall now briefly recall some of the

essential steps of this process. First of all, there are various

alternatives in the expression pathway, ranging from non-

expression to different types of polypeptides created by

alternative splicing from one DNA domain or transcript.

The regulation of individual genes is determined by the

various possibilities for regulatory factors controlling the

expression pathway that bind at sites at the DNA, pre-

mRNA or mRNA level. These regulatory factors, which
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could be of protein or RNA nature, typically bind at spe-

cific nucleotide sequences, so-called oligomotifs.

To account for this, in [30, 31] we have coined the term

‘‘genon’’ (and various derivations of it, like ‘‘pregenon’’ or

‘‘protogenon’’, referring to the pre-mRNA and DNA level,

respectively) for the program at the mRNA level control-

ling in cis the expression of a gene. This is materialized in

those oligomotifs, that is, specific factor binding sites, and

it is thus superimposed onto and added to the coding

sequence in cis. Therefore, these genons are encoded

already in the DNA in the same strand as the coding

sequence. In particular, one and the same stretch of DNA

or RNA can have both a coding and a regulatory function.

While these functions may share the same material sub-

strate, they need to be conceptually distinguished. In par-

ticular, this may break the redundancy of the genetic code.

That is, different nucleotide triplets coding for the same

amino acid may contribute to different regulatory functions

within distinct genons. Consequently, mutations that are

neutral with respect to polypeptide coding may well have

deleterious consequences because they may interfere with

gene regulation. Concerning the issue of the different

possible translational start sites, the genon corresponding to

the mRNA with the full coding sequence may pick up

alternative factors exposing different start codons.

However, genes are not functional and hence not

expressed in isolation. Rather, the essential aspect is the

coordinated activation of specific sets of genes according to

the state of the cell and its environment. Since the number

of factors (of polypeptide or RNA nature) a genome can

accommodate is necessarily limited, these factors have to

operate by combinatorial rules to coordinate the activation

of specific combinations of genes.

It is the purpose of this paper to evaluate and quantify

these aspects in information theoretical terms. We shall do

this on the basis of presently available numbers for some

eukaryotic genomes, in particular the human genome.

Because of the present uncertainty about numbers and roles

of directly functional or regulatory RNAs, we restrict our

analysis here to protein-forming genes. In particular, we do

not enter here into the mechanisms of RNA interference

(RNAi), which are still not fully understood. Nevertheless,

our general scheme is developed in such a way as to be also

applicable in principle to such RNAi.

Thus, we shall distinguish between regulatory and

product information, i.e., the genon on one hand and the

coding triplet sequence on the other. We shall attempt to

quantify information about ensembles of sequences, regu-

lation and coregulation, and individual expression path-

ways. Let us first consider the classical aspect. The

information in a sequence quantifies the reduction of

uncertainty when we obtain a specific sequence from an

ensemble of sequences with the given symbol frequencies

and correlations. In our situation, the sequences are either

composed of nucleotides or of amino acids as symbols.

Because of the redundancy of the genetic code, a coding

sequence underlying a gene contains more information

than the polypeptide, that is, the amino acid sequence the

gene is coding for. Let us secondly consider the regulatory

aspect. The genon and its precursors, the proto- and pre-

genon, as materialized by sequence fragments or pieces

like oligomotifs, also carry a certain information. The

information concerning regulation of individual genes and

networks is determined by the various possibilities for

regulatory factors controlling the expression pathway that

bind at the sites provided by proto-, pre- and genon. These

regulatory factors implement decision about expression

versus non-expression or select one of several alternative

splicings or at a later stage in the expression pathway

decide which genes are translated and how many copies of

them are produced. As already discussed, here, we are

concerned with the coordinated activation of specific sets

of genes that are appropriate given the current state of the

cell and its environment. In particular, we shall propose

and analyze a particular combinatorial model for the

interaction of RNA binding proteins with oligomotifs in the

mRNA. This model will flexibly account for the selection

of specific ensembles of genes.

Our numerical estimates are often tentative and may

need to be considerably revised on the basis of more

accurate future data than available at present. So, what do

we gain from this exercise?

1. A theoretical principle for quantifying the contribution

of various steps and interferences in the regulatory

process. Whenever we have precise data about the

numbers of factor binding oligomotifs and the com-

plementary regulatory factors, we can compute the

number of different possibilities that can be realized

from one and the same coding region. This will offer

new possibilities to bring insights from such fields as

cybernetics or control theory into molecular biology.

For instance, we may quantitatively estimate the

ability of a cell to compensate for external distur-

bances and to maintain a stable function in the

presence of such disturbances.

2. A framework for quantitatively addressing not only

which genes are expressed, but also how many copies

of them. While this is obviously important, it does not

seem to have received much attention so far in

theoretical models.

3. A simple formal model for the coregulation, that is, the

coordinated activation of large, but very specific sets

of genes. Again, that latter model makes some

simplifying assumption, but hopefully this will serve

to best bring out the underlying principle. In particular,
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we shall see that there is an astounding number of

possibilities to select specific combinations of large

numbers of genes through the combinatorial interac-

tion of a few oligomotifs and regulatory factors. This

power of combinatorics seems to have not been

appreciated so far in theoretical molecular biology.

Information theory

Since we shall make repeated use of Shannon’s theory of

information, we repeat here its basic aspects. Shannon’s

theory is concerned with a sender that transmits symbols to

a receiver. The receiver does not know which symbol out

of n possible ones she will receive at each step. Since the

nature of the sender is not so important for our purposes,

we can also consider a receiver that simply observes

events. She only knows that the symbols or events occur

with frequencies pm; m ¼ 1; . . .; n; the information obtained

by observing a particular such event is the average (nega-

tive) logarithm of these probabilities,

I ¼ �
Xn

m¼1

pm log pm: ð1Þ

We note that for quantifying this information obtained by

observation of an event, it does not matter which event

actually happens. Only the probabilities of the events

matter. I measures the amount of uncertainty before an

event was observed. That is, the information I quantifies

the amount by which the uncertainty is reduced by the

observation of which one of the possible events actually

does occur.

Also, when we observe N independent ensembles, with

information content Ik; k ¼ 1; . . .;N each, the total infor-

mation obtained by observing one event from each

ensemble simultaneously then simply is the sum

Itotal ¼
X

k

Ik: ð2Þ

Before proceeding, we make a general remark. As just

explained, the quantity of information depends on the

choice of an ensemble of events m with their relative

frequencies or probabilities pm. If we change the ensemble

or vary the probabilities, the information obtained by

observing a specific event also changes. For instance, when

we look at the ensemble of all combinatorially possible

strings of 300 amino acids, and if we assume that each of

the 20 different amino acids occurs with the same

probability 1
20

which is somewhat smaller than 2-4, we

have 20300 different possibilities and the information I in

(3.3) then is more than 4� 300 ¼ 1,200 bits: We can

reduce the uncertainty, however, already by restricting only

to those amino acid sequences that are potentially

biologically useful, that is, lead to properly folded

polypeptides (ignoring exceptions like casein which does

not fold, but is nevertheless biologically useful). These are

much fewer sequences, and most of the above figure of

(more than) 1,200 bits is already diminished by that

reduction. That is, as soon as we know that an amino

acid sequence leads to polypeptides properly folded into

3D structures, we have already gained a lot of information.

On the other hand, then finding out which particular

polypeptide is actually realized by our sequence yields

comparatively little additional information. Thus, the

above 1,200 bits can be broken down into two

summands, one containing the information gained by

knowing that an amino acid sequence corresponds to some

polypeptide, that is, is a sequence that can fold properly,

and the other specifying which particular polypeptide it

actually is (this example will be taken up again in Sect. 4.1

below).

As in the example of amino acid sequences just dis-

cussed, we are usually interested in ensembles of sequen-

ces. In fact, the sequences to which we wish to apply

information theory can be of rather different natures.

Therefore, we develop some mathematical framework first.

We employ the formal notion of an alphabet A consisting

of letters a, and we shall now discuss different types of

such alphabets. When we consider nucleotide sequences,

the letters stand for the four different bases. When we

consider coding sequences, we have 64 letters, one for each

triplet. For amino acid sequences, we have 20 different

amino acids, i.e., letters in the corresponding alphabet.

Below, we shall also be interested in sequences of regu-

latory oligomotifs (‘‘oligos’’ for short). In our examples,

there will be typically about 1,000 different such oligos.

Thus, we then have an example of an alphabet with about

1,000 letters. Proceeding with the terminology, strings of

letters are called words. Let us again spell this out for our

examples. When a nucleotide sequence consists of 40 kbp,

we have a word of 40,000 letters from our nucleotide

alphabet. When a coding sequence consists of 300 triplets,

or a polypeptide as an amino acid sequence contains 300

amino acids, we have a word of length 300 in the corre-

sponding alphabet. Finally, when we consider an RNA

molecule containing 100 oligos, we consider it as a word of

length 100 in the oligo alphabet, whereas as a nucleotide

word, it will be much longer, say 10,000 letters when it is

composed of that many nucleotides.

An important issue is whether all words that can be

formed by the letters of our alphabet are possible or rele-

vant to the biological situation at hand, or whether there

exist constraints. For the amino acid words, we have

already discussed such a constraint above, the folding

criterion. On the other hand, we could also take the list of
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all proteins recorded for human cells. If such a complete

list were known, we could work with a much smaller set of

amino acid sequences than those that properly fold.

Obviously, such a scheme would miss out new sequences

generated by genetic mutations.

Having clarified how the amount of information depends

on the choice of the ensemble, we approach another issue.

When applied to the molecular biology of the cell, infor-

mation theory can be used in different ways, possibly with

different results, and this brings us to the core of the

present article. On one hand, we can compare the starting

point, the genome, with the final result, the proteome, and

quantify the relation between DNA segments and poly-

peptides in information theoretic terms. That is, we can ask

how much control is needed for the regulation process to

produce the protein mix in the cell from its DNA according

to external and internal circumstances. The corresponding

computation does not take into account the actual details of

the regulation process, that is, the expression pathway, but

only compares the input and the output of the process to

assess its complexity. On the other hand, we can also

quantify the number of decisions and their relative fre-

quencies within the expression pathway in information

theoretic terms. We can then compare the results of the two

computations, for the input–output relationship on one

hand and for the sequence and network of regulatory steps

on the other. The question is whether the amount of

information from these two computations coincides or not.

