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Abstract We provide a fresh look at the problem of

exploration in reinforcement learning, drawing on ideas

from information theory. First, we show that Boltzmann-

style exploration, one of the main exploration methods

used in reinforcement learning, is optimal from an infor-

mation-theoretic point of view, in that it optimally trades

expected return for the coding cost of the policy. Second,

we address the problem of curiosity-driven learning. We

propose that, in addition to maximizing the expected

return, a learner should choose a policy that also maxi-

mizes the learner’s predictive power. This makes the world

both interesting and exploitable. Optimal policies then

have the form of Boltzmann-style exploration with a bonus,

containing a novel exploration–exploitation trade-off

which emerges naturally from the proposed optimization

principle. Importantly, this exploration–exploitation trade-

off persists in the optimal deterministic policy, i.e., when

there is no exploration due to randomness. As a result,

exploration is understood as an emerging behavior that

optimizes information gain, rather than being modeled as

pure randomization of action choices.

Keywords Reinforcement learning �
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Motivation

The problem of optimal decision making under uncertainty

is crucial to both animals and artificial intelligent agents.

Reinforcement learning (RL) addresses this problem by

proposing that agents should choose actions that maximize

an expected long-term return provided by the environment

(Sutton and Barto 1998). To achieve this goal, an agent has

to explore its environment, while at the same time

exploiting the knowledge it currently has in order to

achieve good returns. In many existing algorithms, this

trade-off is achieved mainly through simple randomization

of the action choices. Practical implementations rely

heavily on heuristics, only few theoretically principled

approaches exist (see Sect. 5 for a more detailed discus-

sion). In this article, we look at the exploration–exploita-

tion trade-off from a fresh perspective: we use information-

theoretic methods to analyze an existing exploration

method, and to propose a new one.

Recently, an information-theoretic framework for

behavioral learning has been introduced by one of us (Still

2009), which we use here to tackle reward-driven behav-

ioral learning. First, we propose an intuitive optimality

criterion for exploration policies which includes both the

reward received, as well as the complexity of the policy.

Having a simple policy is not usually a stated goal in

reinforcement learning, but it is desirable for bounded-

rationality agents, and it is especially useful in the context

of developmental agents, which should evolve increasingly

complex strategies as they get more experience, and as

their knowledge of the environment becomes more

sophisticated. We show in Sect. 2 that the general solution

of the proposed optimization problem is a Boltzmann-style

exploration algorithm. This approach is closely related to

rate distortion theory (Shannon 1948), which is based on
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the fact that approximating a true signal using a com-

pressed representation will cause a loss, computed as the

expected value of a distortion function. The choice of the

distortion function implicitly provides the distinction of

relevant and irrelevant features of the data. Here, the trade-

off is between the return, on the one hand, and the average

bit cost of the policy, on the other hand. This trade-off

is controlled by a ‘‘temperature’’-like parameter1. At high

temperatures, simplicity is more important than return. As

the temperature decreases, return becomes increasingly

important and the policy goes to the optimal-return policy

as the temperature goes to zero.

Animals often explore their environment not only to

gather rewards, but also just for the sake of learning about

it. Continuous learning is also useful in the context of

reinforcement learning, because the reward structure of the

environment may change over time, and the agent may

need to adapt to this change. Hence, it is advantageous to

know more about the environment than what is strictly

necessary in order to maximize the long-term return under

the current conditions. Similar arguments have been pre-

sented in Singh et al. (2005) and Still (2009) as well as in

many papers on transfer of knowledge in reinforcement

learning (see Taylor and Stone 2009, for a survey).

In Sect. 3, we formalize this idea, building on previous

work (Still 2009). We seek behavioral policies that maxi-

mize future return, while at the same time maximizing

predictive power, which we measure by the information

captured about the future. Our objective function also

contains a term which ensures that the agent continues to

prefer simple policies. This term penalizes behaviors for

retaining more memory about the past than is necessary to

predict the future and to maximize the expected reward. As

a consequence, it ensures that undesirable repetitive

behaviors are avoided. We show that the resulting optimal

policy contains a trade-off between exploration and

exploitation which emerges naturally from the optimization

principle.

The article is structured as follows. In Sect. 2, we lay the

information-theoretic foundation of exploration for a rein-

forcement learning agent, whose main goal is to optimize

long-term returns. Next, we formulate the problem of

curiosity-driven reinforcement learning and solve it using a

similar principle, including the maximization of predictive

power (Sect. 3). Finally, we discuss algorithmic imple-

mentation issues in Sect. 4, and close with a discussion of

the relationship of our approach to classical and current

work in RL in Sect. 5.

Information-theoretic approach to exploration

in reinforcement learning

We consider the standard RL scenario (Sutton and Barto

1998) in which an agent is interacting with an environment

on a discrete time scale. At each time step t, the agent

observes the state of the environment, xt 2 X and takes an

action at 2 A: In response to its action, the agent receives

an immediate (extrinsic) reward, rt?1 and the environment

changes to a new state xt?1. We assume that the environ-

ment is Markovian. The reward is expressed as rt?1 =

R(xt, at), where R : X� A! R is the reward function. The

next state xt?1 is drawn from the distribution p(Xt?1|xt, at)
2.

