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(Material Requirements Planning, e.g., Orlicky 1975), 
which is one of the most applied PPC systems, is inherently 
forecast-driven. That is, MRP determines which materials 
and parts to order, how many of each are necessary, and 
when they will be required based on forecasts. The calcu-
lated requirements are then enacted as purchase orders for 
external suppliers and manufacturing orders to the factory 
shop floor. MRP may perform effectively, as long as fore-
casts are accurate and there are no unexpected changes to 
demand. In complex, uncertain environments, however, 
things change quickly. DDMRP therefore attempts to align 
production with demand by enabling purchase and manu-
facturing orders based on customer orders instead of rely-
ing on forecasts as MRP. Additionally, DDMRP proposes an 
intuitive way to manage production flows by strategically 
positioning decoupling buffers and managing the buffer 
levels.

As pointed out by Ducrot and Ahmed (2019), DDMRP 
is not the first flow-based approach to PPC. Lean is also 
a flow-based approach, but its just-in-time (JIT) and one-
piece flow principles try to minimize stocks, e.g., by use 
of value stream mapping, instead of using them to buffer 
against variability. Given this potential to buffer variability, 

1 Introduction

Demand-Driven Material Requirements Planning 
(DDMRP) is a recent approach to Production Planning 
and Control (PPC) designed to improve the performance 
of supply chains in complex and uncertain environments. 
Studying this type of environments gains increasingly in 
importance given recent systemwide disruptions. MRP 
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Abstract
Demand-Driven Material Requirements Planning (DDMRP) was designed to improve supply chain performance in com-
plex and uncertain environments. Literature on the topic suggests that production replenishment orders should be dis-
patched for execution based on the buffers’ penetration ratio of the products ordered, which is a measure of protection 
against stock depletion. However, the actual performance impact of this dispatching rule remains largely unknown as is the 
impact of different lot transfer policies. A simulation analysis was carried out to compare the performance of the lowest 
net flow position, the highest buffer penetration ratio, earliest operation due date and first-come first-served rules under 
synchronized and unsynchronized lot transfer policies. Results of our study show that the choice of dispatching rules is 
contingent on the setting of top-of-yellow and top-of-green, which determine the re-order quantity, and on the demand 
mix of products. The earliest operation due date rule shows great potential to outperform the rule typically applied in a 
DDMRP context specifically for a high demand mix. These findings provide important insights for improving industrial 
practice and for guiding future research on DDMRP.
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which is often what companies sell to their customers as cus-
tomization, a large literature on DDMRP recently emerged, 
e.g., Miclo et al. (2019), Lee and Rim (2019), Dessevre et 
al. (2019), Thürer et al. (2022), Azzamouri et al. (2022), and 
Martin et al. (2023). Most of this literature focuses on case 
studies and comparing DDMRP with other PPC approaches, 
e.g., Kortabarria et al. (2018), Dessevre et al. (2019), 
Miclo et al. (2019) and Thürer et al. (2022). Only a subset 
is focused on DDMRP parametrization, e.g., Acosta et al. 
(2020), Martin et al. (2023), Lee and Rim (2019), Lahrichi 
et al. (2022) and Damand et al. (2023). This work contrib-
utes to this latter stream of literature by comprehensively 
investigating the execution performance of DDMRP in a 
capacity-constrained production environment characterized 
by complexity and uncertainty. More specifically, we assess 
which rules should be used to prioritize open replenishment 
orders waiting in the shop queues in terms of lot transfer and 
demand priority, assessing the following research question 
(RQ):

RQ: How should DDMRP open replenishment orders be 
prioritized during their execution on the shop floor?

Findings provide important insights for improving indus-
trial practice, where managers need to deal with these deci-
sions, and for guiding future research on DDMRP.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the literature on DDMRP, the relevant pri-
ority dispatching rules and lot transfer policies. Section 3 
then presents the simulation study carried out to answer 
our research question before the results are presented and 
discussed in Sect. 4. Finally, conclusions will be drawn in 
Sect. 5, which also identifies limitations and future research 
directions.

