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Abstract
Most literature on make-to-order shops assumes that service rates are independent of the system state. In practice however, the
service rate is often dependent on the workload level experienced by the worker. While a body of knowledge on state-dependent
service rates exists, the available literature has not given sufficient attention to make-to-order shops, which are often characterized
by complex routings and defined due dates, which means delivery performance becomes a major concern. This study uses
simulation to assess the performance impact of state-dependent service rates under different degrees of routing directedness. We
show that including information on the load upstream of a station when making service rate adjustments has the potential to
improve performance compared to considering the load directly queuing at a station only, as has been the case in previous
research on state-dependent service rates. Moreover, using the same threshold to trigger service rate adjustments at each station in
shops with directed routings leads to higher service rates at upstream stations. This service rate imbalance can be avoided by
using different triggering thresholds for upstream and downstream stations. Further, and most importantly, we show that although
speeding up behavior during high load periods significantly improves performance, if worker fatigue leads to a decrease in the
service rate in response to the initial increase then performance may in fact deteriorate.

Keywords Behavioral operations management . Capacity planning . Make-to-order production . Workload control .

State-dependent service rates

1 Introduction

This study assesses the impact of state-dependent processing
or service times on the performance of make-to-order shops
through simulation. It originated from a case in practice where
a company considered substituting human operators on its
production line with robots. Ever since the origins of human-
ity, humans have strongly impacted economic systems – given
that most economic systems are created by humans to meet
human needs (Weber 2014; Roser 2016). Economic systems
today typically consist of humans and machines, both of
which are different. While they both exhibit variability be-
tween the planned and realized service rates, human workers
inherently react to the state of the system that surrounds them
(Bendoly et al. 2010). Considering this interaction is central
for companies that need to properly balance the complex
trade-offs exist ing in any industry (Samson and
Kalchschmidt 2019). For example, human workers may speed
up processing times when the workload in their queue in-
creases and slow down if they are at risk of becoming idle
(Schultz et al. 1998). This means that the service rate becomes
dependent on the workload of the queue, shop, or system, i.e.
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state-dependent (Powell and Schultz 2004). Note that state-
dependency is different from uncertainty in, for example, pro-
cessing times, machine availability or material availability
(e.g. Kenne and Gharbi 2001; Mason et al. 2005; Galbreth
et al. 2012; Altendorfer et al. 2014) – such factors are state-
independent. In fact, state-independent variation in operator
processing times should be avoided, since it may lead to
blocking and starvation in tightly coupled systems (Folgado
et al. 2015).

While there has been significant research attention on
state-dependent service rates (e.g. Schultz et al. 1998;
Van Ooijen and Bertrand 2003; Delasay et al. 2016;
Shunko et al. 2018), this body of work is typically in
the context of single/parallel servers and production
lines, characterized by restricted routing complexity
and focused on the evaluation of efficiencies. The avail-
able literature does not, to the best of our knowledge,
consider more complex make-to-order contexts where
due dates exist and tardiness performance is the major
performance criterion. Most make-to-order shops in
practice produce low volume, high variety products
(Childerhouse et al. 2002). This results in high variabil-
ity in terms of job arrivals, routings, and processing
times; and, as a consequence, the workload queuing at
a station varies (Mincsovics and Dellaert 2009). While
in practice some reaction to the changing workload
would be expected (Delasay et al. 2016), the literature
typically considers a station’s service rate to be state-
independent, i.e. not dependent on the workload.

The main exceptions to the above are Bertrand and van
Ooijen (2002), Land et al. (2015), and Thürer et al.
(2016). Bertrand and van Ooijen (2002) introduced the
notion of an ideal workload level in the system to explain
the discrepancy between theoretical results on the perfor-
mance of release methods that stabilize the workload in
the system and results from practice when these systems
had been implemented, which were typically much better
than anticipated. Bertrand and van Ooijen (2002) assumed
that any deviation from the ideal workload level would
result in a decrease in the service rate, and therefore that
stabilizing the workload close to the ideal level would
improve performance. The literature on state-dependent
service rates provides another explanation for discrepan-
cies between theory and practice: a speeding-up phenom-
enon whereby workers adjust their behavior in response to
the workload level, which is typically not a consideration
in theory. This effect has since been assessed by Land
et al. (2015) who explored the impact of output control,
i.e. an adjustment to the service rate that is triggered
based on a station’s workload, in make-to-order job shops.
Land et al. (2015) showed that small but timely capacity
adjustments significantly improve tardiness performance.
Thürer et al. (2016) then showed that the positive

performance effect is also maintained when order release
is applied to stabilize and reduce the workload in the
system. Land et al. (2015) and Thürer et al. (2016) ex-
tended Bertrand and van Ooijen’s (2002) work by
highlighting the impact of state-dependent service rates.
This provided an important contribution to the literature;
however, the authors did not consider the literature on
state-dependent service rates. This omission has resulted
in three shortcomings: first, the use of a different work-
load measure than the prior literature; second, failing to
consider the impact of routing direction, with the focus
instead being on a randomly routed job shop only; and,
third, the omission of fatigue, i.e. a decrease in the service
rate if adjustments are prolonged.

There exists a broad literature on the impact of human
behavior on the performance of production systems, for ex-
ample, in the context of lean manufacturing (Sugimori et al.
1977, van Assen 2018). This literature highlights that it is the
unique capability of humans to react to the system around
them that leads to significant performance improvements if
exploited and aligned with company goals, e.g. by a goal
management system that captures the way an organization
shapes employees’ decisions and actions through incentives
and rewards (Galeazzo et al. 2017). This study contributes to
the literature by advancing theory and practice concerning one
aspect of human behavior in production systems: state-
dependent service rates. It contributes to the existing literature
on state-dependent service rates in three ways. First, by intro-
ducing different measures for the workload that triggers be-
havioral change. These measures provide different levels of
visibility, which refers to the availability of feedback informa-
tion on the length of the queue at a station on the shop floor
(Shunko et al. 2018). Second, by exploring the performance
impact of routing direction, moving from serial lines towards
undirected job shops. This includes the impact of different
parameter settings – instead of using equal parameters, as in
the prior literature – for upstream and downstream stations, as
suggested in the broader operations management literature
(Gstettner and Kuhn 1996; Thürer et al. 2015). Third, by ex-
tending Land et al. (2015) to consider the impact of decreased
service rates during high load periods. Simulation is chosen as
an appropriate tool for exploring the behavioral dynamics in-
herent in systems (Bendoly et al. 2010), with the findings
extending the understanding of state-dependent service rates
and providing guidance to managers on how best to take ad-
vantage of this important phenomenon in practice.

