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Abstract
When a disaster strikes, there is always a demand for life-supporting commodities, whose slow and ineffective delivery 
can result in huge human and financial losses. Warehouse location and the storage of necessary relief commodities (RCs) 
before a disaster, and the proper distribution of RCs among affected people following a disaster can improve performance 
and reduce latency when responding to a given disaster. Hence, many researchers have focused on these fields while over-
looking some crucial actual conditions as a result of the complexity of the problem. Consequently, this study develops a 
location-inventory-distribution problem in disaster relief supply chain (DRSC) considering the gradual injection of the lim-
ited pre-disaster budgets, the time value of money, and various evaluation criteria for locating warehouses. In this regard, a 
novel multi-objective two-stage scenario-based stochastic programming model under a pre-disaster multi-period planning 
time horizon (PTH) is presented. In each period, pre-disaster warehouse location and inventory management are addressed 
in the first stage, and the post-disaster distribution of the stocked RCs is planned in the second stage. Utilizing new priority-
weighted service utility and balance measures, the model strives to optimize deprivation cost, demand coverage, and fair 
service. The maximization of warehouses’ utility is done according to various criteria and using a data envelopment analysis 
(DEA) model integrated with the model. The applicability and performance of the model are validated via a real-world case 
study followed by various tests and sensitivity analyses. The outcomes show that the model significantly improves logistics 
and deprivation costs, satisfied demands, fair service, and warehouses’ utility.

Keywords Data envelopment analysis model · Disaster relief supply chain · Gradual injection of pre-disaster budgets · 
Location-inventory-distribution problem · Multi-period multi-objective two-stage scenario-based stochastic optimization

1 Introduction

Disasters have always significantly and extensively impacted 
and threatened human lives worldwide. However, humans are 
still unable to predict accurately and prevent disasters. On the 
one hand, the increase in the number of catastrophes and the 
expansion of their destructive range, and on the other hand, 
population growth in different areas of the world have increased 
material losses and human casualties caused by such incidents. 
The Emergency Events Database EM-DAT reports 399 natural 
disasters worldwide in 2023, which resulted in 86,473 fatali-
ties, affected 93.1 million people, and caused $202.7 billion in 
economic damage (EM-DAT, http:// www. emdat. be).

The losses caused by disasters cannot be compensated 
in various aspects, especially the human aspect; however, 
with preventive measures and proper planning to provide 
necessary preparations for coping with such incidents, these 
losses can be reduced as much as possible. In this regard, 
pre-disaster warehouse location and inventory management, 
as well as relief distribution planning are vital and critical 
tactics to improve relief performance, as they directly and 
significantly affect demand coverage, relief time, victims’ 
satisfaction, and relevant costs (Khalili-Damghani et al. 
2022). Moreover, any incorrect measures in these areas 
result in a dramatic increase in human and financial losses. 
For instance, during Hurricane Katrina in 2005, inefficient 
storage of crucial RCs considerably delayed relief opera-
tions. The RCs that had been pre-positioned were far less 
than what was needed and were stocked too far from the 
impacted areas (Pradhananga et al. 2016). According to this 
experience, RCs were overstocked in 2006. Nonetheless, no 
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massive hurricanes occurred in 2006, resulting in the loss 
of 279 truckloads of food valued at about $43 million (Hu 
et al. 2019). When the Bam earthquake struck Iran in 2003, 
a high percentage of stored RCs were lost, as some ware-
houses were located in inappropriate and unsafe locations 
that were entirely or heavily damaged by the earthquake. In 
the early days following the earthquakes in Haiti and Chile 
in 2010, some victims plundered RCs due to the inequita-
ble distribution policy (Hu et al. 2016). Thus, owing to the 
high unpredictability of the time, place, and magnitude of a 
disaster and the restricted prior information on post-disaster 
demands and donations, relief organizations (ROs) encoun-
ter enormous challenges when deciding where to locate 
warehouses and how to manage inventories at pre-disaster 
(preparedness phase) and how to distribute RCs at post-dis-
aster (response phase). Consequently, numerous researches 
have recently been carried out in these areas. The following 
provides a concise review of some of the studies, which have 
determined locations for stockpiling RCs, scheduled the pro-
curement and storage of required RCs in the preparedness 
phase, and adjusted the distribution strategy of RCs in the 
response phase.

Rezaei-Malek et al. (2016a) minimized human suffering 
by maximizing a new function calculated based on the pri-
orities of RCs and affected areas, and the utility of delivery 
time and the fraction of the covered demand.

Li et al. (2018) proposed a cooperative maximal covering 
location model in which RCs were given priority.

Sanci and Daskin (2019) integrated location, storage, 
damaged routes restoration, distribution, and routing deci-
sions under backlogged shortages.

Wang and Nie (2019) presented two mathematical models 
considering traffic congestion and a criticality weight for 
each RC.

To provide more service to the demand point less resistant 
to an earthquake, Wang et al. (2020) introduced a seismic resil-
ience index calculated using fault tree analysis, analytic hier-
archy process, fuzzy set theory, and neural network methods.

Unlike Abazari et al. (2021), who accounted for perish-
ability when planning post-disaster distributions, Rezaei-
Malek et al. (2016b), Tavana et al. (2018), Akbarpour et al. 
(2020), and Sheikholeslami and Zarrinpoor (2023) looked 
into the inventory management of perishable RCs prior to 
the disaster. They made the supposition that if the supply’s 
remaining lifespan is less than a certain threshold, it can be 
sold (sale mechanism; Rezaei-Malek et al., Tavana et al., and 
Sheikholeslami and Zarrinpoor) or sold back to the suppli-
ers (buyback mechanism; Akbarpour et al.) at pre-disaster. 
Unlike Akbarpour et al., the others also made decisions 
about the lifespan of purchased commodities. Tavana et al. 
modeled the post-disaster distribution of RCs as a multi-
echelon multi-depot vehicle routing model. Akbarpour et al. 
also located mobile pharmacies at each post-disaster period 

using a cooperative coverage mechanism. Additionally, in 
order to provide required medicines at each pre-disaster 
period, they presented a multi-sourcing mechanism based 
on option and buyback contracts with the pre-positioning 
policy applied only to critical medicines, considerable and 
time-dependent lead time and safety inventories. Abazari 
et al. took account of various vehicles and determined the 
needed number of each vehicle and the type of vehicle of 
each transportation. They presumed that a commodity would 
decay if its travel time exceeded a certain amount in the 
response phase. Managing the transfer of injured people to 
hospitals and health centers, the transfer of affected people 
to shelters, transport fleet, human resources were other pri-
mary concerns of Sheikholeslami and Zarrinpoor.

In addition to Akbarpour et al., the following studies also 
paid attention to procuring RCs in both the response and pre-
paredness phases. Condeixa et al. (2017), and Che et al. (2024) 
considered RCs donated in the post-disaster phase. Haghi et al. 
(2017) also planned transferring injured people to hospitals and 
health centers. In the response phase, Aslan and Çelik (2019) 
addressed decisions on transportation, repairing damaged 
roads, and the arrival times of RCs at demand points, in addi-
tion to how to distribute RCs and the re-procurement of RCs. 
They attempted to minimize total response time by consider-
ing three approaches based on efficacy, equity, and robustness. 
Hu and Dong (2019) took into consideration physical inven-
tory, as well as price discounts based on delivery time and 
order quantity, as supplier selection criteria. Additionally, they 
assumed that the RO would pay a fine to suppliers for utiliz-
ing their physical inventory in the response phase to compen-
sate for the risk of losing their regular customers. Cotes and 
Cantillo (2019) optimized human suffering by minimizing the 
total social cost.1 Boostani et al. (2020) took into account the 
ecological effects of the packaging of RCs and  CO2 emissions 
in the shipments of the proposed network and strived to mini-
mize these effects. Nezhadroshan et al. (2021) considered the 
possibility of secondary disasters occurring after a primary one 
and also decided on the transportation mode of some network 
shipments at post-disaster. Moreover, their model maximized 
the resilience level of each relief facility. Ghasemi et al. (2022a) 
designed a humanitarian relief network to manage the blood 
supply chain in disaster situations. In addition to Haghi et al., 
Cotes and Cantillo, Hu and Dong, Akbarpour et al., Boostani 
et al., Wang et al., Nezhadroshan et al., and Ghasemi et al., 
Torabi et al. (2018), and Aghajani et al. (2023) also utilized 
a multi-sourcing mechanism to procure RCs. Torabi et al. 

1 Total social cost consists of both logistics costs and deprivation 
costs. Costs related to establishment of facilities, procurement of RCs 
and equipment, transportation, personnel wages, etc. are among logis-
tics costs. Deprivation costs include those imposed on affected people 
due to lack of access to required commodities or services (Holguín-
Veras et al. 2013).
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(2018) integrated a multi-sourcing mechanism with a quantity 
flexibility contract and accounted for monetary donations in 
the post-disaster budget. Aghajani et al. (2023) introduced a 
procurement-warehousing-distribution model under supply dis-
ruption. In the pre-disaster, the model set up a number of multi-
period quantity flexibility contracts with primary suppliers, a 
number of dynamic option contracts with backup suppliers, and 
a multi-period warehousing contract with a third party provid-
ing warehousing service. The model also adjusted the required 
storage spaces in the post-disaster.

The following papers employed robust optimization 
methods to develop the problem under uncertainty. Rezaei-
Malek et al. (2016b), Haghi et al., Nezhadroshan et al., and 
Ghasemi et al. developed a two-stage robust stochastic pro-
gramming model according to the approaches proposed by 
Mulvey et al. (1995), and Yu and Li (2000). Condeixa et al. 
proposed a two-stage stochastic mean-conditional value-
at-risk (CVaR) model. A fuzzy value-at-risk programming 
model with credibility constraints was developed by Bai 
et al. (2018). Elçi and Noyan (2018) presented a two-stage 
chance-constrained stochastic mean-CVaR model. In this 
study, lost shortages are only possible in scenarios where the 
sum of the probabilities of their occurrence does not exceed 
a predetermined threshold. A min–max robust model was 
presented by Aslan and Çelik, and Akbarpour et al.. Chen 
(2020) developed a risk-averse Ψ-expander robust model 
and showed that this model outperforms stochastic models 
in terms of shortage cost. Erbeyoğlu and Bilge (2020) also 
optimized the locations and sizes of distribution centers at 
post-disaster and formulated a two-stage robust stochastic 
model. They assigned each demand point to the nearest dis-
tribution center that could cover it within a service coverage 
window. Furthermore, they assumed a minimum fulfilled 
demand for each distribution center within each service 
coverage window that must be met by the warehouses that 
could cover it. Li et al. (2020) proposed a three-stage sce-
nario-based mixed stochastic-robust programming model. 
They considered secondary disasters, which could result in 
a significant improvement in the covered demand. In addi-
tion, they also planned victims’ accommodation. Wang et al. 
(2021) prioritized RCs and modeled their problem as a two-
stage distributionally robust programming model based on 
the worst-case mean-CVaR criterion. They demonstrated 
that the suggested model outperforms its stochastic equiva-
lent in terms of objective value and solution stability. A risk-
averse two-stage stochastic programming model that takes 
into account a CVaR constraint was presented by Noyan 
et al. (2022). Zhang et al. (2022) presented a distribution-
ally robust programming model that performs better than 
its stochastic equivalent. A two-stage distributionally robust 
programming model was developed by Che et al. (2024). 
Zhang et al. (2024) introduced a robust programming model 
considering secondary disasters.