If we had an optimally implemented, non-redundant reg-

ulation process that does not utilize any external informa-

tion, the two information quantities should be the same. If

they are not the same, we should try to interpret and

understand their difference. The regulatory information

might be much larger than the input–output information. A

reason for the discrepancy might be that the control process

could be redundant and non-efficient. It might also be the

case, however, that the regulation process has to be stable

in the presence of external perturbations, that is, that it has

to compensate for variations in external conditions.

According to Ashby’s law [3], the amount of internal

information needed to compensate such variations has to be

at least as large as the entropy of these variations. This

amount cannot be detected in the input–output relation.

This effect increases the regulatory information. This,

however, may be counterbalanced by another effect

working in the opposite direction. That effect makes use of

information available in the environment. Certain sub-

stances, such as vitamins, may participate in cellular pro-

cesses and feed external information into them. Of course,

for the analysis of the life cycle of a virus, the utilization of

information that is provided by the host cell, and therefore

external to the virus, is the key. Here, however, we are

concerned with eukaryotic cells and for them externally

provided information should play a less dominant role.

Therefore, we should expect this effect to be smaller in

information theoretic terms than the first one, the com-

pensation of external perturbations. Therefore, computa-

tions of the regulatory information yield larger results than

computations of the product information concerned with

what polypeptides are produced in which quantities from

which portions of the DNA.

In any case, on the basis of present molecular biological

knowledge, we are not yet in a position to produce exact

computations. Rather, we can only provide estimates for

the amounts of information and that is what we shall

attempt in the sequel.

Transcription

Genomic domains

In the following discussion, the definition of genomic

domains will be of particular importance to estimate types

and numbers of transcripts and genes and we therefore

develop our definition here. As already discussed, most

protein-coding genes as sequences coding for polypeptides

do not exist at the genomic level as physical entities, but

have to be composed during RNA processing and, in par-

ticular, by differential splicing. The latter mechanism

allows for producing several genes, and thus genons, from

a primary transcript and leads to a multiplication of func-

tional products encoded in a single DNA region. The recent

finding by transcript mapping that most of a (human)

chromosome is actually transcribed [12] can be related to

the old finding that the primary transcripts carrying infor-

mation for protein biosynthesis are very large, as pre-

mRNAs or full domain transcripts (FDTs). The latter best

represent the division of the genomic DNA into domains as

units of transcription.

Genomic ‘‘domains’’ have been extensively discussed in

the past [24, 27]. It was an early observation that division

of the Drosophila haploid genomic DNA by the number of

bands observed in the polytene chromosomes [11] results

in stretches of DNA length, compatible, by order of mag-

nitude, with the observed size of primary transcripts in

many types of cells [32]. The polytene chromosome bands

are not only physical entities seen in the microscope, but

correspond also to units of meiotic recombination. On this

basis, genetics was done at the time of Morgan and his

school; classical cytogenetics is based on the division of

the genome into such units.

The most recent analysis of Drosophila chromosomes,

as published within the NCBI Drosophila melanogaster

fruit fly release 5.2, correlates well with these basic facts

[1]. Figure 1a shows an actual representation of a

4 Theory Biosci. (2014) 133:1–21

123



Drosophila melanogaster chromosome banding pattern,

illustrating such domains of chromosome structure and

function. The bands seen are not only observable physical

units and units of transcription, as already mentioned, but

in the Sciaridae insect family (Fig. 1c), they are also units

of replication. Indeed, the DNA in such bands must locally

be amplified prior to transcription [20]. As shown in the

annotated representation (see the URL in [1]) of these

cytogenetically defined bands in Drosophila (Fig. 1b), the

genes identified as products map to these bands. Particu-

larly interesting is the fact that transcription mapping

shows most of the DNA in these areas to be transcribed.

Table 1 gives a quantitative summary of these most

recent data available based on the Drosophila melanogas-

ter genome sequence, annotation and cytogenetic data

illustrated in Fig. 1b. Excluding the Y chromosome, all

together there are up to 5,792 bands including 14,560 genes

(about 3 genes/domain); on average there are 20,768 bp/

Fig. 1 Genomic domains in

Drosophila melanogaster.

Chromosome organization

shown is chromosome X a full

length and b enlargement of

region 9/10 including about

1,000 kbp and c a typical puff

of band in active transcription.

a On the left is shown the

subdivision into chromosome

segments and the overall

ideogram of the chromosome as

seen by microscopy (right).

b Enlagement of region 9E7 to

10C7. From left to right Chrom.

region, microscopic ideogram,

RNA map, and gene positions.

Note the alignments with

chromosome bands and the

extent of mapped transcripts. In

the ideograms, the black band

corresponds to the

hetereochromatic condensed

chromatin. The blank regions in

between are the interbands

which generally are AT-rich

[22] and accumulate RNA

polymerase 2 (ref) which, when

a band is transcribed after

‘‘puffing’’, spreads all over the

puff. c A Rynchosciara

americana chromosome band in

puffing [20]; notice the puffing

when in transcription and

eventual regression into a

heterochromatic band
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chromosome band. Extrapolating to the size of the human

genome, these units seem to correlate well with the basic

facts and assumptions in terms of genome organization into

domains in general. In human gene expression, assuming

80,000 protein-coding transcripts (gene-polypeptides) for

20,000 genomic domains (of about 100 kbp each) [13],

most likely due to the multiplication factor of differential

splicing and to a lesser extent to different translation start-

ing sites, there might be more genes per domain (about 4

genes/domain). Thus, the classical Drosophila polytene

chromosome organization still seems to represent best what

we mean when speaking of genomic domains as related to

genes.

The example of gene expression in the chicken alpha

globin gene domain along the cascade of regulation

To start with, it must be emphasized that regulation of gene

expression is not only a qualitative problem, but, in the first

place, a quantitative one. To regulate about 3,000 genes in

E. coli is basically a different problem from coping with

about 500,000 genes in the human genome. The basic

problem is that due to the inherent thermodynamic noise,

no physical system can cope with choices better than

1:1,000, and biochemical systems are in fact limited to

about 1:100. Direct choices of genes at the DNA level are

conceivable for E. coli where genes are bundled in operons

reducing the 3,000 genes to fewer operons. In eukaryotes,

the direct choice of single genes at the DNA level is

therefore a priori excluded. The solution is multiple

sequential choices of ensembles of genes as contained,

typically, at the level of genomic domains, of pre-mRNA

and mRNA populations. This matter was dealt with in

some publications about the cascade of regulation [27, 32].

Unfortunately, neither for Drosophila nor the human

species there are, to our knowledge, data about the types

and numbers of transcripts produced in course of RNA

processing, determined by systematic fractionation of

specific differentiated cells. Therefore, we resort hereafter

to the example of the avian red blood cells for which such

results are available. We may first recall quantitative data

concerning the chicken alpha-globin gene domain which

provides the example of a genomic domain that was subject

to extensive biochemical analysis in terms of its expression

pathway [18]. It stands for a highly specialized cell in

terminal differentiation with a protein output consisting of

90 % of hemoglobins; there are three different, embryonic,

adult minor and major hemoglobins, constituted by the

embryonic (p) as well as the adult major (a A) and minor (a
D) globins, combined to embryonic or adult beta globin (a2

b2). The three alpha genes are contained in a genomic

domain of 30–40 kbp which seems to be fully transcribed

into an FDT [25]. This biological model represents a rare

case where the length of (non-repetitive) the sequence

(called sequence complexity in the biochemical literature)

at the genomic as well as the many RNA processing and

regulative steps of the cascade of regulation ([27]; see

insert B in Table 2) was quantitatively determined by

Cr0t re-association kinetics (Cr0t and C0t analysis see [6]),

after careful cell fractionation and isolation of the nucleic

acids. Table 2 gives the summary of the analysis and insert

B in Table 2 is a simplified graphic representation of the

‘‘cascade of regulation’’ [27, 32] (discussed recently in [30,

31]), which reduces the information content of the genome

to that of an ensemble of genes actually expressed at a

given time in a cell. Table 3 summarizes the actually

available data based on recent genomics on the one hand

and former results obtained by cell and RNA fractionation

and reassociation kinetics [18], on the other.

The great surprise from this type of analysis was that in

a highly specialized cell, on synthesizing just a few pro-

teins in very large amounts, as in the immature red blood

cells, a relatively large fraction of the genome was tran-

scribed. Indeed, Cr0t analysis of pulse-labeled RNA gave,

for RNA of more than 1.5 9 106 Mr, a value of 11.0 and

4.2 % of the (2N) genome represented resp. for the highly

unstable primary transcripts and slowly turning over RNA

(before and after a 40 min chase by arrest of transcription

with actinomycin D) and 12.4 % resp. 5.6 % for RNA

larger than 5 9 104 Mr (Fig. 1 and Table 1 in [18]). In

other types of cells, by order of magnitude, similar values

were found for nuclear and polyribosomal mRNA sequence

complexities. These figures were well in line with earlier

estimates of 10–20 % of the genome being transcribed in

avian erythroblasts obtained by saturation hybridization in

Table 1 Drosophila melanogaster chromosome bands: summary of

the NCBI Map Viewer presenting a graphical view of release 5.2 of

the annotated Drosophila melanogaster genome (incorporating all

available heterochromatic sequences into the assembly and including

an annotation update; see Fig. 1)

Chrom./

arm

Names

Bands total

number

Genes total

number

Chrom.

size

(kbp)

Band

size

(kbp)
Chrom. Cont. reg. Chrom. Cont. reg.

X1157 1,016 2,330 2,330 22,400 19,360

2L 950 806 2,756 2,756 23,000 24,210

2R 1,282 1,138 3,025 3,025 21,100 16,453

3L 1,029 835 2,809 2,809 24,500 23,809

3R 1,318 1,178 3,549 3,549 27,900 21,168

4 56 44 91 91 1,350 24,107

All 5,792 5,067 14,560 14,560 120,250 20,768

Heterochromatic sequences are assembled into six unplaced contigs linked

to specific chromosome arms and one unordered superscaffold that con-

tains all unplaced contigs (source: http://www.ncbi.nlm.nih.gov/mapview/

mapsearch.cgi?taxid=7227) (numbers of bands or genes in chromosome or

contig-region, average)
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RNA excess [18, 32]. All these data compare favorably

with the actually estimated 60 % of the genome being

transcribed in a differentiated [12] cell, since, in those

earlier determinations, the RNA analyzed represented only

the relatively stable intermediary and final processing

products, but not all of the highly unstable (\20 min half-

life) primary transcripts.