The remainder of this paper is organized as follows. In
Section 2, the literature is reviewed, and the research questions
developed. The simulation model used is then described in
Section 3 before the results are presented, discussed, and an-
alyzed in Section 4. Finally, conclusions are drawn in
Section 5, where limitations and future research directions
are also outlined.
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2 Literature review

This section briefly reviews the general literature on the oper-
ational impact of state-dependent service rates in Section 2.1
to identify which aspects to consider in the simulation. The
limited available literature specifically on state-dependent ser-
vice rates in make-to-order shops is then reviewed in
Section 2.2, where the research questions are also formulated
and outlined.

2.1 State-dependent service rates

Different approaches towards the state-dependency of service
rates are discussed or modelled in the literature. For example,
Van Ooijen and Bertrand (2003) assumed an ideal workload
level can be found and that any deviation from this ideal level
results in a service rate loss. They argued that only by stabi-
lizing the workload – at the ideal level – could the maximum
throughput be realized. Meanwhile, Delasay et al. (2016) de-
veloped a queueing model in which the service rate increases
with the workload but decreases in periods of prolonged over-
load, so-called overwork periods. The authors showed that the
commonly used fixed-server-speed Erlang C capacity-
planning model may lead to errors in predicting performance
or prescribing capacity levels. The occurrence of fatigue in
response to prolonged periods of high load has been further
explored by Öner-Közen et al. (2017), who argued that the
positive impact of state-dependent service rates has been
overestimated in previous studies due to simplifying assump-
tions, such as a disregard for state-dependent worker fatigue.
Worker fatigue was modelled by Öner-Közen et al. (2017) as
the diminishing ability of the worker to increase the service
rate.

But even if this study were to exclusively focus on an
increase in the service rate in response to an increased work-
load, different conceptualizations would still exist in the liter-
ature. For example, Hopp et al. (2007) introduced the idea of
differences between non-discretionary task completion criteria
(i.e. when and how an operation is completed is determined by
objective standards) and discretionary task completion criteria
(i.e. when and how an operation is completed is determined by
a worker’s subjective standards). Hopp et al. (2007) then went
on to argue that discretionary tasks allow for speeding up
operations, a so-called quality buffer since service quality ar-
guably suffers. In contrast, in this study, the focus is on the
capacity buffer inherent within each worker. This refers to a
worker’s capacity to increase the service rate by working in
the short-term at an above average speed. Similarly, Batt and
Terwiesch (2017) summarized three load-adapting mecha-
nisms from the literature – rushing, task reduction, and multi-
tasking – and explored the impact of a fourth, early task
initiation.

In this study, the focus is on simple speed-up effects, as
observed, for example, in Schultz et al. (1998). Schultz et al.
(1998) showed that, in systems with state-dependent service
rates, there is less idle time and a higher output than would be
predicted using assumptions of independence. This may, for
example, explain why low-inventory systems do not exhibit
the predicted productivity losses expected when applying op-
erations research models (Schultz et al. 1999) and may chal-
lenge implicit assumptions on the negative effect of line length
on throughput (Powell and Schultz 2004).

2.2 State-dependent service rates in make-to-order
shops

Only three studies could be identified from the literature on
state-dependent service rates in a make-to-order context:
Bertrand and van Ooijen (2002), Land et al. (2015), and
Thürer et al. (2016). Bertrand and van Ooijen (2002) intro-
duced an ideal workload level and assumed that any deviation
from this ideal level would reduce the service rate. In contrast,
this study focusses on speeding up behavior and fatigue as in
Delasay et al. (2016). The speeding up behavior is similar to
Land et al. (2015), who introduced a new capacity adjustment
mechanism that triggers adjustments based on a station’s
workload. Adjustments were implemented by reducing the
realized processing times. In other words, Land et al. (2015)
considered processing times to be state-dependent. Using a
stylized job shop model, the authors then demonstrated that
small capacity adjustments targeted at handling high load pe-
riods can improve the percentage tardy and other delivery-
related performance measures. This finding was later con-
firmed by Thürer et al. (2016) in a job shop with order release
control.

Land et al. (2015) in particular is important in two ways.
First, it assessed the impact of a state-dependent service
rate in a make-to-order shop. Second, it introduced the
use of the corrected aggregate load as a new measure for
triggering behavior change. The corrected aggregate load
approach was first introduced by Oosterman et al. (2000).
It measures the sum of all of the work for a given station
that is on the shop floor but not yet completed, whereby the
workload contribution is corrected by the position of the
station in the routing of a job. In other words, the corrected
aggregate load contribution of a job to the ith station in its

routing is determined by
pij
i . A job contributes to the load of

a station upon its entry to the shop and is excluded as soon
as the operation at that particular station is complete.
Dividing by the station position recognizes that a job’s
contribution to the direct load of a station is limited to
the portion of the time that the job is actually queuing at
the station. This measure gives the best representation of
the future expected direct load of a station based on the mix
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of routings actually present on the shop floor (Oosterman
et al. 2000).

In contrast to Land et al. (2015), studies on state-dependent
service rates trigger a change in worker behavior based on the
load actually queuing at a station (e.g. Powell and Schultz
2004; Öner-Közen et al. 2017) – the so-called direct load.
This neglects the load upstream of the station – the so-called
indirect load – which is reflected in the corrected aggregate
load. Shunko et al. (2018) recently explored the impact of the
queue structure (single or pooled queues vs. dedicated queues
for multiple servers), and queue-length visibility (full or
blocked visibility) on performance. They found that a single
queue structure and poor visibility of the queue length slows
down the servers. However, in Shunko et al.’s (2018) study
there is no routing, i.e. the workload at a station does not
depend on job progress at an upstream station. In contrast, this
study considers make-to-order shops with complex routings.
The first research question therefore asks:

RQ1: Should the service rate be dependent on global infor-
mation on the corrected aggregate load or only based on local
information on the direct load queueing at a station?

Land et al. (2015) made a major contribution by assessing
state-dependent service rates in job shops. However, the au-
thors did not assess performance in more directed routing
settings where typical upstream and downstream stations ex-
ist. Previous research from the wider operations management
literature has highlighted that upstream and downstream sta-
tions are characterized by different load patterns that may
influence performance and, consequently, require different pa-
rameter settings (Gstettner and Kuhn 1996; Thürer et al.
2015). It is therefore important to extend Land et al. (2015)
to consider the impact of routing directedness on their results.
The second research question therefore asks:

RQ2: How does routing direction influence performance in
shops with state-dependent service rates?

Finally, Land et al. (2015) assumed that workers are capa-
ble of increasing the service rate for an infinite period of time.
In practice, however, worker fatigue is likely to occur. This
means there is a decrease in the service rate if high load pe-
riods are prolonged. The third and final research question
therefore asks:

RQ3: What is the performance impact of worker fatigue
that results from a prolonged increase of the service rate?

Controlled simulation experiments will next be used to
answer above three research questions.