2 Literature Review

The literature review is split into three sections. Section 2.1 
introduces DDMRP, followed by a review of previous work 
concerning priority dispatching for execution in Sect. 2.2. 
Lot transfer is discussed in Sect. 2.3. Finally, Sect. 2.4 dis-
cusses the literature and identifies the research gap that 
motivates our study.

2.1 Background

Ptak and Smith (2011, 2016) introduced DDMRP, a multi-
echelon planning and execution system specifically devel-
oped to reduce delivery times by aligning production with 
demand. It builds on successful PPC approaches, such as 
MRP, Kanban (e.g., Ohno, 1988), and Drum-Buffer-Rope 
(DBR, e.g., Goldratt & Cox, 1984).

DDMRP is built around three principles - position, pro-
tect, and pull - requiring the following five sequential phases 
for system design and operation (Ptak and Smith 2016):

1. Strategic inventory positioning: This phase determines 
where decoupling inventory buffers are placed in the 
supply chain to compress lead times, reduce tied-up 
capital, and ensure a balanced flow of materials to all 
stages of production.

2. Buffer profiles and levels: This phase defines the level 
of protection at each decoupling point, i.e., the amount 
of inventory, considering aspects such as holding costs 
and the probability of stockouts.

3. Dynamic adjustments: This phase defines how the 
level of protection should change at each buffer mainly 
depending on the operational parameters and demand 
changes.

4. Demand-driven planning: This phase defines how 
replenishment orders are generated for keeping inven-
tory in the buffers at the defined levels.

5. Visible and collaborative execution: This phase sched-
ules the manufacturing of open replenishment orders 
released to the shop floor.

The first three phases, strategic inventory positioning, buf-
fer profiles and levels, and dynamic adjustments essentially 
determine the initial configuration of the DDMRP system 
and its evolution to absorb and mitigate variability in both 
demand and supply. These are outside of the scope of this 
paper, the interested reader is referred to Rim et al. (2014) 
and Jiang & Rim (2016, 2017). The remaining two phases, 
Demand-driven Planning and Visible and Collaborative 
Execution focus on operational aspects, such as orders gen-
eration and release, and their execution.

DDMRP is based on the idea of Decoupling Lead Time 
(DLT), which is the longest manufacturing lead time 
between consecutive inventory buffers. According to Ade-
tunj (2023), the idea may seem simple but has a powerful 
logic that helps managers choose their battle points, i.e., the 
inventory buffers and location, to their advantage, i.e., to 
compress lead times to required ranges and obtain realistic 
due dates. In DDMRP each buffer comprehends three dis-
tinct inventory zones (the green, the yellow, and the red), 
each with a specific purpose. The green zone is at the core 
of order generation, determining the order generation fre-
quency and the order size. This is determined as the product 
of Average Daily Usage (ADU), DLT, and a lead time factor. 
When the lead time is long, the lead time factor should be 
small to minimize inventory, resulting in more frequent and 
small orders. The yellow zone is at the core of the demand 
coverage, which is determined by the ADU during DLT. 
The red zone refers to the safety embedded in the buffer 
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and depends on the variability of both the daily usage and 
the lead time.

While Ptak and Smith (2016) provide general rules for 
determining these parameters that allow users to select val-
ues subjectively from a range, Lee and Rim (2019) propose 
a heuristic formula to determine the safety stock level, i.e., 
the red zone of inventory buffers. Lahrichi et al. (2022) pro-
pose a Mixed Integer Linear Programming (MILP) model 
for the parameterization of DDMRP, while Damand et al. 
(2023) provide a multi-objective simulation-optimization 
algorithm to determine a set of eight parameters. Martin 
et al. (2023) used discrete event simulation to analyze the 
impact of both ADU and DLT on buffer sizes, showing that 
for most of the tested cases varying buffer sizes may be less 
effective than having fixed values. Krajčovič et al. (2024) 
proposes a simple methodology for defining the buffer sizes.