In avian immature red blood cells, the first step of infor-

mation processing leading to the selective activation of part of

the genome for transcription—and thus the RNA represented

in the primary transcripts—corresponds hence to a choice of

about 6 in 10 (we replace here the 1982 data by today’s

estimates as mentioned above). About half of these transcripts

are processed within 1–2 h; in other terms, the relatively

stable, single sequence nuclear RNA represents about 6 % of

the 1N genome (or 3 % of the 2N DNA), or a total choice of 1

in 20. Whereas the primary transcripts decay with a half-life of

\20 min the relatively stable RNA shows, in erythroblasts,

two components with half-lives of 3 and 12 h which corre-

spond also to two MW classes of Mr[106 and Mr\106 [18];

in the latter the sequence length is further reduced.

Turning to the cytoplasm, we have to keep in mind that

the terminally differentiating erythroblast represents a non-

dividing cell (in g0) and that, therefore, most housekeeping

genes are turned off. Thus, for a dividing differentiated cell,

we should rather expect about 10,000 different mRNAs.

Table 2 The cascade of globin gene regulation in avian erythroblasts:

(table) for DNA and the successive RNA fractions during pre-mRNA

processing and translation, the a-globin mRNA concentration and the

number of different types of mRNA represented were calculated

(plain print) or else, determined (italics) by cell and RNA fraction-

ation

Sequence complexity (Cr0t) and RNA concentration values were determined according to as cited in [18] by hybridisation kinetics of labeled

unique sequence cDNA to specific fractions of RNA in excess, as described in [18]. The chicken genome has 1.2 x 109 bp [15] and the three

mRNAs (aA, aD and p) sum up to 2,000 nt. Note that primary transcripts are highly unstable and could, hence, not be measured by (Cr0t) (insert

A and B). Successive selection of chromatin domains to be transcribed and of transcripts conserved after successive steps of transcription are

indicated by systematic reduction of the fraction of genomic DNA represented (for detailed data see Table 3); (B) graphic representation of the

Cascade of Regulation of globin gene expression (cf. discussion in [30]) in analogy to the theoretical model published earlier [27]

Theory Biosci. (2014) 133:1–21 7
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In the cytoplasmic RNA, the observed Cr0t values cor-

respond to 6.9, 6.0 and 0.9 9 10-4 of the DNA, or about

1,600, 1,400 and 210 genes of average size (1,000 nt)

represented resp. in all of the cytoplasm, the repressed and

the translated mRNA fractions. This amounts to a further

choice of about 1 in 8 for the genes actually expressed.

Finally, the selection of the three a-globin mRNAs (about

4,000 molecules/cell) for preferential translation corre-

sponds to a further selection step of 1 in 70. We thus have

to consider sequential reduction of genomic information of

2:3 and 1:20 at DNA and pre-mRNA levels, of 1:40 upon

export to the cytoplasm, and of 1:8 plus 1:70 in the cyto-

plasm, to arrive at the preferential expression of the three

a-globin genes. For the human genome (3.2 9 109 bp),

this would amount, correspondingly, to the selection of

2 9 103 nt (the major globin mRNAs) in 3.2 9 109 bp, or

a choice of 1.5 9 10-6 altogether.

Types of transcripts and genes

For the human genome, to our knowledge no systematic

study of the type outlined above for the avian globin genes

has been carried out. We thus have to resort to indirect data

to estimate quantitatively the successive selection steps

during gene expression. Homo sapiens have about 55,000

genomic domains, among which about 20,000 are protein

coding [13], and most of them are transcribed in an

organism at one time or another [12]. For simplicity, we

take into account only the FDTs and thus consider only

protein-forming genes derived from primary pre-mRNA

(for more details, see the recent data produced within the

ENCODE project, which indicate that a major part of the

genome is transcribed [10, 12]). In particular, we shall

neglect transcripts arising from smaller transcription units

(TUs) interspersed in between the FDTs, or superposed

onto them as alternative forms of transcription. This may in

particular concern the small nuclear and cytoplasmic

RNAs, including controlling RNAs acting in RNAi.

At present, the question of the transcription start is fully

open: e.g., the assumed mode of operation of the so-called

promoters as acting at initiation of transcription is being

questioned; actually, they may as well be involved in RNA

processing (cf. discussion in [31]). Furthermore, recent

data taking into account sparse RNAs and allowing for the

detection of transcripts over a concentration range of 1 in

1,000 indicates that about 30 % of transcripts mapping

upstream of the conventional transcription start sites have

escaped analysis thus far [33]. These data correlate well

with the above-mentioned range in so-called sequence

complexity (=non-repetitive sequence length) from the

primary transcripts to mRNA.

In a typical differentiated cell, about 60 % of genomic

domains may be transcribed, that is, a specific cell has

about 12,000 different FDTs. 2/3 of those, that is, about

8,000, would be expressed by forming proteins sometime

during the life of that cell. At a given time in a specific cell,

however, only about 1,000 of these primary transcripts may

be completely processed and expressed eventually.

Through combination mechanisms like alternative splicing,

about 5,000 different mRNAs can be produced from those

processed transcripts and are found in the cytoplasm. Out

of those, in turn, at a given time of the day, about 1,000

types of mRNA are translated in the polyribosomes, lead-

ing to as many different polypeptides. Even though a cer-

tain fraction, perhaps \20 % (in terms of mass), of the

transcribed genomes correspond to functional products that

are not of the protein type,1 throughout its lifespan a dif-

ferentiated cell can produce altogether about 50,000 dif-

ferent polypeptides (8,000 different transcripts leading up

to 50,000 different mRNAs).

In the entire human organism, about 200,000 different

mRNAs resp. polypeptides can be found (cf. discussion in

[31]), a figure that may increase with progress in genomics

and proteomics. Taking into account the actual state of

transcriptome and proteome analysis, and adding the basic

immunoglobulin gene rearrangements (excluding individ-

ual antibody peptides), perhaps about 500,000 different

polypeptides may be found to be synthesized by, e.g., the

human organism over its lifespan.

In general, these peptides are organized into multi-sub-

unit proteins; this may either reduce or amplify the number

of functional proteins relative to constitutive peptides.

Strict homo- or heteromer association would reduce,

whereas variable combinatorial subunit association might

increase this, hence unpredictable, number. Current esti-

mates may take into consideration the existence of

50,000–100,000 different protein types in a human or other

mammalian cell over its lifespan.

For the analysis in the remainder of this paper, we

decide to consider the following selection and combination

steps; these constitute a subset of the cascade of regulation.

To stay coherent, we refer to a specific differentiated cell,

at a specific time and stage of physiological condition.

0. Chromatin activation: four out of five.

1. Selection for activation of genomic domains for

transcription: three out of five.

2. Selection of those transcripts that are processed at

some time during the life of the cell: one out of three.

3. Selection of those transcripts that are fully processed at

a given time: one out of ten.

1 Note, however, that one and the same genomic domain (on both

DNA strands and sometimes in both directions) can produce different

functional products, some of which may be of protein, but others of

the RNA type.
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4. Combination of exons in transcripts into mRNAs:

fivefold increase.

5. Selection of mRNAs for translation: one out of five.

6. Combination of polypeptides into proteins: one to four

polypeptides assembled into one protein.

Numbers of transcripts and gene products

We now ask how many copies of each type of mRNA exist

in a cell. Neglecting repetitions (as ribosomal gene

domains, e.g.), we may assume that each eventually tran-

scribed genomic domain exists only once.

The number of given RNA molecules can vary widely,

according to their type and position in the expression cas-

cade. Concerning pre-mRNAs, spreads of transcription

complexes visualized in the EM show domains with maxi-

mal polymerase loading, as the ribosomal domains, and

others where only a few polymerases can be seen attached

over a domain of several 1,000 bps [14]. For the avian

globin domains (up to 40 kbp), we have calculated about

100 polymerases to suffice for the production of 20,000

mRNAs over the timespan of about 24 h necessary for red

blood cell maturation. Actual concentration of the given pre-

mRNAs and their processing products depends of course

critically on their metabolic stability which varies widely

(primary transcripts turn over with a half-life of about

20 min; global nuclear RNA has half-lives of 3 up to 12 h;

most RNA never leave the nucleus but slowly turn over).

For many cytoplasmic mRNAs, one may only find one

copy per cell on average at a given time, whereas others

can exist in substantially larger numbers. For example, the

Table 3 Selection-choices in genome transcription and a-globin gene expression in chicken erythroblasts

Step Processing event Sequ. complexity

(number bp or nt)

Transcripts

(no of diff. types)

Fraction DNA

(% represented)

a-Globin genes(d)

(fraction in DNA/RNA)

Choice

Full genome(xx) 1,200,000,000 24,000 100 0.0000015 na

1–2 Chromatin activation 960,000,000 19,200 80 0.0000019 4/5

2–3 Transcription of domains 720,000,000 14,400 60 0.0000025 6/8

3–4 Initial processing pre-mRNA 130,200,000 2,640 6.7 0.0000138 0.67/6

4–5 Diff. splicing (ass. 5 mRNA) na 13,200 na na

5–6 Final processing 58,800,000 na 2.9 0.0000306d 2.9/6.7

6–7 Import to cytoplasm 1,613,000a 1.613 0.069 0.00124d 0.069/2.9

7–8 Translated 211,000a 211 0.009 0.009d 0.9/6.9

8–9 Preferential translation 1,200b 2 0.00015 0.5 0.15/9

9–10 Individual globin mRNA 600c 1 1 1/3

Data from [15]

Chicken genome size: 1,200,000,000 bp (about 24,000 domains of 50,000 bp average)

The a-globin genes (600 nt each): embryonic (p)/adult major (aA) and minor (aD)

Values in italics indicate experimental data (15), plain print indicates calculated or estimated on the basis of data in the literature

Only transcripts containing (exons of) protein-coding genes are taken into account, excluding directly functional or regulatory RNAs

na not applicable
a Assumed average mRNA = 1,000 nt
b a-Globin gene expression embryonic: p and aA; adult: aA and aD

c Differential quantitative expression of the p, aA or aD genes
d 3 a-Globin genes of 3 x 600 nt (cf. legend Table 2)

Table 4 Figures for the human genome and its transcripts from

Gencode version 14 [13]

Total number of genes 55,889

Protein-coding genes 20,078

Long non-coding RNA genes 12,933

Small non-coding RNA genes 9,173

Pseudogenes 13,341

Total number of transcripts 190,051

Protein-coding transcripts 80,413

Full length protein coding 56,728

Partial length protein coding 23,685

Nonsense mediated decay transcripts 12,421

Long non-coding RNA loci transcripts 21,271

Total no. of distinct translations 81,071

Genes that have more than one distinct translation 14,558

Note the difference in terminology. What is called a gene in the table

means a genomic domain in the DNA, whereas the protein-coding

genes in our sense correspond to the distinct translations in that table
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three globin mRNAs in an avian blood cell may be present

in about 1,000 (aD), 9,000 (aA) and 10,000 (b) copies.

