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Abstract
Safety stocks are necessary to accommodate supply or demand uncertainties. Typically, safety stocks are held constant through-
out the management horizon. In this paper, we study the determination of dynamic safety stock levels under cyclic production
schedules. Currently, companies often operate according to contract orders with fixed and cyclic delivery dates and varying
quantities. In this context, companies have attempted to implement cyclic production modes for their cyclic delivery require-
ments. Indeed, cyclic production scheduling has many benefits, such as respecting just-in-time principles by synchronising
production with demand and improving shop floor control. The objectives of this paper are twofold: (1) to propose a new
dynamic approach for determining safety stock levels that is adapted to cyclic production and (2) to demonstrate the limitations
of traditional approaches under nonstationary demands. Our dynamic approach is based on modelling a repetitive production
sequence comprising many manufacturing orders. Our model estimates the dynamic safety stock levels necessary to accommo-
date cyclic manufacturing orders with uncertain quantities and start dates using a Monte Carlo simulation approach. For the case
in which all demands follow normal probability distributions, we validated the results of our simulation model by comparing
them to numerically approximated theoretical results. We then compared the proposed dynamic simulation approach with the
traditional approach. The results demonstrate that the dynamic approach is more efficient in terms of simultaneously minimizing
the required safety stocks and improving the service level by decreasing the probability of stock outs. Finally, we applied our
simulation approach to a case in which all demands follow uniform probability distributions.
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1 Introduction

In the evolution of the relationship between customers and
suppliers, there has been a progressive establishment of a
new form of partnership based on contracts or global orders
spread over relatively long periods (Defever et al. 2016;
Brandes et al. 2013). Companies have slowly shifted from
the traditional order between the customer and supplier based
on a specified quantity and lead time to the notion of a contract

order, in which the supplier is linked to the customer through a
cyclic delivery schedule with a forecasted quantity for each
delivery (Jalilvand-Nejad and Fattahi 2015). In many cases,
the exact quantities to be delivered are known only a few days
before delivery.

For many years, large companies worldwide have arranged
cyclic deliveries with their subcontractors for a small variety
of standard components. In the automotive sector, component
purchase orders are usually cyclically released (Jalilvand-
Nejad and Fattahi 2015). For this type of product, cyclic de-
livery schedules improve the efficiency with which these
products are ordered and received. Cyclic production sched-
uling is a natural approach for addressing this type of demand
(Jalilvand-Nejad and Fattahi 2015). The approach consists in
defining a production cycle in which a set of tasks are repeat-
edly executed to produce a set of products (Herrmann 2003;
Jodlbauer and Reitner 2012).

Cyclic scheduling is not only applied in manufacturing
systems (Bocewicz et al. 2018) but is also considered to be
one of the most effective approaches for managing and

* Zied Bahroun
zbahroun@aus.edu

Nidhal Belgacem
nidhali_belgacem@yahoo.fr

1 Industrial Engineering Department, College of Engineering,
American University of Sharjah, P.O. Box 26666, Sharjah, UAE

2 University of Tunis El Manar, F.S.T., LIP2-LR99ES18,
2092 Tunis, Tunisia

Operations Management Research (2019) 12:62–93
https://doi.org/10.1007/s12063-019-00140-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s12063-019-00140-0&domain=pdf
mailto:zbahroun@aus.edu


planning people transportation, such as urban and intercity
public transport or rail and air transport (Cacchiani and Toth
2012), and has many other applications in communications
(Nunes et al. 2018), staff scheduling (Bhattacharya et al.
2014), robotics (Elmi and Topaloglu 2017), etc.

Cyclic production in manufacturing is based on a repetitive
production schedule, which can provide many benefits.
Indeed, synchronization between production and deliveries
is in accordance with the Bjust-in-time^ principle (Hall 1988;
Bahroun et al. 2007). Cyclic production can reduce losses,
improve quality, and decrease lead times and costs (Hall
1988). Ashayeri et al. (2006) presented a case study in which
costs decreased by 30% through the use of cyclic schedules.
Moreover, cyclic and repetitive production favours a learning
curve effect, thereby increasing employee skills (Hall 1988)
and leading to more efficient material handling, increased sta-
tion utilization (Öztürk et al. 2015), and better shop floor
control (McCormick and Rao 1994).

The production cycle is usually defined by a fixed and
repetitive sequence of manufacturing orders. The manufactur-
ing order quantities are based on average delivery values, and
the definitive delivery quantities are specified in the short term
based on the actual demand. The production capacities are
fixed and adjusted to meet the demand. In Fig. 1, a production
cycle of 1 week (7 days) is represented for a set of three
products: A, B and C. The repetitive production schedule is
repeated over time according to the same production sequence
ACBAB. The production cycle includes 5 manufacturing or-
ders: 2 for products A and B and one for product C. The
delivery cycle for all products is a week. In each week, prod-
uct A, for example, must be delivered three times, on days 1
with an average quantity of 7500 units, 3 with an average
quantity of 10,000 units and 5 with an average quantity of
7500 units. Products B and C are also delivered three times
a week: on days 2, 5 and 7 for product B and on days 1, 2 and
7 for product C. The manufacturing order quantities are based
on the average delivered quantities. In such a production cycle
with cyclic deliveries, the demand is uncertain and nonstation-
ary as it varies, sometimes in important ways, from day to day.
Traditional safety stocks usually cover the uncertainty of sta-
tionary demand with small variations from day to day and

maintain constant safety stocks throughout the horizon.
Constant safety stocks are not well adapted for nonstationary
demand, as they might overestimate the safety stocks needed
on some days and underestimate the safety stocks needed on
other days. Thus, dynamic safety stocks are needed for this
type of demand.

Three periods can be established for the control and super-
vision of cyclic production systems (Bahroun et al. 2007;
Bahroun and Campagne 2010):

& A long-term period for negotiating contracts.
& A medium-term period for defining and adapting the pro-

duction cycle to the delivery cycle of the different prod-
ucts. Indeed, we need to determine the optimal production
cycle duration in terms of logistic costs (ordering and in-
ventory holding costs). We should determine for each
product, the number of manufacturing orders during the
production cycle, the quantity and the start time of each
manufacturing order. We assume in this work that the
production cycle and production schedule is known and
has been determined.

& A short- to medium-term period for adjusting production
quantities and capacities. At the short-term level, the ac-
tual production quantities must be permanently set, and
the production capacity required to produce the quantities
to be delivered must be determined. The dynamic man-
agement of safety stocks must also be established to ac-
commodate uncertainty in the actual quantities to be
delivered.

This paper focuses on the short-term management of cyclic
production schedules and, specifically, on safety stock (SS)
determination. Safety stocks are indeed a key issue and im-
portant for overcoming uncertainties in demand and lead time.
Most existing research, as highlighted in the next section, has
considered static SSs and stochastic stationary demand, but in
this study, we use dynamic SSs to efficiently manage the un-
certainty in our repetitive but nonstationary demand.

The paper is structured as follows. Section 2 reviews the
relevant literature on SSs. Section 3 describes the proposed
approach. Section 4 applies the proposed simulation-based
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approach to two case studies. Section 5 presents the results of
a sensitivity analysis. Finally, section 6 concludes the paper
and provides some suggestions for further research.

2 Literature review of safety stock research

All manufacturing systems require stocks. The stocks can be
raw materials, semi-finished products or finished products.
Generally, stocks are subject to different uncertainties, the
most important of which is uncertainty in demand and uncer-
tainty in the replenishment lead time. Companies use SS to
address these uncertainties and maintain the desired service
level. SS is an additional stock maintained at the minimum
level possible given a non-deterministic demand and finite
capacity constraints. The amount of SS needed for a product
is traditionally calculated by estimating the demand probabil-
ity distribution during the replenishment lead time and fixing
the service objectives according to an acceptable probability
of being out of stock. SS is composed of two parts: the first
part covers the uncertainty related to the demand, and the
second part covers the uncertainty related to the replenishment
lead time.

Many authors have shown that SSs should be based on the
average demand and variability of supply and demand relative
to a fixed service level (Stevenson 2009; Ruiz-Torrez and
Mahmoodi 2010). In the traditional (r, Q) inventory system,
the SS is a function of the average and standard deviation of
the demand (D, σD), the average and standard deviation of the
lead time (LT, σLT), and a z-value related to the desired service
level (Stevenson 2009).

SS ¼ z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LTσD

2 þ D2σLT
2

� �q
ð1Þ

In this traditional approach, the demand and the lead time
are typically assumed to follow a normal probability distribu-
tion and to be stationary throughout the entire horizon.

In management systems based on manufacturing resource
planning (MRP) principles, there are two types of SSs for
mitigating the uncertainty in demand (Campbell 1995):

& variable SS associated with each manufacturing order and
& constant SS throughout the management horizon.

For the first type, a constant service level is generally fixed
for the entire management horizon. The variance is then calcu-
lated for each manufacturing order with regard to the demand
covered by the order. The safety stock is then calculated using
these two parameters: the service level and the variance (see
Bookbinder and Tan 1988). For the second type, a constant SS
is calculated to maintain a minimum service level for the entire
management horizon (see Yano and Carlson 1987; Debodt and
Hanssenhove 1983; Wemmerlov and Whybark 1984).