In terms of the execution phase, literature on DDMRP 
parametrization is however scarce or inexistent. Execution 
or manufacturing priorities on the shop floor are focused on 
the current state of the buffers, with all workstations fol-
lowing the highest Buffer Penetration Ratio (BPR), as sug-
gested by Ptak and Smith (2016). The BPR is the inverse 
of the percentage of safety remaining, i.e., the amount of 
on-hand inventory divided by the top of the entire red zone. 
The higher the BPR, the lower the percentage of safety 
remaining. Planners can then quickly judge the relative pri-
ority of open replenishment orders, with the highest execu-
tion priority given to the order with the lowest percentage of 
safety remaining. In other words, the closer or deeper in the 
red zone, the higher the priority. In this study, we explore 
whether this suggested priority is the best choice, given that 
there are different possibilities in the literature. The objec-
tive is to provide practitioners with valuable information on 
how to prioritize open replenishment orders in the context 
of DDMRP.

2.2 Execution priority

The execution priority in complex systems is usually man-
aged through priority dispatching rules. Dispatching, as a 
part of scheduling, decides which order to process first from 
a set of orders waiting for execution. Dispatching does not 
exactly determine when an order needs to be processed but 
simply prioritizes orders waiting in queue to be executed. 
Reviews of priority dispatching research found hundreds 
of dispatching rules (e.g., Panwalker and Iskander 1977; 
Blackstone et al. 1982), from very simple rules, such as 
First-Come-First-Served (FCFS) to much more sophisti-
cated ones, including due date oriented dispatching rules. 
One such class of powerful priority dispatching rules are 
Operation Due Date (ODD) oriented rules, which have been 

shown to perform well in make-to-order contexts (e.g., 
Kanet and Hayya 1982).

The key assumption beyond decoupled points in DDMRP 
is that stock is always available to protect and promote flow. 
Therefore, DDMRP execution priorities focus on immediate 
and near-term future on-hand status of buffers, so that any 
expediting activity can quickly be determined and focused 
upon. This means that open replenishment orders are priori-
tized based on the percentage of safety stock remaining, a 
concept borrowed from the theory of constraints (Goldratt 
and Cox 2014). The lower the safety remaining, the higher 
the execution priority.

Using the BPR results in all lot units of the same order 
having the same execution priority. This happens because 
on-hand inventory does not change between order gener-
ations to the shop floor. However, the Net Flow Position 
(NFP), i.e., on-hand inventory plus open replenishment 
orders minus qualified demand orders, gives different pri-
orities to the lots of an order if these are treated as separate 
replenishment items of the same product type. Therefore, 
as soon as one of the lots of the generated order is released 
to the shop floor it may flow with higher priority than 
remaining lots of the same order to avoid the stockouts of 
the product type. The reasoning is that it needs to restore 
the inventory level of the product type for which the order 
was generated as soon as possible, while the remaining lots 
may have lower and decreasing priority values. Thus, this 
study uses the NFP in addition to the BPR suggested in the 
DDMRP literature for prioritizing the execution of orders 
and determines its influence on manufacturing system per-
formance. In addition, we also use the Earliest Operation 
Due Date (EODD) rule, as it also prioritizes the lots of an 
order differently by assigning different virtual Due Date 
(DD) values.