Ghasemi and Khalili-Damghani (2021), Ghasemi et al. 
(2022b), and Khalili-Damghani et al. (2022) developed a 
simulation–optimization approach in their studies. They 
utilized the simulation approach in order to estimate some 
of the model’s parameters. Ghasemi and Khalili-Damghan, 
and Khalili-Damghani et al., respectively, proposed a robust 
programming model and a stochastic programming model 
to determine the optimal locations and inventory levels of 
distribution and storage centers, and how to distribute RCs 
in the designed network in the response phase. Khalili-
Damghani et al. considered higher priority in coverage for 
the affected area that has a larger population; thus, equity 
in the distribution of RCs was disregarded. Ghasemi et al. 
determined the optimal locations and capacities of shelters 
and warehouses, homeless people, injured people, corpses, 
relief staff, vehicles, and RCs flows, and the best routes for 
the evacuation of victims at post-disaster. They minimized 
the total probability of unsuccessful evacuation in routes and 
the maximum number of unsatisfied demands for relief staff, 
in addition to the total cost.

Table  1 summarizes the above-mentioned body of 
research and highlights the critical distinctions between 
these studies and the present paper and some of the gaps 
observed in the problem under study.

Interviews conducted with certain of administrative man-
agers in Mashhad’s2 ROs and studies undertaken stimulated 
us to develop an integrated location-inventory-distribution 
problem in a three-level network, including supply sources, 
warehouses, and affected areas under a pre-disaster multi-
period PTH, which is formulated as a multi-objective two-
stage scenario-based stochastic programming model. In each 
period, the first stage involves determining the optimal loca-
tion, storage capacity, and retrofitting level of warehouses 
and the number of RCs purchased for each warehouse in the 
pre-disaster, and the second stage decides how to give out 
RCs among the disaster victims in the post-disaster. The fol-
lowings are the significant contributions of our research that 
have not yet been addressed in the DRSC literature and high-
light the major gaps observed in the problem under study:

• Despite the large number of researches conducted in 
DRSC, actual conditions have been overlooked in many 
inquiries as a result of the complexity of the problem 
(Kunz et al. 2017; Besiou and Van Wassenhove 2020). 
In particular, limited budgets for pre-disaster planning 
have been only considered in a few studies. Moreover, 
in all these studies, at the beginning of the pre-disaster 
PTH, the total budgets are immediately accessible, i.e., 
the total budgets are injected into the project at once  
and instantaneously (instantaneous budget injection).  

2 Mashhad is one of Iran’s cities.
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As a result, the optimal decisions taken to location ware-
houses and manage inventories prior to the disaster have 
been implemented immediately, simultaneously, and at 
once at the beginning of the project.

In practice, owing to the RO’s financial restrictions, 
the total pre-disaster budgets can only be gradually made 
available over time (gradual budget injection); therefore, 
decisions taken can only be implemented sequentially over 
the pre-disaster PTH, not all at once, immediately, and 
simultaneously. Hence, limited budgets gradually injected 
into the project over the pre-disaster PTH are considered 
in the present study. Accordingly, the pre-disaster PTH  
is divided into several periods, and as a consequence,  
integrated location, inventory management, and distribu-
tion problems are modeled dynamically (time-dependent) 
and optimized by a multi-period optimization approach. 
Notably, considering a dynamic and multi-period pre- 
disaster operational environment, in addition to informa-
tion updates and greater flexibility of planning, results  
in considering the inter-temporal effects of operations  
and improving the coordination of decisions (Holguín- 
Veras et al. 2013). However, only the studies conducted 
by Rezaei-Malek et  al. (2016b), Tavana et  al. (2018), 
Akbarpour et al. (2020), and Sheikholeslami and Zarrin-
poor (2023) took into account the preparedness phase as a 
dynamic and multi-period environment due to the inven-
tory management of perishable RCs. Furthermore, in all 
these researches, warehouses have been established simul-
taneously prior to the disaster; as a result, unlike inventory 
management and distribution problems, the location prob-
lem has been modeled as a static one (time-independent). 
However, in actual conditions, the simultaneous establish-
ment of the necessary warehouses before the disaster can-
not be possible due to various reasons, such as shortage of 
financial resources, and lack of human resources.

• The DRSC’s principal goal is to lessen human suffer-
ing and mortality to the greatest extent. In addition to 
efficiency, among the most critical factors that must be 
considered in DRSC models, efficacy, equity, and hap-
piness/distress play a key role. Noteworthy, a handful of 
researches simultaneously optimized these factors.

Logistics costs are included in efficiency. However, 
measures such as coverage, travel distance, response time, 
security, reliability, or a mix of them, can be used to gauge 
efficacy (Gutjahr and Nolz 2016). Notably, efficacy is far 
more crucial than efficiency in DRSCs since human con-
cerns precede financial ones (Balcik and Beamon 2008).

Victims’ expectation that no privileges or priority for 
particular groups of people necessitates fair service. In par-
ticular, the equity concept, which encompasses balance and 

equitability, is typically used to describe fair service (Karsu 
and Morton 2015; Gutjahr and Nolz 2016). The balance con-
cept implies serving groups of individuals distinct in terms 
of their claims, needs, and preferences, as opposed to the 
equitability concept, which alludes to serving indistinguish-
able groups of people (Karsu and Morton 2015). Due to 
various factors like population and calamity severity, differ-
ent affected areas have varied demand quantity and priority 
(Gralla et al. 2014; Nagurney et al. 2015). Hence, the bal-
ance concept should be employed to define fair service to 
prevent a potential societal catastrophe (Rezaei-Malek and 
Tavakkoli-Moghaddam 2014). It is worth noting that so little 
researchers paid attention to the balance concept.

In addition, reducing victims’ difficulty, pain, affliction, 
deprivation, social disruptions, and unpleasant emotions 
is one of the DRSC’s most significant and crucial goals, 
described by the distress criterion. Indeed, distress alludes 
to social and psychological expenses, which have been 
addressed in a tiny minority of studies (Karsu and Morton 
2015). In this regard, Holguín-Veras et al. (2013) introduced 
the notion of deprivation cost to measure the suffering of 
victims deprived of vital RCs and estimated it as a non-
decreasing convex function of deprivation time.

Considering the above materials, the current study, in 
addition to optimizing the efficiency, strives to optimize 
the efficacy, balance and distress of the considered DRSC 
network by developing a novel objective function, which is 
formulated as a weighted sum of new efficacy-distress and 
balance measures. Specifically, this objective function indi-
cates the desire to service the affected areas with the greatest 
possible number of RCs and the lowest possible deprivation 
cost in the fairest possible manner.

Aiming to maximize the efficacy of the DRSC network, 
Noham and Tzur (2018) utilized the ratio of fulfilled demand 
to travel time. This research, inspired by Noham and Tzur, 
and Holguín-Veras et al. (2016), introduces the new efficacy-
distress measure, which is called priority-weighted service 
utility and is estimated as the ratio of the fraction of fulfilled 
demand to deprivation cost multiplied by the priority of the 
affected area.

In order to distribute RCs equitably among affected areas, 
Tzeng et al. (2007) adopted the minimal amount of the frac-
tion of the total satisfied demand among all affected areas 
as a balance measure since the amount of demand varies 
depending on the affected area. Therefore, inspired by Tzeng 
et al., in the present paper, in order to create equity in service 
in terms of the number of distributed RCs and deprivation 
cost, the proposed balance measure is presented as the mini-
mum amount of the total priority-weighted service utility 
among all affected areas.

• In the DRSC literature, the developed location-inventory-
distribution problems have only considered criteria such 
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as storage capacity, travel time, cost, and disruption risk in 
order to locate required warehouses. While in the real world, 
in addition to these criteria, it is necessary to consider other 
evaluation criteria, although this can result in an increase 
in the complexity of the problem. Accordingly, in addition 
to criteria such as storage capacity, establishment cost, pro-
curement cost, deprivation cost, and disruption risk, other 
criteria are also considered in this study, and the proposed 
model attempts to establish warehouses that are of higher 
utility based on these criteria. Moreover, considering the 
specific features and benefits of DEA models,3 the maximi-
zation of warehouses’ utility is formulated in the proposed 
model according to a proposed DEA model (This model 
is introduced in Appendix 5.1.) based on the DEA model 
introduced by Sun et al. (2013). In Sun et al.’s model, the 
utility of alternatives can only be evaluated by minimiz-
ing the summation of the weighted coordinate distances 
between a virtual ideal alternative and all alternatives. In 
this study, in addition to minimizing the summation of these 
weighted coordinate distances, the maximum weighted 
coordinate distances between the virtual ideal alternative 
and all alternatives are also minimized. Interestingly, the 
concepts of only two DEA models have been integrated 
with mathematical programming models in a few studies 
conducted in fields other than DRSC so far (e.g., Klimberg 
and Ratick 2008; Afsharian 2021). It is also worth noting 
that Sun et al.’s model or its developed and generalized 
models have not been integrated with any mathematical 
programming model to date.

• Financial parameters change during a time horizon 
affected by inflation, and accordingly the decision-mak-
ing policies also change. Furthermore, the RO, like other 
organizations, puts its budgets in banks or investment 
institutions and projects with a certain interest rate, and 
as a result, the earned profits lead to an increase in its 
budgets. Hence, for the first time in the DRSC literature, 
this study pays attention to the time value of money by 
investing budgets and the variability of financial param-
eters affected by inflation during the pre-disaster PTH.

• The applicability and validity of the proposed model are 
demonstrated by implementing a real case study for a 
plausible earthquake in Khorasan Razavi Province.

The rest of the study is structured as follows: The prob-
lem under study, the proposed mathematical programming 
model, and the model solution method are described in Sec-
tion 2. Section 3 presents a real-world case study with the 
performance evaluation of the model. Finally, concluding 
statements, critical managerial insights, and recommenda-
tions for future studies are expressed in Section 4.

2  Proposed model

The considered problem, the proposed mathematical pro-
gramming model, and the model solution method are 
described in detail in Sections 2.1, 2.2, and 3, respectively.

2.1  Problem description

In this research, a specific disaster is taken into account 
that its occurrence time is unknown and may occur at any 
time of the considered pre-disaster PTH. Thus, the RO 
seeks to stockpile the required RCs prior to the disaster. 
Consequently, the RO would decide on the optimal loca-
tion of warehouses, their storage capacity and retrofitting 
level and the number of RCs purchased for each warehouse 
at pre-disaster, and how to distribute RCs among affected 
areas (demand points) at post-disaster over a pre-disaster 
multi-period PTH. The general outline of the intended 
DRSC network is presented in Fig. 1. Moreover, in respect 
of interviews conducted with some administrative manag-
ers in Mashhad’s ROs and studies undertaken, the proposed 
assumptions are as follows:

• RCs are packaged in specific numbers in packages, and 
each relief package (RP) is allocated to an affected person.

• The pre-disaster PTH is considered a multi-period with 
the same length for each period due to the gradual injec-
tion of the budgets. The post-disaster PTH is defined as 
a single-period horizon lasting 72 h due to the necessity 
of prompt and efficient emergency response in the first 
72 h following a disaster to save and rescue victims.

• There are different disaster scenarios.
• Demand points do not have the same response priority; there-

fore, a preference score is assigned to each demand point.
• Parameters that are affected by the disaster are demand, 

usable warehouse stock, and travel time. Therefore, it 
is not easy to estimate their exact amount. Accordingly, 
they are considered scenario-dependent parameters.

• The RO, like other organizations, faces financial 
restrictions. Therefore, it can only devote limited 
budgets for establishment and procurement operations 

3 DEA models are well-known and widely used mathematical pro-
gramming nonparametric methods that evaluate the relative efficien-
cies of decision-making units (DMUs) based on multiple inputs and 
outputs. Also, they can be viewed as multiple-criteria decision-mak-
ing methodologies where DMUs are alternatives, and the inputs and 
outputs are two sets of performance criteria where inputs have to be 
minimized and outputs have to be maximized. DEA models calcu-
late the efficiency score of a DMU as the ratio of the weighted sum 
of its outputs to the weighted sum of its inputs. In these models, the 
weights of inputs and outputs are considered as decision variables; as 
a result, they need no knowledge about these weights.
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during the pre-disaster phase. These budgets are not 
entirely accessible at the start of the pre-disaster PTH. 
Instead, they become gradually available to the RO 
over time. Moreover, these budgets are deposited in a 
bank at a specific variable interest rate so they can be 
withdrawn at any time.