Many researchers have investigated methods of determin-
ing SS levels for different situations for the case of stationary
demand. For example, Persona et al. (2007) suggested differ-
ent approaches for determining the safety stock levels of sub-
assemblies and manufacturing components. They stated that
managing SSs for modular subassemblies minimizes the ef-
fect of forecasted errors and reduces the need for SSs. The
same authors classified the determination of SSs according
to three approaches. The first approach is based on demand
uncertainty (Charnes et al. 1995, for example), the second
approach is based on variation in forecasting errors (Eppen
and Martin 1988, for example), and the third approach is
based on the product structure (Hiller 2002, for example).
Schmidt et al. (2012) compared different knownmathematical
methods for determining SSs through simulations. They con-
cluded that each approach has its own strengths under partic-
ular conditions, and they recommended developing a dynamic
approach for calculating SSs. Additionally, under stationary
demand, Horng (2013) developed a simulation model to opti-
mize safety stock levels for a hybrid manufacturing system by
adopting both make-to-order and make-to-stock strategies.
The main finding of their work was that strong links exist
between the review and release rules of orders, the perfor-
mance of the system and the needed SSs. In the same context
and for assemble-to-order systems, Albrecht (2017) devel-
oped simple heuristic methods to determine near-optimal
SSs with an order service level constraint. The authors tried
to minimize the investments needed to keep SSs achieving a
prefixed service level. The heuristic methods consider item-
based approximations for backorders and are jointly used with
inventory rationing policies. For stationary demand, Van
Donselaar and Broekmeulen (2013) determined the SS for
an inventory system with lost sales and no backorders, in
contrast to most similar studies, which generally assumed that
the backordered demand and lost sales model were similar to
the backordered model for high service levels. The authors
showed that the backorder model can overestimate the re-
quired SSs, especially when the demand uncertainty is low
and the number of outstanding orders is large. However, their
results are only applicable to companies for which the (R, s,
nQ) inventory policy is close to optimal. In contrast to previ-
ous papers, Braglia et al. (2014) focused on managing SSs
through a new analytical approach that considered the vendor
managed inventory (VMI) and consignment stock policies
implemented between a single vendor and buyer. However,
this work was limited to the case of a single vendor, and the
authors suggested extending their framework to the
multivendor case. In addition to the uncertainty in demand,
Korponai et al. (2017) considered lead time uncertainty. They
studied the impact of an SS on the probability of items being
out of stock. More specifically, they studied the relationship
between the two most important factors that affect safety stock
volumes, namely, lead time fluctuations and demand changes,
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especially when they occur simultaneously and are co-depen-
dent. However, other factors, such as the planned availability
period and the impact on the total logistical cost, must be
considered. Finally, Hernández et al. (2015) focused on deter-
mining and reducing the SS level when using modular product
systems. They introduced a substitutability factor derived
from group technology theory to reduce the necessary SSs,
but the impact of this safety reduction on sales must be
validated.

Recently, given the strong interest in supply chain manage-
ment, many researchers have focused on establishing safety
stocks in a supply chain network with multiple nodes. In this
context, Hua andWillems (2016) optimized safety stocks for a
two serial line supply chain and showed that the safety stock
levels depend on the supply chain cost and lead time param-
eters. In contrast to the previous authors’ work concerning a
serial line supply chain, Desmet et al. (2010) proposed a set of
normal approximation models to optimize SSs in distribution
systems, assembly systems and, more generally, networked
manufacturing systems based on normal approximation
models for the critical safety stock parameters. They
benchmarked their approaches with discrete event simulation
and validated them. They also suggested extending the
applicability of their approach to more generic systems other
than assembly and spanning tree systems. In the same context,
Li and Jiang (2012) modelled safety stock placement in an
acyclic supply chain network as a scheduling problem and
obtained near-optimal solutions with competitive computa-
tional times by combining constraint programming and genet-
ic algorithms. Other scheduling approaches, or metaheuristic
methods, should be applied to improve the obtained results.
Moncayo-Martínez and Zhang (2013) solved the same prob-
lem for an assembly supply chain using a bi-objective MAX-
MIN ant system to minimize the supply chain cost and the
lead time of products with a low computational time. For
multisource stock points, Osman and Demirli (2012) deter-
mined, in a first decentralized step, the SS for each stock point
and then consolidated the final levels to be kept in each stage
using Benders decomposition techniques in a second step. The
consolidation model reduced the safety stock quantities by
45–62%, corresponding to a cost savings of between 22 and
44%. These authors suggested extending their work to proba-
bility distributions other than the normal distribution based on
the demand and lead time variability and relaxing the time
constraint of the cycle for different stock points. In the same
context of a supply chain network, Grahl et al. (2016) devel-
oped metaheuristic algorithms for placing SS in a multi-
echelon supply chain with the first time-differentiated service
time. They considered general acyclic supply networks and
tested different metaheuristic methods, with the best results
obtained using the simulated annealing approach. The main
limitation of their work was the extensive computational times
required for large instances. For SS placement in supply

chains, Boulaksil (2016) considered demand forecasting
updates and used a martingale model of forecast evolution
instead of considering independent and identically
distributed demands. Boulaksil concluded that most SSs
should be located downstream in the supply chain to achieve
high service levels, which is not intuitive because it is usually
less expensive to store SSs upstream. Unlike in previous
studies, Kumar and Aouam (2018) integrated safety stock
placement with lot sizing. The results indicated that integra-
tion leads to smaller lot sizes and shorter lead times, with SSs
pooling across the supply chain. The authors considered only
the case of homogeneous items, although the heterogeneous
case is more realistic. In addition, the review period can be
optimized and not assumed as a known parameter. Other au-
thors have integrated the determination of SS levels with ex-
pediting and transport decisions (Tempelmeier and Bantel
2015; Yadollahi et al. 2017; Zahraei and Teo 2017).

Few researchers have studied inventory models consider-
ing nonstationary demand. In a study for the U.S. Air Force,
Hillestad and Carrillo (1980) were among the first to investi-
gate spare part inventory models and techniques with a non-
stationary demand following a time-varying Poisson distribu-
tion. They suggested a set of performance measures for inven-
tory policy considering organizational performance. Graves
(1999) subsequently proposed an adaptive base stock policy
for a single-item inventory when the demand is nonstationary.
They concluded that the necessary inventory and thus SSs are
more important in this case than in the stationary demand case
and that the relationship between SSs and the replenishment
lead time becomes convex. Nevertheless, they considered a
simple model, and further investigations are required to
improve and expand the model, the demand process and the
inventory environment, such as by introducing stochastic lead
times. Considering demand to be nonstationary, Beutel and
Minner (2012) examined two approaches for determining
SSs when the demand depends on factors other than time
and the demand history, such as sales price changes or weather
conditions. They used two different approaches to solve the
problem: the first approach was based on regression models,
and the second was based on linear programming with differ-
ent objectives. They showed the conditions under which the
first or the second approach should be used. To improve their
work, the authors plan to extend their model to non-perishable
products and incorporate dependencies among store demands.
Prak et al. (2017) included the lead time uncertainty in the
non-stationary demand and calculated SSs when the demand
is forecasted based on a corrected lead time and demand var-
iance. They considered both forms of uncertainty for the mean
and variance and found that traditional approaches led to SSs
that were 30% lower than required, with service levels up to
10% below the target. Boute et al. (2014) also considered the
uncertainty in lead times and studied their coordination with
SSs when the demand was auto-correlated in a supply chain.
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They stated that a positive correlation in demand leads to
longer supply lead times and thus necessitates higher SS
volumes. In contrast, a negative correlation leads to shorter
lead times and smaller SSs. They suggested using
manufacturing order smoothing methods other than the
mean squared error forecasting method in the future. In a
different context of supply chain networks, Graves and
Willems (2008) considered the problem of SS placement in
such networks for nonstationary demand under a constant
service time policy. They considered extending their work
by examining the efficiency of the constant service policy
and modelling real demand processes. In the same context,
Neale and Willems (2009) presented a practical model for
inventory management and nonstationary demand. They
discussed how existing algorithms of stationary demand can
be adapted for nonstationary demand to optimize SSs across a
supply chain. Moreover, they noted that the limitations of the
work could potentially be overcome by including production
capacity constraints and nonstationary supplier lead times for
SS placement in supply chains. Similarly to the authors of the
two previous works, Funaki (2012) formulated multi-echelon
stock placement across a supply chain network, in a guaran-
teed service model and for due date-based stationary or non-
stationary demand. In this case, stock placement is integrated
into the network design problem. They validated their results
based on a machinery product supply chain. The main limita-
tion of their work was that it is only applicable for specific
supply chain structures, and the authors suggested extending
the method to other structures and improving the optimization
algorithms for the nonstationary case. Chatuverdi and
Martinez-de-Albéniz (2016) suggested a framework that, also
under nonstationary demand, balances the capacities of SSs
and supply diversification in the context of uncertain demand.
They showed that a modified base stock policy is the optimal
policy and that SSs, excess capacity and supply diversification
can be non-monotonic considering demand and supply
uncertainty. The main limitation of this work was that all
manufacturing plants are supposed to have identical
production costs. Mattson (2010) and Vargas (2009) consid-
ered inventory control models for stochastic and nonstationary
demands. The first author, Mattson (2010), developed an ex-
tended reorder point model that considers seasonal variation in
demand. Mattson concluded that it is important to account for
even small seasonal variations when calculating the demand
during the lead time. In contrast, considering seasonal varia-
tions in calculations of SSs and order quantities is likely sig-
nificant because SSs are often influenced by a high degree of
seasonality. The second author, Vargas (2009), extended the
Wagner-Whitin dynamic lot size model for the case in which
the demand is nonstationary.