There exist more than 1,000,000 ribosomes in a cell (they

are composed of three types of rRNA (5S, 18S, 28S) and

more than 80 different proteins).

The number of proteins of a given type in a cell varies

between \20,000 and 100,000,000 (an occurence of

[50,000 is considered as frequent). Thus, a cell would

contain about half a billion (500,000,000) protein mole-

cules (of 1,000–20,000 different types).

Ensembles of products

The human genome consists of 3.2 9 109 nucleotide base

pairs of which only 5–10 % may not be transcribed (telo-

meres, centromeres, interdomain DNA) (In the 15 cell lines

reported in [10], 74.7 % of the genome was covered by

primary transcripts and 62.1 % by processed transcripts.

Because of the considerable amount of variation between

different cell lines, we expect larger fractions when more

cell lines are evaluated). Excluding small TUs (tRNA,

snoRNA, si/miRNA, etc.), according to present estimates

on the basis of high throughput data, there are about 20,000

genomic domains that contain protein-coding genes, their

length ranging between \1,000 and 2.4 9 106 base pairs,

peaking at about 27,000 bps, a figure in line with the data

given for Drosophila in Table 1 (in fact, experimental data

taking into account natural [16, 17] or experimental [22]

fragmentation of DNA into such putative domains show a

modal size distribution corresponding to a size of

40,000 bps). Each of them contains between 1 and 178

exons, 8.8 on average (median 7). As the human genome

sequencing data [19] show, an exon can contain between

\10 and 17,000 base pairs, 145 on average (median 122),

but with a modal peak at 30–40 bp [9]. The average intron

length is 3,366 (median 1,023) (thus, the introns are con-

siderably longer, and their length is more variable than the

exons). Combining exons through splicing then leads to an

average mRNA length of about 1,300 nucleotides (average

1,340, median 1,100), with a coding sequence of about 900

nucleotides, corresponding to an average length of about

300 amino acids in a polypeptide. Thus, 900 out of the

1,300 nucleotides contain coding information, whereas the

remaining 400 ones have a purely regulatory function, as

for example the 50- and 30-UTRs. At least half of the coding

sequence, however, also has some regulatory function, in

the sense that it contains oligomotifs as binding sites for

regulatory proteins. Furthermore, RNAi via si/miRNAs

may operate on not yet known oligomotifs; we will

therefore exclude RNAi in our further discussion. In

addition, those coding nucleotides that do not participate in

the regulation process via protein binding may have more

general structural roles, in addition to their coding function.

Product information

With the preceding figures, we can try to estimate the

corresponding information theoretic quantities for selection

of nucleotide and amino acid sequences. Let us first con-

sider sequence information related to products, that is,

polypeptides representing genes.

Amino acid sequences

We begin with a simple and well-known situation. When

four nucleotides occur with frequencies pi, i = 1, 2, 3,

4, the average information carried by one of them is

Inuc ¼ �
X

i

pi log pi; ð3Þ

and we have Inuc = 2 bits when all the frequencies are

equal, pi = 1/4. According to (2), the information content

of a sequence of a gene S consisting of 900 base pairs then

is estimated by

IS� 900Inuc ¼ 1,800 bits: ð4Þ

For this estimate, it is assumed that at each position, a

nucleotide is selected independently of the other positions.

That means that (4) yields the value of the information in

the absence of sequence correlations. When sequence

correlations are taken into account, the value gets smaller,

as will be discussed in more detail below.

Similarly, the 20 amino acids occur with frequencies

pa; a ¼ 1; . . .; 20; and so the average information carried by

one of them is

Iaa ¼ �
X

a

pa log pa: ð5Þ

When all amino acids occur with equal frequency pa = 1/

20, each of them contributes

Iaa ¼ log 20 � 4:32: ð6Þ

The information of a polypeptide of length 300 then is

bounded from above by the value for a sequence of 300

uncorrelated amino acids, that is, by the value for a random

sequence,

Ipp� 300� 4:32 � 1; 300 bits: ð7Þ

These estimates, however, have fundamental deficiencies

that we now wish to address. In one sense, they underes-

timate the coding information. We stated above that the

average length of a polypeptide is about 300 amino acids,

but in fact this length typically ranges from about 50 to

2,500. Thus, we should also take this possible length range

into account instead of just estimating the information for

one single length. In another and perhaps more important

sense, however, the value in (7) constitutes a gross
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overestimate. The point is that not every combinatorially

possible amino acid sequence can become a biochemically

feasible polypeptide, that is, lead to a folded protein. So, a

more relevant estimate should start with the number of

such biochemically feasible polypeptides. This, however,

encounters certain difficulties, given the present state of

biochemical knowledge.

In fact, it is not clear what determines whether a couple

of amino acid sequences can fold into a protein. Some

researchers think that this is only a question intrinsic to the

sequence; it may depend on the possible configurations that

the sequence can attain in space according to the physical

attractions between different sites and their corresponding

free energies. Thus, according to this approach, it is only

required that the configuration of minimal free energy leads

to a well-folded protein. The difficulties then arise from

computing that minimal free energy configuration which is

an unsolved bioinformatics problem. Other researchers

maintain that for the correct folding of proteins, particular

other helper proteins are needed, the so-called chaperons

[21]. Thus, whether an amino acid sequence folds properly

depends on the cellular environment it finds itself in. In

particular, this would imply that the protein-folding prob-

lem cannot be solved by a computational approach on the

basis of the sequence information alone. A striking

example for this effect is the prion proteins that represent

an alternative folding of an amino acid sequence with

physiological properties that are drastically different

(infectivity) from those of the normal folding structure

(review in [2]). Actually, the presently most successful

algorithm for predicting folding patterns of biological

amino acid sequences, that is, ones derived from genes as

opposed to coming from arbitrary combinatorial arrange-

ments, circumvents this problem. Given the sequence, this

algorithm simply searches data banks for the most similar

sequence whose folding pattern is already known and uses

that information for the prediction of the folding structure

of the sequence in question. This approach leads to a

drastic reduction of the estimated number of amino acid

sequences to be taken into account as a solid basis of an

information theoretic analysis.

Ensemble and sequence entropies

Mathematically, this issue can be formulated more

abstractly. There exist two approaches for calculating the

information content in ensembles of products, via ensemble

or (when they are linearly arranged as sequences) via

sequence entropy. We begin with the concept of ensemble

entropy: we consider an ensemble of N items belonging to

M types x with relative frequencies p(x). For the present

consideration, these items are biochemically feasible

polypeptides, or when we look at a more special situation,

perhaps the ensemble contains only those polypeptides that

are present in a particular organism or cell, and the fre-

quencies of types represent how often these polypeptides

occur in the specified ensemble. The entropy of such an

ensemble of polypeptides then is

I ¼ �
X

x

pðxÞ log pðxÞ: ð8Þ

When all the p(x) are equal, then

I ¼ log M: ð9Þ

This is the maximal value the entropy can attain for an

ensemble of M types. Biochemical knowledge about our

ensemble leads to different individual relative frequen-

cies and reduces the entropy. In addition, considerations

about physical aspects can decrease the entropy. For

instance, a physicist might consider the minimal free

energy of the folding of a protein as an example of a so-

called Hamiltonian H, to obtain a so-called Boltzmann–

Gibbs distribution with probabilities pðxÞ ¼ 1
Z

e�bHðxÞ;

where the partition function Z is simply a normalization

factor and b is a constant, the so-called inverse tem-

perature. We then insert these probabilities into (8).

When the Hamiltonian H is non-constant and b is non-

zero, the entropy (8) is smaller than the upper bound (9).

Thus, biochemical or physical insights can be used to

come up with more realistic ensembles of polypeptides

and lead to reduced estimates for the entropy of the

ensemble.

There is an alternative approach for determining the

entropy of our ensemble of polypeptides or other bio-

chemical sequences, namely via its sequence entropy: we

consider sequences S of length n of ‘‘symbols’’ as drawn

from an ‘‘alphabet’’ A of size |A|, occurring with relative

frequencies pa. In our present application, where the

sequences represent polypeptides, the alphabet consists of

the 20 amino acids and a symbol is a particular such amino

acid. Each position in the sequence has entropy -
P

a pa

log pa. When there are no correlations between the posi-

tions in the sequences, the entropy of a sequence is

IS ¼ �n
X

a

pa log pa: ð10Þ

Here, without further knowledge, all the pa are equal (=1/

|A|) so that -
P

a pa log pa = log |A| and

IS ¼ n log jAj: ð11Þ

Since there are M: = |A|n such different sequences, this is

the same as the ensemble entropy log M in (9) above.

Again, there are refinements through additional knowledge,

such as
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• unequal distribution of the pa, or

• sequence correlations, that is, correlations between the

occurrences of symbols at different positions

that decrease the entropy. The concept of sequence

entropy is designed to incorporate these aspects. The first

one is rather simple. Concerning sequence correlations, the

simplest ones are those between neighboring positions. To

capture them, we consider the so-called block entropies

�
X

m

pm log pm; m ¼ block of length l: ð12Þ

Here, such a block consists of l adjacent positions. Thus,

the block entropy is not based on the frequencies of indi-

vidual symbols, but on the frequencies of blocks of l adja-

cent symbols. When there are correlations, these

frequencies are different from the product of the frequen-

cies of the individual symbols constituting such a block.

The evaluation of these block entropies is only computa-

tionally feasible for relatively small values of l. For amino

acid sequences, we have |A| = 20. It turns out that going

beyond l = 5 (pentapeptides) or l = 6 (hexapeptides)

yields little additional information and may rather obscure

the patterns. On the other hand, the block entropies do not

capture long range correlations because by definition they

are restricted to correlations within blocks of the given

(small) size. Examples are the complementarities between

the 50 and 30 ends of certain messenger RNAs and the

folding pattern of tRNA and rRNA. In general, long range

correlations are computationally difficult to find without

biochemical insights guiding the scheme.