• Each warehouse can be established at most once during 
the pre-disaster PTH. Once established, the warehouses 
are kept open until the end of the PTH.

• Items donated by the public are usually distributed 
a few days after the disaster since they require some 
logistical operations before they can be distributed 

Demand points

: Candidate warehouse which has not been established until period t.

                              : Candidate warehouse which has been established at storage capacity level (SCL) l, retrofitting level (RL) r, and

                                 period t.

                           : Candidate warehouse which has been established at storage capacity level l, and retrofitting level r before period t.

         : Pre-disaster sending relief packages to warehouse i at period t.

          : Post-disaster sending relief packages from warehouse i  to affected area j when scenario s struck at period t

Supply sources

Candidate warehouses

1

2

i

1

j

2

3

SCL: l; RL: r

SCL: l; RL: r

SCL: l; RL: r

SCL: l; RL: r

Fig. 1  General outline of the proposed DRSC
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(such as collecting, sorting, amalgamating, and repack-
aging). Therefore, they are not considered for usage 
within the first 72 h after the disaster.

• Cost parameters change during the preparedness phase 
as affected by the inflation phenomenon. Hence, they  
are considered time-dependent parameters.

• The deprivation cost function given by Holguín-Veras 
et al. (2016), which is an incremental convex function  
of deprivation time, is utilized to estimate deprivation 
cost, while deprivation time is equated to travel time.

• The risk of disruption in the transportation network is 
taken into account in travel time.

• A disaster can disrupt the capability of warehouses by 
damaging them. Therefore, the risk of disruption in ware-
houses is taken into account by considering the amount of 
warehouse inventory that remains usable after the disaster.

• In addition to criteria such as storage capacity, estab-
lishment cost, procurement cost, deprivation cost, and 
disruption risk, other criteria are also used in order to 
specify the proper locations of warehouses. Candidate 
warehouses are evaluated based on these criteria by 
a proposed DEA model according to the DEA model 
introduced by Sun et al. (2013), which is integrated 
with the proposed mathematical programming model. 
Subsequently, these criteria are divided into two cat-
egories of input and output criteria.

In the following, the mathematical programming model 
of the problem is formulated.

2.2  Mathematical formulation

In this section, the considered problem is formulated as a 
multi-period multi-objective two-stage scenario-based sto-
chastic model, whose notations are listed in Table 2, and 
whose objective functions and constraints are as follows:

2.2.1  Model M1

(1)

Min Z1 = �1

(

∑

i∈I

∑

l∈L

∑

r∈R

∑
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xilrt
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Eni − EnIDEAL

)

+
∑

m∈M
�m
(
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)
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(
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i∈I

{

∑

l∈L

∑

r∈R

∑

t∈T
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∑

n∈N
�n
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Eni − EnIDEAL

)

+
∑

m∈M
�m(OmIDEAL − Omi)
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(3)

Min Z3 =
∑

i∈I

∑

l∈L

∑

r∈R

∑

t∈T

filrtxilrt

+
∑
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(4)
∑

l∈L

∑

r∈R

∑

t∈T
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(
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Table 2  Sets, indices, parameters, and decision variables used in the model

a Effective interest rate reflects the real cost of loans or returns on deposits with the effects of compounding (for more details, see, e.g., Smith 
1968)
b The parameter ε is the smallest value of non-Archimedean in the DEA literature designed to enforce strict positivity on the decision variables 
associated with the weights of input and output criteria (for more details, see, e.g., Cooper et al. 2007)

Sets and indices:
I Set of candidate sites for establishing warehouses, indexed by i.
J Set of demand points, indexed by j.
L Set of the storage capacity levels of warehouses, indexed by l.
N Set of input criteria, indexed by n.
M Set of output criteria, indexed by m.
R Set of the retrofitting levels of warehouses, indexed by r.
S Set of scenarios, indexed by s.
T Set of pre-disaster periods, indexed by t, t́ .
Scenario-independent parameters:
at Part of the total budget planned for warehouses establishment that is available at period t.
bt Part of the total budget planned for procuring RPs that is available at period t.
cl Storage capacity at level l.
filrt Cost of establishing warehouse i at storage capacity level l, retrofitting level r, and period t.
Eni Amount of input criterion n for warehouse i.
EnIDEAL Amount of input criterion n for the virtual ideal warehouse, E������ = min

i

{Eni}.

irt Effective bank interest  ratea at period t.
Omi Amount of output criterion m for warehouse i.
OmIDEAL Amount of output criterion m for the virtual ideal warehouse, OmIDEAL = max

i

{

Oni

}

..
pcit Cost of procuring a RP for warehouse i at period t.
wj Criticality weight for demand point j, 0 < wj < 1, 

∑

j∈J wj = 1.
�1, �2, �1, and �2 Weight factors in the objective functions.
� Coefficient of average total demand, � ≥ 1..
�b A small enough positive constant.
Scenario-dependent parameters:
djs Number of RPs required for demand point j under scenario s.
F(tijs) Deprivation cost function, F

(

tijs
)

= 0.9814e0.0188tijs.
ps Occurrence probability of scenario s.
tijs Travel time between warehouse i and demand point j under scenario s.
�irs Percentage of stocked inventory at warehouse i with retrofitting level r that remains usable after the 

occurrence of scenario s, 0 ≤ �irs ≤ 1.
The first stage decision variables:
át Net balance of the establishment budget at the end of period t
b́t Net balance of the procurement budget at the end of period t.
xilrt 1, if warehouse i is established at storage capacity level l, retrofitting level r, and period t; 0, otherwise.
qit Number of RPs that is bought for warehouse i at period t.
�n Weight of input criterion n.
�m Weight of output criterion m.
The second stage decision variables:
yijst Number of RPs sent from warehouse i to demand point j when scenario s struck at period t.
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The objective function (1) minimizes the weighted sum of 
the sum of utility scores of the established warehouses and 
the maximum values of these scores based on the considered 
criteria. It should be noted that the utility score of each ware-
house is calculated based on its weighted coordinate distance 
from the virtual ideal warehouse; hence the less, the better. In 
fact, this objective function maximizes warehouses’ utility. To 
optimize the balance, distress, and efficacy of the network, a 
new efficacy-distress measure called priority-weighted service 
utility and a new balance measure are introduced, which are 
respectively estimated as the ratio of the fraction of satisfied 
demand to deprivation cost multiplied by the priority of the 
demand point and the minimum amount of the total priority-
weighted service utility among demand points. Inspired by 
Lin et al. (2012), who introduced an objective function for-
mulated as the sum of the efficiency and imbalance of the 
designed network, the objective function (2) is also formulated 
as the weighted sum of the efficacy-distress and balance of 
the network. This objective function indicates the desire to 
service demand points with the highest possible number of 
RPs and the least possible deprivation cost in the fairest pos-
sible manner (in terms of the number of distributed RPs and 
deprivation cost). The first expression considers the efficacy 
and distress measures and maximizes the expected value of the 
total priority-weighted utility of service to demand points. The 
maximization of this expression leads to the minimization of 
deprivation costs and the maximization of satisfied demands. 
The second expression considers the balance measure and 
focuses on maximizing the equity in service by maximizing the 
expected value of the minimum amount of the total priority-
weighted service utility among demand points. The objective 
function (3) minimizes the total logistics cost, which includes 
the costs of establishing warehouses and procuring RPs.

According to constraint (4), each warehouse can be estab-
lished at most in one period, one storage level, and one retrofit-
ting level. Constraints (5) and (6) show the constraints of the 
establishment budget and procurement budget in each period, 
respectively. Constraint (7) determines that the weighted sum 
of output criteria is less than or equal to the weighted sum of 
input criteria. Indeed, this constraint states that the efficiency 
score (the ratio of the weighted summation of output criteria to 
the weighted summation of input criteria) of each warehouse is 
less than or equal to one. Constraints (8) and (9) consider both 
the weighted summation of the input criteria of the virtual ideal 
warehouse and the weighted summation of the output criteria 
of the virtual ideal warehouse as equal to one. Constraint (10) 
shows that the number of RPs sent to the demand point cannot 
exceed its demand. Constraint (11) confirms that dispatched 

(17)yijst, qit ≥ 0 and Integer,∀i ∈ I;j ∈ J;s ∈ S;t ∈ T

(18)át, b́t, 𝜏m, 𝜗n ≥ 0,∀t ∈ T;n ∈ N;m ∈ M

RPs from the warehouse cannot exceed the number of RPs 
that remain usable at post-disaster. Constraint (12) indicates 
the maximum storage capacity in the warehous over the PTH. 
According to constraint (13), if the warehouse has not been 
established up to period t, no RPs can be stored in it at period t. 
Constraint (14) represents the maximum storage capacity in the 
network over the PTH. Constraint (15) prevents from being zero 
the weights of input and output criteria. Constraints (16) to (18) 
indicate the domains of decision variables applied in the model.

The approach required to solve the above model is elabo-
rated in the following section.

2.3  Solution method

The proposed model M1 is a multi-objective non-linear 
model; therefore, the following procedure is suggested to 
solve the model efficiently:

Step 1: Linearization of the model
Let hi , and kij be non-negative continuous variables, vj be 

a binary variable, and �i , and �ij be parameters. The follow-
ing equations are non-linear, which can be linearized using 
auxiliary variables uij , and � , as well as the large enough 
positive constant G as follows (Asghari et al. 2022):

The objective functions (1) and (2), and constraint (11) 
are non-linear, which can be linearized using the above-
mentioned procedures as follows:

Step 1.1: Linearization of the objective function (1)
Accordingly Eqs. (20) and (21), the objective function (1) 

can be transformed into a linear format utilizing the follow-
ing auxiliary variables:

(19)
Max Z = min

i∈I
{�ihi} → Max Z = �,

Subject to ∶ �ihi ≥ �,∀i ∈ I

(20)
Min Z = max

i∈I
{�ihi} → Min Z = �,

Subject to ∶ �ihi ≤ �,∀i ∈ I

(21)

Min Z =
∑

i∈I

∑

j∈J

�ijhivj→Min Z =
∑

i∈I

∑

j∈J

�ijuij,

Subject to ∶ uij ≤ Gvj,

uij ≤ hi, uij ≥ hi + G
(

vj − 1
)

,∀i ∈ I;j ∈ J

(22)
kij ≤ �ijhivj, ∀i ∈ I, j ∈ J→kij ≤ �ijhi + G

(

1 − vj
)

,

kij ≤ Gvj,∀i ∈ I;j ∈ J

(23)

� = max
i∈I

{
∑

l∈L

∑

r∈R

∑

t∈T

xilrt{
∑

n∈N

�n
(

Eni − EnIDEAL

)

+
∑

m∈M

�m(OmIDEAL − Omi)}}
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Now, using the above variables, the objective function 
(1) is linearized by replacing it with the objective function 
(25), and adding constraints (26) to (30) to the model M1.

The parameter G is a large enough positive constant. 
Constraints (26) to (29) calculate the utility scores of estab-
lished warehouses. Constraint (30) ensures that the auxiliary 
variable � is the maximum value among the utility scores of 
established warehouses.

Step 1.2: Linearization of the objective function (2)
Accordingly Eq. (19), the objective function (2) can be 

linearized using the following auxiliary variable.

Considering Eq. (31), the linearized form of the objective 
function (2) is formulated by substituting the objective func-
tion (32) for it, and adding constraint (33) to the model M1.

