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Abstract
The complexity of infrastructures and interdependent elements among supply chain network leads to increasing inoper-
ability. Risk management of the supply chain network can reduce the mutual ripple effects of risk and disruptions based 
on a risk response strategy. However, the hidden factor of the negative effects of risk responses has rarely been considered 
by researchers. In the present work, the impact of the COVID-19 pandemic and the negative effects of risk responses have 
been applied in the proposed model. The computational results indicated a decreasing in the trend of improving operability 
and an increasing trend in the losses caused by disruptions. A multi-objective optimization model is presented in this study 
that allows decision-makers to prioritize supply chain network infrastructure and risks based on the speed and importance 
of inoperability. The solution of the proposed model selects the best and most effective response based on the utility of 
decision-makers considering budget constraints. Moreover, a solution is provided to determine the appropriate time to apply 
risk response based on network resilience and analyze the various scenarios of objective functions and budget.

Keywords  Supply chain management · Covid-19 Pandemic disruption · Dynamic input–output model · Supply chain 
resilience · Risk analysis · Ripple effect · Interdependent infrastructure

1  Introduction

The process of identifying and assessing risks and developing 
strategies for managing risks is known as risk management. 
Risk management and business impact analysis programs are 
an important part of a supply chain. In the case of the occur-
rence of an accident in world trade, by identifying potential 
risks and finding ways to minimize their impact, the quick 
recovery of the supply chain network will be helped.

Due to disruptive events such as fuel protests, terror-
ist attacks in the United States, etc., the issue of supply 

chain risk to the international business environment has 
come under scrutiny. Jüttner et al. (2003) investigated 
the vulnerability of supply chain and risk management 
from four perspectives and highlighted the importance 
of flexible supply chains in resource risk management 
and assessment. Macro-level decision-making to address 
supply chain risks requires information from all elements 
of the supply chain, not all of which are necessarily 
accessible. Thus, qualitative data in fuzzy set theory can 
be used to solve this problem (Niknejad and Petrovic 
2016). Additionally, due to the inherent uncertainty of 
some risks and inaccurate and unreliable information, 
experts classified the above- mentioned uncertainties for 
risk analysis into two categories: epistemic and Alea-
tory uncertainties (Der Kiureghian and Ditlevsen 2009). 
Epistemic uncertainty, unlike Aleatory uncertainty, 
which refers to the random nature of events, is declined 
by collecting further data.

By identifying supply chain risks and finding ways to 
decrease them, the impact of supply chain disruptions on 
business can be confined to a risk management program.

Two main types of risk should be considered in the supply 
chain risk management program:
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• Multi-objective optimization of the DIIM.
• Analysis of the ripple effects of risks and COVID-19 on the 

supply chain network.
• Budget sensitivity analysis in order to determine influence the 

change of risk responses on the operability of the supply chain 
network.

 *	 Sadoullah Ebrahimnejad 
	 saeed_ebrahimnejad@yahoo.com

1	 Department of Industrial Engineering, Karaj Branch, Islamic 
Azad University, Karaj, Iran

http://orcid.org/0000-0003-4886-5348
http://crossmark.crossref.org/dialog/?doi=10.1007/s12063-023-00370-3&domain=pdf


2026	 A. Khanbaba, S. Ebrahimnejad 

1 3

External risks - those that are beyond your control.
Internal risks - those that are under your control.

Political, economic, and technical risks constitute a wide 
variety of supply chain risks. Identifying risks and adopt-
ing the best solutions at the lowest cost plays a key role in 
reducing the negative ripple effects and financial losses on 
the entire supply chain network (Ebrahimnejad et al. 2021; 
Li et al. 2021).

Understanding and identifying the complexities of the 
global economy with the rise of interdependent actors in 
today's world is important, challenging, and influential on 
the Global Production Network (GPN) (Coe et al. 2008).

In today's world with a more complicated and developed 
supply chain network infrastructure, the dependence of com-
munications and their separation is a very ambiguous and 
difficult task. For example, the performance of the produc-
tion infrastructure is interdependent with other supply chain 
network infrastructures. Such complexity presents a mutual 
behavior that both leads to development and progress, and 
on the other hand, makes supply chain network risk manage-
ment difficult (Ebrahimnejad et al. 2021; Manuj and Mentzer 
2008). Different strategies for reducing the risk effects on the 
disrupted drug supply chain were examined by Lücker et al. 
(2019). Their findings indicated there is a direct relation-
ship between optimal risk reduction strategies and product 
characteristics.

Products of pharmacy sector are very vital and important 
for society, however, the negative effects of this industry on 
the environment are evident to everyone. Improper disposal 
of expired or excess tablets and drugs by patients leads to 
environmental pollution in domestic sewage and recycling 
sites. Kumar et al. (2019) proposed a mathematical model in 
which the concepts of the green supply chain (GSC) and the 
economic sectors of the pharmaceutical industry in India are 
integrated to achieve operational perspectives and prioritize 
risks in an uncertain environment.

As reported by Ivanov (2020), the onset of an epidemic 
poses supply chain risks with high uncertainty. Using Any-
Logistix simulation and optimization software, he analyzed 
short- and long-term effects of the epidemic based on its 
unique characteristics, including onset time, contagion 
rate, and duration of disruption in the upstream and down-
stream portions of the supply chain network. Ivanov and 
Dolgui (2020) investigated the effect of unprecedented and 
unexpected Covid-19 shocks on the Intertwined Supply 
Network (ISN), as a set of the supply chains (SCs) with a 
dynamic structure.

The Covid-19 pandemic led to unpredicted and influen-
tial disruptions in supply chain (Sc) worldwide. Moosavi 
et al. (2022) clustered and analyzed the research stud-
ies based on influential contributors, main streams of 
research, and disruption management strategies related 

to Sc performance with the aim of identifying promising 
strategies for the Sc disruption management. Karuppiah 
et al. (2022) analyzed 20 major effects of Covid-19 in the 
supply chain using Exploratory Factor Analysis (EFA) 
methods, G-DEMATEL. Their findings indicated supply 
disruptions, ripple effects, and wear and tear of machines 
had the greatest impact on supply chain activities. Paul 
et al. (2022) proposed a stochastic mathematical model to 
optimize supply chain recovery strategies for high-demand 
goods affected by the Covid-19 pandemic, which aims to 
increase the total profit of Sc. Khan et al. (2022) mitigated 
the effects of the Covid-19 pandemic disruption in the sup-
ply chain with innovative strategies.

We have compiled a review of related works in Table 1. 
As can be seen, we want to integrate supply chain network 
infrastructure with the Dynamic Inoperability Input–output 
Model (DIIM), which is a powerful mechanism for analyz-
ing the cascading effects caused by critical infrastructure 
interdependencies. Researchers rarely developed and imple-
mented these two fields of work simultaneously. The pur-
pose of this paper is to help decision makers quickly plan 
and recover performance and strengthen the supply chain 
after the occurrence of risks, considering budget constraints 
with a multi-objective optimization model based on resil-
ience. The contribution of this research is as follows:

1.	 We propose the DIIM, which is designed with a new 
revision, to investigate the wave and mutual trend of 
risks effects and disruption factor of Covid-19 on the 
infrastructure of the supply chain network.