In fact, the Earliest Operation Due Date (EODD) rule 
is the default priority rule in make-to-order contexts when 
schedule reliability is important (Lödding & Pionte, 2017). 
However, as pointed out by Ptak and Smith (2016), when 
things are closer to being due, they become more important, 
and if they are past due, they become even more important. 
This often results in teams of expediters being employed 
to determine how important things really are. For make-to-
stock contexts, authors such as Schönsleben (2011, p. 731–
739) and Beemsterboer et al. (2017) prioritize replenishment 
orders based on a virtual due date that considers the demand 
rate, and thus on the expected inventory consumption time. 
This virtual due date is then used to determine operation due 
dates or planned start times for each operation of an order 
using backward scheduling. In this study we therefore also 
consider this approach to order lot prioritization. We follow 
Beemsterboer et al. (2017) and calculate the due date of a 
lot j as follows:
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same replenishment order. Order progress coordination of 
lot units with different priority values is provided by other 
dispatching rules, such as the NFP, and lot transfer poli-
cies. In response, this work investigates how replenishment 
orders should be prioritized and transferred during their 
execution on the shop floor. To the best of our knowledge, 
this study comprehensively analyses for the first time the 
impact of priority dispatching and lot transfer rules on the 
performance of DDMRP. It provides guidance to managers 
on what is the best choice for DDMRP in practice while also 
guiding DDMRP research.

3 Simulation Study

Discrete event simulation is used as a research method in 
our study. We used simulation because it allows for model-
ing complex systems for which analytical models are not 
available or hardly tractable (Melnyk et al. 2024), as in the 
situation modelled here. It has been applied in several pre-
vious studies considering similar stochastic contexts (e.g., 
Thürer et al. 2020, 2021, Costa et al. 2023a, b). Section 3.1 
details the production system and main model assumptions, 
while Sect. 3.2 presents the experimental design and the 
main performance measures considered. Experimentation 
in our study was carried out using Arena® software.

3.1 Production system and assumptions

The production system follows Martin et al. (2023) concern-
ing shop configurations. Three configurations have been 
considered, each one isolated into a separated buffer stage, 
see Fig. 1. These are named A Type, V Type, and O Type. 
The A Type refers to a shop configuration where all rout-
ings for product processing have convergent flows to a final 
workstation. The routings in the V Type follow divergent 
production flows, with all product routings starting at the 
same workstation (Umble 1992). Lastly, in the O Type shop, 
all routings have the starting and the finishing workstations 
in common. In this study, whatever the configuration, the 

DDj = tj + I + P/λ (1)

Where I is the inventory level of the product type at the 
order release time t, P is the number of units of a product 
type in production, and λ the demand rate for the product 
type.

2.3 Lot splitting

DDMRP creates production lots. In this context, lot split-
ting is an important manufacturing strategy for improving 
order progress and making better use of capacity (Fernandes 
et al. 2020), since it avoids starvation at downstream sta-
tions (Calleja and Pastor 2014), allows order progress to be 
accelerated, and ultimately improves delivery performance 
(Jacobs and Bragg 1988; Wagner and Ragatz 1994). As 
a result, there is a broad literature on lot splitting, which 
however pays insufficient attention to lot transfer policies. 
Notable exceptions are Kher et al. (2000) and Thürer et al. 
(2018). Kher et al. (2000) introduced a policy that synchro-
nizes lots at each routing step. This policy only allows a lot 
to progress to the next station if all of the lots that make up 
the order have been completed. The only exception to this is 
if a downstream station is starving. Where a downstream sta-
tion is starving, a lot can be pulled forward to avoid wasted 
capacity downstream. Thürer et al. (2018) showed that not 
synchronizing lots improves performance when compared 
to various lot transfer policies in high-variety shops. But to 
best of our knowledge, no study to-date assessed the impact 
of lot transfer policies in the context of DDMRP.

2.4 Discussion of the literature

DDMRP is a relatively new PPC approach that showed 
much promise in complex, uncertain environments (e.g., 
Miclo et al. 2019; Ducrot and Ahmed 2019; Thürer et al. 
2022; Acosta et al. 2020). A key element of DDMRP’s 
execution logic is priority dispatching, which is based on 
the status of the buffers. While this information is important 
from an end-customer perspective, it overlooks the need for 
order progress coordination of lot units generated by the 

Fig. 1 Configurations of the Manufacturing Shops Considered in the Study
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 ● Lot policy I (no synchronization): where each lot can 
progress independently on the shop floor.