Together, the reward function and the state transition dis-

tributions constitute the model of the environment. A way

of behaving, called a policy, p : X� A! ½0; 1� is a prob-

ability distribution over actions, given the state. Each

policy has an action-value function associated with it:

Qpðx; aÞ ¼ Ep rtþ1 þ crtþ2 þ c2rtþ3 þ � � � jXt ¼ x;At ¼ a
� �

;

ð1Þ

where c 2 ð0; 1Þ is a discount factor expressing the fact that

later rewards should be emphasized less. The interpretation

of this value function is that the agent starts in state

x, chooses a as its first action and thereafter chooses

actions according to p. The goal of a reinforcement

learning agent is to find a policy that maximizes the value

function for all state-action pairs. In a finite Markov

decision process (MDP), there is always at least one

deterministic policy that achieves this goal, and many

methods can be used to find such a policy, e.g. Q-learning

(Watkins 1989). A comprehensive review of methods can

be found in Sutton and Barto (1998). In some situations,

e.g. when the state space X is too large and value functions

cannot be represented exactly, policies are compared with

respect to a starting state distribution, p0(X). Then, the goal

is to maximize the expected return:

Vp ¼
X

x2X

X

a2A

p0ðxÞpðajxÞQpðx; aÞ ð2Þ

The advantage of using this criterion is that it allows a

policy to be characterized by a single number, and offers a

clear ordering of policies. Then, the optimal policy for the

MDP maximizes Vp; for example, for the uniform starting

distribution.

Suppose that we had a set of policies that all produce the

same expected return. Which policy should be preferred?

If one is to implement the policy on a real system, e.g. a

1 We will refer to this parameter as the temperature in the rest of the

article. One has to keep in mind that this is a metaphor, not a physical

temperature.

2 Here and throughout, we use capital letters to denote random

variables, and small letters to denote particular realizations of these

variables.
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robot, then it is reasonable to prefer the simplest policy,

i.e. the policy that can be specified with the smallest

number of bits. To make this precise, let us reinterpret the

meaning of a policy. The action can be viewed as a sum-

mary of the state of the environment. Therefore, mapping

states onto actions can be viewed as lossy compression. If a

large group of states share the same optimal action, then

that action can be viewed as a compressed representation

for this ‘‘class’’ of states, a representation which is suffi-

cient from the point of view of attaining a desired level of

return.

In order to formalize this intuition, we revisit rate dis-

tortion theory, introduced by Shannon (1948). Rate distor-

tion theory measures the cost of approximating a signal Z by

a signal Y, using the expected value of some distortion

function, d(Z, Y). This distortion measure can, but need not,

be a metric. Lossy compression is achieved by assigning Z to

Y via the probabilistic map PðY jzÞ, such that the mutual

information:

IðZ; YÞ ¼
X

z2XZ

X

y2XY

Pðz; yÞ log2

Pðz; yÞ
PðzÞPðyÞ

� �

¼
X

z2XZ

X

y2XY

PðyjzÞPðzÞ log2

PðyjzÞ
PðyÞ

� �
ð3Þ

is minimized. The minimization is constrained by fixing

the expected distortion
P

z2XZ

P
y2XY

Pðz; yÞdðz; yÞ: In

other words, recalling the meaning of information in terms

of the rate of bit-flow, among the representations with the

same quality, the most compact one will be preferred.

Now, let us interpret return as a function that measures

quality, rather than distortion. The action is interpreded as a

lossy summary of the state; hence, among the policies with

the same return, we want to find the most compact one.

Considering a set of policies that achieve a fixed average

return Vp, we can express this idea through the following

optimization problem:

min
p

IpðA;XÞ

subject to: Vp ¼ const:
X

a2A

pðajxÞ ¼ 1; 8x 2 X

pðajxÞ� 0; 8x 2 X; 8a 2 A

ð4Þ

Here, p is the policy we seek, which can be viewed as a

probabilistic assignment of states to actions. The second

constraint ensures normalization, and the third ensures

positivity of the probability function. The average return

related to policy p, Vp, is defined in Eq. (2). The term

Ip(A, X) denotes the information that the action A carries

about the state X under policy p, where the joint

distribution is given by p(X, A) = p(A|X)pp(X):

IpðA;XÞ ¼
X

x2X

X

a2A

pðajxÞppðxÞ log
pðajxÞ
ppðaÞ

� �
: ð5Þ

Note that Ip(A, X) depends also on the stationary distribu-

tion of states under policy p, pp(X) (which we assume

exists, as is standard in RL), and on the average action

probability, ppðAÞ ¼
P

x2X ppðxÞpðAjxÞ:
This optimization problem is complex, because of the

dependence on the stationary distribution, which in general

is unknown (though computable) and which changes as the

policy p evolves during learning. A standard approach for

changing the policy in reinforcement learning is to assume

that we fix the policy p, compute its return, but then we

consider a small perturbation around it at a given time step

t. Let Vt
p(q) be the expected return if the agent acts

according to policy p on all time steps, except on time step

t, when it chooses its action according to a different action

distribution q:

Vp
t ðqÞ ¼

X

x0a0...xt ;at

p0ðx0Þ
Yt�1

j¼0

pðajjxjÞpðxjþ1jxj; ajÞ
 !

qðatjxtÞ

�
Xt�1

i¼0

ciRðxi; aiÞ þ ctQpðxt; atÞ
" #

ð6Þ

where q(at|xt) is the new probability of choosing action at

from the state xt, which we seek. Let Ip
q ðAt;XtÞ denote the

information that the action At carries about the state Xt:

Ip
q ðAt;XtÞ ¼

X

x2X

X

a2A

qðajxÞpp
t ðxÞ log

qðajxÞ
pp

t ðaÞ

� �
; ð7Þ

where x and a range over the possible values of random

variables Xt and At, pt
p(x) is the probability of arriving at

state x on time step t if the agent starts with a state drawn

from p0 and chooses actions according to p:

pp
t ðxÞ ¼ ppðXt ¼ xÞ
¼

X

x0a0...xt�1at�1

p0ðx0Þpða0jx0Þpðx1jx0;a0Þ. . .pðat�1jxt�1Þ

� pðXt ¼ xjxt�1;at�1Þ; ð8Þ

and pp
t ðaÞ ¼ ppðAt ¼ aÞ ¼

P
x2X pp

t ðxÞqðAt ¼ ajxÞ:
Now, the optimization problem can be written as:

min
q

Ip
q ðAt;XtÞ

subject to: Vp
t ðqÞ ¼ const:
X

a2A

qðajxÞ ¼ 1; 8x 2 X

qðajxÞ� 0; 8x 2 X; 8a 2 A:

ð9Þ

This optimization problem has a dual form, where we

maximize the average return under the constraint that the

‘‘size’’ of the policy is kept constant. Note that this is
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mathematically equivalent, but constitutes a potentially

useful way to think about agents with limited

computational capacity (e.g., robots with limited on-

board computation). In this case, one may just want to

find the best policy which still fits on the available physical

system. Similar capacity constraints may apply to animals.

The dual form is the following:

max
q

Vp
t ðqÞ

subject to: Ip
q ðAt;XtÞ ¼ const:
X

a2A

qðajxÞ ¼ 1; 8x 2 X;

qðajxÞ� 0; 8x 2 X; 8a 2 A:

ð10Þ

A similar cost function was given by Bagnell and

Schneider (2003), as well as Peters and Schaal (2008); they

used a linearization to compute a better type of policy

gradient update.

We can now rewrite the constrained optimization prin-

ciple, using the Lagrange multipliers k and lðxÞ :

max
q

F½q�; ð11Þ

with: F½q� ¼ Vp
t ðqÞ � kIp

q ðAt;XtÞ þ
X

x2X

lðxÞ
X

a2A

qðajxÞ;

ð12Þ

where we have dropped irrelevant constants. The objective

function, F[q], is a functional of the policy q. The solution

is obtained by setting the variation of F to zero which leads

to the optimal policy

qoptðAt ¼ ajXt ¼ xÞ ¼ pp
t ðaÞ

ZðxÞ e
1
k Qpðx; aÞ

¼ 1

ZðxÞ e
1
k Qpðx; aÞþ log pp

t ðaÞ½ �; 8x 2 X; a 2 A ð13Þ

which has to be solved self-consistently, together with:

pp
t ðaÞ ¼

X

x2X

qoptðajxÞpp
t ðxÞ; 8a 2 A ð14Þ

The partition function ZðxÞ ¼
P

a2A pp
t ðaÞe

1
kQ

pðx;aÞ ensures

normalization. This solution, Eq. (13) is similar to Boltz-

mann exploration, also known as softmax action selection

(Sutton and Barto 1998). The difference is that here, we

have an additional ‘‘complexity penalty,’’ log½pp
t ðaÞ�: We

note that by a similar calculation, if one tries to optimize

the return at a fixed level of (Shannon) entropy, then one

recovers exactly Boltzmann exploration. This follows

immediately from the results in Rose (1998), and the

arguments presented in Jaynes (1957). In contrast, here we

penalize explicitly for the complexity of the policy, mea-

sured by the coding cost. The result is that there is a penalty

for using more actions than necessary. This is useful not

only when the agent has limited computational capacity,

but also when the action space is very large (for example,

in combinatorial optimization or inventory control prob-

lems). In this case, Eq. (13) may force the agent to use only

a subset of the entire action space, which makes the

learning task easier. The policy update in Eq. (13) appears

also related to the ones suggested in references (Azar and

Kappen 2010; Peters et al. 2010) despite their different

roots.