In any case, in the ideal situation where all regularities

are taken into account, the sequence entropy coincides with

the ensemble entropy. In general, we should consider these

two quantities as alternative methods to use biochemical

restrictions on ensembles of polypeptides to estimate our

uncertainty about individual members of the ensembles.

Regulatory information

Concerning gene expression at large, we have to deal with

two types of information embodied in sequences:

1. the one related to product information, concerning

arrangements of triplets within the sequence coding for

a polypeptide, as outlined above, and the production of

ensembles of products;

2. the regulative information embodied in the sequential

arrangement of oligomotifs where regulative factors

operate that has to be developed now.

Note that (2) applies also to the genon in the coding

sequence and mRNA, to the extent that such oligomotifs

are superposed onto the string of triplets and allow, due to

the wobble in triplet usage for a given amino acid, to dif-

ferentially regulate, at mRNA level, a given gene or

polypeptide. Replacing the random possible amino acid

sequences by some empirically derived rules of occurring

polypeptide structure, the numbers of different polypep-

tides to enter our calculation can be reduced. As discussed,

this allows us to apply ensemble entropies rather than

sequence entropies to estimate the information content of

an ensemble of polypeptides. However, for the arrange-

ment of regulatory oligomotifs, no empirical rules are

presently available, and therefore we have to resort to

sequence entropies as refined by block entropies to take

local correlations into account, once the relevant bioin-

formatics data become available.

Regulation is not only concerned with individual genes,

but mainly with the coordinated activation of specific sets

of genes, according to the requirements of the cell and

depending on cell external conditions. In this section, we

provide the first steps toward a quantification of this aspect

of regulation.

Our analysis starts with the sequence information in cis

relevant to the regulation of the gene expression process.

This is realized in a (pre-)mRNA by the interaction of cis

and trans, the cis (pre-)genon selecting, via oligomotifs and

suitable protein factors.

The interaction between oligomotifs and proteins

In the frame of our analysis, the genome is the starting

point of gene expression, and the genes with their genons

are the final point, since we have decided to exclude for the

time being all posttranslational regulation from our anal-

ysis [30, 31]. The gene–genon relations, as realized in

specific mRNAs, yield the simplest model to apply infor-

mation theory to regulation of gene expression. The insight

gained may allow us to go upstream to the pregenons and

eventually to the protogenons realized in the domains

constituting the genome, that is, the programs at pre-

mRNA or DNA level, resp., controlling the expression of a

gene. We will therefore analyze the relations realized in the

messenger RNA–protein complexes (mRNPs) of regulative

significance. It should be recalled that, at this last pre-

translational level, differential regulation of gene expres-

sion in the general case is negative, as will become

important in Sect. 6. Specific mRNAs are repressed in

mRNPs and must be released for translation. This was

shown experimentally and follows from the fact that

translation factors act non-discriminatively on many

mRNAs and are plethoric, whereas repressed mRNPs have

specific combinations of proteins which, in the general

case, are not abundant in the cellular milieu [36].
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As already discussed, regulation of gene expression by

proteins implies the presence of arrays of binding sites

(oligomotifs) in a nucleic acid; experimental data as well as

theoretical considerations indicate that such sites are dis-

crete and specific to some peptide motifs. This is in con-

trast to RNAi where, a priori, any nucleotide sequence,

even in overlapping fragments, may theoretically act as a

controlling element from the transgenon. Too little is

known about RNAi at this moment. In contrast, the search

for a code governing the limited ensembles of regulating

proteins and oligomotifs seems amenable to information

theoretic analysis (cf. recent attempts at defining a

‘‘splicing code’’ [5]).
A classical example of such proteins regulating specific

mRNAs is the iron response element (IRE) in ferritin and

transferrin receptor mRNA (see reviews in [34, 35]). The

specific IRE oligomotif sequence is found in the 50-UTR of

the ferritin mRNA and in the 30-UTR of transferrin receptor

mRNA. It binds a specific 90 kD regulatory protein which

represses ferritin mRNA translation but stabilizes trans-

ferrin receptor mRNA; this system regulates uptake and

intracellular storage of iron. There are other cases docu-

mented (see references in [7, 34, 35]). As explained, spe-

cific oligomotifs in the mRNA provide binding sites for

specific proteins that bind to the mRNA to form RNP

complexes (or, alternatively, binds si- or miRNAs for final

or temporary silencing). For the coarsest estimate again, we

consider the collection of different mRNA binding proteins

of perhaps 3,000 & 211.5 different types in the cytoplasm

of a cell, assumed to be equally frequent in a first analysis.

We also assume that there is one-to-one correspondence

between mRNA oligomotifs and mRNA-binding proteins.

In other words, each such oligomotif provides a binding

site for precisely one such protein. Again, we hope that this

simplification will best bring out the essential principle.

Selecting one type of protein, or equivalently, of an oli-

gomotif out of those, therefore contributes an information

of about 11–12 bits. An mRNA has several different such

oligomotifs; for instance, for globin mRNA we estimate

about 20 sites/600 nucleotides. Since about 50 % of the

mRNA is covered by proteins [36], about 300 nucleotides

are available for carrying oligomotifs. When each site thus

consists of about 15 nucleotides (the actual number may

vary between 7 and 50 nucleotides), there are 415 possi-

bilities for the composition of oligomotifs. Since, however,

there are only about 3,000 different binding proteins, it

suffices to have 3,000 different oligomotifs when we

neglect the effects resulting from varying binding affinities.

Therefore, there are 3000
20

� �
possibilities for distributing the

oligomotifs among the mRNAs in question, and since there

are up to 10,000 different such mRNAs in a given cell (in

fact, 1,600 in the globin example in Table 1), it is possible

to distribute the oligomotifs in such a manner that each

such mRNA can be uniquely identified from its collection

of oligomotifs. On the other hand, in order to be able to

select for release from repression specific sets of mRNAs,

say 200 out of 1,600, via their oligomotifs, these 200

should share certain combinations of oligomotifs that dis-

tinguish them from the other mRNAs.

When the different protein binding sites operate inde-

pendently, and when we assume that a single such protein

out of 3,000 candidates can bind to each oligomotif, we get

a total contribution of about 12 9 20 = 240 bits.2 Again,

this upper bound is not biochemically realistic as we should

take constraints on the binding of proteins to sites into

account. When we exercise such constraints, the upper

bound is decreased. On the other hand, one and the same

protein can also have different functions, and one and the

same oligomotif may bind to different proteins, and such

effects increase our figures.

The above-mentioned thus furnishes a flexible mecha-

nism for the simultaneous action of several factors or,

better, for specific factor combinations.

In any case, the preceding figure of 240 bits only con-

cerns a single genon. In a similar manner, as outlined

below, we can estimate the contribution of the pregenon at

the pre-mRNA and the protogenon at the DNA level

through the selection of RNA or DNA binding regulatory

factors. The number of oligomotifs possible at each step

may be considered to be of the same order, about 3,000.

Since the protogenon and the pregenon are carried by

different types of nucleic acids, and since the pregenon and

the genon are operative in different cellular compartments

and/or environments, the interacting protein factors differ

between them. In particular, even though most of the oli-

gomotifs of the genon are already present at the DNA or

preRNA level, they become operative only at the genon

level as only there the corresponding factors are thought to

be present. Thus, when considering combinatorial regula-

tion at protogenon, pregenon and genon level together, we

have to reckon with about 9,000–10,000 oligomotifs,

assuming for simplicity that the oligomotifs at the different

levels are all different. This means that about 5 % of all

genes in a cell might be involved in this combinatorial

regulation scheme, a genetic load that seems reasonable in

terms of molecular genetics.

Another aspect is the following. The mRNA molecules

are not just linear sequences, but form a spatial structure by

internal complementarity of sequence motifs and

2 In certain cases, also more than one protein having the same amino

acid motif for binding at an oligomotif, but different overall sequence,

may bind to each site. Furthermore, to a protein bound to an

oligomotif, other proteins can bind in turn by protein–protein

interaction. When we thus consider the theoretical possibility that

any combination of proteins could potentially bind (directly or

indirectly) to any site, we get a much larger value.
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hydrophobic interactions, controlling interaction via bonds

between different parts. In the absence of proteins, they

would form so-called secondary structures that are deter-

mined by competing complementarity relations between

bases. In fact, besides the sequence identity of the oligo-

motifs, also their position in the secondary structure is

relevant for the attachment of complementary proteins,

because that position may influence their accessibility to

such proteins. Generally, in an mRNP complex, in steady

state, proteins are bound to at least 50 % of an mRNA (cf.

[36]). The spatial structure is then determined by binding

between those attached proteins rather than by RNA–RNA

interactions; the secondary RNA structure that is deter-

mined by binding between complementary bases gets lar-

gely overridden by protein binding, forming the tertiary

structure of the complex (however, the complementarity of

50 and 30 UTR sequences in, e.g., globin mRNA [26],

indicates the importance of direct interaction within an

mRNA). As the proteins are attached to oligomotifs in the

mRNA, conceptually we thus obtain relations between

oligomotifs, whether their attached protein complexes bind

to each other or not. It is important to realize that this

spatial interaction will thus depend on the sequential

arrangement of the oligomotifs. Therefore, not only the

biochemical identity of these oligomotifs that determines

which proteins can bind to them is relevant, but also their

order in the mRNA and their mutual distances in the

mRNA sequence. Since this relational structure between

oligomotifs is determined by the binding of proteins to

oligomotifs and the sequential order of those oligomotifs, it

cannot contain more information than the combinatorics of

that binding and that sequential order. Again, in the sim-

plest case, we consider only independent pairwise bindings

and assume that this is a binary relationship, that is, the

binding strength plays no role. We then have as many

possibilities as we can form disjoint pairs between 20 oli-

gomotifs in a globin size mRNA.

In the pregenon, as the resulting structure is relevant for

the processing of pre-mRNA, this also contributes pro-

cessing information arising from the binding of regulatory

proteins to oligomotifs. An average primary pre-mRNA

may contain about 10,000 nucleotides and hence about 300

oligomotifs. By protein–protein interaction, they form

large complexes whose 3D organization is relevant for

processing in time and space, but this issue is not explored

here. However, it must be pointed out that there are steric

restrictions to binary protein interaction in such huge

complexes and certain rules of protein–protein binding

have to be taken into account.