(24)
x́i =

∑

n∈N

𝜗n
(

Eni − EnIDEAL

)

+
∑

m∈M

𝜏m
(

OmIDEAL − Omi

)

,

if warehouse i is established;0, otherwise,∀i ∈ I

(25)Min Z1 = 𝛽1

∑

i∈I

x́i + 𝛽2𝛿

(26)x́i ≤ G(
∑

l∈L

∑

r∈R

∑

t∈T

xilrt)∀i ∈ I

(27)

x́i ≤
∑

n∈N

𝜗n
(

Eni − EnIDEAL

)

+
∑

m∈M

𝜏m
(

OmIDEAL − Omi

)

,∀i ∈ I

(28)

x́i ≥
∑

n∈N

𝜗n
(

Eni − EnIDEAL

)

+
∑

m∈M

𝜏m
(

OmIDEAL − Omi

)

+ G

(

∑

l∈L

∑

r∈R

∑

t∈T

xilrt − 1

)

,∀i ∈ I

(29)x́i ≥ 0,∀i ∈ I

(30)x́i ≤ 𝛿,∀i ∈ I

(31)�st = min
j∈J;d��≠0

{
∑

i∈I

wj

yijst

djs

F
(

tijs
)}

(32)
Min Z2 = �1(

∑

i∈I

∑

j∈J;djs≠0

∑

s∈S

∑

t∈T

pswj

yijst

djs

F
(

tijs
) )

+ �2(
∑

s∈S

∑

t∈T

ps�st)

Constraint (33) guarantees that the auxiliary variable �st 
is the minimum value among the total priority-weighted ser-
vice utilities of demand points.

Step 1.3: Linearization of the constraint (11)
Accordingly Eq. (22), the linear equivalent of constraint 

(11) is formulated as the following constraints:

The parameter G is a large enough positive constant. Con-
straint (35) ensures that no RPs are sent to demand points 
from a warehouse that has not yet been established.

Step 2: Transforming the multi-objective model into 
a single-objective model

In this study, the model M1 is transformed into a single-
objective model using the fuzzy multi-objective program-
ming model presented by Lin (2004) called the weighted 
max–min model. The weighted max–min model presents 
the following procedure to solve multi-objective models 
efficiently:

Step 2.1: Calculating the minimum and maximum val-
ues of each objective function

Generally, the multi-objective programming model can 
be defined as follows:

Subject to:

The minimum value of each objective function ( W−
j

 and 
Z−
i
 ) and the maximum value of each objective function ( W+

j
 

and Z+

i
 ) can be obtained as follows:

(33)
∑

i∈I

wj

yijst

djs

F
(

tijs
) ≥ �st,∀j ∈ J;djs ≠ 0;s ∈ S;t ∈ T

(34)

∑

j∈J

yijst ≤
∑

t́∈T;t́≤t

𝜌irsqit́ + G

(

1 −
∑

l∈L

∑

t́∈T;t́≤t

xilrt́

)

,

∀i ∈ I;r ∈ R;s ∈ S;t ∈ T

(35)
∑

j∈J

yijst ≤ G

(

∑

l∈L

∑

r∈R

∑

t́∈T;t́≤t

xilrt́

)

,∀i ∈ I;s ∈ S;t ∈ T

(36)Min Z1, Z2, … , Zn

(37)Max W1, W2, … ,Wm

(38)x ∈ X

(39)Z+

i
= Max Zi, Subject to ∶ x ∈ X,∀i ∈ {1, 2, ..., n}

(40)Z−
i
= Min Zi, Subject to ∶ x ∈ X,∀i ∈ {1, 2, ..., n}

(41)W+

j
= Max Wj, Subject to ∶ x ∈ X,∀j ∈ {1, 2, ...,m}
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Step 2.2: Defining the membership function of each 
objective function

The values of the objective functions can be shown as fuzzy 
numbers; accordingly, the values of their membership function 
change linearly between zero and one. Such linear membership 
functions are defined below and illustrated in Fig. 2.

Step 2.3: Formulating a corresponding single-objec-
tive programming model

The above multi-objective programming model is trans-
ferred into the below single-objective programming model, 
with the aim of maximizing the minimum membership func-
tions of the objective functions and taking the weight of the 
objective functions into account.

Subject to:

where �i , and �j represent the weights of the objective functions.
Now, according to the weighted max–min model and the 

proposed linearization approach, the proposed programming 
model is transferred into the below single-objective linear 
programming model.

(42)W−
j
= Min Wj, Subject to ∶ x ∈ X,∀j ∈ {1, 2, ...,m}

(43)

�zi
=

⎧

⎪

⎨

⎪

⎩

1 Z−
i
≤ Zi

(Z+

i
− Zi)∕(Z

+

i
− Z−

i
) Z−

i
≤ Zi ≤ Z+

i
,∀i ∈ {1, 2, … , n}

0 Z+

i
≥ Zi

(44)

�wj
=

⎧

⎪

⎨

⎪

⎩

1 W+

i
≤ Wi

(Wj −W−
j
)∕(W+

j
−W−

j
) W−

i
≤ Wi ≤ W+

i
,∀j ∈ {1, 2, … , n}

0 W−
j
≤ Wj

(45)Max Z = �

(46)�j� ≤ �Zi
,∀i ∈ {1, 2, … , n}

(47)�j� ≤ �Wj
,∀j ∈ {1, 2, … , m}

(48)x ∈ X

Subject to:

Equations (4) to (10), (12) to (18), (26) to (30), and (33) 
to (35)

It is worth noting that due to the special nature of the first 
objective function and the model structure, the maximum 
value of the first objective function ( Z+

1
 ) becomes an unlim-

ited value by solving the linear counterpart of the model 
M1 and maximizing only the first objective function. There-
fore, to obtain a finite value for Z+

1
 , the model is solved by 

maximizing only the first objective function and replacing 
constraint (30) with the following constraints.

The auxiliary variable Oi will be equal to zero, if the 
variable xi has the highest value. The parameter Ğ is a large 
enough positive constant.

3  Model implementation and results analysis

In order to demonstrate the model’s applicability and valid-
ity, the results of the computational tests are reported in this 
section. Moreover, the models are solved via IBM ILOG 
CPLEX 12.10 software running on a laptop with an Intel 
Core i5-3210 M 2.5 GHz CPU and 4 GB of RAM. In the 
following, a real case study followed by various sensitivity 
analyses and tests is introduced.

(49)Max Z = �

(50)�1� ≤ (Z+

1
− Z1)∕(Z

+

1
− Z−

1
)

(51)�2� ≤ (Z2 − Z−
2
)∕(Z+

2
− Z−

2
)

(52)�3� ≤ (Z+

3
− Z3)∕(Z

+

3
− Z−

3
)

(53)𝛿 ≤ x́i + ǴOi,∀i ∈ I

(54)
∑

i∈I
Oi = |I| − 1

(55)Oi ∈ {0, 1},∀i ∈ I

Fig. 2  Membership functions of 
objective functions
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3.1  Case study

Iran is known as one of the world’s most earthquake-prone coun-
tries as numerous major faults pass through it, and in recent 
decades, it has suffered many destructive earthquakes, resulting 
in many casualties and huge financial losses. Figure 3 depicts 
earthquakes with a magnitude greater than four that occurred in 
Iran from 1900 to 2020 (IIEES, http:// www. iiees. ac. ir).

Iran’s second most populous province is Razavi Kho-
rasan, with a population of over 6.5 million (Statistical 
Center of Iran, http:// www. amar. org. ir). This province is 
one of Iran’s most earthquake-prone areas due to the exist-
ence of numerous active faults in it, and as evidenced by its 
historical earthquakes, financial and human losses caused by 
earthquakes have been high (Pourkermani and Arian 1998). 
According to studies, 71% of its area is located in a zone 
with moderate to high earthquake risk (Jahad Dneshgahi of 
Mashhad 2010; see Fig. 4 (Akbari et al. 2011)). Moreover, 
more than 5500 large and small faults have been identified 
in it so far that 60% of its area, 75% of its cities, and 35% of 

its villages are within the boundaries of these faults (Hayati 
et al. 2017). Meanwhile, only 42% of ordinary houses.

in it have metal frames and reinforced concrete, and 58% of 
houses have used other materials that would be seriously dam-
aged by earthquakes (Statistical Center of Iran, http:// www. 
amar. org. ir). Thus, it can be stated that the occurrence of an  
earthquake in it may cause enormous and irreparable human  
and financial losses. Hence, this case study considers the pos-
sibility of an earthquake in it. The data and information are 
acquired from reliable and trustworthy sources provided based 
on its actual conditions and via interviews with certain of its 
disaster management specialists,4 as well as from case studies 

Fig. 3  Seismicity map of Iran 
from 1900 to 2020

4 We conducted oral interviews with three experts from Mashhad’s 
Red Crescent Society, one expert from the Department of Passive 
Defense of Mashhad’s Governorate, and one expert from the Depart-
ment of Passive Defense of Astan Quds Razavi, who specialize in cri-
sis management and have complete information on the performance 
and situation of Iran’s relief systems. We also conducted oral inter-
views with three professors of the Ferdowsi University of Mashhad, 
who specialize in earthquakes.

http://www.iiees.ac.ir
http://www.amar.org.ir
http://www.amar.org.ir
http://www.amar.org.ir
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conducted in Iran. Notably, due to confidentiality considera- 
tions, some data and references cannot be disclosed. The con-
sidered assumptions and data are as follows:

• Due to the presence of critical industrial, social, cul-
tural, and religious centers, and high population density 
in Mashhad, Neyshabour, Sabzevar, Torbat-e-Hydariyeh, 
and Torbat-e-Jam cities, these cities are particularly 
susceptible in Razavi Khorasan Province. Moreover, 
according to Fig. 4 and the history of seismicity, they 
have always witnessed very destructive and terrible 
earthquakes throughout history. It also is noteworthy 
that Iran’s second most populous city is Mashhad, with 
a population of over 3 million people (Statistical Center 
of Iran, http:// www. amar. org. ir). This city is Iran’s most 
significant religious tourism hub, which is visited by over 
20 million tourists each year, which results in an increase 
in its population density. Thus, the mentioned cities are 
selected as demand points, shown in Fig. 5.

• Ten candidate warehouses are selected in Razavi  
Khorasan Province according to eight criteria (i.e., 
population density, distance from incompatible  
applications (i.e., gas stations, gas transmission lines,  
and high pressure lines), distance from faults, slope, 
distance from roads, height of buildings, distance from 
compatible applications (i.e., green spaces, healthcare 
centers, police departments, and fire departments), and 
proximity to affected areas) as proposed by Kharaghani 
(2020). Noteworthy, the fuzzy AHP method and ARC 
GIS software are employed to evaluate locations based 
on the above-mentioned criteria. Figure  5 displays  
candidate locations for warehouses.

• Warehouses can be established at three storage capacity 
levels and two retrofitting levels. At most 30000, 48000, 
and 72000 RPs can be stored in the storage capacity lev-
els 1, 2, and 3, respectively.

• The pre-disaster PTH is three years, which is divided into 
three one-year periods.

Fig. 4  Seismic hazard zona-
tion map of Khorasan Razavi 
Province

http://www.amar.org.ir
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• RCs packaged in packages include drinking water and 
food with long expiration dates and shelf life. Food  
is stockedin the form of meals-ready-to-eat (MREs). 
MRE is a type of individual operational ration that will 
simply be referred to as ration. The ration includes a  
variety of food items for breakfast, lunch, and dinner,  
and an MRE provides about 1.3 of the human body’s 
daily need for calories. A person’s daily need for water 
and food is three liters and two MREs, respectively 
(Sphere 2018). Here, a three-day period are considered 
to meet demands. Hence, each RP contains nine liters 
of drinking water and six MREs. By conducting local 
research in the locations of candidate warehouses, the 
costs of procuring each RP for each warehouse are esti-
mated in Table 2.