This Boltzmann-style softening of the policy optimally

trades the complexity of the policy for average return. The

trade-off is governed by the temperature-like parameter k;
and exploration takes place due to fluctuations only at non-

zero temperature, when emphasis is put on the compactness

of the policy. As k tends to zero, the information minimi-

zation constraint in Eq. (12) becomes less relevant, and in

the limit, the optimal policy becomes deterministic if there

are no degeneracies.3 The optimal action then becomes:

aoptðxÞ ¼ arg max
a

Qpðx; aÞ½ �; ð15Þ

i.e. the action is chosen to maximize return. In this

framework, explorative behavior is driven by randomness,

the level of which is controlled by k.

Curiosity-driven reinforcement learning

Intuitively, exploration should be driven by the curiosity to

visit unknown areas of the state space of the coupled

world-agent system. However, the theory we have laid out

thus far is lacking any notion of curiosity. Apart from the

coding rate constraint, the agent is just maximizing the

return, as defined based on external rewards received from

the environment.

In this section, we present a formalization of curiosity

based on information-theoretic principles, drawing on ideas

from Still (2009), where one of us has postulated that the

main goal of a curious agent is to create for itself a world

that is interesting. This is quantified by means of the pre-

dictive power that the agent’s behavior carries, as defined

by Still (2009). In the present context of a fully observable

Markovian environment, the agent’s sensations directly

correspond to the state of the world, and predictive power

simplifies to the mutual information carried by the action

and the current state of the environment about the future

state of the environment, I[{At, Xt}; Xt?1].

Our goal then becomes to find the policy that maximizes

predictive power together with expected return. We note

that this is also important in extensions to partially obser-

vable MDPs (POMDPs), in which the exact state of the

environment is unknown. Maximizing predictive power is

3 If there are N actions that maximize Qp(x, a), then those occur with

probability 1/N, while all other actions occur with probability 0.
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highly desirable in this setting, because it means that the

agent is able to predict well its future sensation given the

past data. An extension of the work in this section to the

POMDP setting is possible, because the general framework

(Still 2009) does not assume that the environment is fully

observable.

Predictive information, defined as the mutual information

shared between the past and the future of a time series,

measures temporal structure and is related to other measures

of complexity (Bialek et al. 2001; Crutchfield and Feldman

2001). This measure has shown up under other names in the

literature, such as ‘‘stored information’’ in Shaw (1984); see

also (Crutchfield and Feldman 2003) and references therein.

It provides a measure of how complex, surprising, or how

‘‘interesting,’’ a time series is. Intuitively, if a time series has

high predictive information, there will be data available for

learning about a variety of situations, and also about different

ways of behaving. Formally, by taking predictive power into

account, our objective becomes

max
q

~F½q�; ð16Þ

with: ~F½q� ¼ Ip
q ðfXt;Atg;Xtþ1Þ þ aVp

t ðqÞ
�kIp

q ðAt;XtÞ þ
X

x2X

lðxÞ
X

a2A

qðajxÞ: ð17Þ

where we have dropped irrelevant constants. Variation

of Ip
q ðfXt;Atg;Xtþ1Þ w.r.t. q, results in the additional

contribution

Dpðx; aÞ: ¼ DKL pðXtþ1jx; aÞkppðXtþ1Þ½ � ð18Þ

to the exponent in the solution. The Kullback-Leibler

divergence is defined as

DKL½p1ðXÞkp2ðXÞÞ� ¼
X

x

p1ðxÞ log
p1ðxÞ
p2ðxÞ

� �
; ð19Þ

and

ppðXtþ1¼ x0Þ ¼
X

a2A

X

x2X

pðXtþ1¼ x0jx;aÞqðajxÞpp
t ðxÞ;8x0 2X

ð20Þ

With the extra contribution (18), the optimal solution is

given by

qoptðAt¼ajXt¼xÞ¼pp
t ðaÞ

ZðxÞ e
1
k D

pðx;aÞþaQpðx;aÞð Þ; 8x2X;8a2A:

ð21Þ

The first term in the exponent of Eq. (21) drives the agent

toward exploration: the optimal action will maximize the

divergence between the distribution over the next state,

given the current state x and the action a, to the average

distribution over the next state. This means that the optimal

action policy will result in producing a next state with a

conditional probability distribution far from the average

distribution. The second term is the value maximization, as

before. The exponent in Eq. (21) thus represents a trade-off

between exploration and exploitation.

As k! 0; the chosen action becomes the one that

maximizes the functional in the exponent of Eq. (21):4

aoptðxÞ ¼ arg max
a
Dpðx; aÞ þ aQpðx; aÞ½ � ð22Þ

Importantly, the optimal action policy includes a trade-off

between exploration and exploitation, even when the policy

is deterministic. Recall that this is not the case for Boltz-

mann exploration, as we can see from comparison with

Eq. (15). There, the optimal action under a deterministic

policy maximizes only the return, subject possibly to size

constraints, and exploration arises only at nonzero tem-

perature, due to randomization.

The parameter a can be viewed as a measure of how

interested the agent is in obtaining a reward. For example,

if the reward is energy intake, then a could be set by

measuring the charge of a robot’s batteries, and would

represent how ‘‘hungry’’ the agent is.