Some authors have investigated the determination of SSs
for imperfect systems. Chakraborty and Giri (2012) integrated
optimal SS determination and production policies for an

unreliable production system with machine breakdowns and
process deterioration. They developed an algorithm to deter-
mine optimal SSs by minimizing the unit time-expected cost
and concluded that maintaining a buffer stock in this context is
cost effective. However, they only considered the simple case
of a single item at a single-unit production facility. In the same
context, Nasr et al. (2012) suggested combining transhipment
and SSs in the case of stochastic supply downtime for a two-
echelon system of a unique source supplying two locations.
They jointly minimized the total cost at both locations by
optimizing the required quantity at each location and the
amount to be transhipped. The limitation encompasses many
simplifying assumptions, such as that the amount of SS at the
source is a parameter and not a decision variable or
considering deterministic consumption rates instead of
stochastic ones. Finally, Kumar and Evers (2015) addressed
the case of data quality issues in addition to correlated demand
and lead time. They suggested that instead of using the ran-
dom sums approach, a multiplication approach should be
used. Nevertheless, their results were not empirically validat-
ed for different types of industries.

We note that most previous studies have addressed static
SS determination approaches; few researchers have addressed
dynamic SSs (Graves andWillems 2008; Sitompul et al. 2008;
Kanet et al. 2010; Helber et al. 2013; Inderfurth and
Vogelgesang 2013; Stößlein et al. 2014; Rafiei et al. 2015).
Kanet et al. (2010) performed an empirical study of U.S. in-
dustries to demonstrate the savings obtained using time-
varying SSs instead of constant SSs when the demand or lead
time is nonstationary. In the same context, Stößlein et al.
(2014) conducted an econometric analysis using
EUROSTAT data from 1985 onward and demonstrated that
inventory savings can be obtained when SSs are time-varying
in accordance with the demand variation. The two latter stud-
ies observed that many ERP (Enterprise Resources Planning)
systems are considering dynamic SSs. SAP ERP software
provides a feature related to the dynamic SS per period in
the SAP Advanced Planning and Optimization (APO) mod-
ule. In other recent work, Helber et al. (2013) developed two
linear models to approximate the solution to the stochastic
version of the single-level multi-product dynamic lot-sizing
problem. Both models were used to determine stable produc-
tion schedules for uncertain and dynamic demands. In this
context, they determined dynamic SSs that varied between
periods and were dependent on the production quantity. The
main limitation of this approach was related to the fact that it
only considers a single-level supply chain, and the work can
be improved if it includes additional randomness, such as for
the production capacity. Additionally, under a dynamic safety
stock context, Inderfurth and Vogelgesang (2013) proposed an
approach for determining dynamic SSs varying between pe-
riods that addressed the uncertainties caused by stochastic
demand and yield randomness. They concluded that the
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dynamic SS approach is more efficient for determining a
stochastically proportional yield than is the static approach
in the case of a binomial yield. Nevertheless, the authors
claimed that they could not compare their approach with the
equivalent optimal solution because there is no optimization
model available under the same conditions. In a real
application, Rafiei et al. (2015) suggested a dynamic SS de-
t e rmina t i on me thod fo r a co -p roduc t ion wood
remanufacturing system. Their approach consisted of using
the idle production capacity to develop SSs for selected im-
portant products. The study confirmed the superiority of the
approach in generating production plans with a smaller
backorder size and inventory level. This work can be
improved by considering the randomness of the raw material
supply and by analysing the effect of the supply quality.
Finally, Lu et al. (2016) determined dynamic SSs for a non-
stationary demand and random supply yield in a construction
supply chain and for construction material. They used the
fixed-point iteration method to set the dynamic SS level under
predefined service level constraints. They stated that the pro-
posed approach, compared to conventional approaches, can
increase the service level by 0–7% and simultaneously de-
crease the SS by 20–46%. The study can be improved if sup-
ply disruption is simultaneously considered with the supply
yield uncertainty.

Some studies have specifically addressed the problem of
managing inventories when a cyclic production schedule is
implemented. Leachman and Gascon (1988) developed an
approach based on a dynamic cycle length. In their approach,
SSs were planned to accommodate three standard deviations
in the forecasting error of demand during changeover periods.
Additionally, under cyclic production, Bourland and Yano
(1994) developed an approach that considered cyclic produc-
tion schedules and was based on two levels: a planning level
and a control level. In the first level, they determined the SS
levels and performed idle time allocation using a non-linear
mathematical model. In the second level, they used overtime
to reach the fixed inventory target levels. They showed that
safety stocks and idle time allocation can decrease marginal
returns for overtime use. However, the complexity of the
approach is high, and the approach requires simplifying
assumptions. In the same context of cyclic production,
Eisenstein (2005) proposed an approach based on a dynamic
produce-up-to policy for recovering a cyclic schedule when a
significant variation in demand is experienced. They showed
that their approach saves on costs and time and leads to better
schedule stability than other recovery procedures. Brander and
Forsberg (2006) considered stochastic demand in addition to
cyclic schedules. They considered continuous and fixed
demand rates per period and estimated the variance during
the lead time between two manufacturing orders for the
same item. In addition, they presented a model for
determining constant SSs for a fixed cyclic production

sequence with or without idle time. Finally, they conducted
a simulation study to validate their model. In the context of a
common cycle approach, Jodlbauer and Reitner (2012) pro-
posed procedures for determining the cycle time and the level
of constant SS to maximize the service level and minimize
holding, setup and backorder costs. They demonstrated the
effects of average values, demand deviations, processing
time and setup time on service levels and holding and setup
costs. As in many other studies, the main limitation of this
work is the consideration of only certain stochastic
parameters as the demand. The work can be substantially
improved if it considers more stochastic variables, such as
the yield loss or machine breakdowns. More recently,
Rappold and Yoho (2014) proposed an approach for setting
the level of SSs for stable rotation cycle schedules. They first
demonstrated the many benefits that could be obtained by
implementing stable production cycles, especially when setup
times are important. They assumed a stable production cycle
with upper and lower length limits and developed an optimi-
zation model to set SS levels, maintain the stability of the
production cycle and cover uncertainty in demand within the
current production cycle and between successive production
cycles. In addition to considering demand uncertainty, the
study could be improved if stochastic setup times and produc-
tion rates are considered.

As previously discussed, many recent studies have ad-
dressed SS determination (Appendix Table 11). However,
most of the existing literature has considered static SSs (33
out of a total of 38 studies) and stochastic stationary demands
(27 papers). Some authors have added lead time uncertainty
(14 papers), and very few have included other uncertainties,
such as machine breakdown or sales price effects (3 papers).
In addition, with major developments in the supply chain
field, many researchers are focusing on SS placement in
multi-echelon supply chains for assembly products (18 pa-
pers). It is worth noting that relatively few studies have actu-
ally performed dynamic SS determination (5 papers).
Although this feature exists in contemporary ERP systems
such as SAP ERP or Oracle ERP, it is rarely used (Snapp
2012). Many companies still use very simple intuitive ap-
proaches (Lu et al. 2016) or use the traditional approach to
determine safety stocks, which lead to overestimation or un-
derestimation of SSs with non-stable service levels.

The main motivation of this work is to increase
awareness among decision makers and to show that in
some cases, especially when demand is not stationary,
static SSs are not well adapted. Such cases require ei-
ther large static SSs to maintain the desired service
levels, with the accompanying high holding costs, or
more adapted dynamic approaches. In this work, we
apply a dynamic SS determination approach to repetitive pro-
duction cycles in which demand is not stationary and can
change from one period to another.
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The work presented in this paper extends the
abovementioned research in several ways. First, we assume
that demand follows a cyclic delivery schedule in which the
delivery quantity is based on a given probability distribution
for each period. Demand is assumed to be nonstationary be-
cause the average scheduled delivery can vary significantly
from one period to another. Moreover, the approach can use
any demand probability distribution (such as a normal, uni-
form, or Poisson distribution). Second, we assume that the
cyclic production schedule can be composed of many
manufacturing orders for the same item. Third, we aim to
develop an approach for setting dynamic SS levels that can
vary for the same item during the delivery cycle. Fourth, the
SSs are linked to the manufacturing orders and not directly to
the items. Finally, our approach can be implemented relatively
easily using spreadsheet software (such as Microsoft Excel)
and risk analysis software (such as Palisade’s @RISK
software).

3 Dynamic safety stock determination

3.1 Approach description and assumptions

We assume that a cyclic production plan has beenmade for the
medium term. In this paper, we do not focus on how to build a
cyclic production schedule because this problem has already
been addressed by many authors (Bahroun et al. 2007;
Bahroun and Campagne 2010, for example). A repetitive pro-
duction schedule is composed of a set of manufacturing orders
for different products. The same product could be scheduled
in more than one manufacturing order during the production
cycle. This production schedule covers a set of contractual
cyclic customer orders.We assume that for each item, we have
a delivery cycle (generally one week) composed of multiple
deliveries (for example, a delivery on each Monday, Tuesday
and Friday). Additionally, we assume that the demand for each
item is nonstationary and that the average quantity for each
delivery can vary significantly from day to day (for
example, 1000 units on Monday, 2000 units on
Tuesday and 5000 units on Friday). Moreover, we as-
sume that we know only the average quantity for each
delivery and that the exact quantity is known only a
few days before the delivery. Thus, we assume that
the quantity of each delivery follows a certain probabil-
ity distribution (a normal distribution, for example, hav-
ing an average of 1000 units with a standard deviation
of 50 units on Monday, an average of 2000 units with a
standard deviation of 100 units on Tuesday and an av-
erage of 5000 units with a standard deviation of 300 units
on Friday).

