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Abstract
Spatial models jointly simulating population and land-use change provide support 
for policy-making, by allowing to explore territorial developments under alterna-
tive scenarios and resulting impacts in the environment, economy and society. How-
ever, their ability to reproduce observed spatial patterns is rarely evaluated through 
model validation. This lack of insight prevents researchers and policy-makers of 
fully grasping the ability of existing models to provide sensible projections of future 
land use and population density. In this article, we address this gap by performing 
a model validation of the LUISA Territorial Modelling Platform, a spatial model 
jointly simulating population and land use at a fine resolution (100 m) in the Euro-
pean Union and United Kingdom. In particular, we compare observed and simulated 
patterns of population and urban residential land-use change for the period of 1990–
2015, and evaluate the model performance according to different degrees of urbani-
sation. The results show that model performance can vary depending on the context, 
even when the same data and methods are uniformly applied. The model performed 
consistently well in urban areas characterized by compact urban growth, but poorly 
where residential development occurred predominantly in scattered patterns across 
rural areas. Overall, the model tends to favour the formation of densely populated, 
highly accessible urban conglomerations, which often do not entirely correspond to 
the observed patterns. Based on the validation results, we propose directions for fur-
ther model improvement and development. Model validation should be regarded as 
a critical step, and an integral part, in the process of developing models for policy 
support.
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Introduction

Human land use and population are both crucial elements for assessing the sup-
ply and demand of ecosystem services, quality of life, vulnerability and adap-
tive capacity to (climate) risks (Chaplin-Kramer et al., 2019; Lavalle et al., 2017; 
Spake et al., 2017). Therefore, it is critical to have a good understanding of the 
potential drivers and trade-offs of future land-use trajectories and related changes 
in population patterns (Rounsevell et  al., 2012). Spatial models of land-use 
change can be used as learning tools to test hypotheses and formalise knowledge 
on the functioning of land systems, enabling researchers and decision-makers to 
explore the complex interplay among multiple land-use drivers (Verburg et  al., 
2019). Such models also allow to investigate potential future developments and 
resulting impacts in the environment, economy and society, thus providing impor-
tant insights to inform the elaboration of governance strategies for mitigating 
impacts and capitalising on opportunities in land systems (Lavalle et al., 2020).

The spatial patterns of human land use are intrinsically intertwined with those 
of population density (Mulder, 2008). For example, increases in population 
within a region contribute to increases in the demand for residential land use. 
In turn, an increase in residential land use usually promotes an increase in popu-
lation density. Land use and population patterns are, however, usually modelled 
separately, by considering each other as an exogenous factor, even though they 
are simultaneously a driver and an outcome of one another (Rounsevell et  al., 
2014; Van Vliet et al., 2019). The following modelling approaches constitute the 
only few exceptions in which both population and land-use change patterns are 
jointly simulated in large-scale land-use models. Terama et al. (2017) and Zhou 
et al. (2019), for example, focused on simulating only urban land use and popula-
tion patterns, thus not allowing to assess the potential trade-offs and interactions 
with other types of land use (e.g., agriculture, forestry). Van Vliet et al. (2012), 
White et al. (2012), and Baranzelli et al. (2014) proposed modelling approaches 
allowing for the simulation of multiple land-use sectors and population. In these 
approaches, urban expansion is simulated according to expert-based popula-
tion threshold rules, through a chain of separate discrete allocation mechanisms 
Jacobs-Crisioni et al. (2017) presented an approach for simulating multiple land 
uses and population in a more integrated way, according to which, for each time-
step, 1) projected changes in regional population are firstly translated into a meas-
ure of local demand for residential land use; 2) this local demand measure is then 
used as one of the drivers for the allocation of (residential) land use; and finally, 
3) local population is allocated over the simulated residential land-use patterns.

However, the ability of these models to reproduce observed spatial patterns and 
processes has so far never been investigated through model validation. This lack 
of insight prevents researchers and policy-makers to fully understand the ability 
of existing models to explain observed processes and the extent to which they 
provide sensible projections of future land-use change and population density.

In this article, we address these gaps by performing a model validation of the 
LUISA (Land-Use Integrated Sustainability Assessment) Territorial Modelling 
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Platform (Lavalle et al., 2020). LUISA is a pan-European modelling application 
jointly simulating the spatial distribution of multi-sectoral land use and residen-
tial population by operationalising the modelling framework proposed in Jacobs-
Crisioni et  al. (2017). We compare observed historical patterns of urban resi-
dential land use and population distribution with those simulated by the LUISA 
model in the European Union countries and United Kingdom (EU27 + UK), for 
the period between 1990 and 2015. By performing the model validation, we aim 
at answering the following research questions:

•	 To what extent is LUISA able to jointly simulate and correctly reproduce 
the observed patterns of both residential land use and population change in 
EU27+UK during the period between 1990 and 2015?

•	 What patterns and processes of population and land change appear to be well 
captured by such model? Which processes may require an improved representa-
tion?

•	 To what extent does model performance depend on the context where the model 
is applied?

The remaining of the article is structured as follows. Firstly, we briefly describe 
the LUISA modelling platform (Section "The LUISA Model"), and particularly the 
specification of the model for the purpose of simulating multi-sectoral land use and 
population patterns in EU27 + UK during 1990–2015. Then, we describe the meth-
ods for performing the model validation (Section "Model Validation"). The results 
of the model validation are then presented in Section "Results", followed by a dis-
cussion and conclusions in Sections "Discussion" and "Conclusions", respectively.