Illustrations

To build some intuition about what this approach to curi-

osity-driven RL does, we consider two simple examples of

a world in which there are two states, x 2 f0; 1g; and

assume that a ¼ 0; so the optimal action becomes the one

that maximizes only the predictive power. All calculations

for this section can be found in the Appendix.

First, consider a continuous range of actions a 2 ½0; 1�:
Let the value of the action express how strongly the agent

tries to stay in the same state or leave it, such that a = 0

means that the agent wants to remain in the same state,

a = 1/2 means that the agent is ambivalent about staying

or leaving, and a = 1 means that the agent tries to switch

states. Let the Markovian transitions of the environment be

given by pð�xjx; aÞ ¼ a: Then, the optimal policy, Eq. (21),

chooses only those two actions which result in the largest

predictability, namely a = 0 and a = 1, and it chooses

between these two actions with equal probability. This

‘‘clever random’’ policy is an example of the balance

between control and exploration that was mentioned by

Still (2009). Note the difference to a random policy, which

would assign equal probability to all possible values of a.

As a second case, consider a two-state world in which

there are only two actions, STAY or FLIP, a 2 fs; fg; and

the transition probabilities are such that one state is com-

pletely reliable: p(0|0, s) = p(1|0, f) = 1, while the other

4 The assignment becomes deterministic if there are no degeneracies,

otherwise all those actions occur with equal probability, as in Sect. 2.
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state is completely unreliable p(0|1, s) = p(0|1, f) = 1/2.

This is a test for our information-theoretic objective: if we

are doing the right thing, then we should find that in the

absence of a reward (or the absence of an interest in a reward,

a = 0), the optimal curious policy will enable exploration of

the combined state-action space, which means that the

optimal policy should not stay in the more reliable state with

probability one, i.e., we should not find p(A = s|0) = 1.

Indeed, maximizing I½fXt;Atg; Xtþ1� results asymptotically in

the optimal policyp(A = s|0) = 3/4, which balances between

exploration and choosing a reliable state, i.e. control.

Algorithmic issues

The optimal solution consists of Eq. (21), which has to be

solved self-consistently, together with Eq. (20). Further-

more, the action-value function Q has to be estimated. In

this section, we discuss how this can be implemented in

practice.

We propose an implementation that is inspired by the

usual Boltzmann exploration algorithm. The algorithm

proceeds as follows:

1. Initialize t 0 and get initial state x0. Initialize

pðajxÞ; 8x 2 X; 8a 2 A (e.g., uniformly randomly) and

initialize the action-value function Q.

2. Repeat at every time step t

(a) Update ptðxÞ; 8x 2 X (the current estimate of the

state visitation distribution)

(b) Initialize qð0ÞðajxÞ; 8a 2 A; 8x 2 X

(c) Repeat the following updates, until the difference

between q(j) and q(j?1) is small:

pðjÞðaÞ  
X

x

qðjÞðajxÞptðxÞ; 8a 2 A ð23Þ

pðjÞðx0Þ  
X

x

X

a

pðx0ja; xÞqðjÞðajxÞptðxÞ;

8x0 2 X

ð24Þ

qðjþ1ÞðajxÞ pðjÞðaÞ
ZðjÞðxÞexp

1

k
Dpðx;aÞþaQðx;aÞð Þ

� �
;

8x2X;8a2A ð25Þ

Update p qðjþ1Þ

(d) Choose action at� pð�jxtÞ and obtain reward rt?1

and next state xt?1

(e) Update the action-value function estimates Q.

(f) t t þ 1

In this algorithm, step 2 (a) can be performed exactly by

using the true model and all the previous policies; the

update of the model is similar to the one in Eq. (24); we

note that this is exactly the same type of update used in the

forward algorithm in a hidden Markov model (HMM).

However, this computation can be expensive if the number

of states is large. As a result, in this case, we would use the

state samples xk, k B t, to estimate pt(x) approximately.

The initial value q(0)(a|x) is important, as it will influ-

ence the point to which iteration 2(c) converges (conver-

gence is guaranteed to a locally optimal solution). One can

start with the result of the previous iteration, under the

assumption that the policy will change fairly smoothly

from one time step to the next.

In principle, the action-value function Q should be

recomputed exactly at every step, using the known model

and the computed policy. This involves solving a system of

linear equations with jXj � jAj unknowns. While this may

be feasible for small environments, it is computationally

expensive for larger problems. In this case, the value

Q(xt, at) can instead be updated incrementally, using the

standard temporal-difference learning approach (i.e. a

learning rule like Sarsa or Q-learning; for details see Sutton

and Barto 1998). Intuitively, this approach should work

well if the policy changes slowly, because the action-value

function will only change around the current state xt.

Similarly, in order to save computation, the policy may be

recomputed only at xt, rather than at all states x 2 X; as

indicated in Eq. (25).