• Razavi Khorasan Province is surrounded by four main 
active faults, namely Kashafrud, Neyshabour, Sabzevar, 
and Torbat-e-Jam, the movement of each of which would 
result in a severe earthquake (see Fig. 6 (Kazemi et al. 
2013)). Consequently, four disaster scenarios are sug-
gested: 1) scenario 1: earthquake caused by Sabzevar 
fault, 2) scenario 2: earthquake caused by Neyshabour 
fault, 3) scenario 3: earthquake caused by Kashafrud 
fault, and 4) scenario 4: earthquake caused by Torbat-
e-Jam fault. According to experts’ opinions, the relative 

probabilities of the scenarios are estimated based on the 
length of the faults (Bozorgi-Amiri and Khorsi 2016) as 
0.45, 0.3, 0.1, and 0.15, respectively.

• In order to estimate the construction cost per square 
meter of each warehouse, the seismic resistance of its 
land is first evaluated using step-wise weight assess-
ment ratio analysis (SWARA) and simple additive 
weighting (SAW) methods. In particular, horizontal 
acceleration of faults, soil erosion, slope, proxim-
ity to faults, and soil liquefaction are considered as 
effective criteria of the proposed method. The values 
of these criteria for each warehouse are attained from 
the reports prepared by the Roads and Urban Develop-
ment Office of Khorasan Razavi Province, which can 
be accessed only with the organization’s permission. It 
is worth noting that the lower the land’s seismic resist-
ance, the stronger the building is required, which leads 
to the higher construction cost. Finally, the establish-
ment cost of each warehouse is estimated by consid-
ering its seismic resistance, capacity, and retrofitting 
level, and construction cost per square meter, and infla-
tion rate in its city, which is shown in Table 3.

       Candidate warehouses

       Demand points

i

j

Fig. 5  Map of Razavi Khorasan Province, locations of demand points, and candidate warehouses
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• The percentage of possible earthquake damage to each 
warehouse under retrofitting level 1 is estimated using DEA

• Numbers inside parentheses in each cell from left to right 
represent the establishment cost at periods 1, 2, and 3, 
respectively. model with the common set of weights 
(DEA-CSW model) for which eight criteria are con-
sidered as follows: 1) network of passages per capita, 
2) number of fire stations, 3) horizontal acceleration of 

faults, 4) soil erosion, 5) slope, 6) proximity to faults, 
7) soil liquefaction, and 8) traffic service level (traffic 
volume/traffic capacity). The values of these criteria 
for each warehouse are collected from the studies con-
ducted by the Roads and Urban Development Office of 
Khorasan Razavi Province, which can be accessed only 
with authorization from the organization. It is worth 
mentioning that the possible damage percentage in each 
scenario accounts for a percentage of the inefficiency 
score obtained from the DEA-CSW model. Finally, the 
estimated damage percentage is considered as the per-
centage of stockpiled RPs that are unusable following the 
disaster (see Table 4). Moreover, 100% of RPs are usable 
under retrofitting level 2.

• The priorities of the demand points are determined 
based on ten various criteria (i.e., distance from active 
faults, landslide, structural behavior of buildings and 
infrastructure, electricity, gas, water and sewage net-
works, transportation network, medical emergency  
services, fire stations, demographic characteristics  
(i.e., age, gender, income level, and health status),  
rescue capability, and mortality ratio) as proposed by 

Table 3  Costs of procuring a RP  (104 tomans)

Period 1 Period 2 Period 3

Warehouse 1 2 4 7
Warehouse 2 5 6 8
Warehouse 3 4 6 7
Warehouse 4 3.5 5 6.5
Warehouse 5 3 6 8
Warehouse 6 2.5 3 5
Warehouse 7 1 3 5
Warehouse 8 4.5 6 9
Warehouse 9 5.5 6.5 8
Warehouse 10 2 3 6

Fig. 6  Active fault map of Razavi Khorasan Province
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Nateghi (2001), and Tofighi et al. (2016). The values 
of the mentioned criteria for each demand point are 
obtained from the statistical yearbook of Razavi Kho-
rasan Province (Country’s program and budget organi-
zation 2019), and the reports prepared by the Roads 
and Urban Development Office of Khorasan Razavi 
Province, which can be accessed only with the organi-
zation’s permission. The normalized inefficiency scores 
obtained from the DEA-CSW model are considered as 
the priorities of the demand points. The values of these 
estimated priorities are presented in Table 5.

• The number of affected people in each demand point is 
estimated by multiplying its population size by its predicted 
damage percentage calculated regarding sixteen criteria as 
proposed by Baghban et al. (2019), and Gholami et al. (2015) 
and utilizing the DEA-CSW model. In particular, the con-
sidered criteria are as follows: 1) health per capita, 2) green 
space per capita, 3) network of passages per capita, 4) num-
ber of fire stations, 5) development stage, 6) percentage of 

low-durability buildings, 7) number of buildings older than 
thirty years, 8) population density, 9) horizontal accelera-
tion of faults, 10) soil erosion, 11) slope, 12) proximity to 
faults, 13) soil liquefaction, 14) area of hazardous applica-
tions (such as gas station, high-pressure power station, etc.), 
15) traffic service level (traffic volume/traffic capacity), and 
16) percentage of buildings with more than three floors. The 
values of these criteria for each demand point are acquired 
from the statistical yearbook of Razavi Khorasan Province 
(Country’s program and budget organization 2019), Statisti-
cal Center of Iran (http:// www. amar. org. ir), and the studies 
conducted in Roads and Urban Development Office of Kho-
rasan Razavi Province, which can be accessed only with the 
authorization from the organization. According to the histori-
cal data, the characteristics of the faults (such as horizontal 
acceleration, distance of central point, and magnitude, etc.), 
and experts’ opinions, the predicted damage percentage in 
each scenario is estimated by a percentage of the inefficiency 

Table 4  Establishment costs (million tomans)

Storage level 1 Storage level 2 Storage level 3

Retrofitting level 1 Retrofitting level 2 Retrofitting level 1 Retrofitting level 2 Retrofitting level 1 Retrofitting level 2

Warehouse 1 118,122,126 138,142,147 189,195,201 221,228,236 283,291,301 331,341,352
Warehouse 2 94,102,111 121,131,142 150,162,176 194,210,228 226,244,265 290,313,340
Warehouse 3 128,131,134 167,170,174 205,209,214 267,272,279 307,313,321 401,409,419
Warehouse 4 149,151,154 196,199,203 238,242,247 314,319,325 358,363,370 470,477,487
Warehouse 5 92,100,110 115,125,138 147,160,176 184,201,221 221,241,265 276,301,331
Warehouse 6 140,147,156 182,191,202 224,235,249 291,306,324 336,353,374 437,459,487
Warehouse 7 125,129,134 170,176,183 200,207,215 272,282,293 300,311,323 408,422,438
Warehouse 8 134,135,137 166,168,171 214,216,219 266,269,273 322,325,330 398,402,408
Warehouse 9 119,122,126 144,147,151 190,195,201 230,236,243 286,293,301 346,354,364
Warehouse 10 99,109,121 142,156,173 158,174,193 227,250,278 238,262,291 341,375,416

Table 5  Percentages of stocked RPs that remain unusable at post-dis-
aster (%)

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Warehouse 1 0 13 9 5
Warehouse 2 10 0 8 23
Warehouse 3 10 0 23 13
Warehouse 4 15 0 25 0
Warehouse 5 0 25 6 13
Warehouse 6 20 10 0 0
Warehouse 7 5 0 4 0
Warehouse 8 8 12 0 22
Warehouse 9 10 0 19 0
Warehouse 10 10 0 0 0

Table 6  Demand values  (103 RPs( along with the priorities of the 
demand points

Wj Scenario 1 Scenario 2 Scenario 3 Scenario 4

Demand 
point 1

0.25 0 70 100 0

Demand 
point 2

0.3 45 90 0 80

Demand 
point 3

0.2 65 0 40 100

Demand 
point 4

0.1 90 80 110 70

Demand 
point 5

0.15 80 60 0 100

http://www.amar.org.ir
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score obtained from the DEA-CSW model. Accordingly, the 
values of demands are reported in Table 5.

• Input criteria: ease of access to transport networks5 (I1), 
ease of access to supply resources of RPs6 (I2), and dif-
ficulty of traversing on routes leading to the warehouse 
(I3), and output criteria: security of the warehouse and its 
routes7 (O1), geographical and climatic conditions (O2), 
ease of access to essential infrastructure such as water, 
electricity, gas, etc. (O3), and quality of supply resources 
of RPs (based on production capacity, flexibility, deliv-
ery time, disruption risk, economic stability, etc.) (O4) 
are considered. Also, the values of these input and output 
criteria for each warehouse are determined in the range 
of [1, 0], presented in Table 6.

• For each period, Table 7 shows the available budgets for 
establishing the warehouses and procuring the RPs.

• Following an earthquake, there may be disruptions in 
the transportation network due to damage to routes and 
traffic congestion; as a result, travel times may rise com-
pared to normal conditions. Hence, in each scenario, the 
post-disaster travel time is calculated by multiplying the 
normal travel time by the coefficient of disruption in the 
transport route. The measurement tool on Google Maps 
is used to determine normal travel times from the ware-
houses to the centers of the demand points. Also, the 
coefficient of disruption in the transport route is esti-
mated based on the vulnerability of its network of pas-

sages and cities. In each scenario, the vulnerability of the 
network of passages of the transport route is estimated 
using the vulnerability rating of the network of passages, 
created by specialists. Also, the vulnerability of each city 
was calculated when estimating the values of demands. 
Post-earthquake travel times are provided in Table 8.

• Numbers inside parentheses in each cell from left to 
right represent travel times under scenarios 1, 2, 3, and 
4, respectively.

• Throughout the pre-disaster PTH, the budgets are depos-
ited in a bank at an annual effective interest rate of 10%, 
12%, and 15% in periods 1, 2, and 3, respectively.

• The annual inflation rate in each period and city is set 
according to historical data.

• Considering the higher priorities and ranges of the first 
expressions of the objective functions (1) and (2) than 
their second expressions, �1 , �2 , �1 , and �2 are set as 
Table 9.

• The rest of the information is presented in Table 9.

Now, in order to obtain the optimal solution of the 
model M1 according to this case study, the model is 
coded in IBM ILOG CPLEX 12.10 software, which con-
tains 1184 constraints (including 608 equality constraints) 
and 1447 variables (including 180 binary variables and 
630 integer variables). IBM ILOG CPLEX 12.10 soft-
ware finds the optimal solution of the model by applying 
21 cuts in 1663 iterations and 1.59 s. Figure 7 depicts 
the optimal solution obtained. For example, in period 2, 
warehouses 1 and 6 are established at retrofitting level 
2 and storage capacity levels 1 and 2 respectively, while 
warehouses 7 and 10 have been established at retrofitting 
level 1 and storage capacity levels 1 and 3, respectively, 
in period 1. The inventory of warehouse 10 in period 
2 includes 30,000 RPs, of which 29,000 packages and 
10,000 packages are stored from period 1 and period 2, 
respectively. In case of the disaster in period 2, 33,198, 
72,000, 69,120, and 22,421 RPs are dispatched from 

Table 7  Scores obtained from 
the evaluation of warehouses 
based on the input and output 
criteria

I1 I2 I3 O1 O2 O3 O4

Warehouse 1 0.6 0.4 0.9 0.4 1 0.5 0.14
Warehouse 2 0.8 0.1 0.1 0.2 0.7 0.13 0.1
Warehouse 3 0.3 0.8 0.14 0.7 0.8 0.9 0.7
Warehouse 4 0.1 0.15 0.2 0.17 0.17 0.16 0.15
Warehouse 5 0.5 0.11 0.1 0.14 0.15 1 0.3
Warehouse 6 0.17 0.15 0.15 0.17 0.1 0.17 0.5
Warehouse 7 0.14 0.3 0.17 0.1 0.5 0.5 0.12
Warehouse 8 0.4 0.2 0.1 0.15 0.17 0.3 0.8
Warehouse 9 0.5 0.17 0.6 0.2 0.17 0.8 0.7
Warehouse 10 0.21 0.1 0.8 0.4 0.3 0.16 0.11
Virtual ideal warehouse 0.1 0.1 0.1 0.7 1 1 0.8

5 This criterion is calculated as the weighted sum of the ease of 
access to various types of transportation networks such as airbases, 
airports, train stations, cargo stations, etc. Ease of access is also 
assessed based on the condition and the distance of the route between 
the warehouse and the transportation network.
6 Ease of access is measured based on the condition and the distance 
of the route between the warehouse and the supply resource.
7 This criterion is calculated as the weighted sum of the percentage 
of thefts and the distance from police departments.
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warehouse 7 to demand point 4 under scenarios 1, 2, 3, 
and 4, respectively.