Material and Methods

The LUISA Model

The LUISA Territorial Modelling Platform is a modelling application developed by 
the European Commission (EC) for jointly simulating multi-sectoral land use and 
residential population for all EU27 + UK countries at a fine resolution (100 m spatial 
grid). It has been designed to assess the direct and indirect impacts of EU policies 
with a territorial dimension (e.g. Trans-European Transport Network, Cohesion Pol-
icy and Common Agricultural Policy), in multiple sectors and across various geo-
graphical scales (Jacobs-Crisioni et al., 2017; Lavalle et al., 2020). LUISA makes 
use of an extensive knowledge base that includes EC’s reference demographic and 
macro-economic projections at the regional level (e.g. EC, 2016a, 2016b, 2015), and 
several thematic spatial datasets at detailed resolution (e.g. Donatelli et  al., 2015; 
Florczyk et  al., 2019; Rosina et  al., 2020). These features allow LUISA to incor-
porate complex interactions between human activities and their context‐specific 
determinants, thus translating socioeconomic trends and policy scenarios into pro-
cesses of territorial development (Perpiña Castillo et al., 2021; Proietti et al., 2022). 
The impacts of these developments are then quantified through the use of thematic 
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indicators at various spatial aggregation levels, providing useful inputs for policy 
evaluation purposes in relation to relevant urban and rural development issues (Lav-
alle et al., 2017, 2020; Perpiña Castillo et al., 2018, 2021).

Five main groups of land-use types are currently modelled in LUISA: urban resi-
dential (i.e. built-up land used for residential functions), industry and commerce, 
agriculture, forest and (semi-)natural vegetation. Each country is simulated indepen-
dently (except for Belgium and Luxembourg, which are modelled jointly) in 5-year 
time-steps, having land-use and population maps for a given reference year as a 
starting point. LUISA’s spatial outputs are maps representing population, land-use 
and accessibility patterns for each of the modelled time-steps (Jacobs-Crisioni et al., 
2016, 2017; Lavalle et al., 2020). These outputs are then used to dynamically inform 
the starting point of the simulation in the next time step.

Developments in land systems result from complex interactions between multiple 
drivers operating across different scales (Hersperger et al., 2010; Plieninger et al., 
2016). To capture these cross-scale interactions, LUISA’s model structure includes 
two interconnected modules: a regional demand module and a local allocation mod-
ule (Fig. 1). In the regional demand module, the total regional population and land 
demand for different land-use activities are specified for each region, typically at 
NUTS1 3 regional level and according to EC’s official projections and/or statistics 
(Batista e Silva et  al., 2016). In the local allocation module, the model then allo-
cates land use based on spatially-varying local land-use utilities and region-specific 
demands for competing land uses, and consecutively the local population distribu-
tion. Similarly to the utility-based framework for multi-sectoral land-use modelling 
outlined in Koomen et  al. (2015), local utility values are derived from combining 
information on 1) spatial drivers affecting the local suitability for supporting alterna-
tive land uses and functions; and 2) economic factors affecting the potential revenues 
and costs of different land-use activities. Local drivers include both exogenous (e.g., 
biophysical factors such as topography, climate and soil characteristics, availability 
of infrastructure networks, and zoning regulations) and endogenous drivers (accessi-
bility, previous land-use and population patterns, and resulting neighbourhood land-
use interaction effects). Together, endogenous and exogenous drivers determine the 
local suitability for different land uses and functions,

Specifying the Regional Demand Module

For this particular validation exercise, we have only focused on validating the allo-
cation module, in order to distinguish allocation errors from quantity errors (sensu 
Pontius et al., 2018). The regional demand module was therefore specified by com-
puting the total area of each simulated land use type and total population counts 
in each NUTS 3 region as observed in the reference maps during the period of 
1990 and 2015. In particular, regional demand for urban land use and total regional 

1  The NUTS classification (Nomenclature of territorial units for statistics) is a hierarchical system for 
dividing up the territory of the EU for the purpose of collection, development and harmonisation of 
European regional statistics, as well as of socio-economic analyses of the regions. The main character-
istics of NUTS 3 regions per country are summarised in Appendix A in the Supplementary Information.
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population were computed for each region and time-step using the Global Human 
Settlement Layer (GHSL) data package (Florczyk et al., 2019) to represent observed 
urban land-use and population patterns in the years 1990, 2000 and 2015. The val-
ues for the 5-year time-steps in between were linearly interpolated. The regional 
demands for the other simulated land-use types were similarly determined, using the 
CORINE Land Cover (CLC) data series (Büttner et al., 2002, 2014) as a reference 
for 1990, 2000, 2006 (reference for simulated 2005 time-step) and 2012 (reference 
for 2015 time-step), excluding the gridcells classified as urban in GHSL, in order to 
not account for area that is classified as urban residential in the reference map.

Specifying the Local Allocation Module

Following the modelling framework proposed in Jacobs-Crisioni et al. (2017), the joint 
spatial allocation of population and land use in the LUISA model is based on an itera-
tive procedure (Fig. 1), requiring the specification of local attractiveness for residential 
functions (Eq. B1 in the Supplementary Information), local population pressure (i.e. 
the degree to which changes in regional population lead to changes in local demand 

Fig. 1   Modelling workflow of the LUISA Territorial Modelling Platform, including the regional demand 
and the local allocation modules
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for residential land use; Eq. B3 in the Supplementary Information), local land-use suit-
ability (i.e. the suitability of a location to support a particular land use, given its geo-
graphical characteristics and features; Eq. B4 in the Supplementary Information), and 
local land-use utility (Eq. B5 in the Supplementary Information). For the simulation 
of land use, we implement the discrete version of the utility-maximising spatial allo-
cation algorithm proposed in Hilferink and Rietveld (1999). Once all land-use types 
(including urban residential land use) have been allocated so that all regional land-use 
demands are fulfilled, nighttime population (i.e. number of permanent inhabitants reg-
istered in a location) is then allocated according to the spatial algorithm introduced in 
Jacobs-Crisioni et al. (2017). The specification of this iterative procedure, and respec-
tive modelling equations and spatial allocation algorithms, are described in detail in 
Appendix B in the Supplementary Information. In the following we briefly describe 
the main steps in the specification of the allocation module for the validation exercise.