Also, interactions with other RNAs, cellular proteins or

higher order structures like the cytoskeleton and the

nuclear matrix [28] contribute to regulatory information. In

particular, the primary transcripts are the organizing

skeleton of the RNA-dependent nuclear matrix, the net-

work which conditions the dynamic nuclear architecture

and regulation of RNA processing and transport in time

and space [25].

In any case, this processing information is not only

concerned with a single gene, but with many of them

simultaneously. For instance, 3,000 such (pre-)mRNA

binding proteins might be involved in the regulation of

10,000 transcripts in a given cell. Therefore, from formal

reasoning already, one should expect correlations both

between the activities of different RNP-proteins and the

affinities of binding sites in different mRNAs. In Sect. 5.3,

we shall turn to this aspect of coregulation and analyze how

the selection of specific sets of simultaneously active genes

is quantifiable within our information theoretical frame-

work, based on the genon. First, however, we shall now

discuss the formal framework for the corresponding code.

A combinatorial regulatory code

A very important aspect is the complementarity between

regulated elements, the mRNAs with their oligomotifs and

the regulators, the protein factors that selectively address

those oligomotifs. This is characteristic of eukaryotic gene

regulation and distinguishes it from prokaryotic regulation

schemes and is due essentially to the absence of operon-

type sequence arrays of genes and the resulting need for

combinatorial pleiotropy of regulative factors.

This requires a new type of code because it represents an

emergent organization of regulation that operates at a

higher level and is distinct from the genetic code. There-

fore, for its operation, it needs its own specific rules. In

order to keep the load for the genome under a reasonable

level, these rules need to be of a combinatorial nature.

In formal terms, we have a new code whose letters now

are regulatory proteins, or formally equivalently the cor-

responding oligomotifs (instead of the letters of the genetic

code which were nucleotides, and where we might consider

the triplets as words). We should point out that for our

formal considerations here, it is not relevant that the oli-

gomotifs in turn are composed of nucleotides. For the

present purposes, we consider the oligomotifs as the basic

irreducible units, that is, the letters of our code. As dis-

cussed in Sect. 5.1, altogether, there might be up to 10,000

such letters, about 3,000 each at DNA, pre-mRNA and

mRNA level.

In our simplified model that was built around the

example of globin (pre-)mRNAs (see Sect. 5.1), words in

this code may consist of 20 letters within an mRNA of

600 nt. A typical mRNA might be about 1,000 nucleotides

long and contain about 30 such oligomotifs, which then

would be the word length. Thus, we can identify a word in

our code with a specific type of (pre-)mRNA, assuming
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that two biochemically different mRNAs also carry dif-

ferent oligomotif collections. For simplicity, at this point,

we do not consider the order of the letters in a word, that is,

consider words as equivalent that only differ by the

ordering of their letters, and we also assume that all the

letters in a word are different from each other. The first

aspect will be addressed in more detail in a future paper,

whereas the second one would simply make our combi-

natorial scheme somewhat more complicated without

affecting its essence.

The mRNA includes or, in a somewhat metaphorical

language, chooses letters (oligomotifs) to be affected by

external regulators. Changing a letter has a small, local

effect, as it only affects the cell states that the particular

gene carried by that mRNA participates in. Therefore,

mutations that change such an oligomotif into a different

one have only a limited, local effect. Conversely, specific

factors seek out such letters to affect specific groups of

mRNAs. In our formalism, this means that all the words

containing the selected letter are simultaneously identified.

Since any such choice will affect many mRNAs simulta-

neously, here the resulting effect will be large and global,

as will be analyzed in more detail in Sect. 5.3 Thus, the

system can flexibly switch between different cell states.

These regulating factors, however, should be largely pro-

tected from mutations in the course of evolution as the

consequences might be drastic. A way around this is

duplication of the genes coding for such global regulators.

After such duplication, one of the copies is free to mutate

and to explore new evolutionary possibilities as long as the

other copy is kept fixed and continues to fulfill the original

regulatory function; see e.g., [4, 23, 37, 38]. In any case,

the combinatorial scheme reverses the roles of regulators

and regulated elements. Whereas in prokaryotic schemes,

control is directly exerted by the regulators and changes

can be implemented by their modifications, here the reg-

ulators have to stay rigid and small changes in control arise

from modifications of the regulated elements.

In a certain sense, the oligomotif code is analogous to

the triplet code. Here, we propose that an mRNA carries

oligomotifs each of which specifies one out of a set of

regulatory proteins. Likewise, the mRNA contains coding

triplets and, according to the triplet code, each such triplet

specifies one particular tRNA (which in turn translates the

triplet into an amino acid). An oligomotif recognizes a

particular amino acid sequence in a polypeptide. A triplet

recognizes its complementary triplet in the tRNA.

Similar principles should apply to the combinatorics of

regulation at the proto- and pregenon level, although of

course the specific molecules and motifs involved can be

different. A few remarks should suffice. For instance, we

have the splicing process at the pre-mRNA level. Introns

are excised and exons are combined according to specific

rules that control the decision between alternative possi-

bilities. Biochemically, this again depends on the interac-

tions of oligomotifs with specific proteins. Analysis of pre-

mRNA-protein complexes showed that the ensembles of

proteins are largely different from those found on cyto-

plasmic repressed mRNAs (see discussion in [36]). The

proteins involved here are typically different from the

mRNA-binding proteins, even though some of the oligo-

motifs could be the same at the pre-mRNA and mRNA

level. Introns also carry certain oligomotifs, and the com-

binatorics of protein binding at these oligomotifs, as well

as possibly at oligomotifs in neighboring exons, might

decide about their excision. Introns can carry a single oli-

gomotifs up to several hundreds of vastly different sizes

(from a few bases to tens of thousands).

The regulatory roles of the various transcription factors

at the DNA level have been much studied (recent review in

[8]). It is at present not entirely clear, however, which of

them are only active at and restricted to the DNA level and

are not contained in the transcripts, and which may bind to

mRNA as well and play decisive roles at the primary

transcript processing stage. Furthermore, some of the

functions of giant transcript might be the transmission of

bound factors to egg or daughter cells, in meiosis and

mitosis when the nucleus is disassembled and transcription

stops [29].

The combinatorics of the selection of specific

combinations of active genes

We now turn to the combinatorics of this regulation

scheme. An example: as shown in Table 2, there are three

globin mRNAs that contribute 90 % of proteins made in

our red blood cell model, whereas about 200 mRNAs are in

an active translation state (of course, not all cellular states

have 200 mRNAs, but in the sequel we shall use that

number to develop our estimates). In turn, 200 mRNAs are

selected for translation among the about 1,600 present

altogether in the cytoplasm of an erythroblast. However, it

is not necessary to select completely arbitrary subsets of

200 out of 1,600 mRNAs. The corresponding number
1600
200

� �
would vastly exceed the combinatorial possibilities

available for differential regulation. Rather, specific sub-

sets are selected according to physiological state. During

terminal differentiation of a red blood cell, roughly, there

are possibly about ten different sequential physiological

states of the cell that need to be distinguished. In addition,

these states need to be stabilized across different external

and internal conditions and it also requires the selective

translation of specific sets of mRNAs. Clearly, it requires

variations of transgenons.
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This selection of 200 among 1,600 different mRNAs

might work by affecting about 3 of the 20 oligomotifs

present in a given mRNA, insofar as the binding proteins

which act as repressors can be removed. This is caused,

possibly, by external factors which may lead to enzymatic

modification of the corresponding RNP proteins (phos-

phorylation, acetylation, glycosylation, etc.) and hence

chemical modifications or alternatively by structure mod-

ifications due to allosteric factors, followed possibly by

proteolysis.

Considering that all the mRNAs in a given cell looks

combinatorially as follows, assuming 3,000 different oli-

gomotifs, as argued above, there are 3;000
3�4:5�109

� �
different

sets of three oligomotifs, henceforth called a 3-tuple (rather

than a triple, in order not to be confused with a triplet, that

is, three nucleotides coding for an amino acid). Thus, by

choosing a specific such 3-tuple, that many conditions can

be distinguished. However, when we assume that each

mRNA has 20 oligomotifs, it contains 20
3¼1;140

� �
different

3-tuples and therefore it can participate in that many con-

ditions. Thus, if one particular mRNA codes for such an

essential gene that it needs to participate in every condi-

tion, then under that constraint only 1,140 different con-

ditions can be realized.

In order that several mRNAs participate in the same

condition, according to our model, we assume that they

need to share at least three oligomotifs. More generally,

when some mRNAs share m oligomotifs (3 B m B 20),

they can simultaneously participate in m
3

� �
conditions, and

this number varies between 1 (for m = 3) and 1,140 (for

m = 20). However, when m = 20, these mRNAs can no

longer be distinguished through their oligomotifs and

therefore m should be smaller than that, unless those

mRNAs should always be simultaneously translated. The

information related to this aspect would be quantified in

terms of the number of combinatorially possible conditions

(which still needs to be mathematically determined) and

their probabilities. Let us consider some numerical exam-

ples. The general scheme is the following. Let K oligomo-

tifs (‘‘oligos’’ for short) be given. Then there are K
20

� �

different possibilities to choose 20 among them, that is, we

can distinguish that many mRNAs through their different

endowments with 20 out of these K oligos (of course, there

could be many different mRNAs equipped with the same

set of oligos, which would simply mean that all of them are

always simultaneously translated; for simplicity, we do not

take that into account here). A condition for translation is

specified by selecting three out of these K oligos for

removal (of course, one could also select more and then

have more mRNAs translated; for simplicity, we only

analyze the basic situation of the removal of three different

RNA binding proteins). Thus, for every choice of K
3

� �
; we

have a different condition. The number of mRNAs par-

ticipating in such a condition is the number of mRNAs that

carry all those three oligos. Thus, 3 out of their 20 oligos

are fixed, and 17 remain for free choice. That is, we have
K�3
17

� �
different possibilities. Thus, assuming that all the

above K
20

� �
possibilities are realized, by selecting three

oligos we select K�3
17

� �
different mRNAs. Here are some

simple numerical examples.