 ● Lot policy II (synchronization): where lots must be 
processed together, i.e., a minimum number of lots of 
a given product type equal to the re-order quantity must 
have arrived at the station before processing can begin.

3.2 Experimental design and performance 
measures

A full factorial design of six experimental factors with dif-
ferent levels is implemented as follows: (i) four levels for 
the priority rule, i.e., HBPR, LNFP, EODD and FCFS; (ii) 
two levels for the lot transfer rules, i.e., policy I, and policy 
II; (iii) three levels for the shop configuration, i.e., Type A, 
Type V, and Type O, (iv) two levels for product mix, i.e., 
equal mix, and different mix, (v) five levels for the TOY, i.e., 
10, 11, 12, 13, and 14 units, and (vi) two levels for the TOG, 
low, i.e. TOY + 2, and high, i.e. TOY + 6 units. This leads to 
a total of 480 (4 × 2 × 3 × 2 × 5 × 2) experimental scenarios. 
Results of the simulation were collected over 13,000 time 
units following a warm-up period of 3000 time units. Two 
main performance measures were recorded: (i) the fill rate, 
i.e., the fraction of customer orders that are immediately 
fulfilled from stock when demand occurs; and (ii) the fin-
ished goods inventory (FGI), i.e., the average number of end 
products in stock.

4 Results

Statistical analysis has been conducted by applying an Anal-
ysis of Variance (ANOVA). The ANOVA is here based on a 
block design with the TOY and TOG as blocking factors. 
Results are summarized in Tables 1 and 2 for fill rate and 
FGI, respectively. The main effects for all factors are shown 
to be significant at α = 0.05, as are most of the interactions 
for priority rule, shop configuration, product mix, and trans-
fer policy, except for the 4-way interaction in terms of FGI.

To further assess these performance differences, detailed 
performance results will be presented in the next sections. 
Results for an equal mix of products are presented first, 
before we focus on the scenarios for the different mix of 
products.

4.1 Equal Mix of products

The key trade-off in make-to-stock production environ-
ments is between FGI and the fill rate. A large inventory 
allows for high fill rates, but it comes at a cost, such as 
inventory holding costs, the risk of product obsolescence, 

manufacturing of each product requires three operations to 
be completed, each one at a different workstation.

The production system produces ten product types that are 
manufactured across workstations, denoted as WS in Fig. 1. 
Each workstation is modeled as a single constant capacitated 
resource with stochastic operation processing times and per-
fect yield. Raw materials at each gateway workstation are 
assumed to be always available. So, we assume infinite raw 
materials buffers as in Martin et al. (2023). Operation pro-
cessing times are defined to ensure 94% utilization at all 
workstations, based on an average demand interarrival time 
of one time unit. The demand interarrival time is also sto-
chastic and follows an exponential distribution, while the 
probability of assigning a product type to a customer order 
is considered an experimental factor. Demand relates to one 
unit of a specific product type, and the probability is defined 
to test both, equal and different product mixes. Both, the 
equal and the different product mixes are generated from a 
random discrete distribution.

As in Azzamouri et al. (2022) and Martin et al. (2023), 
DDMRP has been implemented with two buffer types, the 
raw parts buffer (RPB) and the finished goods buffer (FGB), 
as illustrated in Fig. 1. Customer demand for a final product 
is immediately fulfilled from the FGB when available and 
otherwise waits in a backlog.