The manufacturing order for a product scheduled in a cy-
clic production schedule faces two main uncertainties:

& Uncertainty in the manufacturing order start date because
the actual quantities produced for the previous
manufacturing orders on the schedule could be different
from the planned quantities and

& Uncertainty in the delivery quantities covered by the
manufacturing order. This uncertainty leads to uncertainty
in the manufacturing order quantity and in the necessary
processing time. The latest start date of the manufacturing
order can be moved to an earlier date if the produced
quantity is greater than the average.

We define the gap of a manufacturing order as the produc-
tion rate multiplied by the difference in the actual start date
and the actual latest start date based on the delivery dates and
actual quantities covered by this manufacturing order. A neg-
ative gap means that the actual starting date of the manufactur-
ing order is earlier than the latest starting date, which is equiv-
alent to an earliness in the production schedule relative to the
deliveries; thus, SSs are not needed. In contrast, a positive gap
is equivalent to a tardiness in the production schedule, and an
SS is needed to cover this tardiness. Thus, an SS is needed if
there is a risk of a tardiness in the production schedule and if
the actual start date will be later than the actual latest start date.
In this study, we attempt to evaluate the risk of a tardiness in
the production schedule by estimating the probability distri-
bution of this gap and to determine the needed SSs in that
case.

In the proposed approach, the SSs for the same product are
dynamic and inconstant throughout the horizon.
Consequently, they are associated with each manufacturing
order of the specified product and will vary from one
manufacturing order to another. The SSs associated with
manufacturing order i will be produced according to the pre-
vious manufacturing order for the same product. Thus, each
manufacturing order will specify the production of an SS to
cover the uncertainty in the next manufacturing order for the
same product and will consume the SS created by the previous
manufacturing order. Therefore, this dynamic SS will be con-
tinually produced and consumed.

We assume that during the delivery cycle (generally one
week), there can be many deliveries for each cycle. We as-
sume that the production cycle contains multiple delivery cy-
cles, that the cycle has been determined and that the cycle is
composed of a sequence of manufacturing orders (MOs)
(Bahroun et al. 2007; Bahroun and Campagne 2010 for
example). We assume that the production cycle begins
at time 0.

We define MOi as the manufacturing order that is sched-
uled in the ith position of the cyclic production sequence.

The latest start date for MOi can be calculated as follows:

LSDi ¼ Min
u¼1::Ui

λui− ∑
u

v¼1

yvi
PRi

� �
ð2Þ
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where.

Ui Number of deliveries covered by MOi,
{1..Ui} Set of deliveries covered by MOi,
λui Delivery date of delivery number u in the

set of deliveries covered by MOi,
yvi Delivery quantity of delivery number v in

the set of deliveries covered by MOi, and
PRi Production rate for MOi.

Eachmanufacturing orderMOi is supposed to cover a set of
Ui deliveries. For each delivery u covered by MOi, we calcu-
late the latest start date that can cover the delivery and all
previous deliveries covered by the same manufacturing order.
This date is calculated by subtracting the total production du-
ration required for all delivery quantities from 1 to u of the
same manufacturing order MOi from the delivery date λui of
delivery u. Then, we calculate the minimum of all these start
dates to determine the latest start date LSDi of MOi.

The actual start date ti (Eq. 3) of manufacturing order MOi

is calculated by summing all the durations of processing times
for all manufacturing orders (MO1 toMOi-1) produced before
MOi in a repetitive sequence. The processing of each
manufacturing order is calculated by summing all the dura-
tions required to produce each delivery covered by theseMOs.

ti ¼ ∑i−1
w¼1pw ¼ ∑i−1

w¼1∑
Uw
v¼1

yvw
PRw

ð3Þ

where.

pw Processing time for MOw,
Uw Number of deliveries covered by MOw,
yvi Quantity of delivery number v in the set of deliveries

covered by MOw, and
PRw Production rate for MOw.

Equation 3 shows how to calculate the actual start date
oncewe know the actual delivery quantities. The equation will
be used in the simulation model, where for each scenario, we
will generate random values of the delivery quantities based
on their probability distribution, and we will use Eq. 3 to
determine the corresponding start date. SSs are needed if the
actual start date ti (Eq. 3) of an MO is later than the actual
latest start date (Eq. 2), which can occur if the previous MOs
on the schedule are late or if the actual delivery quantities
covered by MOi are greater than the average quantities. The
SS for MOi should cover these two types of uncertainties.

Gi (Eq. 4) is defined as the gap between the actual start date
ti and the latest start date LSDi for MOi, multiplied by the
production rate PRi. This value represents the SS that
should be available if the actual start date is later than
the latest start date.

Gi ¼ PRi* ti−LSDið Þ ð4Þ

The SS for MOi for a desired service level k is equal to the
maximum of 0 and Gik (Eq. 5), where Gik represents the gap
for MOi associated with service level k (i.e., the gap is lower
than Gik with a probability equal to k).

SSik ¼ Max Gik; 0ð Þ ð5Þ

The probability distribution of each Gi must be calculated
to determine the gaps associated with different service levels.
It is very difficult to theoretically determine these probability
distributions in the general case due to the non-linearity of the
latest start date equations of the MOs and the variety of prob-
ability distributions for the input variables. In the next section,
we try to theoretically determine the cumulative distribution
function (CDF) of those gaps for the case in which all demand
follows a normal probability distribution. We then suggest a
numerical approach for approximating the probability that the
gap is less than a certain value a.

3.2 Case of a normal distribution

In this subsection, we determine the theoretical probability
distribution of the gap Gi. The gap represents the difference
between the actual start date of the manufacturing order
MOiand the latest start date needed to cover all its de-
liveries on time multiplied by the production rate. An
SS is needed only if there is a risk that this gap is
positive, meaning that the firm will start production
too late and will not be able to produce all the deliver-
ies that need to be covered by this order. Indeed, for
some MOs, the distance between the expected start date
and the latest start date is so large that we most likely
do not need SSs. In contrast, for some other orders, the start
date and the latest start date are very close; therefore, the risk is
very important, and we need SSs.

Thus, we must be able to calculate the probability distribu-
tion of this gap to evaluate the risk that this gap is positive and
determine the required SSs.

Let us start with the start date ti of each MOi:
According to Eq. 3, ti is the sum of deliveries covered by

the previous MOs in the production cycle and divided by the
production rates. Each delivery v covered by manufacturing
order w is assumed to follow a normal distribution with an
average equal to μvw and a standard deviation equal to σvw.
The start date ti also follows a normal distribution with an
average and standard deviation as reported in Eqs. 6 and 7,
respectively.

μti ¼ ∑i−1
w¼1∑

Uw
v¼1

μvw

PRw
ð6Þ

σti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i−1

w¼1

1

PRw
2 ∑

Uw
v¼1σ

2
vw

� �s
ð7Þ
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Uw Number of deliveries covered by MOw, and
PRw Production rate of MOw.

Let us define Xui as the last start date that covers deliveries
number 1 to u covered by MOi.

X ui ¼ λui−∑u
v¼1

yvi
PRi

ð8Þ

λui Delivery date of delivery number u in the set of
deliveries covered by MOi,

yvi Quantity of delivery number v in the set of deliveries
covered by MOi, and

PRi Production rate of MOi.

Xui is the sum of a set of normal probability distributions.
Therefore, Xui follows a normal distribution with an average
and a standard deviation as reported in Eqs. 9 and 10, respec-
tively.

μXui ¼ λui−∑u
v¼1

μvi

PRi
ð9Þ

σXui ¼ 1

PRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑u

v¼1σ
2
vi

q
ð10Þ

μvi Average quantity of delivery number v in the set of
deliveries covered by MOi, and

σvi Standard deviation of the quantity of delivery number v
in the set of deliveries covered by MOi.

If we approximate the fact that all Xui are independent, the
CDF of gap Gi can be determined as follows (see proof in the
Appendix).

Pr Gi≤að Þ ¼ ∫∞−∞Pr ti ¼ sð ÞPr X 1i > s−
a
Pri

� �
Pr X 2i > s−

a
Pri

� �
…Pr

�
XUii > s−

a
Pri

�
ds

ð11Þ

⇒Pr Gi≤að Þ ¼ ∫∞−∞
1

σti
ffiffiffiffiffiffi
2π

p e
−1
2

s−μti
σti

� �2

∏Ui
u¼1

1

σXui
ffiffiffiffiffiffi
2π

p ∫∞s− a
Pri
e
−1
2

x−μXui
σXui

� �2

dx

0
@

1
Ads

ð12Þ

The calculation of probability results for the gap Gi using
Eq. 12 is very complex. In section 4 and for the two case
studies, we will numerically approximate the multiple integra-
tions by a discrete summation of the functions under the inte-
gral of Eq. 11 to determine numerical probability results for
the gap Gi and compare them with the simulation results.

3.3 The general case

To calculate the probability distribution of the gap Gi in the
general case, we suggest using a simulation approach. We
modelled our production and delivery schedule in an Excel
spreadsheet, and we used@RISK software (from the Palisade
decision tools suite), which performs risk analysis using
Monte Carlo simulation. The output variables were the gaps
Gi for each MO and were linked to the input variables or
parameters that included the delivery dates, production rates
and the different delivery quantities. The gaps are calculated
using Eqs. 2 to 4. Then, the safety stocks are finally deter-
mined using Eq. 5. We call this first approach the dynamic
approach.

We also used this model to estimate the probability distri-
bution of the lateness of the entire production cycle. Lateness
is defined as the difference between the ending date of the last
manufacturing order and the planned duration of the produc-
tion cycle. A negative value indicates earliness, whereas a
positive value indicates tardiness.