3 Simulation model

In this study a high variety make-to-order environment is con-
sidered. A powerful tool for analyzing this kind of complex,
stochastic system is discrete event simulation, which has also
been widely applied in previous behavioral research (Powell

and Schultz 2004; Neumann and Medbo 2009; Dode et al.
2016; Öner-Közen et al. 2017). The model characteristics
are first described in Section 3.1. How state-dependency of
the service rate is modelled is then described in Section 3.2.
Finally, the dispatching rule used to control the progress of
orders on the shop floor is described in Section 3.3 before the
experimental setting and the performance measures are sum-
marized in Section 3.4.

3.1 Model characteristics

Three different shop models, representing different degrees of
routing directedness, will be used. To improve the generaliz-
ability of the findings and to avoid interactions that might
inhibit a full understanding of the effects of the experimental
factors, a stylized model of a pure job shop, a general flow
shop, and a pure flow shop is used. All three shopmodels have
been implemented in the Python© programming language
using the SimPy© simulation module. All three shops contain
six stations, where each station is a single resource with con-
stant capacity. For the pure job shop, the routing is undirected
and the routing length of jobs varies uniformly from one to six
operations. The routing length is first determined before the
routing sequence is generated randomly without replacement.
For the general flow shop, the resulting routing vector (i.e. the
sequence in which stations are visited) is sorted such that the
routing becomes directed and there are typical upstream and
downstream stations. For the pure flow shop, all jobs visit all
stations in increasing station number order. Operation process-
ing times – before adjustment – follow a truncated 2-Erlang
distribution with a mean of 1 time unit after truncation and a
maximum of 4 time units. The inter-arrival time of jobs fol-
lows an exponential distribution with a mean of 0.648 time
units for the pure job shop and general flow shop and a mean
of 1.111 time units for the pure flow shop. Both settings de-
liberately result in a utilization level of 90% without adjust-
ments. Due dates are set exogenously by adding a random
allowance to the job entry time. This allowance is uniformly
distributed between 28 and 36 time units for the pure job shop
and general flow shop and between 40 and 55 time units for
the pure flow shop.

Finally, Table 1 summarizes the shop and job characteris-
tics. While in practice any individual high-variety shop will
certainly differ from these stylized models, these models cap-
ture the high routing variability, processing time variability,
and arrival variability that defines this context.

3.2 State-dependent service rate

As in previous simulation research on state-dependent service
rates, the processing times are adjusted in response to a sta-
tion’s workload (Powell and Schultz 2004; Delasay et al.
2016; Öner-Közen et al. 2017). In other words, when a certain
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load threshold is violated, capacity adjustments are triggered.
This models the worker’s response to an increased workload.
This study does not consider an increase in processing times in
response to less work since this inclusion only led to a negli-
gible effect in Powell and Schultz (2004). To avoid system
nervousness, a second threshold is used to determine when to
cease the capacity adjustment. Both thresholds – the com-
mencing threshold and the stopping/ceasing threshold – are
based on the cumulative frequency distribution of the work-
load obtained in preliminary simulations. As an example, the
distributions for the General Flow Shop and the Pure Flow
Shop are given in Fig. 1. The starting threshold is set to the
90th percentile and the stopping threshold is set to the 85th
percentile; the use of only one level for these parameters is
justified by the performance frontier observed in Land et al.
(2015). As can be seen from Fig. 1, if the routing is directed
then every station has a different distribution. Consequently,
two scenarios are considered:

i. An equal load threshold for all stations based on the aver-
age shop load; and,

ii. A different load threshold for every station.

The strength of the positive worker response to an in-
creased workload level is modelled by the adjustment size
α. Schultz et al. (1998) observed an adjustment of approxi-
mately 20%. The same adjustment was also used in the sim-
ulations executed by Powell and Schultz (2004). Four differ-
ent levels of the adjustment size are therefore considered to
model the increase in the service rate: 0 (i.e. no capacity ad-
justment), 10, 20, and a 30% adjustment. As in Delasay et al.
(2016) fatigue is modelled by decreasing the service rate step-
wise after each job completion during high load periods until a
certain threshold is reached. This means that the positive effect
of a high workload is gradually reduced and transformed into
a decrease in the service rate if it is sustained for too long. As
in previous research, this overwork or ‘fatigue’ effect is
modelled as increasing linearly over time since there is no

other empirical data available (Jaber and Neumann 2010).
Meanwhile, Delasay et al. (2016) showed that using the job
count leads to similar performance as measuring the duration
of the high load period. The final threshold was set to 110% of
the processing time. It results in less than 100% utilization
(99%) to avoid unstable simulations. Meanwhile, eight levels
of the fatigue factor β are considered using a 2 logarithmic
scale: 0, 0.00781, 0.00391, 0.00195, 0.00098, 0.00049,
0.00024, and 0.00012. This factor multiplied by the number
of job completions during the current high load period gives

(a) The GFS

(b) The PFS

Fig. 1 Frequency distibution of the workload in: (a) the General Flow
Shop (GFS); and, (b) the Pure Flow Shop (PFS)

Table 1 Summary of the simulated shop and job characteristics

Pure job shop General flow shop Pure flow shop

Shop characteristics Routing Variability
Routing Direction
No. of Stations
Station Interchangeability
Station Capacities

Random routing
Undirected routing
6
No interchange-ability
All equal

Random routing
Directed routing
6
No interchange-ability
All equal

Fixed sequence
Directed routing
6
No interchange-ability
All equal

Job characteristics No. of Operations
Processing Times
Due Date (DD)
Inter-Arrival Times

Discrete Uniform [1, 6]
Truncated 2–Erlang;
(mean = 1; max = 4)
DD = Entry Time + d;
d U ~ [28, 36]
Exp. Distribution; mean = 0.648

Discrete Uniform [1, 6]
Truncated 2–Erlang;
(mean = 1; max = 4)
DD= Entry Time + d;
d U ~ [28, 36]
Exp. Distribution; mean = 0.648

6
Truncated 2–Erlang
(mean = 1; max = 4)
DD = Entry Time + d;
d U ~ [40, 55]
Exp. Distribution; mean = 1.111
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the adjustment to the processing times (already adjusted by
alpha).

3.3 Dispatching rule

Two dispatching rules will be considered: the Operation Due
Date (ODD) rule and the Modified Operation Due Date
(MODD) rule (see, e.g. Baker and Kanet 1983). The ODD
rule prioritizes jobs with the earliest operation due date, where
the calculation for the operation due date δij of the i

th operation
of a job j follows Eq. (1) below. The operation due date for the
last operation in the routing of a job is equal to the due date δj,
while the operation due date of each preceding operation is
determined by successively subtracting an allowance c from
the operation due date of the next operation. The allowance
was set to 3 time units since this value resulted in the best
overall performance in preliminary simulation experiments.
Note that this study uses a constant allowance and not a dy-
namic allowance that is dependent on the workload. If the
workload level increases then the operation throughput time
for all jobs also increases. Thus, the priority ordering of jobs
would still be the same as for a constant allowance.