2.	 The positive and negative effects of the responses of 
the risks in the inoperability and utility function were 
implemented. The researchers mostly focused on posi-
tive effects.

3.	 We prioritize and analyze the studied risks based on the 
intensity and speed of impact on inoperability and cost 
reduction in different periods of the supply chain network.

4.	 Finally, in order to reduce the effects of risks and distur-
bances by using the concepts of resilience of the supply 
chain, a solution has been proposed to determine the time 
to apply responses to risks according to the budget limit.

We designed a road map to express the research path and 
proposed method in Fig. 1.

The paper is developed as follows. In Section 2, an 
overview of I-O models and research related to the 
COVID-19 pandemic in the supply chain is provided. 
In Section 3, the proposed multi-objective mathemati-
cal model for the IIM model in supply chain networks is 
presented. The sensitivity analysis of the proposed model 
is presented in Section 4, and finally, the discussion of the 
results and suggestions for future research are presented 
in Section 5.
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2 � Literature review

Wassily Leontief won the Nobel Prize in Economics in 
1973 for development of Input–Output Model. Leontief’s 
I-O model was used for identifying and evaluating the 
dependence of different sectors of the economy. Due to 
the growing complexity of systems and their increasing 

vulnerability, Haimes and Jiang (2001) were inspired by 
the I-O model to investigate the dependence and effect 
of external disruptions on complex infrastructure so that 
the inoperability of each infrastructure was given a value 
between [0,1]. A value of 1 denotes system failure and 
a value of 0 represents that the system is free from fail-
ure. Santos and Haimes (2004) developed a framework 

Table 1   Survey on related work

SDIIM supply-driven dynamic inoperability input–output model, ISN intertwined supply network, GDP gross domestic product

Paper Objective Characteristics Objectives Methods Study Area

Resilience Effects Disruptions

(Haimes and Jiang 
2001)

Single √ Mutual √ Min. Inoperability I-O Infrastructures

(Haimes et al. 
2005)

Triple-Level √ Mutual Terrorism Min. 
Inoperability,

Min. Economic 
Loss

IIM Infrastructures

(Wei et al. 2010) Second-Level Single Earthquake Min. 
Inoperability,

Min. Economic 
Loss

IIM SCN

(Santos et al. 
2013)

Multiple √ Mutual Influenza 
Epidemic

Min. 
Inoperability,

Min. Economic 
Loss

IIM Infrastructures

(Zhang 2016) Single Max. Utility LP Renovation 
Engineering

(Niknejad and 
Petrovic 2016)

Second-Level √ Mutual Risk Min. 
Inoperability,

Min. Economic 
Loss

DIIM SCN, 
Infrastructures

(Jabilles et al. 
2019)

Single √ Single √ Min. Inoperability SDIIM SCN

(Ghorbani-Renani 
et al. 2020)

Single √ Mutual √ Max. Network
Performance

NLP Infrastructures

(Samimi et al. 
2020)

Single √ Single Flood Min. Inoperability IIM Infrastructures

(Ivanov 2020) Single √ Mutual Covid-19 Revenue, Profit,
Lead time

Discrete-event 
Simulation

SC

(Ivanov and 
Dolgui 2020)

√ Mutual Covid-19 Viability Differential 
Equations

ISN

(Ebrahimnejad 
et al. 2021)

Multiple √ Mutual Terrorism, Risk Min. Total Cost,
Min. 

Inoperability,
Max. Utility

DIIM Infrastructures

(Wang et al. 2020) Single Covid-19 Sustainability MRIO GSC
(Pichler et al. 

2022)
Single Covid-19 Forecast the 

economics
DIIM Production network

(Manley et al. 
2022b)

Single Mutual Ripple Covid-19 Max. GDP LP SC

Current Research Multiple √ Mutual Ripple Covid-19, Risk Min. Loss,
Min. 

Inoperability,
Max. Utility

DIIM SCN, Infrastructure
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for indicating the way of propagation of the perturbation 
resulting from terrorism based on the I-O model. IIM is 
formulated as follows.for analyzing the inefficiency of 
infrastructure and various industrial sectors:

In Eq. (1), q denotes the vector of inoperability, and 
A* is matrix of the correlation coefficients of industrial 
sectors, and C* is the disruption vector, which leads to 
the inoperability of the infrastructure of industrial sectors.

Haimes et al. (2005) implemented the Multi-Regional 
Inoperability Input–Output Model (MRIIM) using data 
from BEA (Bureau of Economic Analysis) website for 
solving risk management problems. One of the advantages 
of this method is prediction of different types of damages 
imposed on the systems. Also, they formulated discrete 
time Dynamic IIM (DIIM) as follows:

In Eq. (2), A* denotes the matrix of Leontief technical 
coefficients. c* (t) represents the vector of disruption at 
time t, and q (t) denotes the inoperability vector at time t. 
Finally, K indicates the matrix of coefficients of resilience 
of the industry.

Setola et al. (2009) and Oliva et al. (2011), used fuzzy 
sets for IIM uncertainty. Wei et al. (2010) used the IIM in 
an environment of uncertainty to assess the effects of dis-
ruptions in the chemical supply chain network. Moreover, 
they used Monte Carlo simulations to validate IIM in the 
supply chain. A new Fuzzy DIIM (FDIIM) was proposed 

(1)q = A∗q + c∗

(2)q(t + 1) = KA∗q(t) + Kc∗(t) + (1 − K)q(t)

by Niknejad and Petrovic (2016) in order to analyze Global 
Production Networks (GPNs). Using Philippine, I-O data for 
2012, Jabilles et al. (2019) indicated that how a well-defined 
inventory planning with an appropriate pre-defined horizon 
can delay the onset of wave effects of inoperability of supply 
chain members.

Wang et al. (2020) proposed an approach based on the 
multi-region input–output (MRIO) model and data envelop-
ment analysis (DEA) technique for the production sectors 
in 16 major economies to evaluate the environmental per-
formance of global supply chains (GSCs). Their findings 
showed that 40% of GSCs contamination can be reduced. 
Pichler et al. (2022) designed a dynamic disequilibrium 
input–output model specific to industries to predict and 
understand the emissions of demand and supply shocks 
caused by Covid-19. The findings of their study showed 
that Leontief linear production function does not predict 
the trend of Pandemic Covid-19 effects well in the short 
term. Pichler and Farmer (2022) studied the severe disrup-
tions of the Covid-19 pandemic in the economic production 
networks of countries. They demonstrated that the Leontief 
production function has difficulty in addressing simulta-
neous supply and demand shocks. Today, mineral goods 
are an integral part of the supply chain of electronic and 
semiconductor industries. Manley et al. (2022a) analyzed 
the disruption in supply of mineral commodities during the 
Covid-19 Pandemic in the automotive industry based on 
I-O data output.