If the agent has no knowledge of the environment, then

it can use the samples received to fit an approximate model,

p̂ðXtþ1jxt; atÞ; and then use this model in the computation

above. The model, action values, and distributions of

interest can all be updated incrementally from samples. If a

batch of samples is gathered first and then we run the

algorithm above, we obtain an approach fairly close to

batch model-based reinforcement learning. If on every time

step t we update the model estimate p̂ðXtþ1jXt;AtÞ and

immediately use it in the policy computation, we obtain an

algorithm very close to incremental, model-free rein-

forcement learning. In general, the optimal policy can be

re-computed every T time steps, and the approximate

model can be improved using the T samples from the

intervening period.

The temperature-like parameter k determines how deter-

ministic the resulting policy is. There are different possi-

bilities for choosing this parameter. In the simplest case, the

parameter is fixed to a pre-specified value, for example

dictated by the capacity/memory constraints of a robot. This

selects a fixed trade-off between complexity and utility.

More generally, a process known as deterministic annealing

(Rose 1998) can be employed at every time step. It consists of

starting with a large temperature, running the iterative

algorithm until convergence, then lowering the temperature

by a factor (the annealing rate), and continuing this process,

until the policy is deterministic, always using the current

result as initial conditions for the iterations at the next
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(lower) temperature. This method obtains, at each time step,

the deterministic, optimal policy, according to the criterion.

The procedure is computationally intensive, but guarantees

that actions are always chosen in a way that maximizes the

optimization criterion, given that the annealing rate is suf-

ficiently slow. Finally, the temperature can be fixed during

each time step, but lowered as a function of time, kðtÞ; until it

approaches zero. This approach is preferable when the

agent’s knowledge about the world increases with time.

Methods such as the ones discussed by Still and Bialek

(2004) can be used to find (a bound on) kðtÞ: Finally, if a

complexity constraint is given by the design of the agent,

then this scheme can be modified to include a

kmin ¼ limt!1 kðtÞ:
If the algorithm is implemented using only exact com-

putations (i.e., the most computationally expensive version,

outlined above), it is guaranteed to converge to a locally

optimal solution for the proposed optimization criterion.

Convergence analysis for the case in which samples are

used incrementally is quite tricky and we leave it for future

work.

Related work

The textbook by Sutton and Barto (1998) summarizes

several randomization-based exploration approaches used

in reinforcement learning, such as Boltzmann exploration

and �-greedy (in which there is simply a fixed, small

probability of trying out actions which appear sub-opti-

mal). Many heuristic variations have been proposed, in

which bonuses are added to the value function to encourage

more efficient exploration (e.g. Thrun and Moeller 1992;

Ratitch and Precup 2003)

A different strategy, which yields interesting theoretical

results, is that of optimism in the face of uncertainty: if a

state has not been visited sufficiently for the agent to be

familiar with it, it is automatically considered good, so the

agent will be driven toward it. This ensures that an agent

will explore new areas of the state space. The first sample-

complexity results for reinforcement learning using this

idea were provided by Kearns and Singh (1998). The

authors assumed that a state is ‘‘known’’ if it has been

visited a sufficiently large number of times. The RMAX

algorithm proposed by Brafman and Tennenholtz (2002)

is a practical implementation of this idea. An extensive

theoretical analysis of this approach was given by Strehl

et al. (2006), showing sample-complexity results both for

reinforcement learning methods that learn a model and

ones that learn directly a value function. Those PAC-style

bounds are not directly related to our work.

Previous work on curiosity-driven reinforcement learn-

ing is centered around the idea that agents are motivated by

an internal reward signal, and in the process of maximizing

this reward, they learn a collection of skills. The work we

presented in Sect. 3 could be interpreted as defining

implicitly an intrinsic reward, based on the idea of maxi-

mizing how interesting is the time series experienced by

the agent. In early work Schmidhuber (1991) proposed

different kinds of internal reward signals. More recently, a

hierarchical learning approach was put forth by Singh et al.

(2005). In this case, both an external and an internal reward

signal are used to learn a behavior policy. At the same

time, the extrinsic reward is used to learn multiple tem-

porally extended behaviors. The particular setting proposed

for the intrinsic reward is attempting to provide a novelty

bonus. We note that the intrinsic reward is only used to

generate behavior. The paper assumes that there are certain

events in the world that are ‘‘salient’’ and which the agent

will be motivated to seek.We furthermore note that the

intrinsic rewards proposed by Singh et al. (2005) also

involve the probability of the next state given the current

state, under different extended behaviors. However, this is

proposed as a heuristic. The relationship to our results

remains to be explored. Oudeyer and colleagues imple-

mented these ideas in robotics tasks (see e.g. Oudeyer et al.

2007). Recently, Schmidhuber (2009) proposed a novel

approach to creativity and exploration which is related to

information theory.

Information-theoretic approaches inspired by some form

of rate distortion theory have been used in machine

learning, for example for clustering and dimensionality

reduction (Rose et al. 1990; Pereira et al. 1993; Rose 1998;

Tishby et al. 1999; Chigirev and Bialek 2004; Still and

Bialek 2004; Still et al. 2004; Chechnik et al. 2005). Ay

et al. (2008) explore maximization of I[Xt, Xt?1] for a

specific class of models. In contrast, the work we have

presented in Sect. 3 maximizes predictive power while

keeping the coding rate, or model complexity, fixed, and

thereby penalizing policies with more memory than is

needed for prediction. This is in line with Still (2009).