As a second approach, we added uncertainty to the
start date of the production cycle. The lateness variable
(average and standard deviation) obtained in the previ-
ous simulation model is incorporated into this approach
as the start date of the first manufacturing order of the
production cycle. We then run the simulation model in
the same way as the first approach. We call this ap-
proach the dynamic approach with lateness.

In the simulation of our two dynamic approaches, we as-
sumed that all delivery quantities followed a normal distribu-
tion. However, the demand is nonstationary because there can
be many deliveries per week for each item, and the average
quantity of each delivery can vary significantly from one day
to another (for example, an average of 1000 units with a stan-
dard deviation of 50 on Monday, an average of 2000 units
with a standard deviation of 100 units on Tuesday, and an
average of 5000 units with a standard deviation of 300 units
on Thursday).

We used a normal distribution to compare our results with
those obtained by numerical calculations (section 3.2) and to
those of the traditional approach, in which it is assumed that
demand follows a normal distribution. However, we can use
any distribution in our simulation model, including a uniform
distribution, if the customer-supplier contract allows for any
possible delivery value over a range between a maximum and
minimum.We can also introduce machine failure, or any other
event that could disturb the production schedule, into the mod-
el using different probability distributions, such as a Poisson
probability distribution.

We estimated the standard deviation of each delivery quan-
tity v covered byMOi. We assumed that the average quantity ±
the percentage of variation constituted the interval of possible
delivery values. Given that the average ± 3σvirepresents
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99.7% of values in a normal distribution, we estimated σvi as
follows.

σvi ¼ μvi*
PV
3

ð13Þ

μvi Average quantity of delivery number v in the delivery
cycle covered by MOi, and

PV Percentage of variation in the delivered quantities.

The proposed approach can be implemented relatively eas-
ily (using spreadsheet software and risk analysis software) and
can be summarized in nine main steps.

– Record the following input data (which are assumed to be
known) for the problem in an Excel spreadsheet:

The production rates of the different items
The delivery date and average quantity of each delivery
and each item

– Link each manufacturing order to the deliveries it is as-
sumed to cover, and compute the production quantities
for each MO.

– Compute the latest start date for each MO based on the
delivery quantities and dates covered by the MO (Eq. 2).

– Compute the start date of each manufacturing order based
on the known production sequence, production rates and
MO quantities (Eq. 3).

– Compute the gap (i.e., the difference) between the latest
start date and actual start date for each MO (Eq. 4).

– Compute the standard deviations of the different delivery
quantities according to a chosen level of variation (Eq.
14). Then, associate the probability distribution of the
delivery quantities (average and standard deviation) in
the software.

– Configure the input and output variables needed to run
the simulation model using @RISK:

The input variables for the @RISK model, which are
those variables that are assumed to vary according to a
probability distribution, are all the delivery quantities
(other variables can be included, such as machine fail-
ures); for each delivery, we may use the probability dis-
tribution that best represents the variability (such as a
normal, lognormal, uniform, or Poisson distribution).
The standard deviation of the delivery quantities is calcu-
lated using Eq. 13.
The output variables of the @RISK model are the gaps
for each MO and the lateness of the production cycle.

– Run the simulation model and obtain the probability dis-
tribution for each gap and each MO. Each iteration con-
sists of a random generation of the delivery quantities and

the calculation of the corresponding gaps using Eqs. 2–4.
The probability distribution of the different gaps will be
built based on the results of 10,000 iterations.

– Evaluate the safety stock needed SSik (Eq. 5) correspond-
ing to a service level k based on the values of the gap i for
a service level k. The value of a gap Gik associated with a
manufacturing orderMOi for a service k level is obtained
from the probability distribution of that gap and repre-
sents the value of the gap corresponding to a probability
equal to k (i.e., the actual gap will be lower thanGikwith a
probability equal to k).

– Associate the obtained lateness probability distribution
from the first simulation model (average and standard
deviation) as the start date of the first manufactur-
ing order in the second simulation model (dynamic
approach with lateness).

To compare our results with those of the traditional ap-
proach, we computed SSs using the traditional formula (Eq.
1) for each product j, instead of each MO, associated with
service level k:

SSjk ¼ zk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LTjσDj2 þ Dj2σLTj

2
� �q

ð14Þ

zk Coefficient associated with service level k in a normal
distribution,

LTj Lead time average for product j,
σDj Demand standard deviation for product j,
Dj Demand average per day for product j, and
σLTj Lead time standard deviation for product j.

We assumed an average lead time, LTj, equal to the
production cycle divided by the production frequency.
We assumed that the lead time varies in the same man-
ner as the delivery quantities, with a range of variation
of ± 3σLTj, and PV is the considered percentage of
variation.

σLTj ¼ LTj*
PV
3

ð15Þ

The standard deviation of the demand for product j,
σDj, is the square root of the sum of the squared stan-
dard deviations of the different deliveries (calculated in
the same way as Eq. 13).

σDj¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
UCj

v¼1
σcvj2

s

DC
ð16Þ

σcvj Standard deviation of the quantity of delivery number
v in the delivery cycle for product j,
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DC Delivery cycle duration,
UCj Number of deliveries per delivery

cycle for product j, and
{1..UCj} Set of deliveries covered by product j.

4 Simulation

We present two cases in two contexts. In the first context, an
MO covers many deliveries. We choose an example with a
production cycle of 4 weeks and a weekly delivery cycle for
all products (Fig. 2). In the second context, the MO covers a
few deliveries. In this case, we assume a production cycle of
one week and a consistent weekly delivery schedule (Fig. 3).

4.1 Case study 1

Let us consider a numerical example with three finished prod-
ucts, A, B and C. The delivery cycle is one week for all
products; product A is delivered five times per week (days
1, 2, 3, 4 and 7 of the week), and both B and C are delivered
twice per week. For each product, we note the production rate
(per day), average quantity and date (i.e., the day of the week)
of each delivery (Table 1). We assume a cyclic production
schedule of 4 weeks composed of 5 MOs: two for A, two
for B, and one for C. We assume a repetitive production se-
quence, A | B | C | A | B, composed of the five MOs (Fig. 2).

Product A will be delivered 5 times per week. During a
production cycle of 4 weeks, product A will be delivered
5*4 = 20 times (Del1A to Del20A). Product B will be delivered
8 times (Del1B to Del8B), and product C will also be delivered
8 times (Del1C toDel8C). For eachMO, we compute the quan-
tity, average start date, processing time and latest start date, all
based on average delivery values. We assume that we know
the deliveries that each MO will cover (Table 1).

For product B, for example, the first manufacturing order
covers 4 deliveries: delivery number 3 to delivery number 6
(Del3B to Del6B). Deliveries 3 and 4 occur in week 2 of the
production cycle (days 10 and 14), and deliveries 5 and 6
occur in the third week (days 17 and 21). All deliveries have
the same average quantity of 3000. The average latest start
date of this first order is based on the average delivery quan-
tities reported in Table 1 and is calculated as follows.

LSD2 ¼ Min 10−
3000

2300
; 14−

6000

2300
; 17−

9000

2300
; 21−

12000

2300

� �

¼ Min 8:69; 11:39; 13:08; 15:78ð Þ ¼ 8:69

The repetitive productive sequence is A | B | C | A | B, and
the first manufacturing order of B is at the second position and
follows the first manufacturing order of A. The average start
date is equal to the end of the first manufacturing order of A
and calculated as follows (based on average delivery
quantities reported in Table 1).

t2 ¼ 2* 12500þ 5000þ 1500þ 2100þ 2700ð Þ
8300

¼ 47600

8300

¼ 5:73

We assume that the production cycle is feasible, which
means that the average start date for each manufacturing order
is less than the average latest start date.

In this case study, we assume that the percentage of varia-
tion is fixed at 30%, which means that the final quantity will
vary within ±30% of the average. This uncertainty in the de-
livery quantity leads to uncertainty in the start date for each
MO and uncertainty in the latest start date.

We determine the SS according to the traditional approach,
the dynamic approach and the dynamic approach with
lateness.

4.1.1 Traditional approach

We compute the SSs using the traditional formula (Eq. 14) for
three service levels of each product (Table 2).

For example, for product A,

LTi ¼ 28=2 ¼ 14 days;

σLTj ¼ 14* 30%ð Þ=3 ¼ 1:4 days;

Dj ¼ 12500þ 5000þ 1500þ 2100þ 2700ð Þ=7 ¼ 3400; and

σDj¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
UCj

v¼1
σcvj2

s

7
¼ 199:

Manufacturing orders
Production cycle

Fig. 2 Cyclic production
schedule for case study 1
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The service level coefficients z, which are determined
using the normal distribution table, are as follows:

z90% ¼ 1:28; z95% ¼ 1:65; and z99% ¼ 2:33:

4.1.2 Dynamic approach (normal distribution and simulation)

We build our model in an Excel spreadsheet and then
run the simulation using @RISK. Appendix Fig. 6
shows, as an example, the probability distribution re-
sults after 10,000 iterations for the gaps G5 of MO 5
(product B) and the probability distribution of the late-
ness of the entire production cycle.

Each gap depends on the uncertainty in the start date
of MOi and the uncertainty in the latest start date for
this order. We record the values for three service levels
k. The final SS is the maximum of 0 and Gi, as shown
in Table 2. To compare the dynamic approach with the
traditional approach, we compute the average SS per
product when there is more than one MO, as with prod-
ucts A and B.

4.1.3 Dynamic approach with lateness (normal distribution
and simulation)

In this case, we include the lateness of the production cycle
obtained in the previous simulation as the production cycle
start date.