Galbusera and Giannopoulos (2018) used the I-O eco-
nomic model in order to analyze the resilience of economic 
systems and emerging and complex scenarios of natural and 

Fig. 1   Research framework

Phase 1

•Survey related works

•Data collection

Phase 2

•Development objective function: Min.Inoperability, Max.Utility

•Aggregate objective function: Min. Loss, Min.Inoperability, Max.Utility

Phase 3

•Solving method: Ordinary Differential Equations (ODE)

•Sensitivity analysis on critical parameters

•Validation

Phase 4

•Conclusion

•Limitation

•Future research
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human-made disasters. Flooding as a disaster that occurs 
repeatedly at different times can potentially cause employee 
absenteeism in industrial areas. Using the DIIM, Yaseen 
et al. (2020) assessed the economic losses and inoperabil-
ity of industries resulting from the employee absenteeism. 
Samimi et al. (2020) used IIM for evaluating the effects of 
flood risks on 6 infrastructures in the Tehran metropolis. 
According to the computational results of the IIM, energy 
and transportation were the most influential infrastructures 
and emergency services and healthcare services were the 
most influenced infrastructures. In their research, they 
defuzzified the Independence Matrix and then calculated the 
extent of the infrastructure inoperability. Ebrahimnejad et al. 
(2021) proposed a multi-objective DIIM for the simultane-
ous effect of risks on interdependent infrastructures. They 
utilized the theory of the asymmetric queuing game between 
the government and terrorists to estimate the effect of the 
disruption parameter on critical infrastructures.

The effects of risks on the influential infrastructure of any 
supply chain network can extend backward and forward. The 
disruption factor, the Covid-19 epidemic, leads to disruption 
in the supply and demand system and accelerates the inoper-
ability of infrastructures of the supply chain (Li et al. 2021). 
The Covid-19 epidemic has led to widespread disruptions 
over short periods of time in the supply chain network. Chen 
et al. (2021) presented a product change strategy in short-term 
aiming at the maximization of total profit. The COVID-19 
epidemic has led to shock and unpredictable ripple effects 
on the supply chain. Ivanov and Dolgui (2020) studied the 
ripple effects of disruptions in the supply chain network and 
categorized them based on research concepts and manage-
rial insights into three levels: network, process, and control. 
In addition, their findings indicate that how to present OR 
methods can be used to deal with the ripple effects in five 
epidemic phases (i.e., Anticipation, early detection, contain-
ment, control and mitigation, and elimination or eradication) 
by the researchers in future research. An incomplete under-
standing of the negative effects of COVID-19 pandemics at 
different periods led to unstable conditions in the supply chain 
network that challenged risk management decisions to cope 
with time constraints. Hosseini and Ivanov (2021) developed 
a multi-layer Bayesian Network (BN) method for modeling 
and measuring the effects of the pandemic disruptions on the 
supply chain (SC), using which they analyzed financial perfor-
mance and resilience, and flexibility. Chowdhury et al. (2021) 
reviewed studies related to the COVID-19 pandemic on vari-
ous supply chain issues and found that studies are confined to 
four general topics: pandemic effects, resilience strategies for 
management, and recovery, the role of technology in imple-
menting resilience strategies, and supply chain sustainability. 
Moreover, the focus of most studies was on the supply chains 
of high-demand essential goods, and low-demand goods have 
been largely ignored.

Yu et al. (2021) explained short-term measures and long-
term strategies for the global energy market, environment, 
and economy to deal with the Covid-19 pandemic effects. 
Rozhkov et al. (2022) investigated a simulation model that 
combines supply chain design, pandemic dynamics, and pro-
duction and inventory control policies to consider the effects 
of the Covid-19 pandemic on the studied supply chain. Their 
findings showed that two-stage supply chains are more vul-
nerable to disruption. Badhotiya et al. (2022) proposed a 
model to evaluate the resilience of a supply chain affected 
by disruption. They used Interpretive Structural Modeling 
(ISN) with Bayesian Network approach in their proposed 
model. The supply chain transportation system showed a 
contradictory behavior during the pandemic. The transpor-
tation of the goods and raw materials leads to the stability 
of the supply chain, while it can provide the basis for the 
spread of the epidemic through the increase of exchanges 
and movements. Bassiouni et al. (2023) proposed several 
deep learning (DL) approaches to reduce transportation risks 
and resilience of supply chain that is under the disruption 
of Covid-19.

Some economists believe that the impact of the Covid-19 
epidemic on the global economy will not be less than the 
2008 global crisis. According to the World Trade Organiza-
tion (WTO), Gross Domestic Product (GDP) index in 2020 
witnessed a negative growth of 5.92% compared to 2019 
(Koopman et al. 2021). Pharmaceutical industry output fell 
by less than 10% during the Covid-19 epidemic, according to 
research by the European Parliament's Committee on Indus-
try, Research and Energy (ITRE) (de Vet et al. 2021). For a 
more comprehensive analysis of the global economic impact 
of Covid-19, readers can refer to studies conducted by the 
Congressional Research Service (CRS) (Weiss et al. 2020).

3 � Proposed model

In this paper, a DIIM multi-objective optimization is pre-
sented for supply chain network infrastructure exposed to 
Covid-19 epidemic disruptions and risks. This model aims at 
improving the performance of infrastructures and reducing 
the loss of goods flows over time periods.

The assumptions of the proposed optimization model for 
the supply chain network are as follows:

1.	 Capacity of supply, demand, and capacity of node flows 
and links are known.

2.	 Backup capacity is not considered as allowed for nodes.
3.	 Node demand is dynamic and definite.
4.	 The time period starts from the point when a disruption 

occurs in the supply chain network.
5.	 Each the time step S is divided into several mini time 

steps for 
.

�ijr.
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Table 2 presents the symbols of the proposed model.
The proposed model in the present study is as follows:

(3)Z1 = Min
Tf

s=1

(∑
n

∑
i∈F

∑
j∈F

Cn
ij

[
V

◦n
ij

− Vn
ij

(
ts
)]

+
∑
n

∑
i∈F

∑
j∈G

C
�n
ij

[
S

◦n
ij
− Sn

ij

(
ts
)]

+
∑
i

∑
j

∑
r

∑
p

CijrpYijrpKn

)
(4)Z2 = Min

{ .