DDMRP uses colored buffers for order generation. If the 
NFP of a product falls to the yellow or red zones of the buf-
fer, i.e., reaches the re-order point, a production order of the 
same product type is generated. The Top of Yellow (TOY) 
zone of the buffer was considered an experimental factor 
and varied stepwise in the study. The re-order quantity of 
the replenishment order may be obtained by the difference 
between the Top of Green (TOG) zone of the buffer and the 
NFP, as suggested in the DDMRP literature. Therefore, our 
study tests the TOG at different levels. The re-order quan-
tity is expressed in this study in terms of production lots of 
size one. Therefore, a re-order quantity of 6 units means the 
simultaneous generation of 6 production lots for a replen-
ishment order of a given product type. That implies that if 
we have several lots (e.g., 6) of a product type, each one can 
have a different NFP and DD value, while the BPR values 
are equal for all lots of the order. In our study, BPR and NFP 
values are determined at order generation. Once generated, 
replenishment orders are immediately released to the shop 
floor for production.

Released orders are dispatched for processing at the 
workstations. The following priority rules are considered 
for dispatching: the highest BPR (HBPR), the lowest NFP 
(LNFP), the earliest ODD (EODD) and as a baseline First 
Come First Served (FCFS). Meanwhile, we also consider 
two lot transfer policies:
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deterioration, and damage. This trade-off is best depicted 
by performance curves. We consequently evaluate perfor-
mance results graphically, being the FGI at the x-axis and 
the fill rate at the y-axis in the following figures. The per-
formance curves for an equal mix of products are given in 
Figs. 2 and 3, for transfer policies I and II, respectively. 
Each one of these figures depicts the six main scenarios for 
the three levels of shop configuration (horizontally) and the 
two levels of TOG (vertically). The left-hand data point on 
each curve represents the tightest TOY value, i.e., 10 units. 
The TOY value increases stepwise by moving from left to 
right in each curve, with each data point representing one 
value, i.e., 10, 11, 12, 13 and 14 units.

The two main parameters of the order generation sys-
tem used in our study are the TOG and the TOY. Note that 
because demand is for one product unit, if TOG is equal to 
TOY + x units, this results in a re-order quantity of x units. 
We observe that both, TOG and TOY, have an impact on 
system performance. Both are known factors of system vari-
ance and were consequently considered blocking factors in 
our ANOVA. A higher TOY leads to a lower probability of 
stockouts and consequently to a higher fill rate, as could be 
expected. A higher TOG leads to a higher re-order quantity, 
which in turn leads to higher throughput times and thus to a 
lower fill rate. Nevertheless, this negative effect is offset by 
the EODD and LNFP rules if lots progress independently on 
the shop floor, as can be observed from Fig. 2. If lots prog-
ress independently, some lots of a replenishment order can 
be speeded up. If there is synchronization for lot transfer, 
EODD and LNFP rules also deteriorate performance for a 
higher TOG, as can be observed from Fig. 3Concerning the 
relative performance of priority dispatching rules, HBPR 
performs identically to LNFP and EODD, and slightly bet-
ter than FCFS for a low TOG. For a higher TOG, the LNFP 
and EODD rules perform better than HBPR.

As previously discussed, the LNFP and EODD rules are 
expected to perform better than the HBPR when the re-order 
quantity increases because each unit of the re-order lot will 
get a different priority value, having the first unit a higher 
priority. Note that LNFP, EODD and HBPR may lead to 
priority changes during production, as the product’s buffer 
status changes and new replenishment orders are generated. 
FCFS on the other hand keeps the same relative priority 
in which orders are processed, ensuring stable throughput 
times. Therefore, in our study, to restrict the potential nega-
tive impact of priority changes during production, the NFP, 
the DD and the BPR are updated for each re-order lot at 
release and do not change during their production on the 
shop floor.