Local attractiveness for residential functions and local land-use suitabilities were 
empirically estimated separately for each simulated country based on observed popu-
lation and land-use (change) patterns, respectively, using a set of spatial drivers as 
explanatory variables (see Appendix C in the Supplementary Information, for the 
complete list of variables). Local attractiveness for residential functions was esti-
mated through ordinary least squares regression analysis, using the Global Human 
Settlement Layer (GHSL) population data series (Florczyk et al., 2019) as a reference 
for observed population patterns in 1990–2015. Residential attractiveness is trans-
lated into a measure of local population pressure, by taking into account the regional 
net population changes occurred between time-steps (positive or negative). Popula-
tion pressure is then used as an explanatory factor for the land-use suitability of urban 
residential land use. Land-use suitability functions were estimated for all simulated 
land-use types through binomial logistic regression analysis. For the estimation of 
land-use suitability of residential land use, we used the time series of built-up den-
sities registered in the GHSL data series (Florczyk et  al., 2019) as a reference for 
urban land changes occurring between 1990 and 2015. The other simulated land-use 
types (i.e. industry and commerce, agriculture, forestry) were fitted using CLC 2012 
(Büttner et al., 2014) as a reference to represent the presence of land cover.

Finally, land-use utilities were computed using the Net Present Value (NPV), a 
standard method for appraising long-term investments, such as those occurring 
when land is converted for a different use (Diogo et al., 2015; Koomen et al., 2015). 
NPVs are computed in a spatially explicit-way for each simulated land-use type, by 
taking into account their local land-use suitability and economic drivers affecting 
their economic viability, particularly their specific initial land-use conversion costs 
and the expected annual revenues and costs resulting from the use of land over time 
(see Section B.2 in the Supplementary Information). The revenues, costs, discount 
rates and time-horizons for the different land-uses were specified through a com-
bination of literature review, available databases, official statistics and modelling 
results from specialised models (see Appendix D in the Supplementary Information, 
for a specification of these variables for the Netherlands, as an illustrative example). 
The calculated NPVs are not presumed to be exact estimations of land-use utility, 
but rather to provide a measure of the relative competitiveness among different land-
use types in each location.
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Model Validation

A pixel-based map comparison was performed to assess the extent to which the 
allocation module is able to replicate the observed patterns of population and urban 
residential land-use change. The patterns of the other simulated land-use types (i.e. 
agriculture, forestry, industrial) were hereby not validated, in order to focus the vali-
dation exercise on evaluating the ability to jointly simulate urban residential land 
use and population in an integrated way. For each country, we computed a number 
of indicators assessing the performance of the model (see Sects. "Validating Urban 
Residential Land-Use Patterns" to "Multiple Resolution Validation").

Similarly to Pontius et al. (2004, 2008), we compared the performance of the LUISA 
model to two reference models in order to infer on its additional predictive power:

•	 Null model, i.e. a model predicting strictly static land use and population, i.e. no 
change in land-use and population patterns compared to the year 1990;

•	 Random model, which in this case was defined as an edge growth model that 
allocates urban residential land-use change as a non-uniform diffusion process 
beyond the settlement fringe of existing urban areas. For this purpose, in every 
time-step buffers were specified around the existing urban residential areas in a 
way that the total area of the buffers was equal to the total area of the observed 
land-use changes, with the buffer’s radius being dependent on the settlement’s 
morphology parameters. This model is thus comparable to the neutral model of 
landscape change proposed by Hagen-Zanker and Lajoie (2008) as a benchmark 
for the assessment of model performance. After the Random model allocates res-
idential land use in concentric patterns, population is then allocated in the same 
way as the LUISA model over the generated land-use patterns.

Because population is allocated over the patterns of residential land use simu-
lated in a previous step, the ability to correctly simulate population is, therefore, 
highly dependent on the ability to correctly allocate residential land use. Therefore, 
we produced an additional reference model – LUISA model, simulation of popula-
tion only —  in which the allocation of population was simulated over the patterns 
of urban residential land use as observed in the reference maps for the period of 
1990–2015. This procedure allows to distinguish errors in the allocation of popula-
tion that are inherent to the population allocation algorithm from errors that result 
from the misallocation of urban residential land use. All reference models described 
above were simulated in the LUISA modelling platform.

When land-use models are validated, their performance is typically evaluated 
over the whole extent of the simulated area, without distinguishing areas with differ-
ent characteristics for which the model may perform differently (Pontius et al., 2008, 
2018; van Vliet et  al., 2016), for example, different types of urban morphological 
zones (e.g. cities, suburbs and rural areas). Therefore, we also evaluated the model 
performance separately according to different types of urbanised areas, as defined 
by the degree of urbanisation (DoU) typology (Dijkstra & Poelman, 2014). For this 
purpose, we used the DoU 2015 dataset from the GHSL data series (Florczyk et al., 
2019), which classifies local administrative units (LAU), and respective gridcells, 
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based on a combination of characteristics regarding geographical contiguity of 
urbanised areas and population density. Accordingly, three types of urbanised areas 
are distinguished (see Dijkstra & Poelman, 2014 for a more extensive description of 
the method to derive the degree of urbanisation typology):

•	 Cities: at least 50% of the LAU population lives in high-density clusters (i.e. 
contiguous gridcells with a density of at least 1,500 inhabitants per km.2 and a 
minimum population of 50,000);

•	 Rural areas: more than 50% of the LAU population lives in rural gridcells (i.e. 
gridcells outside urban clusters, which in turn are defined as clusters of contigu-
ous gridcells with a density of at least 300 inhabitants per km2 and a minimum 
population of 5,000);

•	 Towns and suburbs: less than 50% of the LAU population lives in rural grid cells, 
and less than 50% lives in high-density clusters.