• Distribute 21 oligos among 21 mRNAs (20 oligos/

mRNA) so that each mRNA is identified by which

oligo it does not contain. By specifying three oligos,

any of the possible 21
3

� �
¼ 21

18

� �
¼ 1330 combinations of

18 mRNAS can then be selected. Here, we have only

relatively few different mRNAs. Of course, one can

take these as the core and amplify the scheme by

adding other mRNAs that share some of their oligo-

motifs with this core, but not all of them. One could

also consider other cores with completely disjoint

collections of oligomotifs, in situations where non-

overlapping combinations of mRNAs are to be selected

according to physiological circumstances and cellular

requirements.

• Distribute 23 oligos among 23
3

� �
¼ 1771 mRNAs (20

oligos/mRNA) so that each mRNA is identified by

which three oligos it does not contain. By specifying

three oligos, any of the possible 23
3

� �
¼ 23

20

� �
¼ 1771

combinations of 20
3

� �
¼ 1140 mRNAS can be selected.

Here, the collection of selected mRNAs is perhaps

somewhat large.

• Distribute 22 oligos among 22
2

� �
¼ 231 mRNAs (20

oligos/mRNA) so that each mRNA is identified by

which two oligos it does not contain. By specifying

three oligos, any of the possible 22
3

� �
¼ 22

19

� �
¼ 1440

combinations of 19
2

� �
¼ 171 mRNAS can be selected.

Here, we select sets of mRNAs of reasonable size.

In any case, the preceding numerical examples indicate

that the number of RNA-binding proteins, about 3,000, is

far larger than what is required by the combinatorial

scheme described. Of course, the scheme can be refined,

and that might need some more proteins. We also observe

that when an oligo is contained in a coding sequence, then,

when a collection of mRNAs containing that specific oligo

is selected for translation, all these mRNAs contain the

same piece of coding sequence and hence produce poly-

peptides that share some short amino acid sequence. Thus,

the scheme can ensure the selection of combinations of

related polypeptides. More generally, the combinatorics of

RNA–protein interactions could also implement some
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hierarchical ordering of sets of related genes. A first oligo

identifies a general group, and the second and third one

then determine more specific subgroups.

The genons provide the operation sites for ensembles of

transgenons, selected out of local holo-transgenons, to

select specific sets of genes. These sets are determined by

the combinatorics of the oligomotifs, that is, by the genons,

as demonstrated in the above example. Which set is

selected then is decided by the operation of transgenons.

The coordinated activation of specific genes is needed

both to achieve a particular state of the cell and to maintain

and stabilize that state under fluctuating external condi-

tions. Thus, part of the information needed here is about the

identity of those different states, that is, which particular

state is selected from the available ensemble of states. That

part of the information can therefore be quantified in terms

of that ensemble. Another part of the information is utilized

to stabilize the cell state against external fluctuations.

According to Ashby’s law of requisite variety [3], the

internal variety of the system needs to be at least as large as

the entropy of the external perturbations, ito compensate

for them internally. That part of the information therefore

is not visible in the collection of activated genes, but rather

used up for that compensation of fluctuations in external

conditions. For instance, the relative concentration of fac-

tors comprising the transgenon could play a role here.

The combinatorial model discussed here was built

around globin mRNAs. In particular, for other mRNAs,

according to their overall length, we might have more or

\20 oligomotifs that constitute binding sites for regulatory

proteins. The essential principle of our model, however,

remains unaffected by this variation of the actual numbers.

In addition to the combinatorics of the selection of

specific sets of genes, the binding between RNAs and

proteins may also have some role for protein–protein

interactions. An RNA could function as a scaffold that

brings specific proteins that attach to its oligomotifs toge-

ther so that they find each other and can interact within a

higher order complex.

The information contained in the sequential arrangement

of oligomotifs present is reduced by processing in the

course of gene expression. This information needs to be

complemented by decision-making information from out-

side the mRNA in question. This refers to coregulation and

here finer distinctions are needed. The essential decision-

making process is hence based on the combination of trans-

acting factors present in a given cell compartment, a cell, a

cell lineage or organism, from which a specific (pre-)genon

picks up specific factors. The calculation of the corre-

sponding information present is an arduous undertaking,

since the factors involved are contributed by various

sources: the genome of the specific cell or else the genome

at large to the extent that various cells may contribute

external factors to a given cell, as cytokines, etc.; further-

more, there are factors picked up from the outside of the

organism in a given environment. A major ensemble of

factors involved, but neglected here, are regulatory RNAs

acting within the frame of RNAi, which, again, may be

produced inside a cell compartment—nucleus or cyto-

plasm—or be channelled into a cell from the physiological

environment. Here, however, we have confined our con-

siderations to regulative factors of protein nature contrib-

uted by the genome. We have neglected factors from the

exo-system, like organic and inorganic compounds as

vitamins and hormones on one hand, and metals and other

inorganic ions on the other, which act, in general, indirectly

via interaction with regulatory proteins or enzymes present

in a cell. Furthermore, there are physical factors as tem-

perature, the presence or absence of light, etc.

We must stress, however, that the main information for

decision making in gene expression must be given by the

availability, the activity and the concentration of regulative

factors in a given cell, at a given time and in a specific

physiological situation.

Pathways of gene expression

In this section, we shall analyze and estimate the regulative

information gained on a single gene expression pathway

independently of the rest of the cell, and in particular

without considering its interactions with other expression

pathways. The network aspects then remain to be worked

out in future work.

In order to put the sequel into perspective, we start with

a general consideration. As a numerical example, when we

assume m steps of regulation and when at each step we

choose 1 out of 100 & 27 possibilities, we gain informa-

tion of 7m bits. For example, m = 10 would yield 70 bits.

Both these figures, that is, the number of steps and the

selectivity at each step, are within a biochemically realistic

range. Thus, this figure provides a rough estimate against

which we can now compare the figure obtained from more

detailed biochemical knowledge. In contrast to the previous

sections, we are in a position to provide a more or less

realistic estimate, and we can then assess the discrepancy

between the rough bound and the precise estimate.

In fact, there are two conceptually different schemes of

accounting for regulative information, and the comparison

of the different results may lead to insight into the func-

tional role and effect of gene regulation. On one hand, we

can investigate when, where and between how many

alternatives decisions are taken, like whether or not to

process further some transcript, or choosing between dif-

ferent possible splicing. We would then simply add the bits

from the individual decisions that are taken during the
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cascade of gene regulation. On the other hand, we can look

at the final effects, that is, whether from a genomic domain

a specific product, or which one of several products, is

produced in the end. The amount of information computed

that way will generally be smaller than the one from the

first scheme, simply because several different decisions at

different stages may in the end nevertheless lead to the

same end result. Below, we shall discuss that difference in

terms of Ashby’s law of requisite variety, but for the

moment we proceed to the accounting.

We refer to the steps in the cascade of regulation as

outlined above in Chapter 3.3. We shall estimate the values

of the probabilities to be inserted into our formula (3.3), to

obtain a specific numerical value for the information pro-

vided or gained during the regulation of a single pathway.

Our first accounting scheme evaluates the principal steps of

decision, considering repression as the default state (note

that these estimations concern one single genomic domain)

0. Probability p00 = 1/5 for chromatin remaining inac-

tive; p01 = 4/5 selected to be activated. This decision

yields -(1/5log1/5 ? 4/5log4/5) & 0.72 bits accord-

ing to formula (3.3).

1. Probabilities p10 = 2/5 that a genomic domain is not

transcribed and q11 = 3/5 that it is transcribed.3 This

decision yields -(2/5log2/5 ? 3/5log3/5) & 0.97 bits

according to formula 3.3.

2. Probabilities p20 = 1/3 that a transcribed genomic

domain is not processed into a final product during the

life of the cell and p21 = 2/3 that it is. Yields &0.92

bits.

3. In fact, this can be further refined by breaking down

the life cycle of a cell into specific instances and,

taking into account that even if intermediate process-

ing steps are carried out, it may not necessarily lead to

a final product. We assume that when such a

transcribed domain is to be processed at a given

instance, it is not carried out with probability p30 = 9/

10, while processing does take place at that given

instance has p31 = 1/10. Therefore, at each instance

the decision yields &0.47 bits. The question then is

how many independent such instances we have. When

their number is k, the total amount then is &0.47k. We

need to compare this with 2., i.e., relate the 9/10 of the

present step to the 1/3 of 2. Since (9/10)10.43 & 1/3

(that is, after carrying out a bit more than ten steps with

probability 9/10 each, we end up with a probability of

1/3), we might assume that we have about k = 10 such

instances, or, with some more numerical precision,

10.43 9 0.47 & 4.9 bits, in place of the 0.97 bits of 2.

4. Splicing into one of five possible mRNAs. In the

absence of more detailed information, the probabilities

for these mRNAs are assumed to be equal: p41 ¼
. . . ¼ p45 ¼ 1=5: This yields -log(1/5) & 2.32 bits.

5. Probability p50 = 4/5 that these mRNAs then are not

translated at a given instance (cumulative for all five

mRNAs), and p51 ¼ . . . ¼ p55 ¼ 1=5 for a genomic

domain to lead to a specific RNA that then is translated

into a polypeptide. The decision for each such mRNA

then accounts for &0.72 bits, that is, altogether

&5 9 0.72 = 3.6 bits

Taking the results of 0., 1., 3., 4., 5. together then yields

for each geonomic domain

Idecision � 12:5 bits. ð13Þ

This number then quantifies the amount of decision taken

during the cascade of regulation in terms of the probabil-

ities of the outcomes of the individual decision steps for a

single domain possibly producing some final product. One

reason that this figure is relatively small is that the prob-

abilities at the different steps are not equal. For example, at

a given instance, it is much more likely that a transcript is

not processed than that it is. In formal terms, the choice

between two alternatives with unequal probabilities yields

\1 bit of information, and in particular, when one of these

probabilities is very small, the information also becomes

very small, as explained in Sect. 2.

Returning to the analysis on which 13 is based, we

should also consider more detailed biochemical distinc-

tions, for example at DNA level methylation, and

furthermore, at chromatin level, histone acetylation, phos-

phorylation, etc., or their absence, but for the moment we

keep the above figure of &12.5, though this may severly

underestimate the complexity of the decision process. In

contrast to the preceding, we shall now analyze these steps

in terms of the effects on the final result, that is, whether a

genomic domain leads to some functional product or not

and more precisely to which of several possible ones it

might lead.

0. Probability q00 = 1/5 for chromatin remaining inactive

and q01 = 4/5 for it being activated eventually.