�ijr, 1

}

Table 2   Notations of the proposed model

Index & sets Description

I Influential infrastructures
J Influenced infrastructures
n Type of Commodity n ϵ {1,2,3}
r Number of risks        r ϵ {1,2,3}
p Risk responses of each infrastructure (Node) p ϵ {1,2,3}
S Time step S = 1,…,Tf       (Tf = fixation time step)
E Set of suppliers E ϵ {1,2,3}
F Set of manufacturers F ϵ {4,5}
G Set of customers G ϵ {6,7,8}

Parameter Description

Capn
j

(
ts
)

The node capacity of receiver j for commodity n in time step s

Capn
i

(
ts
)

The node capacity of sender i for commodity n in time step s
Capn

ij
Capacity of sending node i to node j for Commodity n

Capn
ji

Capacity of receiver node j from node i for Commodity n
Dn

j

(
ts
)

The node demand j for Commodity n in time step s
Dn

ij
The node demand j from node i for Commodity n

� Absolute risk deviation coefficient
Bi Budget to implement risk response for node i
Cn
ij

Loss of each unit reduction of the sending flow due to the perturbation for sending the 
Commodity n from node i to node j in the first level

C
′n
ij

Loss of each unit reduction of the sending flow due to the perturbation for sending the 
Commodity n from node i to node j in the second level

V
◦n
ij

Raw material n sent by node i to node j before risk Occurrence

S
◦n
ij

Commodity n sent by node i to node j before risk Occurrence
Cijrp Run Cost of pth risk response, for rth risk of ith node that affects infrastructure jth

rijrp The repair rate resulting from executing the p response to the rth risk of ith node on node j
�ijrp Negative effect of pth response, risk rth infrastructure ith on infrastructure j
aijr Impact of rth risk of ith infrastructure on infrastructure j
Ci Covid 19 perturbation
Wir Weight of rth risk of ith infrastructure i in objective function

Variable Description

Vn
ij

(
ts
)

The raw material n has sent by node i to node j after risk occurrence in time step s

Sn
ij

(
ts
)

The commodity n has sent by node i to node j after the occurrence of risk in time step s
Yijrp If the pth response of rth risk from infrastructure i, which is interacting with infrastructure 

j, is chosen 1; Otherwise, Zero
�n Resilience coefficient Commodity n
Kn Binary variable for risk response time
.

�ijr
Rate of inoperability of jth infrastructure due to occurrence of rth risk of infrastructure i

�ijr Amount of inoperability of jth infrastructure due to occurrence of rth risk of infrastructure i
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St.

(5)Max Z3 =
∑
i

∑
j

∑
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∑
p

Wir
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1 − e−�(Yijrp(rijrp−�ijrp))

)
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ij

(
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)
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i

(
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(
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∑
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∏
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�ijr

]
j ∈ E,∀n, S = 1, ..., Tf

(11)

Capn
j

(
ts
)

=
∑
i∈E

∏
r

Capn
ij

[
1 −

.

�ijr

]
j ∈ F,∀n, S = 1, ..., Tf

(12)

Dn
j

(
ts
)

=
∑
i∈F

∏
r

Dn
ij

[
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.

�ijr

]
j ∈ G,∀n, S = 1, ..., Tf

(13)
∑
j∈F
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ij

(
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)

≤

∑
j∈F

V
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ij

i ∈ E,∀n, S = 1, ..., Tf

(14)
∑
j∈G
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ij

(
ts
)

≤

∑
j∈G

S
◦n
ij

i ∈ F,∀n, S = 1, ..., Tf

(15)
∑
j∈F

Vn
ij

(
ts
)

≤

∑
j∈F

Capn
ij

i ∈ E,∀n, S = 1, ..., Tf

(16)
∑
j∈G

Sn
ij

(
ts
)

≤

∑
j∈G

Dn
ij

i ∈ F,∀n, S = 1, ..., Tf

(17)Vn
ij

(
ts
)

≤ Capn
ij

i ∈ E, j ∈ F,∀n, S = 1, ..., Tf

(18)Sn
ij

(
ts
)

≤ Dn
ij

i ∈ F, j ∈ G,∀n, S = 1, ..., Tf

(19)

∑
i∈E

Sn
ij

(
ts
)

≤

∑
j∈G

Sn
ij

j for V
n
ij
∈ F, i for S

n
ij
∈ F,∀n, S = 1, ..., Tf

(20)
∑
j∈F

∑
r

∑
p

CijrpYijrp ≤ Bi i ∈ E

The first objective function is related to minimization of 
the function of losses resulting from perturbation. Objective 
Function 2 states that supply chain infrastructures should 
have the least amount of inoperability so that production is 
increased and supply flows due to supply chain disruption are 
reduced. Four modes were studied for Objective Function 2.

	 (I)	
.

�ijr = aijr�ijr + Ci

		    In Mode I, no countermeasure is taken for reduc-
ing the inoperability of the supply chain network 
infrastructures.

	 (II)	
.

�ijr = aijr�ijr + Ci − rijrpYijrpKn

		    In Mode II, the positive effects of recovery meas-
ures are applied to reduce the inoperability of infra-
structures in the appropriate time period.

	 (III)	
.

�ijr = aijr�ijr + Ci − rijrpYijrpKn + �ijrpYijrpKn

		    In Mode III, recovery measures have positive and 
negative effects that lead to a decrease and increase 
in inoperability of infrastructures.

	 (IV)	
.

�ijr = aijr�ijr − rijrpYijrpKn + �ijrpYijrpKn

		    In Mode IV, the model is solved by eliminating 
the parameter Ci, which is the effect of COVID-19 
pandemic on the supply chain network.

(21)
∑
j∈E,G

∑
r

∑
p

CijrpYijrp ≤ Bi i ∈ F

(22)
∑
j∈F

∑
r

∑
p

CijrpYijrp ≤ Bi i ∈ G

(23)
∑
p

Yijrp = 1 i ∈ E, j ∈ F,∀r

(24)
∑
p

Yijrp = 1 i ∈ F, j ∈ {E,G},∀r

(25)
∑
p

Yijrp = 1 i ∈ G, j ∈ F,∀r

(26)Yijrp ∈ {0, 1}

(27)Kn =

⎧⎪⎨⎪⎩

1 IF �n ≤ 0.75, for n = 1

1 IF �n ≤ 0.55, for n = 2

1 IF �n ≤ 0.35, for n = 3

0 other,∀n

(28)
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Finally, the Objective Function 3 is responsible for 
maximizing the utility of the selected risk responses. 
According to the rule of thumb (Howard 1988), the abso-
lute risk deviation coefficient for Objective Function 3 is 
calculated as � = max

{
6

Bi

}
 . Also, contrary to research by 

Zhang (2016), we developed Objective Function 3 in 
terms of both positive and negative effects of risk 
responses. Constraints 6, 7, and 9 indicate that the output 
and input of nodes should not exceed the capacity of the 
nodes. Constraint 8 states that total customer node 
demand must be met. Constraints 10, 11, and 12 state the 
effect of inoperability of nodes on ultimate demand and 
production capacity of nodes. Constraints 13 and 14 indi-
cate the difference in the output of the nodes before and 
after the occurrence of the risks and the cause of the per-
turbation. Constraints 15–18 relate to the dispatched 
capacity of the drug supply chain network. Constraint 19 
is the balance between supply chain levels. Constraints 
20–22 are related to the budget. Constraints 23–25 
ensures that only one risk response is selected per each 
risk. Constraint 26 is the binary mode, and the Constraints 
27–28 indicate the resilience factor of the supply chain to 
apply the appropriate time of risk responses based on 
products. The model was Run in MATLAB software and 
solved by Ordinary Differential Equations (ODE) method.

Table  5 of Appendix A presents the risks and their 
responses and the negative effects of the responses. Figure 2 
indicates the studied topological structure of the medicine 
supply chain. Nodes 1–3 are the suppliers that supply the 
raw materials for the production of drugs. Nodes 4 and 5 are 
manufacturing plants. Nodes 6–8 are hospitals and pharma-
cies that are the end customer.