Validating Urban Residential Land‑Use Patterns

To validate the simulated patterns of urban residential land-use change, three land-
use maps were overlaid and compared for each country:

•	 a reference map of the initial time-step, i.e. GHSL 1990;
•	 a reference map of the final time-step, i.e. GHSL 2015;
•	 a simulated land-use map of the final time-step, i.e. urban residential land-use 

patterns in 2015 as simulated by LUISA, having GHSL 1990 as a starting point 
for the simulation.

We adapted the terminology of Pontius et al. (2018) to characterise the pixels in 
the model validation exercise (see also Table 1 for a summary):

•	 Misses (M): erroneous pixels due to observed change predicted as persistence. 
This can be due to not predicting the development of new urban residential areas 
(M1) or the occurrence of urban abandonment (M2);

•	 Hits (H): correct pixels due to observed change predicted as change. This can be 
due to correctly predicting new urban residential areas (H1) or correctly predict-
ing the occurrence of urban abandonment (H2);

•	 False alarms (F): erroneous pixels due to observed persistence predicted as 
change; this can be due wrongly predicting the development of new urban resi-
dential areas (F1), or wrongly predicting the occurrence of urban abandonment 
(F2);

•	 Correct persistence (P): correct pixels due to observed persistence predicted as 
persistence; for the purpose of assessing the model‘s ability to simulate resi-
dential land use, we only take into account correct persistence of urban resi-
dential;

•	 Correct rejection (R): correct pixels due to observed non-residential land use 
predicted as non-residential.
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Based on these categories, we computed a series of indicators of land-use 
(change) agreement for each country. Firstly, we evaluated the ability of the model 
to correctly simulate the establishment of new urban residential areas and the 
occurrence of urban abandonment. For that purpose, we computed the producer’s 
accuracy (PA, i.e. the share of pixels with observed land-use change that was cor-
rectly simulated), and the user’s accuracy (UA, i.e. the share of pixels with simu-
lated land-use change that was correctly simulated) as adapted from Pontius et al. 
(2008):

Furthermore, we also assessed the ability of the model to simulate the persis-
tence of residential land use, by computing the share pixels with well-predicted 
persistence (%P) in relation to the pixels with observed persistence (adapted from 
Diogo et al., 2014):

Finally, we assessed the overall model performance (MP) in simulating residen-
tial land use, i.e. the extent to which the simulated residential land-use patterns cor-
respond to those observed in the reference map (adapted from Diogo et al., 2014):

Hence, PA and UA assess the ability of the model to simulate urban residential 
land-use change; %P assesses the ability of the model to replicate observed inertia 

(1)PA =
H

H +M

(2)UA =
H

H + F

(3)%P =
P

P + F
2

(4)MP =
H

1
+ P

H
1
+ P +M

1
+ F

2

Table 1   Pixel categories in the validation of simulated patterns of residential land use

Observed 2015: 
Urban residential
Simulated 2015: 
Urban residential

Observed 2015: 
Urban residential
Simulated 2015: 
Other land use

Observed 2015: 
Other land use
Simulated 2015: 
Urban residential

Observed 2015: 
Other land use
Simulated 
2015: Other 
land use

Observed 
1990: Other 
land use

H1 M1 F1 R

Observed 1990: 
Urban residen-
tial

P F2 M2 H2
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of urban residential land use; and MP assesses the ability of the model to reproduce 
the overall pattern of observed urban residential land use.

Validating Population Patterns

To validate the simulated population patterns, two population maps were overlaid 
and compared for each country:

•	 a reference population map of the final time-step, i.e. GHSL 2015 population;
•	 a simulated population map of the final time-step, i.e. population patterns in 

2015 as simulated by LUISA, having GHSL 1990 population map as a starting 
point for the simulation.

It should be noted that GHSL population maps are based on dasymmetric map-
ping methods of regional population statistics, and not real observations. Neverthe-
less, we consider it to be the best available dataset for representing population distri-
butions patterns across the whole EU, and thus we find it appropriate for validating 
simulated population patterns. Based on this comparison, we computed for each 
country the degree of correspondence (DoC), an indicator of agreement between 
simulated and observed patterns for continuous variables (adapted from Loonen & 
Koomen, 2009):

where:

Spopi	� is the amount of people allocated by the model in gridcell i in 2015;
Opopi	� is the observed amount of people in gridcell i in 2015;
N	� is the total amount of land gridcells within a country.

The DoC is closely related to the mean absolute percentage error, a commonly 
used indicator to measure the accuracy of forecasting methods. However, the abso-
lute difference between simulated and observed amount of people is hereby divided 
by 2, to avoid double-counting of misallocated population. The DoC ranges from 
0 (i.e. none of the simulated amount of people is allocated in the corresponding 
grid-cells with observed population) to 100% (i.e. the simulated amount of people 
is equal to the observed amount in every grid-cell). In addition, we also computed 
the mean bias error (MBE) in order to identify the systematic error of the model to 
under- or over-forecast population:

(5)DoC = 100% ∗

⎛
⎜⎜⎝
1 −

∑n

i=1

�Spopi−Opopi�
2∑n

i=1
Opopi

⎞
⎟⎟⎠

(6)MBE =

∑N

i=1
Spopi − Opopi

N
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where:

MBE	� is the the mean bias error;
N	� is the number of gridcells in a country with population observed in 2015.