Finally, although the shop configuration has an impact on 
performance, it does not seem to have much impact on the 
relative performance of priority rules. This can be observed 

Table 1 ANOVA Results for the Fill Rate
Source of 
Variance

Sum of 
Squares

df Mean 
Square

F Ratio p-Value

Mix 461,972 1 461,972 8564.1 < 0.001
Policy 542,695 1 542,695 10060.5 < 0.001
Rule 250,928 3 83,643 1550.6 < 0.001
Shop 178,107 2 89,054 1650.9 < 0.001
TOG 356,220 1 356,220 6603.7 < 0.001
TOY 415,616 4 103,904 1926.2 < 0.001
Mix: Policy 1977 1 1977 36.7 < 0.001
Mix: Rule 38,833 3 12,944 240.0 < 0.001
Policy: Rule 106,836 3 35,612 660.2 < 0.001
Mix: Shop 12,337 2 6169 114.4 < 0.001
Policy: Shop 16,004 2 8002 148.3 < 0.001
Rule: Shop 21,743 6 3624 67.2 < 0.001
Mix: Policy: 
Rule

33,746 3 11,249 208.5 < 0.001

Mix: Policy: 
Shop

199 2 100 1.8 0.158

Mix: Rule: Shop 10,393 6 1732 32.1 < 0.001
Policy: Rule: 
Shop

3916 6 653 12.1 < 0.001

Mix: Policy: 
Rule: Shop

2531 6 422 7.8 < 0.001

Error 2,586,399 47,947 54

Table 2 ANOVA Results for the FGI
Source of 
Variance

Sum of 
Squares

df Mean 
Square

F Ratio p-Value

Mix 82,338 1 82,338 475.1 < 0.001
Policy 4,743,058 1 4,743,058 27367.9 < 0.001
Rule 2,241,567 3 747,189 4311.3 < 0.001
Shop 1,003,026 2 501,513 2893.8 < 0.001
TOG 761,717 1 761,717 4395.2 < 0.001
TOY 7,698,368 4 1,924,592 11105.1 < 0.001
Mix: Policy 82,394 1 82,394 475.4 < 0.001
Mix: Rule 1,164,905 3 388,302 2240.5 < 0.001
Policy: Rule 1,299,628 3 433,209 2499.7 < 0.001
Mix: Shop 25,314 2 12,657 73.0 < 0.001
Policy: Shop 4458 2 2229 12.9 < 0.001
Rule: Shop 65,451 6 10,909 62.9 < 0.001
Mix: Policy: 
Rule

111,723 3 37,241 214.9 < 0.001

Mix: Policy: 
Shop

1247 2 623 3.6 0.0274

Mix: Rule: 
Shop

39,697 6 6616 38.2 < 0.001

Policy: Rule: 
Shop

3946 6 658 3.8 < 0.001

Mix: Policy: 
Rule: Shop

1129 6 188 1.1 0.3684

Error 8,309,582 47,947 173
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Fig. 2 Results for an Equal Mix of Products under Lot Transfer Policy I
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Fig. 3 Results for an Equal Mix of Products under Lot Transfer Policy II

 

1 3



DDMRP relative priority for production execution: an assessment by simulation

leads to higher NFP values at order generation, and thus to 
decreased priority for these products compared to the others. 
Consequently, lots stay longer in the system, which further 
increases work-in-process and throughput times, while FGI 
levels decrease. This in turn, may lead to a further triggering 
of replenishment orders, and thus work-in-process for these 
products. This effect can be observed from Fig. 6, which 
gives the work-in-process and the NFP development over 
time for Products 1 and 5. Results are presented for an arbi-
trary simulation run and for 2000 time units after the warm-
up period. EODD does not create this effect and consistently 
leads to better performance, outperforming alternative rules 
specifically for high demand mixes.

Meanwhile, lot transfer policy II, although outperformed, 
has the potential to perform similar to transfer policy I in the 
studied context, specifically for an equal mix of products. 
This partly questions our tenet and previous research on 
order release and dispatching that considered lot transfer in 
the context of make-to-order (e.g., Kher et al. 2000; Thürer 
et al. 2018). These previous studies did not consider a make-
to-stock context and neglected FGI. Lot synchronization in 
our study is based on the product type, which means that 
different replenishment orders of the same product type may 
be combined to reach the minimum number of lots for pro-
cessing at a station. This delays order progress of individual 
orders and leads to lower FGI levels, which is an important 
performance variable in make-to-stock contexts. For high 
demand mix, transfer policy I outperforms transfer policy 
II.