4 � Results and sensitivity analysis

The performance of the supply chain network is affected 
by unforeseen and hidden changes in its infrastructures, 
and managers are always looking to manage changes and 

identify hidden factors with limited budgets to evaluate 
the process of improving the supply chain network per-
formance and make the most desirable decision. In the 
present study, 3 budget scenarios (0.8B, B, 1.2B) were 
analyzed in 4 modes of objective functions. The most 
important questions that managers face when making 
the decision on cost management include as follows: 
First, how do budget changes inf luence the amount 
and duration of inoperability of nodes in the supply 
chain? Second, how do the budget changes influence 
the selected risk responses and reduction of the costs of 
delivering raw material and end product flows into the 
supply chain?

The percentage of the gap between the planned and the 
actual level reflects inoperability, and by calculating the 
inoperability of nodes and infrastructures, based on quan-
tity and time, they can be prioritized. Nodes with higher 
inoperability value are vulnerable to risks and perturba-
tions in a shorter period of time and have a higher priority 
for supply chain risk management.

Mode I with budget B in Fig. 3 indicates that the most 
important node at the Supplier level for risk manage-
ment is Node 1 because Nodes 4 and 5, which are related 
to the Manufacture level, reach the highest inoperabil-
ity value in the shortest time. This is because nodes 4 
and 5 are more dependent on node 1 than other Supplier 
level nodes based on criteria. Also, the minimum and 
maximum time intervals with the inoperability value of 
1 are related to X242 and X152, which indicates that they 
have the highest and lowest risk management priority at 
the Supplier level. Nodes at the Manufacture level have 
mutual motion and affect the nodes at Supplier and Cus-
tomer levels. The main focus of researchers has been 
on forwarding motions, while backward motions have 
received less attention in studies. As shown by obser-
vations, Manufacture level nodes direct Supplier level 
nodes to complete inoperability quicker than Customer 
level nodes due to the stronger dependence of the two 
levels. Given the greater effect of Node 5 than Node 4 on 
the inoperability of nodes before and after it, this node is 

Fig. 2   Topological structure of 
the supply chain

I J
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Fig. 3   Inoperability of nodes in mode I
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of greater importance in supply chain risk management 
at the Manufacture level. The X581 has an inoperability 
value of 1 in the forward motions in the shortest time 
(T = 2.86), while this occurs in the backward motions for 
the X423 in the longest time (T = 5.2).

Mode II with budget B is shown in Fig. 4. Mode II 
shows how long nodes are recovered by risk responses. 
In Supplier level nodes, nodes 1, 3, 2 had the highest 
resilience to deal with risks, respectively, to transmit the 
effect of inoperability to the Manufacture level nodes 
with a delay. Based on Eqs. (27) and (28) for X142, the 
risk response was applied at the inoperability point of 
0.082 at time T = 0.75 and is operational at time T = 1.05. 
This happened for the X251 at a point with an inoperabil-
ity value of 0.075 at T = 0.75 and returned to baseline at 
T = 0.86. The maximum and minimum operability val-
ues for X152 and X242 are 0.085 and 0.073, respectively. 
The effect of risk responses in mode II for Manufacture 
level nodes resulted in faster recovery of Supplier -level 
nodes than Customer level nodes. For example, the X573 
is retrieved at the longest time at T = 1.1, which is a for-
ward motion, and X431 and X411 that belong to the back-
ward motion are retrieved at the earliest time T = 0.85. 
Customer-level nodes, although having the lowest inop-
erability points for retrieval, have the longest operability 
time. This is due to their direct and indirect effects on 
Manufacture and Supplier level nodes and their mutual 
effect on Customer level nodes.

Figure 5 shows mode III with budget B. In this mode, 
the negative effect of risk responses to objective func-
tions 2 and 3 was applied, and as expected, the nodes’ 
retrieval time increased and the supply chain network 
faced a more critical situation than mode II. The new 
conditions led to a change in the prioritization of risk 
management of supplier level nodes. In mode II, the 
priority of nodes was 1, 2, and 3, respectively, and in 
mode III, node 3 had a higher priority than node 2, and 
this shows the importance of factors that have rarely 
been considered by researchers in the supply chain. On 
a larger scale of the problem, these factors can increase 
risk management challenges. The total time for the oper-
ability of nodes at the manufacturing level increased to 
T = 1.12 compared to mode II, of which T = 0.35 and 
T = 0.77 are related to nodes 4 and 5, respectively. The 
difference in time increase in forwarding and back-
ward motions for nodes 4 and 5 compared to mode II is 
T = 0.09 and T = 0.13, respectively. The greatest impact 
of the negative effects of risk responses and Covid-19 
epidemics is related to Customer level nodes, which 
led to the neutralization of the positive effects of the 

responses and change of the motion of all charts toward 
inoperability with a value of 1.

Figure 6 indicates Mode IV with budget B. This sce-
nario aims at investigating the effect of the Covid-19 
epidemic on the supply chain network. The Covid-19 
epidemic perturbation parameter was removed in Mode 
II and the results were compared with Mode III. By 
removing the perturbation parameter, two important 
changes occurred in the shape trend at all three lev-
els: 1- The resilience time of the nodes to deal with 
the effects of risks increased. 2- When applying risk 
response, inoperability in supply chain network nodes 
reaches its maximum value. By comparing modes III and 
IV at the Manufacture level, it was concluded that the 
Covid-19 pandemic has caused it. When the perturbation 
factor was removed, the largest change in the operat-
ing operability time was related to the forward motions. 
The Covid-19 epidemic affected the treatment center 
from two directions. 1. Patients showed less willing-
ness to receive medical services (other than Covid-19) 
during quarantine. 2. The upward trend of admission of 
patients with Covid-19, which was more than the capac-
ity of health centers, led to the weakening of medical 
human resource and severe shortage of equipment and 
drugs. These two factors led to unforeseen changes in 
the demand for goods. This is evident clearly by com-
paring modes III and IV at the Customer level. Refer to 
Tables 6, 7, and 8 in Appendix A for a detailed compari-
son of the four modes.