Multiple Resolution Validation

A pixel-by-pixel comparison can be somewhat misleading in terms of assessing 
the ability to correctly allocate land use and population. For instance, the model 
might be allocating a certain land use or amount of people in the surroundings but 
not exactly on the correct grid-cells, leading to the conclusion that land use and/or 
population is being wrongly allocated, while in fact the model is producing sensi-
ble patterns. A multiple resolution procedure was therefore applied to investigate 
how the scale of assessment influences the scores of the indicators of agreement. 
An expanding sampling window was used to gradually decrease the resolution of 
the comparison, in order to quantify the indicators as the resolution of measure-
ment becomes coarser. Instead of comparing the maps on a pixel-by-pixel basis, 
we counted the number of pixels with simulated residential land use within the 
whole sampling window and compared it with the number of pixels with residen-
tial land use within the same window in the reference map. A comparable pro-
cedure was introduced to assess the indicators of agreement for population, but 
in this case, we counted the total amount of population allocated in the pixels 
within the sampling window, and then compared it with the amount of popula-
tion observed in the reference map within the same window. Finally, a weighted 
average of the indicators at different window sizes is determined to summarise the 
overall fit. The weighted average is calculated so that the greater window size, the 
smaller is the weight given to the respective indicator on the average, as follows 
(adapted from Costanza, 1989):

where:

WI	� is a weighted average of the indicator of agreement (i.e. WPA, WUA​, WMP or 
WDoC) over all window sizes;

Iw	� is an indicator of agreement (i.e. PA, UA, MP or DoC) when the sampling win-
dow is of linear dimension w;

n	� is the sampling window with largest linear dimension considered in the multi-
ple resolution validation (in this particular case, n=100, i.e. 10.000 ha);

k	� is a constant (0.1 as default value) to determine the weight that is given to 
small sampling windows in comparison to larger ones.

(7)WI =

∑n

w=1
Iw ∗ e−k(w−1)∑n

w=1
e−k(w−1)
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Results

Urban Residential Land‑Use Patterns

The performance of the model in simulating residential land use is determined by 
the ability to correctly simulate both land-use persistence and change (P and H1 in 
Fig. 2). Persistence of residential land use appears to be well captured in the model, 
with all countries achieving a share of correctly simulated persistence in relation to 
observed persistence (%P) higher than 98%. Over-optimization of land use seems to 
somewhat occur in several countries though, leading the model to overestimate the 
occurrence of urban abandonment (F2 in Fig.  2), and re-allocating these residen-
tial areas somewhere else (thus also contributing to false alarms of residential land 
use, i.e. F1). However, this amounts to only 0.3% of the total urban residential area 
observed in EU27 + UK in 2015, with the highest shares being observed in Esto-
nia (3.7%), Slovenia (1.4%), Bulgaria (1.2%) and Czechia (1.1%). Hence, producer’s 
accuracy (PA) and user’s accuracy (UA) values are roughly the same for all simu-
lated countries.

Fig. 2   Share of correct persistence, hits and misses of urban residential land use and false alarms of 
urban abandonment as simulated by LUISA, in relation to the total residential land use area observed in 
2015
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In terms of correctly allocating land-use change, the LUISA model does not per-
form equally well across countries (Fig.  3). In most cases, it achieves a weighted 
producer’s accuracy (WPA) between 20 and 40%. The model performs relatively 
well in the Netherlands (WPA = 46%) and Spain (WPA = 59%), but particularly 
poorly in Estonia (WPA = 11%). Figure 3 also shows that the LUISA model has, to 
some extent, a comparable performance to the Random model, i.e. the model simu-
lating urban residential land-use change as a diffusion process on the settlement’s 
fringes. This seems to indicate that the LUISA’s land-use allocation module tends 
to favor the formation of concentric urban clusters. For most countries the LUISA 
model still provides additional predictive power compared to the more mechanis-
tic Random model, particularly in Spain (+ 28 percentage points (pp)) and Greece 
(+ 16 pp), with the exceptions being Czechia (-2 pp), Latvia (-3 pp), Cyprus (-3 pp), 
Estonia (-10 pp) and Malta (-21 pp).

Overall, the model is able to reproduce the observed land-use patterns reason-
ably well, with almost all countries showing a weighted model performance (WMP) 
larger than 75% (Fig. 4). It appears to perform particularly well in United Kingdom 
(WMP = 92%), and Greece (WMP = 91%), mostly due to the relatively high share of 
observed persistence that was well predicted. The LUISA model outperforms the 
Null model in all countries, i.e. it provides additional predictive power compared 
to not simulating land use at all. It performs particularly well in the Netherlands 
(+ 17 pp compared to the Null model), Portugal (+ 16 pp) and Spain (+ 18 pp), i.e. 
countries with a significant relative increase in urban residential land use between 
1990 and 2015 and where the LUISA model showed a good ability to correctly allo-
cate urban land-use change.

Fig. 3   Weighted producer’s accuracy (WPA) in reproducing observed residential land-use change pat-
terns in 1990–2015, for the LUISA and Random models
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Figure  5 shows the relative net change of residential land-use area during the 
period of 1990–2015 for each country, according to the degree of urbanisation of 
the locations where the establishment of new urban residential areas occurred (both 
observed and simulated). We can observe that the model is systematically biased 
towards underestimating the development of urban residential land use in rural areas 
(-6 pp, on average in EU27 + UK), and conversely overestimates the growth of urban 
residential land use in cities (+ 2 pp, on average) and in towns and suburbs (+ 3 pp, 
on average).