Tishby and Polanyi (2010) proposed an MDP formulation

in which rewards are traded off against information. The

authors observe that information also obeys Bellman-like

equations, and use this observation to set up dynamic

programming algorithms for solving such MDPs. Our work

is different in a few important aspects. First, the develop-

ment in Tishby and Polani (2010) is with respect to a single

state distribution, while we account for the state distribu-

tions induced by different policies. Second, in their for-

mulation, the information value ends up mixed with the

value function. In our case, information influences the

exploration policy, but ultimately, one can still obtain a

value function, and a policy, that reflect only reward

optimization. Another important distinction is that in their

formulation, deterministic policies are more ‘‘complex’’
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than randomized ones, whereas in our case, a deterministic

policy that is constant everywhere would still be consid-

ered ‘‘simple.’’ We anticipate that such a treatment will be

important in the generalization of these ideas to continuous

states and actions (where simple policies will share the

same choices across large subsets of states). Interestingly,

Little and Sommer (2011) considered several measures for

estimating (or approximating) the information gain of an

action in the context of past data. They found that learning

efficiency is strongly dependent on temporal integration of

information gain but less dependent on the particular

measure used to quantify information gain.

The recent work on differential dynamic programming

(e.g. Todorov 2009; Azar and Kappen 2010) addresses the

problem of finding closed-form solutions to reinforcement

learning problems, by reformulating the optimization

objective. More specifically, the system is considered to

have ‘‘passive’’ dynamics (induced by a default policy).

The optimization criterion then includes both the value

function and a term that penalizes deviations form the

‘‘passive’’ dynamics (using the KL-divergence between

the state distributions induced by the sought policy and the

default policy). This line of work comes from the per-

spective of continuous control. The results obtained for the

optimal policy bear some similarity with the updates we

obtain, but the motivation behind the approach is very

different. A similarly defined policy update is also obtained

by Peters et al. (2010), coming from yet another different

angle. They formulate an optimization problem in which

the goal is to utilize the existing samples as well as pos-

sible. They give a policy search algorithm in which new

policies are penalized if they induce a state distribution that

is different from the empirical distribution observed in the

past data. The fact that very different points of view lead to

syntactically similar policy updates is intriguing and we

plan to study it further in future work.

Conclusion and future work

In this article, we introduced a new information-theoretic

perspective on the problem of optimal exploration in

reinforcement learning. We focused, for simplicity, on

Markovian environments, in which the state of the envi-

ronment is observable and does not have to be learned.

First, we showed that a soft policy similar to Boltzmann

exploration optimally trades return for the coding cost (or

complexity) of the policy. Second, by postulating that an

agent should, in addition to maximizing the expected

return, also maximize its predictive power, at a fixed policy

complexity, we derived a trade-off between exploration

and exploitation that does not rely on randomness in the

action policy. In this view, exploration is an emergent

behavior that arises to maximize predictive power. This

may be a more adequate way of modeling explorative

behavior than previous schemes, such as Boltzmann

exploration, where exploration hinges upon randomization

of the action policy.

Our results can be extended easily to POMDPs, using

the framework of Still (2009). In that case, the additional

goal is to build a good, predictive internal representation of

the environment. Our theoretical framework can also be

extended to continuous states and actions; very little work

has been done so far in this direction (Wingate and Singh

2007). A third important direction for future work is

empirical: we are currently evaluating the proposed method

in comparison to existing exploration techniques. Experi-

ence in large domains will be especially useful in the

future.
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Appendix

Clever random policy

There are two world states, x 2 f0; 1g and a continuous

action set, a 2 ½0; 1�: The value of the action sets how

strongly the agent tries to stay in or leave a state, and

pð�xjx; aÞ ¼ a: The interest in reward is switched off

(a ¼ 0), so that the optimal action becomes the one that

maximizes only the predictive power.

Policies that maximize I½Xtþ1; fXt;Atg�
For brevity of notation, we drop the index t for the current

state and action.

I½Xtþ1; fX;Ag� ¼ H½Xtþ1� � H½Xtþ1jX;A� ð26Þ

The second term in (24) is minimized and equal to zero for

all policies that result in deterministic world transitions.

Those are all policies for which pð~ajxÞ ¼ 0 for all

~a 62 f0; 1g: This limits the agent to using only two (the

most extreme) actions: a 2 f0; 1g: Since we have only two

states, policies in this class are determined by two proba-

bilities, for example the flip probabilities p(A = 0|X = 1)

and p(A = 1|X = 0).

The first term in Eq. (26) is maximized for p(Xt?1 = 1) =

p(Xt?1 = 0) = 1/2. Setting p(Xt?1 = 1) to 1/2 yields

pðA¼ 0jX¼ 1ÞpðX¼ 1ÞþpðA¼ 1jX¼ 0ÞpðX¼ 0Þ¼ 1

2
:

ð27Þ

We assume that p(X = 0) is estimated by the learner.