δij = δj − (nj − i) ⋅ c i : 1... nj (1)
nj – number of operations in the routing o job j
The MODD rule prioritizes jobs according to the lowest

priority number, which is given by the maximum of the oper-
ation due date and the earliest finish time. In other words,
max(δij, t + pij) for an operation with processing time pij,
where t refers to the time when the dispatching decision is
made. The MODD rule shifts between a focus on ODDs to
complete jobs on time and a focus on speeding up jobs –
through shortest processing times – during periods of high
load, i.e. when multiple jobs exceed their ODD (Land et al.
2015). Note that a dynamic allowance would prohibit the use
of the same ODD’s for ODD and MODD dispatching, since
this switching behavior, which characterizes MODD, would
not occur.

3.4 Experimental design and performance measures

The experimental factors are summarized in Table 2. A full
factorial design was used for each shop type. Each scenario
was replicated 100 times, while results were collected over
10,000 time units following a warm-up period of 3000 time
units. These parameters allowed us to obtain stable results
while keeping the simulation run time to a reasonable level.

The principal performance measures considered in this
study are as follows: the lead time – the mean of the comple-
tion date minus the entry date across jobs; the percentage
tardy – the percentage of jobs completed after the due date;
and, the mean tardiness Tj =max(0, Lj),with Lj being the late-
ness of job j (i.e. the actual delivery date minus the due date of
job j).

4 Results

To obtain a first indication of the relative impact of the exper-
imental factors, statistical analysis has been conducted by ap-
plying an Analysis of Variance (ANOVA). ANOVA is here
based on a block design, which is typically used to account for
known sources of variation in an experiment. In the ANOVA,
the dispatching rule is treated as the blocking factor. This
allows the main effect of this factor and the main and interac-
tion effects of the capacity related factors – the triggering
parameter/threshold, the load measure, the adjustment size,
and the fatigue factor – to be captured. The results are present-
ed in Tables 3, 4, and 5 for the pure job shop, the general flow
shop, and the pure flow shop, respectively. All main and in-
teraction effects were shown to be statistically significant
(0.05) in the pure job shop (Table 3). Most main effects in
the general flow shop (Table 4) and the pure flow shop
(Table 5) were also shown to be statistically significant. The
main exception is the load measure. Meanwhile, significant
two-way and three-way interactions exist for both shop types,
whilst four-way interactions are only significant for the pure
flow shop (Table 5).

The Scheffé multiple comparison procedure was applied to
obtain a first indication of the direction and size of the perfor-
mance differences across the dispatching rule, the triggering
parameter/threshold, and the load measure. Since the level of
the adjustment size and the fatigue factor represent a continu-
um, a multiple comparison procedure is arguably not mean-
ingful for these factors. Table 6 gives the 95% confidence
interval. If this interval includes zero, performance differences
are not considered to be statistically significant. We can ob-
serve significant performance differences for most pairs for at
least one performance measure, with the main exception being
the triggering parameter/threshold in the general flow shop. To
further explore these differences, detailed performance results
will be presented next. Section 4.1 focusses on the pure job
shop and an increase in the service rate while the impact of a
more directed routing is assessed in Section 4.2 (i.e. the gen-
eral and pure flow shops). Section 4.3 then assesses the impact
of worker fatigue before a summary discussion is provided in
Section 4.4.

4.1 Assessment of results: The pure job shop
and an increase in the service rate

To answer the first research question – should the service
rate be dependent on global information on the corrected
aggregate load or only based on local information on the
direct load queueing at a station? – the focus is first on the
pure job shop and an increase in the service rate. The
results for the pure job shop, i.e. with undirected random
routings, are given in Table 7 together with the average
utilization and the total number of adjustments per 1000
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time units. The results confirm the positive performance
impact of small but timely service rate adjustments, as
reported in Land et al. (2015) for the pure job shop. If the
results for the direct load and corrected load measures are
compared for similar average utilization levels, then a bet-
ter percentage tardy performance for the direct load can be
observed if ODD dispatching is applied. However, the
corrected load leads to a lower mean tardiness, whilst the
lead time is similar for both load measures. The perfor-
mance difference disappears under MODD dispatching,

and the direct and corrected load measures perform simi-
larly. As expected from previous literature considering
both dispatching rules (e.g., Land et al. 2015), MODD
improves performance compared to ODD dispatching. In
general, the corrected load measure leads to fewer adjust-
ments since it is less granular than the direct load. For
example, if an operation of 1 time unit is completed at
the last station in the routing of a job, the load measure is
reduced by 1 time unit for the direct load but by only 1/6
time units for the corrected load approach. The latter is less

Table 2 Summary of the experimental design

Pure job shop General flow shop Pure flow shop

Load measure Direct and corrected load

Trigger parameter All equal and different across stations All equal

Adjustment size 0 (no adjustment), 10%, 20% and 30%

Fatigue factor 0.00781,0.00391,0.00195,0.00098,0.00049,0.00024,and 0.00012

Dispatching rule Operation Due Date (ODD) and Modified Operation Due Date (MODD)

Table 3 ANOVA results for the pure job shop

Performance measure Source of variance Sum of squares Degree of freedom Mean squares F-Ratio p Value

Lead time Dispatching 1,666,958.30 1 1,666,958.30 869.78 0.00

Measure (M) 1,086,841.10 1 1,086,841.10 567.09 0.00

Adjustment Size (A) 3,575,036.90 3 1,191,679.00 621.79 0.00

Fatigue Factor (B) 3,475,095.90 7 496,442.28 259.03 0.00

M x A 602,322.71 3 200,774.24 104.76 0.00

M x B 846,673.21 7 120,953.32 63.11 0.00

A x B 1,936,730.00 21 92,225.24 48.12 0.00

M x A x B 498,212.88 21 23,724.42 12.38 0.00

Error 24,407,032.00 12,735 1916.53

Percentage tardy Dispatching 80.82 1 80.82 3350.33 0.00

Measure (M) 14.86 1 14.86 615.96 0.00

Adjustment Size (A) 157.84 3 52.61 2181.01 0.00

Fatigue Factor (B) 111.93 7 15.99 662.84 0.00

M x A 4.02 3 1.34 55.59 0.00

M x B 9.46 7 1.35 56.01 0.00

A x B 55.35 21 2.64 109.26 0.00

M x A x B 4.54 21 0.22 8.96 0.00

Error 307.21 12,735 0.02

Mean tardiness Dispatching 1,543,230.40 1 1,543,230.40 867.37 0.00

Measure (M) 974,389.70 1 974,389.70 547.66 0.00

Adjustment Size (A) 2,877,026.90 3 959,008.97 539.01 0.00

Fatigue Factor (B) 2,894,376.00 7 413,482.29 232.40 0.00

M x A 566,463.27 3 188,821.09 106.13 0.00

M x B 772,731.73 7 110,390.25 62.04 0.00

A x B 1,631,818.60 21 77,705.65 43.67 0.00

M x A x B 459,837.04 21 21,897.00 12.31 0.00

Error 22,658,146.00 12,735 1779.20
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likely to directly trigger the stopping threshold, which
means that the service rate increase continues for a longer
period.