The model’s accuracy (both PA and UA) in correctly allocating new urban residential 
areas is consistently higher in cities and in towns and suburbs areas than in rural areas 
(Fig. 6). Overall, PA in EU27 + UK is 56% in cities, 35% in towns and suburbs, and 
11% rural areas. Furthermore, PA is systematically higher than UA in cities (on aver-
age, + 21 pp) and in towns and suburbs (+ 9 pp). In other words, the share of observed 
land use that is correctly predicted is higher than the share of simulated land use that is 
correctly predicted, with the overestimation of urban residential land use in these areas 
resulting in a relatively higher occurrence of false alarms in relation to misses (Fig. 7). 
The opposite relationship is observed in rural areas, i.e. UA is higher than PA (on aver-
age, + 9 pp), due to the substantially larger share of misses in relation to false alarms. 
PA in cities is high even in countries that have shown an overall low WPA, e.g. Estonia 
(75%) and Lithuania (78%). This implies that the model is able to correctly identify 
the locations where urban growth takes place in cities, even in the countries where the 
model has an overall poor performance. However, and particularly for those countries, 
that also implies a relatively lower UA in cities – i.e. the model might correctly predict 
the observed establishment of residential land use in cities, but that comes at the cost of 
also wrongly predicting a relatively large share.

Fig. 4   Weighted model performance (WMP) in reproducing observed residential land-use patterns in 
2015, for the LUISA and Null models
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As a means to illustrate the model’s behaviour and ability to simulate urban residen-
tial land-use development, Fig. 8 shows a pixel-by-pixel comparison of the observed 
and simulated patterns in the so-called Randstad region in central-western Netherlands. 
This region consists of a large group of adjacent metropolitan areas including the four 
largest Dutch cities (Amsterdam, Rotterdam, The Hague and Utrecht) and their sur-
rounding (peri-)urban and rural areas. We can observe that combinations of hits, false 
alarms and misses seem to occur together within existing urban conglomerations and 
on their fringes. This implies that, despite the errors at a fine, pixel-by-pixel resolu-
tion, the model is able to capture relatively well the aggregated spatial pattern resulting 
from the growth of existing cities, towns and suburban areas. However, we also see a 
relatively large number of scattered misses occurring in rural areas, particularly on the 
fringe of existing small conglomerations and in newly formed ones.

These observations seem to underpin the previous observations on the relatively 
poorer ability of the model to reproduce land-use patterns in rural areas. In fact, we 
can observe that differences in model performance across countries seem to be mainly 
explained by the predominant pattern of urban development taking place in each coun-
try, with higher PA values being largely linked to high shares of net residential land-use 
change occurring in cities (Fig. 9) and lower shares in rural areas. We can therefore 
conclude that the LUISA model seems to favor the formation of compact, large urban 

Fig. 5   Relative net change of residential land-use area in the period of 1990–2015, both observed and 
simulated per country, according to the degree of urbanisation
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clusters in cities and existing towns and suburbs, while somewhat failing to capture the 
emergence of new isolated suburban neighbourhoods and small towns in rural areas.

Population Patterns

Figure 10 shows that, regarding the ability to correctly simulate population patterns, 
the LUISA model achieves a weighted degree of correspondence (WDoC) between 
75 and 85% for most countries, except for Finland (72%) and Ireland (66%). The 
LUISA model outperforms the Random model in several countries, but not all. Spe-
cifically, for Latvia, Romania, Sweden, Croatia, France, Finland and Ireland allocat-
ing population over the concentric urban land-use patterns produced by the Random 
model generates population patterns that are more in agreement with the observed 
ones, than those generated by the LUISA model. By comparing Figs. 10 and 11, we 
can see that the LUISA model, simulation of population only (i.e. the model with 
which population is simulated over the observed land-use patterns) performed only 
slightly better than the LUISA model (+ 0.8 pp on average). This seems to indicate 
that errors in the allocation of population can be somewhat explained by misalloca-
tion of urban residential land use, but not entirely. In addition, Fig. 11 also shows 
that the Null model performs best for a large number of countries, i.e. simulating 
population changes introduces more errors than assuming no population change. No 

Fig. 6   Producer’s accuracy (PA) and user’s accuracy (UA) per country, according to the degree of urbani-
sation
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clear relationship could be found between differences on the ability of the model to 
correctly allocate population and the characteristics of the respective countries and 
regions, for example, in terms of NUTS 3 region size, predominance of urban areas, 
magnitude of population change (either absolute or relative), direction of population 
change (i.e. net decrease or increase), or share of population (change) per degree 
of urbanisation. We conclude that even though the LUISA model performs overall 
reasonably well in reproducing observed population patterns, the current country-
specific empirical functions of population pressure and distribution do not seem to 
fully capture all the different drivers and processes of population distribution change 
operating across the various countries and regions in the EU27 + UK.

In addition, we found that overall the LUISA model tends to slightly overesti-
mate the number of people living in rural areas (+ 0.8 pp overall when comparing 
simulated with observed rural population in EU27 + UK, see Fig. 12) while under-
estimating population in cities and in towns and suburbs (-0.2 and -0.6 pp, respec-
tively). However, in a few countries (e.g. Belgium, Denmark, Slovenia and Slova-
kia), the opposite relationship could also be observed.

Figure 13 shows that the LUISA model performs differently in allocating pop-
ulation depending on the degree of urbanisation of observed land use. It consist-
ently achieves a relatively higher DoC in cities (roughly between 80 and 90%) and 
in towns and suburbs (roughly between 70% and 85), compared to rural areas (lower 

Fig. 7   Share of total occurrence of false alarms (F1) and misses (M1) per degree of urbanisation, in rela-
tion to total false alarms and misses, in each country
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Fig. 8   Pixel-by-pixel comparison of simulated and observed patterns in the Randstad region, the Nether-
lands

Fig. 9   Producer’s accuracy as a function of the share of net urban residential land-use change occurring 
in cities
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than 70%). One can also observe in Fig.  14 that, although the mean bias errors 
(MBE) in rural areas are of very small absolute magnitude (on average, -0.01 peo-
ple), they consistently account for the majority of the total absolute errors in a simu-
lated country. This result implies that even though individual allocation errors in 
cities and in towns and suburbs are on average much larger, errors in rural areas are 
much more frequent and widespread.