In the following, the effects of some of the formulated 
assumptions, adopted approaches, and parameters on the per-
formance of the model are examined.

3.2  Evaluating the performance efficiency 
of the proposed programming model

This section is divided into six main subsections that assess the 
efficiency and effectiveness of the model by conducting sev-
eral sensitivity analyses on some of the critical assumptions, 
approaches, and parameters. It is worth noting that in these 
analyses, which are described below, in addition to the optimal 
values of the first, second, and third objective functions (Z1, 
Z2, and Z3), the following indicators are also paid attention:

• Total expected weighted satisfied demands 
(I1) =

∑

i∈I

∑

j∈J;djs≠0

∑

s∈S

∑

t∈T pswjyijst;

• Total expected weighted unit deprivation cost 
(I2) =

∑

s∈S

∑

t∈T ps

∑

i∈I

∑

j∈J;djs≠0
wjF(tijs)yijst

∑

i∈I

∑

j∈J yijst
;

• Total expected weighted service utility 
�

I3
�

=
∑

i∈I

∑

j∈J;djs≠0

∑

s∈S

∑

t∈T pswj

yijst

djs

F(tijs)
;

• Total expected weighted equity in service 

(I4) =
∑

s∈S

∑

t∈T ps min
j∈J;d��≠0

{
∑

i∈I wj

yijst

djs

F(tijs)
}.

3.2.1  Assessing the performance efficiency 
of the proposed procedure to establish the most 
desirable warehouses according to a set of criteria

In this section, the following three evaluations are car-
ried out to measure the performance efficiency of the 
proposed approach in line with establishing the most desirable 
warehouses based on a set of criteria. The results of these 
evaluations are shown in Fig. 8.

• Evaluating the performance efficiency of the pro-
posed DEA model: The performance efficiency of the 
proposed DEA model is evaluated by comparing it with 
the DEA models used in studies done by Klimberg and 
Ratick (2008), and Afsharian (2021) by maximizing 
warehouses’ utility based on these DEA models (The 
proposed model based on each of the DEA models used 
in these two studies (models M2 and M3) is provided 
in Appendixes 5.2. and 5.2.).

• Evaluating the effect of integrating the DEA model 
with the mathematical programming model: The 
problem under study aims to establish the most favora-
ble warehouses according to a set of criteria; hence, to 
achieve this purpose, the DEA model has been incor-
porated into the model M1. Now, it is assumed that  
the DEA model is not integrated with the model M1 
(model M4). In this case, warehouses are first evalu- 
ated according to the considered criteria using the DEA 
model (Its formulation is provided in Appendix 5.1.). 
The DEA model calculates the efficiency scores of the 
warehouses ( ESi ). Then, ESi is considered as an input 
parameter for the model M1, since the most favorable 
warehouses must be established. Consequently, the 
objective function (1) is reformulated as follows:

  Like the objective function (1), the objective function 
(51) also strives to establish the most desirable warehouses.

(56)Min Z1 =
∑

i∈I

∑

l∈L

∑

r∈R

∑

t∈T

ESixilrt

Table 9  Post-earthquake travel times between warehouses and demand points (in hours)

Demand point 1 Demand point 2 Demand point 3 Demand point 4 Demand point 5

Warehouse 1 (0.7,0.5,0.9,0.6) (2.5,2.3,1.9,1.8) (3.2,3.9,3,2.9) (2.65,2.1,2.3,2.9) (3.5,3.3,3.1,2.9)
Warehouse 2 (0.65,0.45,0.85,0.55) (2.4,2.2,1.8,1.7) (3.1,3.8,2.9,2.8) (2.55,2,2.2,2.8) (3.4,3.2,3,2.8)
Warehouse 3 (0.7,0.6,0.8,0.75) (2,1.7,1.3,1.5) (2.9,2.4,3.2,2.6) (1.8,1.6,2,1.5) (2.8,2.4,3,2.6)
Warehouse 4 (0.5,0.3,0.6,0.4) (2.4,2.2,2.8,2.5) (3.7,3.2,4,3.5) (2.6,2.3,2.8,2.4) (3.5,3.1,3.7,3.3)
Warehouse 5 (1.9,1.7,1.5,1.4) (0.3,0.4,0.25,0.25) (1.7,1.5,1.4,1.2) (2.3,2.1,2,1.8) (1.9,1.7.1.6,1.4)
Warehouse 6 (2.8,3,2.5,2.6) (1.5,1.8,1.25,1.35) (0.4,0.5,0.3,0.3) (3.1,3.5,2.9,2.8) (2,2.3,1.8,1.8)
Warehouse 7 (1.8,1.6,1.9,2) (2.2,1.8,2,2.4) (3.5,3,3.2,3.6) (0.3,0.2,0.25,0.35) (1.1,0.9,1,1.2)
Warehouse 8 (3,2.75,2.5,2.6) (2,1.7,1.5,1.55) (2.2,2,1.8,1.85) (1.2,1,0.85,0.9) (0.3,0.2,0.15,0.15)
Warehouse 9 (1.6,1.9,1.7,1.45) (2,2.4,2.2,1.9) (1.8,2.1,1.9,1.65) (3,3.5,3.2,2.9) (4,4.3,4.15,3.85)
Warehouse 10 (2.2,1.8,2.5,2.7) (2.8,2.6,2.4,2.7) (3.5,3.9,3.6,4) (1.9,1.7,2.1,2.5) (2.9,2.7,2.7,3)

Table 8  Establishment and procurement budgets (million tomans)

Period 1 Period 2 Period 3

Establishment budget 400 450 500
Procurement budget 1300 2200 3300
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: Retrofitting level 1           : Retrofitting level 2           : Storage capacity level 1          : Storage capacity level 2         : Storage capacity level 3

            : Inventory level of warehouse i                                             : Number of RPs sent from warehouse i to demand point j under scenarios 1, 

2, 3, and 4, respectively.

i i j-

Period 1

Period 2

Period 3

Fig. 7  Optimal solution of the model M1 according to the considered case study
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• Evaluating the performance of the second expression of 
the first objective function (the maximum utility scores 
of established warehouses based on a set of criteria): As 
mentioned earlier, the proposed DEA model is formu-
lated by taking inspiration from the DEA model pre-
sented by Sun et al. (2013). Yet unlike the model by Sun 
et al., in addition to minimizing the summation of the 
weighted coordinate distances between the virtual ideal 
warehouse and all established warehouses, the proposed 
DEA model also minimizes the maximum weighted  
coordinate distances between the virtual ideal ware-
house and all established warehouses. In this regard, 
this expression is omitted from the objective function 
(1) (model M5) to assess the performance of the second 
expression of the objective function (1). Consequently, 
the objective function (1) is reformulated as follows:

As seen in Fig. 8, the proposed approach provides more 
favorable and fairer service to affected people, which  
results in lower supply risk, higher service efficacy, and 
less human suffering. Thus, the second objective function, 
which has a higher priority for the RO, has been realized to 
a greater extent. Noteworthy, as expected, the results show 
that the higher the value of the second objective function, 
the more the weighted satisfied demands, the lower the 
deprivation costs, and the more favorable and fairer the 

(57)

Min Z1 =
∑

i∈I

∑

l∈L

∑

r∈R

∑

t∈T

xilrt

{

∑

n∈N

�n
(

Eni − EnIDEAL

)

+
∑

m∈M

�m
(

OmIDEAL − Omi

)

}

service. Besides, the proposed approach makes the total 
logistics cost more affordable, given the lower value of its 
third objective function. Subsequently, it can be stated that 
the proposed approach for establishing the most desirable 
warehouses based on the input and output criteria has a  
better performance.

3.2.2  Investigating the effects of some other 
of the considered assumptions and approaches

In this section, the following evaluations are carried out to inves-
tigate the effects of some of the critical and fundamental assump-
tions and approaches considered in the problem under discussion.

• Investigating the effects of taking bank interest into 
account: In this study, the time value of money is consid-
ered by investing the budgets with a specific interest rate. 
Figure 9 shows the effects of taking into account the time 
value of money in the proposed programming model by 
eliminating the interest rate (model M6). Consequently, 
constraints (5) and (6) are reformulated as follows:

Taking bank interest into account increases the budgets. 
Hence, the RO is able to provide more RPs and establish more 
desirable warehouses, which results in more weighted satisfied 
demands, lower deprivation costs, and more favorable and equi-
table service and, as a result, more fulfillment of the first and 
second objective functions and a better optimal value for them. 

(58)
∑

i∈I

∑

l∈L

∑

r∈R

filrtxilrt + át = at + át−1,∀t ∈ T;a0 = 0

(59)
∑

i∈I

pcitqit + b́t = bt + b́t−1,∀t ∈ T;b0 = 0
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Noteworthy, due to the procurement of more RPs, the estab-
lishment of more desirable yet expensive warehouses, and the 
improvement of the establishment schedule, the total logistics 
cost has increased. Therefore, as expected, taking the assumed 
time value into account leads to a better performance from the 
model, which is also closer to reality.

• Evaluating the performance of the multi-period opti-
mization approach: Holguín-Veras et al. (2013) asserted 
that the inter-temporal effects of DRSC activities cannot 
be considered in single-period optimization. Therefore, 
in this paper, it is claimed that integrating the main deci-
sions, such as location, procurement, and distribution, 
in a multi-period horizon may improve coordination in 
the DRSC. Solving a single-period problem iteratively, 
taking into account the decisions made in previous peri-
ods (model M7) proves this claim. This approach is con-
ducted for each period t beginning from the first period 

onward. As displayed in Fig. 10, in the proposed model 
M1, the decisions are taken in such a way that they lead 
to establishing more and more desirable warehouses, 
an increase in weighted satisfied demands, service util-
ity, equity in service, and the total logistics cost, and a 
decrease in the deprivation costs. Accordingly, the first 
and second objective functions have been realized in bet-
ter values. Therefore, since servicing the affected areas 
with the greatest possible number of RPs and the lowest 
possible deprivation costs in the fairest possible manner, 
as well as establishing the most favorable warehouses are 
the most important objectives of the problem, the multi-
period optimization approach outperforms the single-
period optimization approach.

• Investigating the effects of gradual budgets injec-
tion into the system: To examine the performance of 
the proposed approach for injecting budgets into the 
system (gradual budgets injection approach), it is first 
assumed that the total budget planned for the establish-
ment of warehouses and the total budget planned for the 
procurement of RPs are fully available at the beginning 
of the pre-disaster PTH (instantaneous budgets injection 
approach (model M8)). Subsequently, the amounts of 
these budgets for each period are considered as follows:

Now, the model M1 is solved according to these budget 
values, the results of which are presented in Table 10.