4.2 Assessment of results: The general flow shop
and pure flow shop

To answer the second research question – how does
routing direction influence performance in shops with

state-dependent service rates? – attention now turns to
the results in the general flow shop and pure flow shop
with an increase in the service rate. The results for the
general flow shop in Table 8, i.e. with directed random
routings, largely confirm the findings from the pure job
shop. However, using different parameters for every sta-
tion has a positive performance impact if the corrected
load measure is applied and a negligible effect if the di-
rect load is used to trigger behavior change. As a result,

Table 4 ANOVA results for the general flow shop

Performance measure Source of variance Sum of squares Degree of freedom Mean squares F-Ratio p Value

Lead time Dispatching 3,624,286.80 1 3,624,286.80 1993.10 0.00
Parameter (P) 992,311.97 1 992,311.97 545.70 0.00
Measure (M) 285.43 1 285.43 0.16 0.69
Adjustment Size (A) 6,482,834.40 3 2,160,944.80 1188.37 0.00
Fatigue Factor (B) 6,638,341.20 7 948,334.45 521.52 0.00
M x P 31,881.96 1 31,881.96 17.53 0.00
M x A 221,252.05 3 73,750.68 40.56 0.00
M x B 611,716.27 7 87,388.04 48.06 0.00
P x A 1644.08 3 548.03 0.30 0.82
P x B 1146.57 7 163.80 0.09 1.00
A x B 2,701,169.80 21 128,627.14 70.74 0.00
M x P x A 23,567.40 3 7855.80 4.32 0.00
M x P x B 24,102.58 7 3443.23 1.89 0.07
M x A x B 212,316.96 21 10,110.33 5.56 0.00
P x A x B 9441.69 21 449.60 0.25 1.00
M x P x A x B 17,042.79 21 811.56 0.45 0.99
Error 46,316,835.00 25,471 1818.41

Percentage tardy Dispatching 177.38 1 177.38 8288.97 0.00
Parameter (P) 13.49 1 13.49 630.19 0.00
Measure (M) 0.09 1 0.09 4.24 0.04
Adjustment Size (A) 284.01 3 94.67 4423.87 0.00
Fatigue Factor (B) 215.47 7 30.78 1438.44 0.00
M x P 0.30 1 0.30 14.03 0.00
M x A 0.21 3 0.07 3.32 0.02
M x B 2.36 7 0.34 15.76 0.00
P x A 0.28 3 0.09 4.42 0.00
P x B 0.07 7 0.01 0.46 0.86
A x B 81.75 21 3.89 181.92 0.00
M x P x A 0.21 3 0.07 3.28 0.02
M x P x B 0.15 7 0.02 0.98 0.44
M x A x B 0.56 21 0.03 1.24 0.21
P x A x B 0.18 21 0.01 0.41 0.99
M x P x A x B 0.15 21 0.01 0.34 1.00
Error 545.07 25,471 0.02

Mean tardiness Dispatching 3,395,236.30 1 3,395,236.30 2003.41 0.00
Parameter (P) 886,295.03 1 886,295.03 522.97 0.00
Measure (M) 110.67 1 110.67 0.07 0.80
Adjustment Size (A) 5,191,507.20 3 1,730,502.40 1021.11 0.00
Fatigue Factor (B) 5,512,697.10 7 787,528.16 464.69 0.00
M x P 29,937.13 1 29,937.13 17.66 0.00
M x A 232,874.09 3 77,624.70 45.80 0.00
M x B 584,317.11 7 83,473.87 49.25 0.00
P x A 1277.91 3 425.97 0.25 0.86
P x B 1017.38 7 145.34 0.09 1.00
A x B 2,260,130.80 21 107,625.27 63.51 0.00
M x P x A 20,571.41 3 6857.14 4.05 0.01
M x P x B 21,905.44 7 3129.35 1.85 0.07
M x A x B 206,699.16 21 9842.82 5.81 0.00
P x A x B 8488.26 21 404.20 0.24 1.00
M x P x A x B 15,621.50 21 743.88 0.44 0.99
Error 43,166,464.00 25,471 1694.73
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the corrected load measure performs better than the direct
load measure when different parameters are applied. In
general, the impact of the granularity of the workload is
stronger, which leads to a stronger reduction in the aver-
age utilization for the direct load when compared to the
corrected load measure. This effect is even more ampli-
fied in the pure flow shop, i.e. with directed routings in a
fixed sequence, as can be seen from Table 9. It prohibits a
fair comparison for the direct vs. corrected load measures

under ODD dispatching since the average utilization is
lower for the direct load for all adjustment levels consid-
ered. A comparison is however possible for the best-
performing setting, which is under MODD dispatching
and with the use of different parameters. For this setting,
the corrected load measure leads to a lower mean
tardiness whilst maintaining similar percentage tardy and
lead time results. Overall, these results extend the findings
of Land et al. (2015) on the positive effect of capacity

Table 5 ANOVA results for the pure flow shop

Performance measure Source of variance Sum of squares Degree of freedom Mean squares F-Ratio p Value

Lead time Dispatching 16,149,185.00 1 16,149,185.00 1967.11 0.00
Parameter (P) 10,845,096.00 1 10,845,096.00 1321.02 0.00
Measure (M) 212,609.87 1 212,609.87 25.90 0.00
Adjustment Size (A) 29,757,470.00 3 9,919,156.70 1208.24 0.00
Fatigue Factor (B) 32,634,145.00 7 4,662,020.70 567.87 0.00
M x P 259,595.40 1 259,595.40 31.62 0.00
M x A 3,362,653.00 3 1,120,884.30 136.53 0.00
M x B 5,282,553.10 7 754,650.45 91.92 0.00
P x A 19,805.92 3 6601.97 0.80 0.49
P x B 95,758.12 7 13,679.73 1.67 0.11
A x B 11,416,293.00 21 543,632.99 66.22 0.00
M x P x A 129,324.68 3 43,108.23 5.25 0.00
M x P x B 133,924.32 7 19,132.05 2.33 0.02
M x A x B 2,753,322.00 21 131,110.57 15.97 0.00
P x A x B 277,392.47 21 13,209.17 1.61 0.04
M x P x A x B 294,009.27 21 14,000.44 1.71 0.02
Error 209,100,000.00 25,471 8209.61