Fig. 10   Weighted degree of correspondence (WDoC) in reproducing observed population patterns in 
2015, for the LUISA model and the Random model

Fig. 11   Weighted degree of correspondence (WDoC) in reproducing observed population patterns in 
2015, for the LUISA model, simulation of population only and the Null model
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Figure 15 shows a pixel-by-pixel comparison of observed and simulated popu-
lation patterns in the Randstad region in the Netherlands, as a means to illustrate 
the model’s behaviour and ability to correctly allocate population. One can confirm 
that, although the allocation errors in rural areas are of small absolute magnitude 
(particularly when compared to those in large urban conglomerations), the relative 
errors are significantly large and distributed over a considerable area extent, both in 
towns (where they are largely overestimated) and sparsely distributed communities 
(where they are largely underestimated).

This seems to indicate that the model has a tendency to redistributing people from 
low density rural areas to residential clusters with good accessibility, resulting on over-
estimation of population in the core of urban conglomerations and well-connected 
towns, and conversely underestimation of the number of people living on more sparsely 
distributed rural communities. These findings also underpin the relatively lower model 
performance in rural areas (see Fig. 13). In addition, they also provide an explanation 
for the Null model outperforming the LUISA model in many countries (Fig, 11): the 
aggregated errors introduced by the model over-redistributing people from rural areas 
are so large that they surpass those in the Null model resulting from not accounting 
for the net regional population changes. On the other hand, this redistribution mecha-
nism seems to capture relatively well the outcomes of negative net population change 
processes, e.g. Bulgaria, Croatia, Hungary, Estonia, Latvia, Lithuania, with the model 
outperforming the Null model in these cases.

Fig. 12   Share of total country population as simulated by the LUISA model in relation to the share of 
total country population observed in 2015, per degree of urbanisation
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Despite the errors introduced at fine resolution by the dynamic population redistri-
bution, the DoC consistently increases for larger window sizes, with the LUISA model 
outperforming the Null and Random models at the aggregated level for window sizes 
larger than 10 (i.e. > 1 km2), both when net population increases (e.g. as in the Neth-
erlands) and decreases (e.g. as in Croatia), as illustrated in Fig.  16. Hence, we can 
conclude that the LUISA model is able to overall provide additional predictive power 
for projecting population distributions in aggregated administrative units (e.g. at the 
municipal level), compared to both Null and Random models.

Discussion

The validation provided critical insights on the capabilities and limitations of the 
LUISA model to inform on future population density and land-use developments 
in the EU27 + UK. In terms of land-use modelling accuracy, the LUISA model 
showed a performance range comparable to that observed on previous validation 
exercises comparing different land-use modelling applications (see e.g. Pontius 
et al., 2008, 2018). Validating the model in different countries allowed evaluating 
its ability to reproduce observed land-use change patterns and processes across a 
diverse set of biophysical and socio-economic contexts. Interestingly, the valida-
tion results showed that, even though the same methods and data sources were 

Fig. 13   Degree of correspondence (DoC) of simulated population, according to the degree of urbanisa-
tion
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uniformly applied in every simulated country, the ability of the model to cor-
rectly reproduce land use and populations patterns can still vary widely depend-
ing on the context. Pontius et al. (2008) had previously reported that the model’s 
ability to predict land-use change can be substantially hindered when predicting 
small amounts of net change, i.e. the models are more likely to predict land-use 
change accurately when the amount of observed net change is large. Our valida-
tion showed, however, that the amount of net change is not necessarily a determi-
nant of model performance, but rather the location and overall pattern of change 
observed in the simulated region. In particular, the model performed consistently 
well in urban areas characterized by compact urban growth in cities and suburbs, 
but poorly where residential development occurred predominantly in scattered 
patterns across rural areas, irrespective of the amount of net change.

The model showed a tendency to simulate residential and population pat-
terns towards the emergence of compact, densely populated and highly accessible 
urban conglomerations.Often such patterns did not entirely correspond to the ones 
observed in reality. A number of reasons may explain such model behaviour. With 
regard to the biased allocation of residential land use, a likely explanation comes 
from the fact that, in the taken modelling approach, different segments of the resi-
dential market were lumped together into one generic residential land-use type, 
thus failing to accurately capture the emergence of isolated peri-urban residential 

Fig. 14   Mean bias error (MBE) per degree of urbanisation, and share of absolute total error per degree of 
urbanisation, of simulated population in each country
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development observed in Europe (EEA-FOEN, 2016). Ideally, different segments of 
the residential land-use market should be modelled according to their own speci-
fication. This would require a substantial modification of the applied allocation 
algorithm in order to allow multiple land-use types satisfying one generic land-use 

Fig. 15   Absolute (above) and relative error (below) of the simulated population distribution in the Rand-
stad, the Netherlands
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demand. This is currently done, for example, in the CLUMondo (Van Vliet & Ver-
burg, 2018) and Ruimtescanner XL (ObjectVision, 2020) models.

The same segmentation of preferences would have to be taken into account in the 
population allocation as well, given that the model currently considers population to 
be uniform. In addition, the model implicitly conflates historic population density with 
local attractiveness for residential functions. To a large extent, this is an oversimplifi-
cation on the range of households’ residential preferences and choices, in respect to 
housing amenities and costs. This assumption can be particularly problematic when 
considering that informal settlements and social housing neighbourhoods are often 
densely populated but largely lacking amenities (Beer et al., 2003; Visagie & Turok, 
2020). In reality, population age structure and differences between age groups in terms 
of preferences (e.g. open-space, availability of services, noise), household size and 
income may contribute to the emergence of different housing market segments. In 
addition, different age groups may also hold distinct mobility patterns. Recent devel-
opments in breaking down local population distributions by age classes (Jacobs-Cri-
sioni et al., 2020) and identifying intraday and monthly population variations (Batista 
e Silva et al., 2020) may provide promising avenues for addressing these issues and 
developing modelling approaches that explicitly account for these processes.