It is impossible to implement the decisions presented in 
Table 10 in due time, since, at the beginning of the pre-disas-
ter PTH, the establishment and procurement budgets are not 
fully available; rather, at the beginning of each period, a part 
of the budgets is injected into the project. Thus, to schedule 
for establishing the selected warehouses, procure the deter-
mined amounts of RPs, and set the optimal strategy for dis-
tributing RPs among the demand points, the model M1 is 
solved according to the solutions presented in Table 10 and 
the actual amounts of the budgets of the periods. Given the 
increasing establishment and procurement costs over time, 
it is not possible to establish all of the selected warehouses 

(60)a1 = A, a2 = 0, a3 = 0, b1 = B, b2 = 0, b3 = 0
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Fig. 10  Results obtained from 
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and procure all of the determined RPs; as a result, the model 
is not solved. If storage capacity, retrofitting and inventory 
levels of the warehouses are changed, then the model can be 
solved. Hence, in order to achieve to the best solution close to 
the solution presented in Table 10, the model M1 is solved by 
assuming that warehouses 2, 4, 6, 8, and 9 are not established 
(model M9). The obtained results show that warehouses 1, 3, 
5, 7, and 10 are respectively established at storage capacity 
levels 2, 3, 1, 3, and 3, and retrofitting levels 2, 1, 2, 1, and 
1. In Fig. 11, the model M9 is compared with the model M1. 
According to Fig. 11, it can be concluded that the proposed 
gradual budget injection approach involves better performance 
as it leads to the establishment of more desirable warehouses, 
a more efficient response to affected people, and lower supply 
risk. Noteworthy, the model M1 plans procurement policy 
more cost-effectively (a decrease of about 0.8%) while pro-
curing more RPs (an increase of about 5.3%). However, the 
total logistics cost has increased due to an increase of approxi-
mately 6.8% in the total establishment cost.

• Evaluating the performance of the second objective 
function: As mentioned earlier, one of the objectives of 
the proposed problem is to service affected people with 
the highest possible amount of RPs and the lowest pos-
sible deprivation cost in the fairest possible way. Hence, 
to further realize the objective and, at the same time, 
reduce computational complexities, new service utility 
and balance measures have been introduced, on the basis 
of which the objective has been formulated as a single 
objective function. In the literature, in order to achieve 
this objective, the following objective functions have 
been utilized. The functions (56) and (57), respectively, 
maximize satisfied demands and the minimum fraction 
of fulfilled demand among all of the demand points. The 
functions (58) and (59), respectively, minimize depriva-

tion costs and the maximum fraction of deprivation cost 
among all of the demand points. The functions (57) and 
(59), respectively, represent the fair service in terms of 
the amount of distributed RPs and deprivation cost con-
sidering the balance concept. Now, in order to investigate 
the efficiency and efficacy of the objective function (2), 
it is assumed that the mentioned objective is formulated 
by the functions (56) to (59); as a result, the model is 
transferred into the following model:

Model 10:

Subject to: Constrains (4) to (18)
Fig. 12 displays some of the outcomes of running the 

model M10. The findings reveal considerable changes in the 
problem decisions, resulting in feeble relief performance. 
Thus, the function objective (2) outperforms the objective 
functions (56) to (59).

• Two-stage scenario-based stochastic optimization vs. 
deterministic optimization: To investigate whether it 
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Table 10  Rest of the required 
information
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Fig. 11  Impacts of employing 
the model M1 instead of the 
model M9
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is worthwhile to use the two-stage scenario-based sto-
chastic optimization approach instead of a determinis-
tic optimization approach, we remove the scenarios of 
the model M1 and treat all the uncertain parameters as 
certain parameters, thereby replacing them with their 
expected values across all scenarios (the deterministic 
counterpart of the model M1 (model M11)). Now, in 
order to evaluate the performance of the model M11, 
the decision variables of stage 1 are fixed in the model 
M1 according to the optimal solution of the model  
M11. Then, the optimal values of the decision variables 
of stage 2 are determined. The model M11 establishes 
warehouses 5, 6, 7, and 10 at storage capacity levels 1, 
3, 3, and 3, retrofitting levels 1, 2, 1, and 2, and peri-
ods 1, 3, 1, and 2, respectively, leading to a reduction  
of about 9.6% in the total logistics cost. Although the 
model M11 is more cost-effective, it is not more effi-
cient and effective in response to the disaster, as it sig-
nificantly reduces weighted satisfied demands, service 
utility, and fair service and increases the deprivation 
costs, resulting in less fulfillment of the second objec-
tive function and, consequently, a lower optimal value  
for it (see Fig. 13). Therefore, we can conclude that the 
two-stage scenario-based stochastic optimization can 
result in more effective and efficient relief.

3.2.3  Robustness analysis

Expected value of perfect information (EVPI) is a perfor-
mance measure that represents the value of access to accu-
rate information about the future. It somehow expresses 
the acceptable cost of access to more accurate information. 
EVPI is calculated as follows:

Zs , and RP represent the optimal solution value of the 
deterministic (single-scenario) problem associated with 
scenario s and the optimal solution value of the original 
problem, respectively (Birge and Louveaux 1997).

Table 11 presents the values of EVPI for the proposed 
model. As shown in Table 11, the values of WSS are very 
close to their corresponding values of RP; as a result, the 

(66)WSS =
∑

s∈S

psZs

(67)
EVPI = RP −WSS (for minimization problems) or

WSS − RP (for maximization problems)

Fig. 12  Results of the model 
M1 vs. the model M10
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values of EVPI are very small. The values of EVPI mean 
that an increase of 120.95, 0.005, 0.009, 0.005, and 96.95, 
and a decrease of 0.007, and 0.024 in the optimal values 
of I1, I2, I3, Z1, Z3, I4, and Z2, respectively, can be incurred 
owing to the presence of uncertainty. Therefore, unlike the 
total expected weighted equity in service and Z2, the other 
metrics tend to go down with more disaster information 
which can be achieved in the preparedness phase. Notably, 
the total expected weighted satisfied demands and service 
utility can be decreased by 120.95 and 0.009, respectively, 
if disaster scenarios can be foreseen. Table 12

Regarding the above-mentioned results, it can be con-
cluded that the planning of the model M1 is very close to 
that of the deterministic programming model associated 
with each scenario. In this case, collecting complete and 
accurate information about the stochastic parameters would 
not be more attractive than solving the model M1, since 
randomness plays a vital role in the proposed problem. In 
conclusion, it can be stated that using the proposed two-
stage scenario-based stochastic optimization approach in the 
location, procurement, and distribution decisions can result 
in appropriate relief.

3.2.4  Sensitivity analyses on the parameters at , bt , and irt

In order to demonstrate the effects of varying the param-
eters of the model, sensitivity analyses are conducted on 
the parameters at, bt , and irt. These parameters are opted 
as any variation in their corresponding values can have 
remarkable effects and their corresponding values may vary 
abruptly throughout the pre-disaster PTH. Some outcomes 
of these sensitivity analyses are illustrated in Fig. 14. An 
increase in the budgets results in the establishment of more 
or/and more desirable warehouses, the improvement of 
establishment scheduling and storage and retrofitting lev-
els, more pre-procured RPs and, subsequently an increase 
in weighted satisfied demands, service utility, equity in 
service, and the total logistics cost, and a decrease in the 
deprivation costs. Thus, an increase in the budgets leads to 
an increase in the optimal values of the second and third 
objective functions. Moreover, by raising irt, the profits 
allocated to the budgets increase, so the budgets grow. 
Hence, the RO can establish more or/and more desirable 
warehouses, improve establishment scheduling and storage 
and retrofitting levels, provide more RPs before the disaster,  
resulting in lower supply risk, and higher efficiency, 

Table 11  Selected warehouses, 
their storage capacity and 
retrofitting level, and the 
number of RPs purchased for 
each of them at each period 
using the model M8

Establishment 
time

Storage level Retrofitting 
level

Procured packages

Period 1 Period 2 Period 3

Warehouse 1 1 3 1 64995 0 0
Warehouse 3 1 3 1 60000 0 0
Warehouse 5 1 3 1 31777 1 0
Warehouse 7 1 3 1 72000 0 0
Warehouse 10 1 3 1 71336 0 0

Table 12  Results obtained from 
the robustness analysis

Scenario1 Scenario2 Scenario3 Scenario4 WSS RP EVPI

I1 84886 86425 78061 89945 8,424.05 85545 -120.95
I2 0.57 0.529 0.472 0.556 0.546 0.551 0.005
I3 1.448 1.140 1.033 1.034 1.252 1.261 -0.009
I4 0.187 0.251 0.245 0.195 0.213 0.206 0.007
Z1 0.575 0.561 0.565 0.572 0.569 0.574 0.005
Z2 0.863 0.863 0.811 0.838 0.854 0.83 0.024
Z3 (million 

tomans)
8024 8017 8151.2 8040.2 8037.05 8134 96.95
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efficacy and equity, and as a consequence, more realiza-
tion of the second objective function and an increase in 
total logistics cost.

4  Conclusion

Natural and manmade disasters kill thousands of people and 
displace millions every year. Therefore, to decrease the dam-
ages caused by disasters, proper planning is essential in deal-
ing with these events before their occurrence. Consequently, 
this study aimed to present a logistical model for making 
strategic decisions (the location, storage. 

capacity, retrofitting level, and inventory level of ware-
houses at pre-disaster) and tactical decisions (the distribu-
tion of required supplies at post-disaster) simultaneously. 
In this regard, a multi-period multi-objective two-stage 
scenario-based stochastic programming model was presented 
to minimize the total social cost and maximize fulfilled 
demands, fair service, and warehouses’ utility. The maximi-
zation of warehouses’ utility was formulated in the proposed 

mathematical programming model according to various 
criteria and using a proposed DEA model. Moreover, the 
maximization of fulfilled demands and fair service and the 
minimization of deprivation costs were simultaneously cal-
culated using a new objective function based on the fraction 
of satisfied demand, the deprivation cost function, and the 
priority of the demand point. In this study, several pre-dis-
aster periods, the gradual injection of limited establishment 
and procurement budgets, the time value of money, various 
criteria for evaluating warehouses, the risks of disruption in 
warehouses and transportation networks, and various storage 
capacities and retrofitting levels for each warehouse were 
taken into account. It is worth noting that location, pro-
curement, and distribution problems under discussion were 
modeled dynamically (time-dependent) due to the assumed 
financial constraints. Finally, a real case study of the plau-
sible earthquake in Khorasan Razavi Province, along with 
several sensitivity analyses and tests, was implemented to 
demonstrate the applicability and performance of the pro-
posed programming model. The findings revealed that inte-
grating the DEA model with the mathematical programming 
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model, optimizing efficacy, equity and distress measures 
using the second objective function, considering the time 
value of money, and applying proposed multi-period opti-
mization, two-stage scenario-based stochastic optimization 
and gradual budgets injection approaches can significantly 
improve the efficiency, efficacy, equity, and distress of the 
designed DRSC network.

4.1  Managerial insights

The current research contributes to the DRSC literature by 
presenting a novel efficient optimization approach for ware-
house location and the storage of RCs prior to a disaster, 
and the distribution of pre-positioned RCs among demand 
points following a disaster under a dynamic uncertain multi-
criteria environment and budgetary constraints. Moreover, 
the findings show that the proposed programming model 
has the following significant administrative implications and 
benefits for ROs:

• ROs have occasionally struggled or failed to implement 
their disaster management policies in reality. One of the 
major causes contributing to this is a lack of preemptive 
readiness. Hence, the current study aims to reduce this 
gap. The proposed model simplifies strategic and tactical 
decisions for relief managers by merging inventory-related 
decisions and warehouse location before the calamity with 
relief distribution after it. The structure of the DRSC net-
work will be more stable due to this design approach and 
affected people will be able to get RCs sooner.