The inoperability of supply chain network components 
is closely related to revenues and costs. Cost manage-
ment seeks to select the best responses that lead to the 
reduction and neutralization of network disruption fac-
tors, and increase of the upward trend of the level of 
production, and reduction of the loss of sending flow 
caused by perturbation compared to before perturba-
tions. A comparison of the results in Table 3, Fig. 7, and 
Fig. 9 in Appendix B shows that budget changes lead to 
changes in risk responses and the amount of inoperability 
of nodes, changing the trend of the total loss of sending 
flows before and after the perturbation as well as risk 
responses. When the budget is reduced by 20%, a change 
is observed in the risk responses of modes (II, III, IV), the 
total number of these changes is 14, and the number of 
changes in terms of modes is 4, 5, and 5 cases. Nodes 3, 
4, and 5 include response changes, with the largest change 
in responses being related to node 4. Also, the number 
of changes in risk responses is the same in the forward 
and backward motions. These changes led to an increase 
in the recovery period and losses resulting from reduced 
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Fig. 4   Inoperability of nodes in mode II
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Fig. 5   Inoperability of nodes in mode III
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Fig. 6   Inoperability of nodes in mode IV
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sending flows after the occurrence of the perturbation. 
Also, the duration and loss resulting from reduced send-
ing flow in modes II to IV increased by 2.55, 2.45 and 3.5 
unit times, and 1.61*107, 1.602*107,1.605*107 $. With a 
20% increase in the budget, the number of changes in risk 
responses to the budget reduction mode increased from 14 
to 24, similar to the budget reduction mode, the changes 
in the forward and backward motions are equal, and the 
most changes are related to nodes 3, 4 and 5. Increas-
ing the budget of the nodes reduced the total recovery 
time and the loss resulting from reduced sending flows. 
However, increasing the costs of risk responses led to an 
increase in the first objective function. Also, by chang-
ing the risk responses, the speed of operability of the 
supply chain network increases. In budget mode equal 
to B, a change is observed in risk responses in modes 
III and IV. These changes are related to the responses of 
Node 5, Y5121, Y5122, Y5621, Y5622. Modes II, III, and IV 
with budget B have a similar trend with significant dif-
ferences. In all three modes, when the Covid-19 factor is 
eliminated from the equations, it is observed that the total 
costs reach the highest level with a delay of at least two 
time periods compared to two other cases (0.8B, 1.2B). 
Besides, the trend of modes II, III, and IV in the budget 
0.8B compared to the other two budget scenarios after 
the cost peak points are significant. Explaining this trend 
is related to the concept of inoperability. After applying 
the risk response, the nodes moved to operability with a 
non-zero value, which in turn increased the reducing the 
flow of goods sent in the supply chain network.

To validate the proposed model and its outputs, we 
reduced the capacity of the most important node of the 
producer level by 20%, and we obtained significant results 
by examining and analyzing its graphs. In modes II, III, IV 
with budget scenario B, we can see that in all the graphs, 
the time to apply the answers has decreased non-linearly.

Also, xijrs are getting closer to operability level in an 
increasing rate in a shorter time span. These results express 
the concept that the lower the capacity of the nodes, the 
more sensitive the supply chain network is to events and 
risks, which is directly related to the resilience of the supply 
chain network. To better understand this issue, we analyze 
the issue from different point of view.

Suppose that the reduction mode of 20% capacity of 
node 1 is the base mode to for evaluation, and the initial 
base mode, it is equivalent to a 20% increase of the new 
base mode. A 20% increase in the capacity of node 1 
is the same as the buffer capacity, which increases the 
inventory capacity and resilience of the supply chain net-
work to deal with incidents and risks and reduces the loss 
of streams sent in the supply chain network, consistent 
with the movement trend of Fig. 8 and its outputs are 
compiled in Table 4.Ta

bl
e 

3  
R

es
ul

ts
 o

f t
he

 fi
rs

t a
nd

 se
co

nd
 o

bj
ec

tiv
e 

fu
nc

tio
ns

 c
on

si
de

rin
g 

bu
dg

et
 c

on
di

tio
ns

 a
nd

 re
le

va
nt

 m
od

es

0.
8B

B
1.

2B

Pe
ak

 ti
m

e
Fi

xi
ng

 ti
m

e
Pe

ak
 c

os
t

Fi
xi

ng
 c

os
t

Pe
ak

 ti
m

e
Fi

xi
ng

 ti
m

e
Pe

ak
 c

os
t

Fi
xi

ng
 c

os
t

Pe
ak

 ti
m

e
Fi

xi
ng

 ti
m

e
Pe

ak
 c

os
t

Fi
xi

ng
 c

os
t

M
od

e 
I

**
*

3.
6

**
*

33
.6

5
**

*
3.

6
**

*
33

.6
5

**
*

3.
6

**
*

33
.6

5
M

od
e 

II
0.

75
3.

6
5.

99
8

3.
14

2
0.

75
1.

05
5.

99
8

1.
92

2
0.

75
1.

05
5.

99
8

1.
53

7
M

od
e 

II
I

0.
75

3.
6

5.
99

8
3.

15
4

0.
8

1.
15

6.
21

2
1.

93
7

0.
75

1.
15

5.
99

8
1.

55
2

M
od

e 
IV

2.
85

6.
85

6.
10

5
3.

15
4

2.
9

3.
35

6.
33

6
1.

92
8

2.
85

3.
35

6.
10

5
1.

54
4



2039A multi objective input–output model to select optimal strategies under COVID‑19 conditions:…

1 3

Fig. 7   Objective Function (Z1) based on Budgets and Modes II to IV
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5 � Conclusion

With the increasing complexity and development of sup-
ply chain networks, risk and disruption management has 
become very important in the pandemic era. In this study, 
an approach was proposed to evaluate the risks and dis-
ruption factor of Covid-19 in the inoperability of nodes 
and their impact on supply chain networks. We developed 
a dynamic input–output multi-objective optimization 
model with the objectives of reducing the loss of flows 
caused by disruptions, reducing the inoperability of sup-
ply chain network infrastructures and choosing the most 
optimal risk response strategy with budget limitations. 
The results of the present study help the policy makers 
and upstream and downstream managers of the supply 
chain to prioritize and manage the effects of Covid-19 
and supply chain risks in the short and medium term by 
planning and choosing the appropriate strategy. It also 
provides analysts with a clearer picture of the effects 
and behaviors of risks and disruptions in time periods. 

Despite its significant contribution to the supply chain, 
this study has some limitations. The main limitation in 
input–output models is the calculation of technical matrix 
coefficients, the official statistics of which are updated 
and presented based on states, cities and Industrial areas 
by countries in multi-year time intervals. An exciting 
research field is the use of probability distributions and 
Piecewise Function instead of fixed coefficients in objec-
tive function differential equations 2, which solves the 
weaknesses of the I-O model in estimating and simulat-
ing long-term effects and unpredicted disruptions. The 
parameters of the model have been checked under condi-
tions of certainty, which can be checked under conditions 
of uncertainty for future research. Also, the ability to 
predict the impact speed of risks and disruptions in sup-
ply chain models will be very interesting. The integration 
of complex supply chain models with I-O models for risk 
analysis, disruption management and resilience of supply 
chain networks is a field of study for researchers in the 
future that has been neglected.