The total average duration for our 5MOs is 27.82 days. For
a cycle duration of 28 days, the lateness (negative or positive)
of a production cycle follows the probability distribution ob-
tained as shown in Appendix Fig. 6. We approximate the
lateness using a normal distribution with an average of
−0.1723 and a standard deviation of 0.5487. We add this late-
ness to the first MO start date in our new model, and we run
the simulation model a second time. We obtain the probability
distribution for the gaps of each MO. Appendix Fig. 7 reports
the probability distribution of G5 of MO 5 (product B) con-
sidering the risk of lateness of the previous production cycle.
The value of this gap corresponding to a probability of 95% is
equal to 2198, as shown in Appendix Fig. 7, which has in-
creased from 1648 for the case without lateness, as reported in
Appendix Fig. 6.

Table 1 Case study 1

Finished product Prod. rate Delivery 1 Date Delivery 2 Date Delivery 3 Date Delivery 4 Date Delivery 5 Date

A 8300 12,500 1 5000 2 1500 3 2100 4 2700 7

B 2300 3000 3 3000 7 / / / / / /

C 13,000 8250 1 11,000 5 / / / / / /

MO Product Quantity Average
start date
(days)

Average
proc. time
(days)

Average LSDi (days) Covered deliveries
Deluj designates the delivery number u during

the production cycle for product j.

1 A 47,600 0 5.73 3.74 Del3A to Del13A from current cycle

2 B 12,000 5.73 5.22 8.69 Del3B to Del6B from current cycle

3 C 77,000 10.95 5.92 11.15 Del4C to Del8C from current cycle
Del1C to Del3c from next cycle

4 A 47,600 16.87 5.73 17.74 Del14A to Del20A from current cycle
Del1A to Del3A from next cycle

5 B 12,000 22.60 5.22 22.69 Del7B to Del8B from current cycle
Del1B to Del2B from next cycle

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Delivery dates

A 9500
C 6000

A
10000

B
8500

C
18000

A
17000

B
10500

A 10000
A 7500
B 8500

B 2500
C 8000

B 8000
C 4000

Time (days)Manufacturing Orders:

Production cycle

Fig. 3 Cyclic production
schedule for case study 2
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In Table 2, we summarize the gaps and SS values for the
three service levels. The need for the SS is clearly greater than
in the dynamic approach without lateness, especially at high
service levels. This difference can be explained by the fact that
we have included additional uncertainty regarding the start
date in the production schedule. We assume that after two
production cycles, the company is able to catch up following
the delay by, for example, using additional capacity. Table 2
illustrates that the improvement obtained in the SS quantities
can be significant when we use the dynamic approach or the
dynamic approach with lateness instead of the traditional ap-
proach. However, we note that the SS needed for MO5 at a
service level of 99% determined using the dynamic approach
with lateness (3446) is greater than the constant SS for product
B determined using the traditional approach (2845).
Therefore, the traditional approach maintains a constant SS
that is typically considerably larger than needed but might
not be sufficient in some cases. Indeed, for product B,
we do not need an SS for MO2, but we need an SS
larger than 2845 for MO5.

The simulation results demonstrate that the traditional ap-
proach is not well suited for this case. Indeed, the SS values
obtained using the simulation models are typically consider-
ably smaller than those obtained using the traditional ap-
proach. Furthermore, in some cases, the SS obtained using

the traditional approach cannot cover the uncertainties in the
delivery quantities.

4.1.4 Dynamic approach (normal distribution and numerical
calculation)

In this section, we numerically calculate the SSs for the three
products according to Eq. 11. We then compare the results to
those obtained from simulations to validate the numerical
model in the case of normal distributions.

For each MO and for a given a, we numerically approxi-
mate the integral function and determine the probability that
the gap Gi ≤ a, as follows:

– For each MO, determine the average and the standard
deviation of the start date using Eqs. 6 and 7. The results
are reported in Table 3.

– Similarly, determine the average and standard deviation
of each latest start date Xui using Eqs. 9 and 10. The
results are also reported in Table 3.

– Choose a minimum value s1 and a maximum value s2
such that Pr (ti = s1) and Pr (ti = s2) are equal to 0. For
example, for MO2, the average start date t2 is equal to
5.73, with a standard deviation equal to 0.24. We begin
with s1 equal to 4 until s2 is equal to 7.5.

Table 2 Safety stock results for case study 1

Safety stock for A

Traditional approach Dynamic approach Dynamic approach with lateness

Service level k 90% 95% 99% 90% 95% 99% 90% 95% 99%

SS SS SS Gi SS Gi SS Gi SS Gi SS Gi SS Gi SS

MO 1 −30,831 0 −30,755 0 −30,612 0 −26,672 0 −25,041 0 −21,953 0

MO 4 −2844 0 −1647 0 571 571 −1474 0 635 635 4533 4533

Average SS 6167 7950 11,226 0 0 285.5 0 317.5 2265.5

Gain % 100 100 97 100 96 80

Safety stock for B

Traditional approach Dynamic approach Dynamic approach with lateness

Service level k 90% 95% 99% 90% 95% 99% 90% 95% 99%

SS SS SS Gi SS Gi SS Gi SS Gi SS Gi SS Gi SS

MO 2 −6021 0 −5798 0 −5345 0 −5400 0 −4876 0 −3950 0

MO 5 1246 1246 1648 1648 2436 2436 1546 1546 2198 2198 3346 3346

Average 1563 2015 2845 623 824 1218 773 1099 1673

Gain % 60 59 57 51 45 41

Safety stock for C

Traditional approach Dynamic approach Dynamic approach with lateness

Service level k 90% 95% 99% 90% 95% 99% 90% 95% 99%

SS SS SS Gi SS Gi SS Gi SS Gi SS Gi SS Gi SS

MO 3 3379 3379 5163 5163 8049 8049 6121 6121 9211 9211 15,063 15,063

Average 9945 12,820 18,103 3379 5163 8049 6121 9211 15,063

Gain % 66 60 56 38 28 17
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– Using an Excel sheet and for each s from s1 to s2 and
according to a step of p = 0.001, use the NORMAL func-
tion in Excel to determine the area under the integral
using Eq. 11.

– Multiply this value by step p to determine the area of the
corresponding rectangle.

– Finally, sum these areas to determine the total area under
the function and approximate the integral value.

– We have only one exception for the first MO (product A),
which is assumed to start at time 0 (t1 = 0) without uncer-
tainty. In such a case, to determine the probability that the
gap G1 is less than a certain value a, we calculate

∏
u¼1

U1

Pr X u1 > − a
Pr1

� �
.

– The results are reported in Table 4. For a1 = 0, the results
correspond to the probability of having a negative gap,
which means we do not need an SS. We compared the
results to those obtained with the simulation (Appendix
Fig. 6). The results are very similar. For example, for
MO5, the probability of having a negative value
using the numerical approach is equal to 0.5686.
As shown in Appendix Fig. 6, according to the
simulation results, the probability of having a neg-
ative gap is approximately 0.567. For MO3 and
MO4, the results of the numerical approach are
0.7104 and 0.9827, respectively, whereas the simu-
lation results are 0.717 and 0.982, respectively.

– We then compared the results obtained for the three ser-
vice levels: 0.9, 0.95 and 0.99. For each MO, we noted
the gaps obtained based on the three service levels
(Table 2) and recorded them in Table 4 as a2, a3 and a4.
We then used the numerical approach to determine the
probability of having such gaps. The results are reported
in Table 4. For MO3, for example, the simulation yielded
a gap equal to 3379 for a service level of 90%. The
probability of having a gap less than or equal to
3379 is equal to 0.8980 according to the numerical
approach, which is very close to 90%. We obtain
similar results for service levels of 95% and 99%;
notably, the probabilities obtained with the numeri-
cal approach are very close and equal to 0.9503 and
0.9880, respectively. All the results for the other
MOs obtained with the numerical approach are con-
sistent with the simulation results.

– Overall, the results obtained with the numerical ap-
proach are very similar to and consistent with the
results obtained from the simulation. This finding
validates the simulation model for the case in which
the delivery quantities follow normal distributions.
We can therefore use the simulation for other prob-
ability distributions than cannot be numerically
approximated.
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4.1.5 Dynamic approach with and without lateness (uniform
distribution and simulation)

The main advantage of the simulation is that once a model is
set up, the parameters and assumptions of a given problem can
be easily changed and adapted. For our case, we will change
the probability distributions of all demands from normal to
uniform distributions. The averages are kept the same, and
the minimum and maximum values are obtained by
subtracting and adding the percentage of variation PV multi-
plied by the average [(1-PV)μvi, (1 + PV)μvi]. The probability
distributions of the gaps of MO5 without and with lateness are
shown in Appendix Fig. 8 and Fig. 9 for illustrative purposes.
We note that, though the probability distribution of the de-
mand is uniform, the probability distributions of the gaps are
not uniform, essentially due to the nonlinearity of the equa-
tions determining these gaps. Additionally, as shown in
Appendix Fig. 8 and Fig. 9, we note that the SS needed for
a service level of 95% is equal to 3081 units for the dynamic
approach and 4261 units for the dynamic approach with late-
ness. We obtained, as expected, a larger value for the second
case, as uncertainty on the start date of the schedule is includ-
ed. The results of the simulation for all orders are reported in
Table 5.

As expected, the SS values needed are greater than those
for a normal distribution because the variation in a uniform
distribution around the average is more important than that for
a normal distribution. A comparison with the traditional ap-
proach is not truly possible because we do not use the same
probability distribution. However, the SS values allocated by
the traditional approach are more important for product A. It is
obvious again that the traditional approach is not well defined
because, for example, for product B, we do not need SSs for
MO2, whereas we need much larger SSs for MO5 than the
quantity allocated by the traditional approach. The same is
true for product C.