• Pre-disaster budgets and their investment have a consid-
erable impact on disaster response performance. As a 
result, financial planning and management can promote 
service effectiveness.

• The proposed model strives to simultaneously optimize 
demand coverage, deprivation cost, and fair service, 
which can assist ROs to plan an efficient DRSC network 
from various facets. Moreover, formulating these objec-
tives as the second objective function can result in more 
fulfillment of them.

• In light of pre-disaster financial limitations, ROs  
can only allocate limited budgets that will gradually 
become available over time. This necessitates multi-
period decision-making. In this regard, employing the 
multi-period optimization approach can enhance the 
responsiveness of DRSC.

• In order to improve the performance of the location-inventory-
distribution model, the mathematical programming 
model should be combined with the DEA model, resulting  
in accounting for patterns of locations simultaneously for 
warehouses and the associated relative efficiencies of ware-
houses at each location. Solving for the DEA efficiency 
measure, simultaneously with other location modeling 

objectives, provides a promising rich approach to multi 
objective location problems. The ability to use location 
models to test trade-offs between spatial efficiency and 
facility efficiency provides a promising new rich approach 
for multi-objective location analysis.

• In view of the intricate and unpredictable nature of 
catastrophes, some key parameters face a high level of 
uncertainty. Hence, it is appropriate to consider these 
parameters as scenario-based stochastic parameters, as 
overlooking these uncertainties and assuming them as 
deterministic parameters results in an inefficient DRSC 
network.

• In addition to the fact that victims expect that there must 
be no privileges or priority for certain groups of peo-
ple, fair service can prevent some risky cases (such as 
plunder), maintain the stability of a DRSC network, and 
deliver RCs in a timely way, thereby improving the per-
formance of an DRSC network. Consequently, it is essen-
tial to pay attention to equity in service when designing 
a DRSC network.

4.2  Future studies

This study, like other studies, was not without limita-
tions. The lack of sufficient cooperation of some ROs and 
researchers in accessing some information, and the non-
existence of an official database for some of the required 
data, which resulted in the experts’ estimations were asked 
to help, were among the most critical limitations of the cur-
rent research. Moreover, there were certain of limitations in 
the modelling assumptions made. For instance, post-disas-
ter public donation was neglected, as the post-disaster PTH 
included the first 72 h after the disaster, which is insufficient 
to distribute items donated by the public. Due to the reduc-
tion of the complexity of the problem, the current research 
assumed the same priority for different RCs and modeled 
different RCs as RPs. Although, in practice, the priorities of 
different RCs are different, and the pre-disaster procurement 
of different RCs based on their priority can significantly 
improve service to victims. Thus, the assumption that differ-
ent RCs have the same priority is another restriction. Finally, 
since no research can be fully comprehensive and complete 
and not all dimensions can be examined in a single study, 
this research had other limitations, based on which the fol-
lowing points are suggested in order to extend the problem 
in question in the future:

• The random and unpredictable nature of the crisis 
necessitates crisis management within an uncer-
tain environment. As a result, many of the examined 
papers used a scenario-based stochastic optimiza-
tion approach, while other uncertain optimization 
approaches were overlooked. Besides, given the 
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researchers’ identification of disadvantages in the 
scenario-based stochastic optimization approach, pre-
senting an uncertainty-set based robust optimization 
approach for the problem under examination can be 
helpful for real-world applications

• To provide excellent levels of service, processes in 
a DRSC should be analyzed in general, rather than in 
detail. As a result, decentralized and hierarchical deci-
sions can better achieve the goals of a DRSC. For this 
purpose, the use of multi-level programming can be 
beneficial. Nevertheless, very few studies have focused 
on multi-level optimization problems to date. Therefore, 
modeling the problem under study in the form of a multi-
level optimization model can provide a more realistic 
relief network; it also allows for the observation of how 
decisions made in each part of the network can influence 
or be influenced by decisions made in other areas.

• Certain vital RCs are perishable; as a result, the lack of 
attention to their corruption can lead to considerable finan-
cial and human losses. Subsequently, it is necessary to con-
sider the perishability of RCs in the proposed problem and 
provide an efficient inventory management strategy.

• To decrease the expenses of procuring RCs and the risk 
of supplying RCs after a disaster, it is necessary to select 
appropriate suppliers and provide solutions to deal with the 
risk of supply disruption caused by disruptive suppliers. 
Moreover, the procurement of RCs using a strategy based 
on placing contracts with supply sources can decrease the 
expenses of procurement and warehousing due to fewer 
pre-positioned items in inventory and lower supply risk. 
Hence, the responsiveness and cost efficiency of the pro-
posed DRSC can be enhanced by integrating the problem 
under discussion with a supplier selection problem, in 
which a new and realistic strategy is used based on placing 
contracts with suppliers; solutions would also be offered to 
deal with the risk of supplier disruption.

• Pre- and post-disaster relief operations often involve sev-
eral ROs working simultaneously. Hence, a collabora-
tive DRSC network consisting of several ROs should be 
designed to make the required decisions on the ways in 
which RCs are procured, pre-positioned, and distributed 
pre- and post-disaster. Moreover, each of these ROs has 
limitations and purposes; as a result, game theory is a 
powerful tool to address the interactions among them. 
Thus, considering joint pre- and pot-disaster interactions 
and operations between several ROs and modeling them 
by a proper uncertain game theory method would make 
for an interesting study.

• To solve the proposed model on a large scale, presenting 
an exact solution method or a heuristic/meta-heuristic 
algorithm or a solution method based on deep leaning 
method is recommended.

• The generated solutions must be robust to the variability 
of input parameters, remain valid, and be either feasi-
ble or able to be transformed into feasible solutions at 
a reasonable cost. Therefore, in order to achieve more 
robust solutions for the problem under consideration, 
developing the proposed model utilizing risk measures 
(e.g., VaR, CVaR, Worst-case mean-CVAR, Entropic 
VaR, Worst-case mean-quantile-deviation, Semidevia-
tion, Maximum regret, and Mean absolute semidevia-
tion) and robust scenario-based stochastic optimization 
techniques (e.g., approaches presented by Mulvey et al. 
(1995) and Aghezzaf et al. (2010), and p-robust method) 
is an interesting research avenue.

• In light of the importance and yet lack of behavioral 
research in humanitarian relief operations (Sankarana-
rayanan et al. 2018), considering human behaviors and 
factors (e.g., public sympathy with victims, which can 
lead to financial and non-financial donations, and vic-
tims’ word of mouth and impatience when facing short-
ages, which can result in leaving distribution centers or 
plundering RCs, impacting relief operation.) is another 
intriguing possible direction for further studies.

Appendix

Appendix A. Proposed DEA model

The proposed DEA model, whose notations are listed in 
Table 13, is formulated as follows:

Table 13  Sets, indices, parameters, and decision variables used in the 
proposed DEA model

Sets and indices:
I: Set of alternatives, indexed by i.
N: Set of input criteria, indexed by n.
M: Set of output criteria, indexed by m.
Parameters:
Eni: Amount of input criterion n for alternative i.
Omi: Amount of output criterion m for alternative i.
EnIDEAL: Amount of input criterion n for virtual ideal alterna-

tive, E������ = min
�

{Eni}.
OmIDEAL : Amount of output criterion m for virtual ideal alternative, 
OmIDEAL = max

i

{

Omi

}

.
� : Weight factor in the objective function.
� : A small enough positive constant.
Decision variables:
�n : Weight of input criterion n.
�m : Weight of output criterion m.
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Subject to:

The objective function (A.1) minimizes the weighted 
sum of the summation of the weighted coordinate distances 
between the virtual ideal alternative and all alternatives and 
the maximum weighted coordinate distances between the 
virtual ideal alternative and all alternatives. Constraint (A.2) 
ensures that the weighted sum of output criteria is less than 
or equal to the weighted sum of input criteria. Constraints 
(A.3) and (A.4) take into account the weighted summation 
of the input criteria of the virtual ideal alternative and the 
weighted sum of the output criteria of the virtual ideal alter-
native as equal to one, respectively. Finally, constraint (A.5) 
specifies the eligible domains of decision variables.

The efficiency score of the alternative i is calculated as 
follows:

�∗
n
 , and �∗

m
 represent the optimal value of the weight 

assigned to the nth input criterion and the mth output crite-
rion, respectively, which are obtained by solving the DEA 
model presented above. Notably, since the efficiency score 
of each alternative is calculated as the ratio of the weighted 
sum of its outputs to the weighted sum of its inputs; hence 
the more, the better.

(D.6)ES
i
=

∑

m∈M �∗
m
O

mi

∑

n∈N �∗
n
E
ni

, ∀i ∈ I

Appendix B. Proposed model integrated 
with the Klimberg and Ratick’s model

The proposed programming model based on the DEA model 
employed in the research conducted by Klimberg and Ratick 
(2008) is formulated as follows.

Model M2

Subject to:
Eqs. (4) to (6), (10) to (14), and (16) to (18)

where variables ui, �mi , and �ni indicate the level of ineffi-
ciency of warehouse i, the weight allocated to the mth output 
criterion for warehouse i, and the weight allocated to the nth 
input criterion for warehouse i, respectively. The objective 
function (B.1) maximizes the summation of the efficien-
cies of warehouses. Constraint (B.2) considers the weighted 
sum of the input criteria of an established and unestablished 
warehouse to be equal to one and zero, respectively. Con-
straint (B.3) indicates the level of inefficiency of a ware-
house. Constraint (B.4) determines that the weighted sum of 

(B.1)Min Z1 =
∑

i∈I(1 − Ui)

Max Z2

Min Z3

(B.2)
∑

n∈N

�niEni =
∑

l∈L

∑

r∈R

∑

t∈T

xilrt,∀i ∈ I

(B.3)
∑

m∈M

�miOmi + ui =
∑

l∈L

∑

r∈R

∑

t∈T

xilrt,∀i ∈ I

(B.4)
∑

m∈M

𝜏miOmí −
∑

n∈N

𝜗niEní ≤ 0,∀i, í ∈ I;i ≠ í

(B.5)�miOmi ≤
∑

l∈L

∑

r∈R

∑

t∈T

xilrt,∀i ∈ I;m ∈ M

(B.6)�ni ≥ �(
∑

l∈L

∑

r∈R

∑

t∈T

xilrt),∀i ∈ I;n ∈ N

(B.7)�mi ≥ �(
∑

l∈L

∑

r∈R

∑

t∈T

xilrt),∀i ∈ I;m ∈ M

Min Z = �

{

∑

i∈I

(

∑

n∈N

�n
(

Eni − EnIDEAL

)

+
∑

m∈M

�m
(

OmIDEAL − Omi

)

)}

+ (1 − �)

(

max
i∈I

{

∑

n∈N

�n
(

Eni − EnIDEAL

)

+
∑

m∈M

�m
(

OmIDEAL − Omi

)

})

(A.1)

∑

m∈M

�mOmi ≤
∑

n∈N

�nEni,∀i ∈ I

∑

n∈N

�nEnIDEAL = 1

∑

m∈M

�mOmIDEAL = 1

�n, �m ≥ �

(A.2)

(A.3)

(A.4)

(A.5)
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output criteria is less than or equal to the weighted sum of 
input criteria. Constraint (B.5) requires the weighted output 
criteria to be less than or equal to one. Constraints (B.6) and 
(B.7) express the range of the variables.

Appendix C. Proposed model integrated 
with the Afsharian’s model

According to the DEA model used in the research conducted 
by Afsharian (2021), the proposed programming model is 
formulated as follows.

Model M3

Subject to:
Eqs. (4) to (7), and (10) to (18)

The objective function (C.1) maximizes the weighted sum 
of the output criteria of warehouses. Constraint (C.2) consid-
ers the weighted sum of the input criteria of an established 
warehouse as equal to one.
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available within the paper.
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