Fig. 8   Objective Function (Z1), by reducing the capacity of node 1 in modes II and IV

Table 4   The results of the first and second objective functions by reducing the capacity of node 1

B B, Change capacity node 1 (-20%)

Peak time Fixing time Peak cost Fixing cost Peak time Fixing time Peak cost Fixing cost

Mode II 0.75 1.05 5.998 1.922 0.35 0.55 5.085 2.215
Mode III 0.8 1.15 6.212 1.937 1.8 1.95 4.82 2.222
Mode IV 2.9 3.35 6.336 1.928 0.35 0.6 5.085 2.222
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Appendix A

Table 5   Risks, Risk Responses & Negative Risk Response

Node Risk Risk Risk response Negative Risk Response

1 1 Risk of delay in sending chemicals Increasing the number of suppliers ***
Improving the transportation system Increased price of chemicals

1 2 Low quality raw materials Increasing the number of suppliers ***
Production of products with new 

standards
Loss of customer and market

2 1 Emergence of new domestic and 
international competitors

Reduced price of raw materials Reduced profit
Increased quality of raw materials Increased price of raw material

2 2 Side effects of raw materials of medicines Replacing a new pharmaceutical 
manufacturer

Increased cost

3 1 Demand fluctuations Export to new target markets Increased costs of transportation
Increased production capacity Increased breakdowns and defects of 

machines
3 2 Limited capacity of transport network Increased capacity of the transport 

network
Increased environmental pollution

4 1 Financial sanctions Using cryptocurrencies Reduced power for other uses
Use of precious metals in financial 

exchanges
Decrease in money printing due to reduced 

financial support
Use of currencies of trading countries in 

financial exchanges
Not using the currency of the countries 

involved in the transaction with other 
countries

4 2 Emergence of new domestic and 
international competitors

Production of new products Increasing R&D costs and reducing costs 
for other sectors

Increase the quality of products Rising prices for final goods
Export of products to new markets Lack of proper reception of products

4 3 Side effects of raw materials of drugs Collection and extermination of drugs Increased costs
5 1 Chemical waste management Construction of chemical extermination 

facilities
Increased environmental pollution and 

costs
Sending chemicals to other countries for 

extermination
Increasing the cost of transporting and 

destroying chemicals
5 2 Poor information infrastructure Outsourcing of data research and analysis Risk of information leakage and increased 

cyber attacks
Formation and development of 

information teams
Increased costs

5 3 Delay in delivery of the final product Discount on the final price of the 
products

Reduced profit

Increased production capacity Increased breakdowns and defects of 
machines

6 1 Hidden demand Change in price and distribution Reduced profit
7 1 Demand fluctuations Increasing inventory Decreased sales due to falling demand
8 1 Limited capacity of goods with special 

storage conditions
Improving the proper conditions to 

increase capacity
Increased costs
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Table 6   Output Inoperability 
with 0.8B unit budget (million $)

Xijr Mode I Mode II Mode III Mode IV

Value Time Value Time Value Time Value Time

X141 1 3.06 0 0.98 0 1.04 0 3.15
X142 1 3.00 0 1.05 0 1.10 0 3.22
X151 1 2.88 0 0.97 0 1.16 0 3.32
X152 1 2.81 0 1.03 0 1.06 0 3.25
X241 1 3.68 0 0.89 0 0.91 0 2.98
X242 1 3.86 0 1.10 0 1.16 0 3.11
X251 1 3.65 0 0.86 0 0.88 0 2.96
X252 1 3.75 0 0.97 0 1.01 0 3.04
X341 1 3.65 0 0.97 0 1.01 0 3.05
X342 1 3.56 1 3.56 1 3.56 1 6.83
X351 1 2.96 0 0.96 0 1.01 0 3.15
X352 1 2.90 0 0.90 0 0.92 0 3.07
X411 1 3.49 0 0.85 0 0.87 0 2.96
X412 1 3.62 0 0.90 0 0.97 0 3.03
X413 1 3.69 0 0.92 0 0.92 0 2.99
X421 1 4.79 0 0.86 0 0.88 0 2.93
X422 1 5.09 0 0.87 0 0.90 0 2.94
X423 1 5.20 0 0.92 0 0.92 0 2.95
X431 1 3.71 0 0.85 0 0.87 0 2.95
X432 1 3.83 0 0.89 0 0.96 0 3.01
X433 1 3.95 0 0.95 0 0.96 0 3.00
X461 1 3.08 0 0.91 0 0.93 0 3.05
X462 1 3.13 0 0.92 0 0.91 0 3.02
X463 1 3.21 1 3.21 1 3.21 1 5.98
X471 1 3.49 0 0.91 0 0.93 0 3.01
X472 1 3.55 0 0.89 0 0.91 0 2.99
X473 1 3.62 0 0.91 0 0.91 0 2.99
X481 1 2.90 0 0.90 0 0.92 0 3.07
X482 1 2.93 0 0.88 0 0.89 0 3.03
X483 1 2.99 0 0.88 0 0.88 0 3.01
X511 1 3.25 0 0.91 0 0.92 0 3.02
X512 1 3.30 0 0.93 0 1.01 0 3.09
X513 1 3.40 0 1.00 0 1.05 0 3.11
X521 1 3.34 0 0.88 0 0.89 0 2.99
X522 1 3.41 0 1.00 0 1.12 0 3.15
X523 1 3.45 0 0.95 0 0.98 0 3.05
X531 1 3.47 0 0.88 0 0.88 0 2.971
X532 1 3.52 0 0.95 0 1.04 0 3.08
X533 1 3.58 0 0.98 0 1.02 0 3.06
X561 1 2.93 0 0.98 0 0.99 0 3.14
X562 1 3.00 0 0.90 0 0.94 0 3.07
X563 1 3.09 0 0.96 0 0.99 0 3.11
X571 1 2.99 1 2.99 1 2.99 1 5.48
X572 1 3.02 0 0.91 0 0.96 0 3.09
X573 1 3.06 0 1.10 0 1.21 0 3.29
X581 1 2.86 0 0.97 0 0.97 0 3.14
X582 1 2.89 0 0.89 0 0.92 0 3.07
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Table 6   (continued) Xijr Mode I Mode II Mode III Mode IV

Value Time Value Time Value Time Value Time

X583 1 2.94 0 0.96 0 1.00 0 3.15
X641 1 4.50 1 4.50 1 4.50 1 9.34

X651 1 3.16 0 1.88 1 4.54 0 5.39
X741 1 3.71 0 2.07 1 6.49 0 3.88
X751 1 4.05 0 1.71 1 7.24 0 3.74
X841 1 3.49 0 6.51 1 5.19 0 4.41
X851 1 3.36 0 1.73 1 8.43 0 3.83

Table 7   Output Inoperability 
with B unit budget (million $)