4.2 Case study 2

Let us consider another case in which the production cycle is
the same as the delivery cycle and equal to one week and three
finished products, A, B and C, are consistently produced
(Table 6 and Fig. 3). The number of deliveries covered by
each MO is less important in this case than in case study 1.

We assume that the cyclic production schedule is com-
posed of 5 MOs and corresponds to the following repetitive
sequence: A | C | B | A | B.

In the simulation model, we follow the same steps as for
case study 1. All the results based on the traditional approach,
the dynamic approach and the dynamic approachwith lateness
are summarized in Table 7.

As in case study 1, the improvements in the required
SS values, compared to the traditional approach, are
significant, especially with the dynamic approach, where
the gains vary from 66% to 100%. The gains are small-
er in magnitude for the dynamic approach with lateness
at high service levels; nevertheless, the gains remain
substantial. In this case study, as before, the SS deter-
mined using the traditional approach does not cover the
uncertainty for some MOs. This finding is illustrated by
MO4, in which an SS of 4250 is required by the dy-
namic approach with lateness at a service level of 99%.
This SS is greater than the SS determined using the
traditional approach (3294).

The results of case study 2 show that although the number
of deliveries covered by each MO is less than that in case
study 1, the traditional approach is again not well suited for
a nonstationary demand.

In this example, we also numerically determined
some probabilities for the gaps Gi. The results are re-
ported in Table 8 and Table 9. In this example, the
results of the simulation and the numerical calculation
are very similar and consistent (Table 7 and Table 9). If
we take the MO5 of product B as an example, the gaps
for service levels of 90%, 95% and 99% based on the
simulation are −470, 234 and 1603, respectively. We
tested these values with the numerical approach, and
for each value, we determined the probability that the
gap is less than that value. The results were very close to the
simulated values, with probabilities equal to 0.8981, 0.9511
and 0.9910. All the other results were consistent with those
obtained from the simulation.

Similarly to the first case study, we also applied the model
of demand based on a uniform probability distribution instead
of a normal distribution with the same range of variation [(1-
PV)μvi, (1 + PV)μvi].

The safety stock results for the three service levels are
reported in Table 10. Here, the safety stocks also increased

Table 4 Safety stock results for
case study 1 using the numerical
approach

a1 Pr(Gi ≤ a1) a2 Pr(Gi ≤ a2) a3 Pr(Gi ≤ a3) a4 Pr(Gi ≤ a4)

MO 1 (A) 0 ≈1 −30,831 0.8999 −30,755 0.9498 −30,612 0.9899

MO 2 (B) 0 ≈1 −6021 0.8967 5798 0.9474 −5345 0.9905

MO 3 (C) 0 0.7104 3379 0.8980 5163 0.9503 8049 0.9880

MO 4 (A) 0 0.9827 −2844 0.9013 −1647 0.9496 571 0.9896

MO 5 (B) 0 0.5686 1246 0.8982 1648 0.9480 2436 0.9898
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compared to those based on a normal distribution. Even for
the same range of values, we experience more variation
with uniform distributions than with normal distribu-
tions; the safety stocks for the dynamic approach are
still less important than those determined with the tra-
ditional approach (Table 7 and Table 10). However, in
this case and for some MOs (MO4 and MO5, for exam-
ple), the SS values determined by the traditional ap-
proach are insufficient.

5 Sensitivity analysis

In this sensitivity analysis, we vary the percentage of variation
PV in the delivery quantity from 10% to 80% in steps of 5%.
The objective of this sensitivity analysis is to compare the
traditional approach with the two dynamic approaches with
and without lateness at different variation percentages. We run
a simulation study for each percentage and for each approach
to determine the SSs needed for three service levels: 90%,

Table 5 Safety stock results for case study 1 (uniform distribution)

Safety stock for A

Dynamic approach Dynamic approach with lateness

Service level k 90% 95% 99% 90% 95% 99%

Gi SS Gi SS Gi SS Gi SS Gi SS Gi SS

MO 1 −30,596 0 −30,533 0 −30,482 0 −22,432 0 −19,638 0 −14,252 0

MO 4 401 401 2536 2536 6652 6652 3865 3865 7570 7570 14,531 14,531

Average SS 201 1268 3326 1933 3785 7266

Safety stock for B

Dynamic approach Dynamic approach with lateness

Service level k 90% 95% 99% 90% 95% 99%

Gi SS Gi SS Gi SS Gi SS Gi SS Gi SS

MO 2 −5400 0 −4980 0 −4372 0 −4135 0 −3240 0 −1500 0

MO 5 2316 2316 3080 3080 4481 4481 3165 3165 4260 4260 6184 6184

Average 1158 1540 2241 1583 2130 3092

Safety stock for C

Dynamic approach Dynamic approach with lateness

Service level k 90% 95% 99% 90% 95% 99%

Gi SS Gi SS Gi SS Gi SS Gi SS Gi SS

MO 3 7958 7958 10,964 10,964 16,578 16,578 13,947 13,947 19,853 19,853 29,993 29,993

Average 7958 10,964 16,578 13,947 19,853 29,993

Table 6 Case study 2

Finished product Prod. rate per day Delivery 1 Date Delivery 2 Date Delivery 3 Date

A 10,500 9500 1 10,000 3 7500 5

B 8000 2500 2 8500 5 8000 7

C 9000 6000 1 8000 2 4000 7

MO Product Quantity Average
start date
(days)

Average
proc. time
(days)

Average
LSDi (days)

Covered deliveries

1 A 10,000 0 0.95 2.05 Del2A from current cycle

2 C 18,000 0.95 2 1.11 Del2C, Del3C from current cycle
Del1C from next cycle

3 B 8500 2.95 1.06 3.93 Del2B from current cycle

4 A 17,000 4.01 1.62 4.28 Del3A from current cycle
Del1A from next cycle

5 B 10,500 5.63 1.31 6 Del3B from current cycle
Del1B next cycle
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95%, and 99%. If there is more than oneMO for a product, we
compute an average SS for each of the two dynamic ap-
proaches to compare the results with those of the traditional
approach.

5.1 Case study 1

We present the results obtained for only product B because the
results and trends for products A and C are similar. Figure 4
shows the SS obtained for product B for each service level and
for different percentages of variation. We also demonstrate the
improvements obtained in the SS when we use the two dy-
namic approaches versus the traditional approach. For the two
dynamic approaches, the SS of product B is the average of the
SS for MOs 2 and 5. As expected, the SS computed using the
traditional approach increases linearly with the percentage of
variation. The dynamic approach with lateness has a greater
slope than the dynamic approach does because the former
includes more uncertainty. At low percentages of variation,
the SSs obtained using the dynamic approach are higher than
those obtained using the dynamic approach with lateness be-
cause the average lateness can be negative at small percent-
ages of variation, resulting in an advance instead of a delay of
the start of the production cycle. Figure 4 illustrates that the

use of the dynamic approach (with or without lateness) can
produce SS savings of between 25% and 87% compared with
the traditional approach, which averages 58% for the dynamic
approach and 45% for the dynamic approach with lateness.
The overall average gain for all products is approximately
70% for the dynamic approach and 50% for the dynamic
approach with lateness.

Figure 5 shows in detail the SS forMOs 2 and 5 for product
B using the dynamic approach with lateness, and we can iden-
tify when the constant SS determined using the traditional
approach becomes insufficient. The SS levels obtained using
the traditional approach are insufficient to cover the

Table 7 Safety stock results for case study 2

Safety stock for A

Traditional approach Dynamic approach Dynamic approach with lateness

Service level k 90% 95% 99% 90% 95% 99% 90% 95% 99%

SS SS SS Gi SS Gi SS Gi SS Gi SS Gi SS Gi SS

MO 1 −20,218 0 −19,855 0 −19,173 0 −18,555 0 −17,549 0 −15,697 0

MO 4 −154 0 590 590 2015 2015 870 870 1971 1971 4250 4250

Average SS 1810 2333 3294 0 295 1007 435 985 2125

Gain % 100 87 69 76 58 35

Safety stock for B

Traditional approach Dynamic approach Dynamic approach with lateness

Service level k 90% 95% 99% 90% 95% 99% 90% 95% 99%

SS SS SS Gi SS Gi SS Gi SS Gi SS Gi SS Gi SS

MO 3 −5965 0 −5432 0 −4419 0 −5178 0 −4301 0 −2602 0

MO 5 −470 0 234 234 1603 1603 140 140 1159 1159 2981 2981

Average 1283 1654 2335 0 117 801 70 579 1490

Gain % 100 93 66 95 65 36

Safety stock for C

Traditional approach Dynamic approach Dynamic approach with lateness

Service level k 90% 95% 99% 90% 95% 99% 90% 95% 99%

SS SS SS Gi SS Gi SS Gi SS Gi SS Gi SS Gi SS

MO 2 72 72 500 500 1300 1300 1273 1273 2175 2175 3833 3833

Average 2362 3045 4300 72 500 1300 1273 2175 3833

Gain % 97 84 70 46 29 11

Table 8 Probability distribution parameters for the numerical approach
(case study 2)

ti X1i X 2i X 3i

μti σti μX1i σX1i μX2i σX2i μX3i σX3i

MO 1 (A) – – 1.05 0.10

MO 2 (C) 0.95 0.10 1.11 0.09 3.67 0.10 6.00 0.12

MO 3 (B) 2.95 0.15 3.94 0.11

MO 4 (A) 4.01 0.19 4.29 0.07 6.38 0.12

MO 5 (B) 5.63 0.22 6.00 0.10 7.69 0.10
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uncertainty in MO5 starting from a percentage of variation of
30% for a service level of 90%, a percentage of variation of
25% for a service level of 95% and a percentage of variation of
20% for a service level of 99%. This result confirms that the
traditional approach is not well suited when the demand is not
stationary. Indeed, the SS levels obtained using the traditional
approach are typically considerably higher than needed but
are also insufficient in some cases.