5 Conclusions

Our main objectives were twofold: (i) to compare the per-
formance of different priority rules for dispatching and 
lot transfer of open replenishment orders in the context of 
DDMRP, and (ii) to identify to what extent these rules are 
impacted by factors as TOY/TOG, product mix, and the 
manufacturing shop configuration. We consequently asked: 
How should DDMRP open replenishment orders be priori-
tized during their execution on the shop floor? Simulation 
results indicate that in most of the scenarios considered in 
the study priority dispatching based on the buffer penetra-
tion ratio outperforms dispatching based on the net flow 
position. This finding is aligned with what is suggested in 
the DDMRP literature. However, we have identified situa-
tions where the net flow position should be considered for 
dispatching. Most importantly, using a due date oriented dis-
patching rule that updates operation due dates was shown to 
outperform alternative rules specifically for a high demand 
mix. This rule can be an advantageous alternative to order 
dispatching based on the buffer status as suggested in the 

by comparing the positions of the curves relative to each 
other. It is also confirmed by our ANOVA, having this fac-
tor one of the lowest F-values for the interaction with the 
priority rule.

4.2 Different Mix of products

The performance curves for the scenarios with a different 
mix of products are given in Figs. 4 and 5 for transfer poli-
cies I and II, respectively. Again, the TOY increases step-
wise by moving from left to right in each curve, with each 
data point representing one value. Comparing these results 
with the results for an equal mix of products, we observe 
that in general an equal mix of products results in better sys-
tem performs, i.e., identical, or higher fill rates are obtained 
for lower inventory levels.

For a different mix of products, the relative performance 
of LNFP and HBPR changes. Now the HBPR rule outper-
forms LNFP, with the latter having a large performance 
degradation relative to the scenarios with an equal mix of 
products, as can be observed from Fig. 4. For a high TOG, 
the relative performance of these two priority rules is iden-
tically, but curves, and thus performance differences, get 
closer, compared to scenarios with a low TOG. Again, the 
LNFP rule improves its performance as the re-order quantity 
increases. EODD clearly improves its performance for a dif-
ferent mix of products, outperforming the remaining rules. 
Having different mixes of products also appears to be more 
favorable to letting lots progress independently, performing 
lot transfer policy I much better than lot transfer policy II. 
Finally, although the shop configuration has an impact on 
performance, it does not have much impact on the relative 
performance of priority dispatching and lot transfer rules.

4.3 Discussion of results

A main tenet of this study is that if we give a different prior-
ity value to each lot of a generated order and/or allow each 
lot to progress independently, then we improve system per-
formance. This positive effect can be observed for LNFP 
and EODD particularly when TOG is high and thus the re-
order quantity (number of lots) is high. But if we have dif-
ferent products mixes, and thus a different TOY for each 
one, then LNFP performance deteriorates. This deteriora-
tion originates from two of the ten products, resulting the 
LNFP rule in more work-in-process for products 5 and 7. 
Both products have been tested with a higher demand rate 
(0.133 units/ time unit) compared to products 4 and 6 (0.067 
units/ time unit) and to the remaining products (0.1 units/ 
time unit). Note that for equal mix, the demand rate is 0.1 
units/ time unit for all products. Both products consequently 
have a higher TOY than the remaining products. This 
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goods are set of by a much lower fill rate. A main limitation 
of the study is its limited environmental setting. It would be 
of interest for future research to test our findings in further 
production scenarios, e.g., with new sources of uncertainty 

DDMRP literature. Meanwhile, results also indicate that lot 
synchronization can be a viable lot transfer policy since it 
reduces finished goods inventories. However, only in con-
texts with equal demand mix since otherwise lower finished 

Fig. 4 Results for Different Mixes of Products under Lot Transfer Policy I
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Fig. 5 Results for Different Mixes of Products under Lot Transfer Policy II
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