Xijr Mode I Mode II Mode III Mode IV

Value Time Value Time Value Time Value Time

X141 1 3.06 0 0.98 0 1.04 0 3.15
X142 1 3.00 0 1.05 0 1.10 0 3.22
X151 1 2.88 0 0.97 0 1.16 0 3.32
X152 1 2.81 0 1.03 0 1.06 0 3.25
X241 1 3.68 0 0.89 0 0.91 0 2.98
X242 1 3.86 0 1.10 0 1.16 0 3.11
X251 1 3.65 0 0.86 0 0.88 0 2.96
X252 1 3.75 0 0.97 0 1.01 0 3.04
X341 1 3.65 0 0.97 0 1.01 0 3.05
X342 1 3.56 0 0.96 0 1.00 0 3.05
X351 1 2.96 0 0.94 0 0.97 0 3.11
X352 1 2.90 0 0.90 0 0.92 0 3.07
X411 1 3.49 0 0.85 0 0.87 0 2.96
X412 1 3.62 0 0.88 0 0.90 0 2.98
X413 1 3.69 0 0.92 0 0.92 0 2.99
X421 1 4.79 0 0.85 0 0.87 0 2.92
X422 1 5.09 0 0.86 0 0.88 0 2.93
X423 1 5.20 0 0.92 0 0.92 0 2.95
X431 1 3.71 0 0.85 0 0.87 0 2.95
X432 1 3.83 0 0.88 0 0.90 0 2.97
X433 1 3.95 0 0.95 0 0.96 0 3.00
X461 1 3.08 0 0.91 0 0.93 0 3.05
X462 1 3.13 0 0.89 0 0.91 0 3.02
X463 1 3.21 0 0.89 0 0.90 0 3.00
X471 1 3.49 0 0.91 0 0.93 0 3.01
X472 1 3.55 0 0.89 0 0.91 0 2.99
X473 1 3.62 0 0.91 0 0.91 0 2.99
X481 1 2.90 0 0.90 0 0.92 0 3.07
X482 1 2.93 0 0.88 0 0.89 0 3.03
X483 1 2.99 0 0.88 0 0.88 0 3.01
X511 1 3.25 0 0.91 0 0.92 0 3.02
X512 1 3.30 0 0.93 0 1.01 0 3.09
X513 1 3.40 0 1.00 0 1.05 0 3.11
X521 1 3.34 0 0.88 0 0.89 0 2.99
X522 1 3.41 0 1.00 0 1.12 0 3.15
X523 1 3.45 0 0.95 0 0.98 0 3.05
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Table 7   (continued) Xijr Mode I Mode II Mode III Mode IV

Value Time Value Time Value Time Value Time

X531 1 3.47 0 0.88 0 0.88 0 2.97
X532 1 3.52 0 0.95 0 1.04 0 3.08
X533 1 3.58 0 0.98 0 1.02 0 3.06
X561 1 2.93 0 0.91 0 0.91 0 3.06
X562 1 3.00 0 0.90 0 0.94 0 3.07
X563 1 3.09 0 0.96 0 0.99 0 3.11
X571 1 2.99 0 0.92 0 0.93 0 3.06
X572 1 3.02 0 0.91 0 0.96 0 3.09
X573 1 3.06 0 1.10 0 1.21 0 3.29
X581 1 2.86 0 0.88 0 0.89 0 3.03
X582 1 2.89 0 0.89 0 0.92 0 3.07
X583 1 2.94 0 0.96 0 1.00 0 3.15
X641 1 4.50 0 2.07 1 7.29 0 3.78

X651 1 3.16 0 1.88 1 4.54 0 5.39
X741 1 3.71 0 2.07 1 6.49 0 3.88
X751 1 4.05 0 1.71 1 7.24 0 3.74
X841 1 3.49 0 6.51 1 5.19 0 4.41
X851 1 3.36 0 1.73 1 8.43 0 3.83

Table 8   Output Inoperability 
with 1.2B unit budget (million $)

Xijr Mode I Mode II Mode III Mode IV

Value Time Value Time Value Time Value Time

X141 1 3.06 0 0.98 0 1.04 0 3.15
X142 1 3.00 0 1.05 0 1.10 0 3.22
X151 1 2.88 0 0.97 0 1.16 0 3.32
X152 1 2.81 0 1.03 0 1.06 0 3.25
X241 1 3.68 0 0.89 0 0.91 0 2.98
X242 1 3.86 0 1.10 0 1.16 0 3.11
X251 1 3.65 0 0.86 0 0.88 0 2.96
X252 1 3.75 0 0.97 0 1.01 0 3.04
X341 1 3.65 0 0.97 0 1.01 0 3.05
X342 1 3.56 0 0.96 0 1.00 0 3.05
X351 1 2.96 0 0.94 0 0.97 0 3.11
X352 1 2.90 0 0.90 0 0.92 0 3.07
X411 1 3.49 0 0.85 0 0.873 0 2.96
X412 1 3.62 0 0.88 0 0.90 0 2.98
X413 1 3.69 0 0.92 0 0.92 0 2.99
X421 1 4.79 0 0.85 0 0.87 0 2.92
X422 1 5.09 0 0.86 0 0.88 0 2.93
X423 1 5.20 0 0.92 0 0.92 0 2.95
X431 1 3.71 0 0.85 0 0.871 0 2.95
X432 1 3.83 0 0.88 0 0.90 0 2.97
X433 1 3.95 0 0.95 0 0.96 0 3.00
X461 1 3.08 0 0.91 0 0.93 0 3.05
X462 1 3.13 0 0.89 0 0.91 0 3.02
X463 1 3.21 0 0.89 0 0.90 0 3.00
X471 1 3.49 0 0.91 0 0.93 0 3.01



2045A multi objective input–output model to select optimal strategies under COVID‑19 conditions:…

1 3

Table 8   (continued) Xijr Mode I Mode II Mode III Mode IV

Value Time Value Time Value Time Value Time

X472 1 3.55 0 0.89 0 0.91 0 2.99
X473 1 3.62 0 0.91 0 0.91 0 2.99
X481 1 2.90 0 0.90 0 0.92 0 3.07
X482 1 2.93 0 0.88 0 0.89 0 3.03
X483 1 2.99 0 0.88 0 0.88 0 3.01
X511 1 3.25 0 0.91 0 0.92 0 3.02
X512 1 3.30 0 0.93 0 1.01 0 3.09
X513 1 3.40 0 1.00 0 1.05 0 3.11
X521 1 3.34 0 0.88 0 0.89 0 2.99
X522 1 3.41 0 1.00 0 1.12 0 3.15
X523 1 3.45 0 0.95 0 0.98 0 3.05
X531 1 3.47 0 0.88 0 0.88 0 2.97
X532 1 3.52 0 0.95 0 1.04 0 3.08
X533 1 3.58 0 0.98 0 1.02 0 3.06
X561 1 2.93 0 0.91 0 0.91 0 3.06
X562 1 3.00 0 0.90 0 0.94 0 3.07
X563 1 3.09 0 0.96 0 0.99 0 3.11
X571 1 2.99 0 0.92 0 0.93 0 3.06
X572 1 3.02 0 0.91 0 0.96 0 3.09
X573 1 3.06 0 1.10 0 1.21 0 3.29
X581 1 2.86 0 0.88 0 0.89 0 3.03
X582 1 2.89 0 0.89 0 0.92 0 3.07
X583 1 2.94 0 0.96 0 1.00 0 3.15
X641 1 4.50 0 2.07 1 7.29 0 3.78

X651 1 3.16 0 1.88 1 4.54 0 5.39
X741 1 3.71 0 2.07 1 6.49 0 3.88
X751 1 4.05 0 1.71 1 7.24 0 3.74
X841 1 3.49 0 6.51 1 5.19 0 4.41
X851 1 3.36 0 1.73 1 8.43 0 3.83
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Appendix B

Author contribution  Amirhossein Khanbaba:Conceptualization, Meth-
odology, Writing - Original Draft, Software, Validation,Formal analysis, 
Investigation, Data Curation, Visualization. Sadoullah Ebrahimnejad: 
Writing -Review & Editing mathematical model, Visualization, Supervi-
sion, Projectadministration.
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