5.2 Case study 2

We conduct the same sensitivity analysis for the second case
study to determine whether the results are similar to those
obtained from case study 1. In this case, the production cycle
is less important and is equal to the delivery cycle (one week).
Thus, the number of deliveries covered by each MO is less
important in this case (Table 6).

As previously done, we run a simulation for each variation
percentage of the deliveries from 10% to 80% in steps of 5%.

For this case study, we detail only the SS for each
MO for product B using the dynamic approach
(Appendix Fig. 10). As in case study 1, the average
SS determined using the traditional approach is consid-
erably greater than that obtained using the dynamic ap-
proach. However, the average SS cannot cover the un-
certainties in MO5 starting from percentage of variations
of 75%, 60% and 45% for service levels of 90%, 95%
and 99%, respectively. The savings in terms of SS
levels vary between −65% and 100%, with an average
of 65% for the dynamic approach and 35% for the
dynamic approach with lateness. The negative gains cor-
respond to the cases in which the average SSs for both
product B MOs are higher than those in the traditional
approach. This result occurs at high percentages of var-
iation (greater than 70%) and for the dynamic approach
with lateness. The overall average gain for all products
is approximately 70% for the dynamic approach and
33% for the dynamic approach with lateness.

Table 9 Safety stock results for
case study 2 using the numerical
approach

a1 Pr(Gi ≤ a1) a2 Pr(Gi ≤ a2) a3 Pr(Gi ≤ a3) a4 Pr(Gi ≤ a4)

MO 1 (A) 0 1 −20,218 0.90008 −19,855 0.95002 −19,173 0.99002

MO 2 (C) 0 0.8884 72 0.8997 500 0.9500 1300 0.9900

MO 3 (B) 0 ≈1 −5965 0.9007 −5432 0.9498 −4419 0.9899

MO 4 (A) 0 0.9127 −154 0.9004 590 0.9494 2015 0.9898

MO 5 (B) 0 0.9358 −470 0.8991 234 0.9511 1603 0.9910

Table 10 Safety stock results for case study 2 (uniform distribution)

Safety stock for A

Dynamic approach Dynamic approach with lateness

Service level k 90% 95% 99% 90% 95% 99%

Gi SS Gi SS Gi SS Gi SS Gi SS Gi SS

MO 1 −19,100 0 −18,800 0 −18,850 0 −14,972 0 −13,116 0 −10,229 0

MO 4 1921 1921 3185 3185 5428 5428 6767 6767 9358 9358 14,139 14,139

Average SS 961 1563 2714 3384 4679 7069

Safety stock for B

Dynamic approach Dynamic approach with lateness

Service level k 90% 95% 99% 90% 95% 99%

Gi SS Gi SS Gi SS Gi SS Gi SS Gi SS

MO 3 −4450 0 −3560 0 −1975 0 −947 0 1012 1012 4418 4418

MO 5 1484 1484 2640 2640 4636 4636 5474 5474 7794 7794 11,753 11,753

Average 742 1320 2318 2737 4403 8086

Safety stock for C

Dynamic approach Dynamic approach with lateness

Service level k 90% 95% 99% 90% 95% 99%

Gi SS Gi SS Gi SS Gi SS Gi SS Gi SS

MO 2 1333 1333 2023 2023 2825 2825 4973 4973 6702 6702 9527 9527

Average 1333 2023 2825 4973 6702 9527
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The results obtained in case study 2 are very similar
to those obtained in case study 1, which confirms that
important savings can be obtained using the dynamic
approaches.

6 Conclusion

In this paper, we proposed an original approach for determin-
ing SSs in the context of cyclic production. In this approach,
each SS is estimated dynamically for each MO. This SS ap-
proach encompasses two types of uncertainties. The first

uncertainty is in the manufacturing order start date due to
delays or advances caused by previous orders in the schedule.
The second uncertainty is in the actual delivery quantity,
which is known only a few days before delivery. The SS levels
are determined based on a simulation model in which we
estimate the needed SS for each manufacturing order at dif-
ferent service levels.

The main contributions of this work are twofold:

& We have proposed a dynamic approach for SS de-
termination in which demand follows a cyclic pat-
tern, and
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& We have shown that the traditional approach is not well
suited for determining safety stocks when the demand is
nonstationary.

We used a simulation approach to determine the dynamic
SSs because of the different uncertainties that can influence
the production schedule and make the general theoretical

estimation of the SSs highly complex. We compared the sim-
ulation approach to a numerical approach in the case that all
demands follow normal probability distributions. The results
were very similar and consistent. This finding validates the
developed simulation model.

The developed approach is applicable to any repeated and
stable cyclic production schedule in which the deliveries that
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each MO is supposed to cover are known. The demand is
repetitive with cyclic deliveries but not stationary. The
sensitivity analysis conducted on the two case studies
showed tha t , overa l l , the t rad i t iona l SSs are
overestimated, and an average gain can be obtained in
terms of SS quantities of approximately 70% for the
dynamic approach and 50% for the dynamic approach
with lateness for case study 1 and 70% for the dynamic
approach and 33% for the dynamic approach with late-
ness for case study 2. In addition, the sensitivity analy-
sis also showed that starting from a 20% variation in
the demand, traditional SSs become insufficient for cov-
ering the uncertainty of some deliveries. These findings
confirm that the traditional approach for determining SS
is not well adapted for nonstationary demand and will
set higher SSs than needed in most periods of the ho-
rizon and insufficient SSs in other periods.

The approach is relatively easy to implement, and we only
need to model the production schedule in a spreadsheet using
simulation software, define the probability distributions of
input variables and link these values to the output variables.
Additionally, if there is a large change in demand or in the
production schedule, we recommend re-computing the neces-
sary SSs.

More generally, one of the objectives of this work is
to increase the awareness of decision makers regarding
the importance of using dynamic approaches for fixing
safety levels when the demand is not stationary. The
benefits of implementing such dynamic approaches in-
clude minimizing holding costs, improving the service
level and lowering the probability of stock outs. The
findings of this work support the shift towards including
dynamic SSs in many ERP solutions, such as the SAP
ERP and Oracle ERP.

Other uncertainties could be considered in the simulation
model, such as uncertainty in the production rate or uncertain-
ty in machine availability. We could also use different proba-
bility distributions for the input variables. In this work, we
tried to implement our model for two realistic examples. In
the near future, we hope to implement this dynamic approach
in a real company.

Our approach can be applied to companies in the
pharmaceutical, food or mechanical industries, for exam-
ple, which produce standard products that have signifi-
cant life cycles based on repetitive and nonstationary
demand.

We believe that this simulation approach can be extended
in the future to compute dynamic SSs in many other complex
situations involving nonstationary demand beyond cyclic
scheduling scenarios.

Acknowledgements The authors are grateful to the Editor and reviewers
for their careful reading of the paper and their valuable feedback.

Appendix

Appendix 1: In this appendix, we determine
the theoretical probability distribution of the gap Gi

Xui is the latest start date that covers delivery numbers 1 to u
covered by MOi.

X ui ¼ λui−∑u
v¼1

yvi
PRi

λui Delivery date of delivery number u in the set of
deliveries covered by MOi,

yvi Quantity of delivery number v in the set of deliveries
covered by MOi, and

PRi Production rate of MOi.

LSDi represents the latest start date of anMOi if we want to
produce all the items on time.

LSDi ¼ Min
u¼1::U1

X ui

It is more complex to determine the probability dis-
tribution of LSDi because it is the minimum of a set of
normal distributions (Hill 2011). Let us determine the
probability that LSDi is less than or equal to a certain
value a. If we assume that all Xui are independent, we
can formulate the following relations.

Pr LSDi≤að Þ ¼ Pr min
u¼1:: Ui

X ui≤a
� �

¼ 1−Pr X 1i > a and X 2i > a and…and XUii > að Þ
¼ 1− ∏

u¼1

Ui

Pr X ui > að Þ

¼ 1− ∏
u¼1

Ui 1

σXui
ffiffiffiffiffiffi
2π

p ∫∞a e
−1
2

x−μXui
σXui

� �2

dx

Thus, the CDF of the gap Gi can be determined as
follows.

Pr Gi≤að Þ ¼ Pr ti− min
u¼1:: Ui

X ui <
a
Pri

� �
¼ Pr ti <

a
Pri

þ min
u¼1:: Ui

X ui

� �

¼ ∫∞−∞Pr ti ¼ sð ÞPr min
u¼1:: Ui

X ui > s−
a
Pri

� �
dsPr Gi≤að Þ ¼ ∫∞−∞
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Fig. 6 Probability distributions of the gaps G5 of MO5 and the lateness for the entire production cycle obtained using the dynamic approach
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Fig. 7 Probability distributions of
the gap G5 for MO5 obtained
using the dynamic approach with
lateness
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Fig. 8 Probability distributions of
the gaps Gi for MO5, obtained
using the dynamic approach with
uniform probability distributions
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Fig. 9 Probability distributions of
the gaps Gi for MO5, obtained
using the dynamic approach with
lateness and uniform probability
distributions
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