Percentage tardy Dispatching 194.89 1 194.89 5502.17 0.00
Parameter (P) 59.35 1 59.35 1675.64 0.00
Measure (M) 0.00 1 0.00 0.06 0.81
Adjustment Size (A) 530.04 3 176.68 4988.02 0.00
Fatigue Factor (B) 490.06 7 70.01 1976.47 0.00
M x P 0.02 1 0.02 0.46 0.50
M x A 0.87 3 0.29 8.19 0.00
M x B 16.01 7 2.29 64.58 0.00
P x A 4.84 3 1.61 45.53 0.00
P x B 3.53 7 0.50 14.25 0.00
A x B 158.94 21 7.57 213.68 0.00
M x P x A 0.32 3 0.11 2.98 0.03
M x P x B 0.35 7 0.05 1.42 0.19
M x A x B 15.91 21 0.76 21.39 0.00
P x A x B 1.29 21 0.06 1.73 0.02
M x P x A x B 2.16 21 0.10 2.90 0.00
Error 902.21 25,471 0.04

Mean tardiness Dispatching 15,389,884.00 1 15,389,884.00 1963.15 0.00
Parameter (P) 9,795,400.70 1 9,795,400.70 1249.51 0.00
Measure (M) 209,909.77 1 209,909.77 26.78 0.00
Adjustment Size (A) 24,273,869.00 3 8,091,289.70 1032.13 0.00
Fatigue Factor (B) 27,241,955.00 7 3,891,707.90 496.43 0.00
M x P 282,171.77 1 282,171.77 35.99 0.00
M x A 3,463,246.70 3 1,154,415.60 147.26 0.00
M x B 5,079,155.80 7 725,593.69 92.56 0.00
P x A 22,644.44 3 7548.15 0.96 0.41
P x B 107,333.63 7 15,333.38 1.96 0.06
A x B 9,737,283.90 21 463,680.18 59.15 0.00
M x P x A 114,040.75 3 38,013.58 4.85 0.00
M x P x B 138,971.96 7 19,853.14 2.53 0.01
M x A x B 2,640,535.20 21 125,739.77 16.04 0.00
P x A x B 282,152.79 21 13,435.85 1.71 0.02
M x P x A x B 291,606.08 21 13,886.00 1.77 0.02
Error 199,700,000.00 25,471 7839.38
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adjustments to shops where the routing direction is more
directed. However, threshold levels need to take the
routing position of a station into account.

4.3 Assessment of results: The impact of worker
fatigue

To answer the third research question – what is the perfor-
mance impact of worker fatigue that results from a prolonged
increase of the service rate? – Fig. 2 depicts the results obtain-
ed for different levels of the fatigue factor in the general flow
shop. Only one shop type and one level of dispatching
(MODD), the triggering parameter/threshold (different param-
eters) and the loadmeasure (correctedworkload) are presented
since the performance impact was qualitatively similar across
these factors.

The following can be observed from Fig. 2:

& Impact of fatigue in isolation: This can be observed from
the curve obtained for an adjustment factor of zero. There
is a direct detrimental effect even if the fatigue factor is
relatively small. Note that the decrease in service rate that
occurs is limited to avoid unstable simulations. Therefore,
the percentage tardy remains below 50%. The maximum
utilization is 92.4% as can be observed from Table 10,
which gives the utilization corresponding to the experi-
mental results in Fig. 2. To assess the impact of fatigue
specifically in high load periods, data for an average utili-
zation rate of 92.4% was also collected, increasing the
average processing time by 2.66%. Compared to these
values (lead time = 26.8 time units; percentage tardy =
23.5%; and mean tardiness = 2.48 time units) it can be

Table 6 Results for scheffé multiple comparison procedure

Experimental factor Rule (x) Rule (y) PJS GFS PFS

lower1) upper lower upper lower upper

Lead
time

Dispatching MODD ODD −24.3 −21.3 −24.8 −22.8 −52.5 −48.0
Measure Corrected Direct 16.9 19.9 11.4 13.5 38.9 43.4

Parameter Different Equal Not applicable −1.3* 0.8 −8.0 −3.5
Percentage
tardy

Dispatching MODD ODD −0.164 −0.154 −0.170 −0.163 −0.179 −0.170
Measure Corrected Direct 0.063 0.074 0.042 0.049 0.092 0.101

Parameter Different Equal Not applicable −0.007* 0.000 −0.005* 0.004

Mean
tardiness

Dispatching MODD ODD −23.4 −20.5 −24.0 −22.0 −51.2 −46.9
Measure Corrected Direct 16.0 18.9 10.8 12.8 37.0 41.3

Parameter Different Equal Not applicable −1.1* 0.9 −7.9 −3.6

1 95% confidence interval; * not significant at α = 0.05

Table 7 Performance Results for the Pure Job Shop

Dispatching rule Load measure Adjust. size Lead time Percentage tardy Mean Tardiness Average utilization Number of adjust.a

ODD Direct 0 22.90 20.33% 1.81 90.02% 8.6

10% 21.10 14.10% 0.75 89.82% 8.6

20% 20.58 11.70% 0.52 89.74% 8.5

30% 20.32 10.47% 0.43 89.70% 8.4

Corrected 10% 21.34 15.64% 0.78 89.84% 4.5

20% 20.87 13.53% 0.54 89.77% 4.3

30% 20.63 12.16% 0.44 89.73% 4.2

MODD Direct 0 21.62 9.67% 0.84 90.02% 10.5

10% 20.45 6.75% 0.37 89.79% 10.5

20% 20.05 5.67% 0.26 89.70% 10.4

30% 19.85 5.09% 0.21 89.66% 10.1

Corrected 10% 20.69 7.44% 0.41 89.83% 5.1

20% 20.35 6.40% 0.28 89.75% 4.9

30% 20.17 5.77% 0.23 89.70% 4.8

a Number of Adjustments per 1000 time units
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observed that the lead time and percentage tardy increase
by roughly 50% while the mean tardiness literally ex-
plodes to above 30 time units.

& Combined effect of an increase in the service rate and
fatigue: This can be observed from the three remaining
curves in Fig. 2. While the detrimental effect continues,
the prior increase in the service rate softens the negative
effect. A fatigue factor of 0.006 increases the percentage
tardy by 50% if the adjustment size is 20%. In this scenar-
io, the original average processing time is reached after 34
job completions (approximately 34 time units), and the
maximum decrease in the service rate after 50 job com-
pletions. For an adjustment size of 30%, the average pro-
cessing time is reached after 50 job completions for a
fatigue factor of 0.006. So, the decrease in the service rate
is delayed by approximately 16 time units resulting in a
percentage tardy that is approximately 50% lower.While a
proportion of this lower percentage tardy is explained by
the higher initial adjustment, the majority is explained by
the delay to the decrease in the service rate. This

emphasizes the importance of avoiding (or postponing)
fatigue given that the performance impact is stronger than
the gain received from the initial speeding up behavior.