1. Probabilities q10 = 2/5 9 4/5 = 8/25 that a genomic

domain is not transcribed and q11 = 3/5 9 4/5 = 12/

25 that it is transcribed from the activated chromatin.

2. Probabilities q20 = 1/3 9 3/5 9 4/5 = 4/25 that a

genomic domain is transcribed, but the transcript not

processed to mRNA during the life of the cell and

q21 = 2/3 9 3/5 9 4/5 = 8/25 that the transcript is

also processed. In this step, 2 out of 3 of the transcripts

are processed. The corresponding probability 2/3 is

then multiplied with the previous probability 3/5 for

transcription of a domain, to obtain the probability that3 Recall that in step 1, 3 out of 5 domains were transcribed.
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a domain is not only transcribed, but that the transcript

is also processed.

3. Probabilities q30 = 9/10 9 2/3 9 3/5 9 4/5 = 36/

125 that this processing does not take place at a given

instance and q31 = 1/10 9 2/3 9 3/5 9 4/5 = 4/125

that it does.

4. Probabilities q41 ¼ . . . ¼ q45 ¼ 1=5� 1=10� 2=3�
3=5� 4=5 ¼ 4=625 for a genomic domain after tran-

scription and processing leading to one of five possible

mRNAs through alternative splicing (with the proba-

bilities for these mRNAs assumed to be equal, as

before).

5. Probabilities q50 = 4/5 9 1/10 9 2/3 9 3/5 9 4/

5 = 16/625 that these mRNAs then are not translated

(cumulative for all five mRNAs), q51 ¼ . . . ¼ q55 ¼
1=5� 1=5� 1=10� 2=3� 3=5� 4=5 ¼ 4=3125 for a

genomic domain to lead to a specific RNA that then is

translated into a polypeptide.

Thus, according to formula (3.3), in terms of its selec-

tion between different possible results, we can quantify the

information provided by the genon as

I ¼ � q00 log q00 þ q10 log q10 þ q20 log q20 þ q30 log q30

 

þ
X5

j¼1

q4j log q4j þ 5q50 log q50 þ
X5

j¼1

q5j log q5j

!

¼ ð1=5 logð5Þ þ 8=25 logð25=8Þ þ 4=25 logð25=4Þ
þ 36=125 logð125=36Þ
þ 4=125 logð125=4Þ þ 5� 16=625 logð625=16Þ
þ 5� 4=3125 logð3125=4ÞÞ � 2:8 ð14Þ

(not activated, not transcribed, not processed at all, not

processed at given time, not translated or translated into a

polypeptide from one out of five possible mRNAs that can

be created by alternative splicing). Of course, this low

figure arises because we are considering here a single

genomic domain, whereas about 10,000 are transcribed at a

given time in a given cell. In fact, what is essential is not

the uncoordinated regulation of these genomic domains in

parallel, but the coordinated regulation of specific subsets

as we emphasize throughout this paper. This is because on

one hand the choice of oligomotifs to constitute a pregenon

is already determined by the primary DNA sequence,

whereas, on the other, the essential regulatory decision is at

the level of the composition of the transgenon, as will be

detailed below.

From the perspective of information theory (Sect. 2), we

have analyzed here the situation where the proto-, pre-, and

the genon in cis, according to the various terms in (14), are

considered as the receivers, and the events are specific

transgenon factors that, for instance, induce or remove the

processing inhibition. When, conversely, we consider the

genon as the sender and the transgenon as the receiver, we

are rather in the situation of Sect. 5.3, where we have

discussed the coordinated regulation and expression of

specific combinations of genes and the numbers given there

apply.

We should point out already at this stage that the figure

of Eqs. (13) or (14) does not capture the essential contri-

bution of the genon. First of all, the combinatorics of oli-

gomotif choice as described above (Sect. 5.3) underlying

the regulation steps is based on more alternatives than the

ones accounted for in the above steps, but many such

decisions about the selection of 3-tuples of oligomotifs

allowing for the unambiguous identification of an mRNA

lead to the same result, and only those results enter into the

computation presented here. More importantly, the essen-

tial question is not what is happening to a specific genomic

domain, but rather which combinations of genes are

simultaneously activated at a given time. For the latter, the

required information is much larger, as described above in

Sect. 5.3.

In any case, even if we confine our analysis to a single

domain, this rather low figure of 2.8 bits does not contain

the information about the number of identical polypeptides

(or other functional products) derived from the genomic

domain in question. This might be of the order of 217 or

218, so that we should add 17 or 18 to the above quantity

I to obtain a total value

Igenon � 20: ð15Þ

Analogously, we can increase the number given in 13 in

that manner to obtain

Idecision � 29 bits. ð16Þ

Again, the contribution of 17 or 18 from the polypeptide

numbers seems to be an overestimate, insofar as the

number of polypeptides produced need not be so precise;

what is needed is an amount of polypeptides within a

certain range, say within 10 % of some value. We recall,

however, that in contrast (13) was an underestimate, so that

it is not so clear whether (16) is too large or too small.

In any case, when we compare product and regulative

information, we see that (15) and (16) are quite small in

comparison with the sequence information (7) that refers to

the possible products that a sequence could code for. In the

absence of further specifications, that is, when we assume

all amino acid sequences to be of the same length, and to be

equally likely to occur, (7) then also gives the ensemble

information for all such sequences of that length (assumed

to be 300 in the above). Of course, when we look at the

larger ensemble of amino acid sequences within the typical

length range 50–2,000, the ensemble entropy becomes

even larger. On the other hand, if we only consider the
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ensemble of polypeptides present in the cell under con-

sideration, we have perhaps 216 different types, leading,

when equidistributed, to an entropy of 16. We have a total

number of perhaps 230, giving another contribution of 30

bits, that is, altogether 36 bits, which is of a magnitude

comparable to (15) or (16).

Also, the preceding does not take the information about

when and where some polypeptide is produced into

account. For instance, in muscle cells, there may be about

500-1,000 different locations for the synthesis and

assembly of specific proteins, contributing a spatial infor-

mation of 9-10 bits. The relevant temporal resolution is

perhaps more difficult to assess. This aspect is nevertheless

very important. The timing within the lifespan of a cell or

an organism, i.e., a physiological situation, is what matters

for what products should be produced in which quantities.

What is critical is not the overall regulation, but the reg-

ulative setting at a given time in a specific cell, possibly

waiting for the next setting. This is, unfortunately, not

reflected in our above figures.

Conclusion

We have seen that on one hand the cascade of regulation

leads to a loss of information from a sequence at the DNA

level to the functional product emerging from it. On the

other hand, specific information is gained through the

contributions of factors from trans that determine the dif-

ferent types of functional products produced from one and

the same sequence at the DNA level and the numbers of

these products. Thus, according to the preceding consid-

erations and calculations, at the end of the cascade of

regulation, less information can be extracted than at its

beginning. This reduction of information is more drastic

than the one caused by the degeneracy of the genetic code,

that is, several triplets can code for the same amino acid.

This can be quantified in two different ways:

1. The regulatory elements of the genon in cis as well as

the trans elements derived from the DNA are also

encoded as collections of sequences of base pairs (the

oligomotifs), and we can evaluate the corresponding

sequence information for a 900 nt long mRNA. This

should be of a magnitude comparable to the product

information of about 1,800 bits according to (4).

2. As discussed in 5, the genon in cis selects specific

proteins that bind to the mRNA to form RNP

complexes. We have estimated the total contribution

as &250 bits for a given genon (noting, however, that

the relevant mRNA binding proteins regulate many

genes simultaneously). Likewise, the contribution of

the pregenon at the RNA level, as well as the

protogenon at the DNA level through the selection of

DNA binding regulatory elements can be estimated.

Altogether, this contributes the information for a given

pathway.

Thus, we have a specific sequence of nucleotides (the

oligomotifs) underlying the genon in cis and we have

specific operations selecting binding proteins that lead to

specific products selected out of the possibilities inherent in

the genomic domain. In that order, the information encoded

in the DNA decreases. For the genomic domain, however,

we see an increase of information through the specification

of its end product out of the various possibilities. This

increase is much smaller than the above decrease.

In [31], we have interpreted this phenomenon in terms

of Ashby’s law of requisite variety. Ashby’s law is con-

cerned with stable regulation in the presence of external

perturbations, and it says that the internal variety of the

control must be at least as great as the external variety of

disturbances to be compensated. Control reduces variety, in

contrast to information transmission that conserves variety.

In other words, there are positive external signals that

should lead to responses of the cell, that is, specific state

changes, and there are external disturbances that should not

lead to changes of the internal state of the cell. We then

interpret the difference between the sequence or process

information on one hand and the pathway information on

the other hand as the reduction in variety the cell needs to

provide for compensating external disturbances and main-

taining a stable function in the presence of such distur-

bances. For instance, if the cell produces a particular

polypeptide when some external variable, like the tem-

perature, exceeds some threshold, then the decision

involves one bit of information (on/off) in response to one

external bit of information (temperature above/below

threshold). The concrete numbers we have provided here

then allow for an estimate of the amount of compensation

of external variety that the cell is capable of. In fact, some

of this is contained in the difference between the quantity

Idecision of (16) and the value of Igenon of (15). However,

there are other compensation mechanisms not visible in the

decision processes during the cascade of regulation, but for

instance more generally represented in the protein com-

position of a cell and therefore in information theoretic

terms hidden in the sequence information of the different

polypeptides.

The essential conclusion of the present paper is that it is

possible to try to evaluate quantitatively some of the con-

trol mechanisms of gene expression that are necessary

because genes are not regulated individually. The funda-

mental aspect of eukaryotic gene regulation is the coordi-

nated activation of specific sets of genes, which is basically

governed by the sequential arrangement of oligomotifs in
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the sequence of a genon and their selection by a transge-

non. We have identified and quantified a combinatorial

scheme of RNA–protein interactions underlying this

coordinated regulation. However, the basic biochemical

rules underlying the code of definition and selection of

oligomotifs are not yet known (there should be a specific

number of such oligos, substantially smaller than the

combinatorial possibilities for 15–50 nucleotides and most

likely varying among species and therefore not as universal

as the genetic code). An example might be the recent

proposition of a ‘‘splicing code’’ [5]. Furthermore, the

mechanism of regulation by RNA–RNA interactions,

which probably is at least as important in this regard, had to

be left to a future investigation.
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