In addition, while urban residential and other land-use types are represented in the 
model as homogenous, mutually exclusive classes, in reality a large share of urban 
land-use changes in Europe occurs in very small incremental changes rather than 
large-scale conversions, particularly in rural areas (Van Vliet et al., 2019). Although 
residential land use was simulated at a relatively fine resolution, it is likely that a 
large share of rural residential areas remained unrepresented in the model, during 
both the specification of the local suitability functions and simulation of land use. 
This may partially explain the poorer performance of the model in rural areas, and at 
the same time, the improved ability to predict the establishment of urban residential 
land use in cities, given that this type of dichotomous classification is better suited 
to capture high-density urban areas. These findings suggest that the calibration and 
simulation of residential land use can be improved by replacing such dichotomous 
classifications by more nuanced representations of land use, including e.g. mosaic 
classes or continuous variables indicating the share of land use in a gridcell.

Fig. 16   Degree of correspondence (DoC) at multiple resolutions for the Netherlands (left) and Croatia 
(right)
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Not accounting for variations in e.g. local-specific land prices, intensity-specific 
investment costs and housing prices may also partly explain the model behaviour. 
Land prices in cities are, in general, substantially higher than in the surround-
ing rural areas. Likewise, the costs of constructing high-rise buildings also differ 
substantially from those incurred in the construction of low-intensity residential 
areas. Real estate developers can be expected to take into consideration trade-offs 
between local attractiveness factors that contribute to the valuation of houses (and 
consequently their expected gross revenues) and development costs. Depending on 
local-specific land prices and construction costs (and also on the demand for differ-
ent housing market segments, see previous issue), it might be more attractive, for 
example, to invest in the development of low intensity residential areas in locations 
with less amenities (thus, providing lower gross revenues per unit of land) but that 
also involve lower costs. These limitations may also contribute to the model over-
optimizing land-use in relation to only a few particular land-use suitability factors 
(e.g. accessibility and neighbourhood population density), with the dynamic popula-
tion allocation mechanism then reinforcing this model behaviour as a positive feed-
back, leading to the emergence of the simulated compact urban patterns. Variability 
on these factors could be incorporated by considering different magnitude ranges of 
costs and revenues, for example, according to the degree of urbanisation (which in 
turn, could be dynamically determined based on the simulated population and resi-
dential land-use patterns).

The spatial allocation algorithm implicitly assumes that allocating land to the uses 
maximising local utility delivers the greatest overall utility (Fujita, 1989; Martínez, 
1992), while there is evidence that such free market mechanisms often lead to market 
failures in the land system (Cheshire, 2009, 2013). Spatial planning is both an impor-
tant governance instrument for addressing these failures and a key driver of urban 
development patterns (Claassens et al., 2020; Hersperger et al., 2018), but it is cur-
rently not incorporated in the LUISA modelling framework. Given the apparent sto-
chastic nature of the establishment of new towns, the inclusion of e.g. detailed maps 
representing municipal land-use planning regulations could contribute to improve the 
model performance, particularly in rural areas where it is most challenging to explain 
observed change patterns. However, harmonised digital datasets of spatial plans are 
currently lacking at the European level, in part also due to the inherent vagueness of 
strategic spatial planning (Hersperger et al., 2022). Therefore, while we fully endorse 
efforts for better embedding land-use modelling within the spatial planning domain, 
we argue that such efforts are beyond the scope of a large-scale modelling tool such 
as the LUISA platform. Instead, we contend that this should rather be pursued in the 
development of modelling applications for in-depth case studies in relatively small 
extent areas (e.g. at the metropolitan area level, see Domingo et al., 2021).

The LUISA model relies on a complex chain of modelling steps, requiring 
the integration of a large number of specialised datasets from different sources 
in order to calibrate the demand and allocation modules. Despite considerable 
efforts for coherently harmonising the entire knowledge base (see e.g. Baranzelli 
et  al., 2014; Batista e Silva et  al., 2016; Jacobs-Crisioni et  al., 2017; Lavalle 
et al., 2013), errors may be inevitably introduced when processing the different 
datasets, not to mention the accuracy limitations inherent to each one of them. 
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This makes it very challenging to assess the magnitude effect of error propaga-
tion in the model performance, and to distinguish these type of errors from those 
emanating from faulty assumptions or specifications in the modelling frame-
work. Additional efforts should therefore be made to coherently evaluate the 
implications on the model behaviour and performance resulting from the data 
quality limitations of each individual dataset, and potential issues arising from 
the combined use of heterogeneous databases.

Conclusions

Models represent simplified versions of reality, and as such, developing a model entails 
evaluating trade-offs and making decisions about the appropriate degree of abstraction 
and generalisation (Magliocca et al., 2015), i.e. which details from reality to include 
or exclude, and how to represent them, in order to provide a sensible representation of 
the system at hand. Such decisions are usually informed, for example, by the intended 
level of detail and extent of the modelled system, data availability for representing the 
considered system properties, and the purpose for which the model is developed. The 
model validation presented in this article appeared to be particularly helpful in reveal-
ing which aspects of land-use and population change appeared to be well captured by 
the modelled approximations, and which ones not. Not only does this provide policy-
makers with a better understanding on how to interpret model projections and use them 
as an input to design policies, but also it enables model developers to envision potential 
avenues for improving models and better attune them in respect to their intended use. 
Model validation should thus be regarded as a critical step, and an integral part, of the 
iterative process of developing models for policy support.
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