4.4 Discussion of results

Visibility in make-to-order shops with multiple stations, and
potentially highly variable routings, is a different matter to the
more simplistic problem of visibility when there is only one
station (as in Shunko et al. (2018)). In the former case, an
indirect load inevitably exists. The further downstream a sta-
tion is typically positioned in the routing of jobs, the higher
this indirect load. Therefore, thresholds need to be adjusted for
downstream stations or the workload contribution adapted.
Adapting the workload contribution leads to equal thresholds
for the direct load and corrected aggregate load (i.e. the aggre-
gate of the direct and indirect load). The simulations have
demonstrated the positive effect of the corrected aggregate

Table 8 Performance results for the general flow shop

Dispatching
rule

Trigger
Parameter

Load
Measure

Adjust.
size

Lead
time

Percentage
tardy

Mean
tardiness

Average
utilization

Number of
Adjust.a

ODD Equal Direct 0 23.73 23.87% 2.40 90.02% 7.8

10% 21.64 17.18% 1.16 89.77% 8.2

20% 21.02 14.80% 0.88 89.67% 8.4

30% 20.73 13.67% 0.76 89.62% 8.5

Corrected 10% 22.44 20.24% 1.59 89.87% 3.3

20% 22.10 19.07% 1.42 89.82% 3.2

30% 21.94 18.49% 1.34 89.79% 3.2

Different Direct 10% 21.45 16.54% 1.08 89.73% 13.7

20% 20.77 13.91% 0.77 89.62% 13.8

30% 20.45 12.60% 0.66 89.56% 13.7

Corrected 10% 22.12 19.99% 1.27 89.85% 3.7

20% 21.66 18.28% 0.99 89.79% 3.5

30% 21.44 17.30% 0.87 89.76% 3.4

MODD Equal Direct 0 21.94 12.04% 0.96 90.02% 8.5

10% 20.67 8.67% 0.48 89.74% 9.2

20% 20.23 7.44% 0.36 89.64% 9.5

30% 20.01 6.84% 0.31 89.59% 9.5

Corrected 10% 21.22 10.36% 0.66 89.86% 3.6

20% 20.98 9.77% 0.58 89.80% 3.6

30% 20.86 9.49% 0.55 89.76% 3.6

Different Direct 10% 20.44 7.97% 0.43 89.68% 17.4

20% 19.92 6.57% 0.30 89.56% 17.7

30% 19.66 5.93% 0.26 89.49% 17.7

Corrected 10% 21.01 9.67% 0.51 89.82% 4.8

20% 20.67 8.62% 0.38 89.74% 4.5

30% 20.49 7.97% 0.32 89.70% 4.5

a Number of Adjustments per 1000 time units
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load – i.e. increased visibility compared to only using the
direct load – if different parameters are applied, and this
extends the findings in Land et al. (2015) to shops with direct-
ed routings. Further, it extends prior research on state-
dependent service rates in shops with several stations that only
considered the load queuing at a station. The corrected aggre-
gate load is also less granular, which leads to lower system
nervousness and thus fewer adjustments.While making work-
load visible is a major challenge in high-variety shops with
complex routings, new technology can be used to provide this
information (e.g. Kim 2017).

Meanwhile, this study has highlighted the need for dif-
ferent load thresholds that trigger behavioral change in
shops with several stations, specifically if typical upstream
and downstream stations exists since the distribution of
workload queuing at a station differs across stations. If an
equal parameter is applied, capacity adjustments are fo-
cused on upstream stations; and this is further illustrated
by Table 11, which gives the realized utilization levels in a
pure flow shop with ODD dispatching across stations. In

fact, while the granularity of the direct load still leads to
some adjustments at Station 6 (the most downstream sta-
tion), no adjustments take place for the corrected load. This
may explain why the direct load outperforms the corrected
load in this study if an equal parameter is applied. This
finding extends previous literature on state-dependent ser-
vice rates that have focused on serial production lines (e.g.
Powell and Schultz 2004; Öner-Közen et al. 2017). To the
best of our knowledge, it has been assumed in this existing
work that triggering thresholds are equal for all stations,
which may have led to an imbalance in the realized service
rate – with higher service rates being realized at upstream
stations than at downstream stations. This imbalance im-
pacts performance (Hudson et al. 2015) and should be tak-
en into account when determining threshold values.
Creating appropriate thresholds speaks to the literature on
goal management systems that captures the way an orga-
nization shapes employees’ decisions and actions through
incentives and rewards (Galeazzo et al. 2017). This also
extends Land et al. (2015) and Thürer et al. (2016), since

Table 9 Performance results for the pure flow shop

Dispatching
Rule

Trigger Parameter Load Measure Adjust. Size Lead
Time

Percentage Tardy Mean Tardiness Average Utilization Number of Adjust.a

ODD Equal Direct 0 36.73 22.90% 3.06 90.00% 7.3

10% 33.49 15.76% 1.43 89.76% 7.9

20% 32.62 13.58% 1.09 89.66% 8.3

30% 32.24 12.60% 0.96 89.62% 8.4

Corrected 10% 35.24 19.89% 2.24 89.88% 2.7

20% 34.98 19.31% 2.14 89.84% 2.7

30% 34.86 19.09% 2.09 89.81% 2.7

Different Direct 10% 32.84 14.35% 1.25 89.70% 17.4

20% 31.83 11.95% 0.91 89.59% 17.6

30% 31.39 10.94% 0.78 89.53% 17.5

Corrected 10% 34.47 19.06% 1.50 89.87% 2.0

20% 34.08 18.07% 1.27 89.85% 1.9

30% 33.91 17.58% 1.18 89.82% 1.9

MODD Equal Direct 0 34.15 11.26% 1.07 90.01% 8.0

10% 32.03 7.65% 0.51 89.74% 8.4

20% 31.32 6.41% 0.37 89.60% 9.5

30% 31.00 5.84% 0.32 89.54% 9.7

Corrected 10% 33.27 9.90% 0.79 89.85% 3.1

20% 33.06 9.61% 0.75 89.80% 3.2

30% 32.98 9.48% 0.73 89.78% 3.1

Different Direct 10% 30.77 5.84% 0.36 89.52% 36.7

20% 29.69 4.38% 0.23 89.34% 37.3

30% 29.18 3.70% 0.18 89.25% 36.9

Corrected 10% 31.73 4.17% 0.16 89.58% 7.6

20% 31.03 2.02% 0.05 89.43% 7.5

30% 30.72 1.44% 0.03 89.32% 7.6

a Number of Adjustments per 1000 time units
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findings from these studies are not directly transferable to
shops with directed routings.

Finally, results have demonstrated the important impact of
worker fatigue. While capacity adjustments in high load

periods lead to significant performance improvements, as
demonstrated in Land et al. (2015), this is more than off-set
if worker fatigue increases. Öner-Közen et al. (2017) have
previously demonstrated that the positive impact of
speeding-up behavior has been overestimated in previous
studies because of simplifying assumptions, such as a disre-
gard for worker fatigue. However. Öner-Közen et al. (2017)
modelled worker fatigue as the diminishing ability of the
worker to increase the service rate. In other words, the service
rate would never decrease, but rather the increase in the ser-
vice rate would be reduced. This study extends this finding by
showing that, if worker fatigue leads to a decrease in the ser-
vice rate in response to the initial increase (as in Jaber and
Neumann (2010) or Delasay et al. (2016)) then performance
may in fact deteriorate.