Equation 27 is true for all values of p(X = 0), if

p(A = 0|X = 1) = p(A = 1|X = 0) = 1/2. We call this
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the ‘‘clever random’’ policy (pR). The agent uses only those

actions that make the world transitions deterministic, and

uses them at random, i.e. it explores within the subspace of

actions that make the world deterministic. This policy

maximizes I½Xtþ1; fX;Ag�; independent of the estimated

value of p(X = 0).

However, when stationarity holds, p(X = 0) =

p(X = 1) = 1/2, then all policies for which

pðA ¼ 0jX ¼ 1Þ ¼ pðA ¼ 0jX ¼ 0Þ ð28Þ

maximize I[Xt?1, {X, A}]. Those include ‘‘STAY-STAY’’,

and ‘‘FLIP-FLIP’’.

Self-consistent policies.

Since a = 0, the term in the exponent of Eq. (21), for a

given state x and action a, is:

Dpðx; aÞ ¼ �H½a� þ a log
pðXtþ1 ¼ xÞ
pðXtþ1 ¼ �xÞ

� �
� log½pðXtþ1 ¼ xÞ�

ð29Þ

with �x being the opposite state, and H½a� ¼ �ða logðaÞ þ
ð1� aÞ logð1� aÞÞ: Note that H [0] = H [1] = 0. The

clever random policy pR is self-consistent, because under

this policy, for all x, both actions, STAY (a = 0) and FLIP

(a = 1) are equally likely. This is due to the fact that

pðXtþ1 ¼ xÞ ¼ pðXtþ1 ¼ �xÞ ¼ 1=2; hence DpRðx; 0Þ ¼
DpRðx; 1Þ; 8x: If stationarity holds, p(X = 0) = 1/2, and no

policy which uses only actions a 2 f0; 1g other than policy

pR is self consistent. This is because under other such

policies we also have that pðXtþ1 ¼ xÞ ¼ pðXtþ1 ¼ �xÞ ¼
1=2; and we have H[0] = H[1] = 0, and therefore

Dpðx; 0Þ � Dpðx; 1Þ ¼ 0: This means that the algorithm

gets to pR after one iteration. We can conclude that pR is

the unique optimal self-consistent solution.

A reliable and an unreliable state

There are two possible actions, STAY (s) or FLIP (f), and two

world states, x 2 f0; 1g; distinguished by the transitions:

p(Xt?1 = 0|Xt = 0, At = s) = p(Xt?1 = 1|Xt = 0, At = f) = 1,

while pðXtþ1 ¼ xjXt ¼ 1; aÞ ¼ 1=2; 8x; 8a: In other words,

state 0 is fully reliable, and state 1 is fully unreliable, in terms

of the action effects. There is no uncertainty when we start in

the reliable state, and the uncertainty when starting in the

unreliable state is exactly one bit. The predictive power is

then given by

I½Xtþ1; fX;Ag� ¼ �
X

x2f0;1g
pðXtþ1 ¼ xÞ log2½pðXtþ1 ¼ xÞ�

� pðXt ¼ 1Þ ð30Þ

Starting with a fixed value for p(Xt = 1) which is estimated

from past experiences, the maximum is reached by a policy

that results in equiprobable futures, i.e., p(Xt?1 = 1) = 1/2.

We have pðXtþ1 ¼ 0Þ ¼ pðA ¼ sjX ¼ 0ÞpðX ¼ 0Þþ
1
2

pðX ¼ 1Þ:Therefore, this implies that p(A = s|X = 0) = 1/2,

which, in turn, implies that after some time p(Xt = 1) = 1/2,

and thus I[Xt?1, {X, A}] = 1/2. However, asymptotically,

p(Xt = 0) = p(Xt?1 = 0), and the information

is given by �ðpðX ¼ 0Þ log2½pðX ¼ 0Þ=ð1� pðX ¼ 0ÞÞ�
� log2½1� pðX ¼ 0Þ�Þþ pðX ¼ 0Þ� 1: Setting the first

derivative, 1� log2½pðX ¼ 0Þ=ð1� pðX ¼ 0ÞÞ�; to zero

implies that the extremum lies at p(X = 0) = 2/3, where the

information reaches log2ð3Þ � 1=3 ’ 5=4 bits. Now,

p(Xt?1 = 0) = 2/3 implies that p(A = s|X = 0) = 3/4. Asymp-

totically, the optimal strategy is to stay in the reliable state

with probability 3/4. We conclude that the agent starts with

the random strategy in state 0, i.e., p(A = s|X = 0) = 1/2, and

asymptotically finds the strategy p(A = s|X = 0) = 3/4. This

asymptotic strategy still allows for exploration, but it results

in a more controlled environment than the purely random

strategy. Note that the optimal policy in state 1 is obviously

random, i.e. p(A|1) = 1/2, because DKL½pðXtþ1jXt ¼ 1;

At ¼ sÞjjpðXtþ1Þ�¼ DKL½pðXtþ1jXt ¼ 1;At ¼ f ÞjjpðXtþ1Þ�.
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