5 Conclusions

Humans are different from machines. While service rates at
machines are typically state-independent, the service rates of
humans often depend on the system state, e.g. the workload
queuing at a station. This important behavioral phenomenon
has received significant research attention, but the literature
has typically focused on single/parallel servers or on produc-
tion lines, and it has assessed the impact on efficiencies. In
contrast, the literature has neglected make-to-order shops, of-
ten characterized by high routing complexity, where due dates
exist and consequently tardiness is arguably the most impor-
tant performance criterion. Only recently has literature begun
to emerge that provides some insight into the impact of state-
dependent service rates in make-to-order contexts. Yet this
literature has neglected any understanding that can be taken
from the literature on state-dependent service rates. It has in-
stead used a different workloadmeasure to trigger adjustments
to the service rate: the corrected aggregate load, which pro-
vides global information on the load directly queuing at a
station and the load still upstream, i.e. the indirect load.
Moreover, this emerging research stream has neglected the
impact of worker fatigue.

In response to the above, the first research question asked:
Should the service rate be dependent on global information on

Fig. 2 Impact of the fatigue factor on performance: general flow shop,
modd dispatching, different parameters and corrected workload measure

Table 10 Impact of the fatigue factor on utilization: general flow shop, modd dispatching, different parameters and the corrected workload measure

Adjustment size Beta (Fatigue Factor)

0 0.00012 0.00024 0.00049 0.00098 0.00195 0.00391 0.00781

alpha = 0 90.02% 90.14% 90.67% 91.70% 92.31% 92.82% 91.78% 92.39%

alpha = 10% 89.82% 89.83% 89.83% 89.86% 90.19% 90.73% 89.94% 90.27%

alpha = 20% 89.74% 89.74% 89.74% 89.75% 89.75% 89.82% 89.83% 89.83%

alpha = 30% 89.70% 89.70% 89.70% 89.70% 89.70% 89.71% 89.78% 89.78%
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the corrected aggregate load or only based on local informa-
tion on the direct load queueing at a station? Using simulation,
this study demonstrated the superior performance of the
corrected aggregate load approach. However, the parameter
that triggers a service rate adjustment should be different
across stations for shops with more directed routings. In re-
sponse to the second research question – how does routing
direction influence performance in shops with state-dependent
service rates? – this study found that although performance
improvements are robust to changes in the routing direction,
an imbalance is created if the same threshold is applied.
Upstream stations experience stronger adjustments than
downstream stations since the distribution of the load queuing
at a station is dependent on the position of the station in the
routings of jobs. Finally, and in response to the third research
question – what is the performance impact of worker fatigue
that results from a prolonged increase of the service rate? –
this study found that worker fatigue can offset all initial per-
formance gains if they lead to a decrease of the service rate
during high load periods. This has important implications both
for practice and research, as will be discussed next.

5.1 Managerial implications

The major message for practice from this study is that humans
appear to be able to improve performance beyond that expect-
ed from theory. In fact, they may provide an essential buffer
for bad planning by increasing the service rate if this is re-
quired. However, the contrary is also true, and workers may
decrease the service rate even when their superior perfor-
mance is needed the most. This study has shown that this
negative effect, caused by for example worker fatigue, is like-
ly to outweigh the initial performance gains. So, a major

concern for practice is how to motivate workers so they ex-
hibit the desired behavior (an issue that was also highlighted in
Shunko et al. (2018)), and how to avoid fatigue. In other
words, workers should react to surges in workload in a timely
manner whilst not being over-motivated or creating overpro-
duction waste. To reap the most benefits out of state-
dependent behavior, a balance has to be found that ensures
there is a reaction in time, without resulting in an overreaction.
To ensure a reaction that is just-in-time, managers should
transform state-dependent service rates from an implicit be-
havior into an explicit behavior. In other words, they should
first determine thresholds that require service rate adjustments
and then both incentivize and educate their workers on how to
react when a threshold is triggered. This study has provided a
first indication on how these thresholds should be set in the
context of different degrees of routing directedness. However,
there is no recommendation for a specific value since this is
dependent on idiosyncratic firm characteristics, including the
fatigue factor, which is also likely to vary across individual
workers.

5.2 Limitations and future research

A first limitation of this study is the relatively narrow environ-
mental setting. This study did not consider factors such as
processing time variability or due date tightness in order to
keep this study focused. Future research could however ex-
plore how these factors affect performance in state-dependent
make-to-order shops. This includes research on shops where
the service rate is dependent on the urgency of orders. A
second limitation of this study is that it assumed state-
dependency to be a discrete phenomenon. In other words,
service rate adjustments of a certain size are triggered as soon

Table 11 Utilization across stations for the pure flow shop with ODD dispatching

Trigger Parameter Load Measure Adjust. Size Average Utilization Utilization at

Station 1 Station 2 Station 3 Station 4 Station 5 Station 6

Equal Direct 0 90.00% 90.00% 90.03% 90.00% 90.02% 90.96% 90.02%

10% 89.76% 89.56% 89.76% 89.77% 89.82% 89.89% 89.85%

20% 89.66% 89.39% 89.66% 89.68% 89.76% 89.82% 89.79%

30% 89.62% 89.30% 89.60% 89.63% 89.72% 89.78% 89.76%

Corrected 10% 89.88% 89.47% 89.89% 89.96% 89.99% 89.95% 90.02%

20% 89.84% 89.26% 89.85% 89.95% 89.99% 89.95% 90.02%

30% 89.81% 89.15% 89.84% 89.94% 89.99% 89.95% 90.02%

Different Direct 10% 89.70% 89.90% 89.83% 89.71% 89.66% 89.55% 89.54%

20% 89.59% 89.87% 89.76% 89.60% 89.54% 89.40% 89.37%

30% 89.53% 89.86% 89.72% 89.55% 89.47% 89.32% 89.28%

Corrected 10% 89.87% 89.89% 89.89% 89.87% 89.88% 89.83% 89.89%

20% 89.85% 89.85% 89.86% 89.84% 89.86% 89.81% 89.87%

30% 89.82% 89.83% 89.84% 89.82% 89.84% 89.78% 89.84%
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as a predetermined threshold is violated. In practice, there may
be more than one threshold. In general, while there has been
extensive empirical research and experiments that have
assessed the impact of state-dependent service rates, research
that explores the nature of the actual threshold level is scarce.
This situation becomes even more challenging if human op-
erators are reallocated across stations. Finally, given the pos-
itive impact of state-dependent service rates, future research
could explore how state-dependency can be integrated into
machines. This is specifically relevant in the context of auton-
omous machines and cyber physical systems.
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