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Abstract

As an obstacle to the hedonic model’s reliability, housing submarkets have drawn
plenty of scholarly attention because they lack an integrated and standardized
classification framework and validation methods. By incorporating multiple spatial
statistics and data mining techniques into a hybrid spatial data mining method, this
study develops an innovative classification methodology that replaces spatial
continuity with spatial connectivity. Employing Salt Lake County as the case,
we identify 43 housing submarkets based on differentiation among structural
differences, the complexity of urban space, and neighborhood characteristics. With
the introduction of urban amenities into the validation framework, the comparison
between the submarket-based model and non-submarket regression shows our
classification not only enhances prediction accuracy but also achieves better
theoretical comprehension of local housing markets. Besides contributing to an
understanding of urban spatial heterogeneity, our study also provides a feasible
spatial modeling method which is capable of processing a large dataset with more
than 200,000 observations.
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Introduction

The hedonic model has been widely employed as a standard approach in understanding
the determinants of housing value, assessing housing values, and calculating property
taxes. It is an integrated model that assumes a uniform market when evaluating housing
structures, neighborhood conditions, and other determinants of housing values. Since
the late 1990s, concepts of submarkets, as well as their spatially heterogeneous effects,
have been brought into the discussion and thus cast doubt on the accuracy of the
housing value predictions of the traditional hedonic model. These effects may lead to
the spatial autocorrelation in both housing values and explanatory variables, which
affects their spatial independence, resulting in biased estimations (Adair et al. 1996;
Goodman and Thibodeau 2003).

To control the effects of spatial heterogeneity, the application of spatial econometric
methods in the hedonic model has been broadly accepted as a solution because they
usually account for spatial autocorrelation among the observations (Yu et al. 2007).
However, in the United States, many counties in metropolitan areas consist of more
than 200,000 housing parcels (Jia and Gaughan 2016; Lee and Moudon 2006), which
are far beyond the operational capability of traditional spatial econometrics (Anselin
2013; Fotheringham and Rogerson 2008) and makes it nearly impossible for re-
searchers and tax accessor offices to process them at an affordable cost. Current studies
still rely on sampling to reduce the computing cost, which is not as informative as using
all of the observations (Li et al. 2016). Thus, to improve the accuracy and efficiency of
housing value estimation, a feasible approach coping with large datasets to classify
submarkets is urgently needed.

Other studies try to focus on the division of housing submarkets, and these studies
could be grouped into two categories. One is based on geographical and administrative
boundaries like census tracts, postal zones (Goodman and Thibodeau 2003), and
municipalities (Brasington 1999; Tian et al. 2017), or the concentric rings to represent
urban spatial structure (Li et al. 2018). The other category is based on the data-driven
methodology that has thrived since 2005, thanks to its high objectivity and ability to
account for various effects (Wu and Sharma 2012). K-means clustering (Bourassa et al.
2003), Ward’s clustering (Bates 2006), and the CART decision tree (Clapp and Wang
2006) are the common algorithms for housing submarket classification. Nonetheless,
these approaches have also been questioned because of algorithm shortcomings.

This paper seeks to develop an efficient and accurate method for data-driven
housing-submarket classification, a method that is capable of processing large datasets
without cloud computing or cluster computing support. We develop a hybrid spatial
clustering method to integrate the strengths of various methods such as Getis and Ord’s
spatial statistics, k-means clustering, hierarchical clustering, density-based spatial clus-
tering of applications with noise (DBSCAN), and decision tree, to retain substitutabil-
ity, similarity, and spatial connectivity simultaneously. To examine the soundness of the
classification, three goals—improvement of prediction accuracy, consideration of local
effects, and better theoretical rationality, are established. The comparison between non-
submarket and submarket-based regressions shows that our method not only improves
general model prediction accuracy, which is reflected by adjusted r-squared, but also
local prediction ability, which is reflected by the spatial autocorrelation in residuals.
More importantly, it reflects the spatial variation in the effects of the housing price
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determinants with the hedonic model prediction, and proves its usefulness in under-
standing housing prices.

Literature Review
Housing Submarkets: Definition, Principles, and Identification

The housing submarket is critical in the analysis of urban housing markets, because the
structure of an urban housing market is too complex for an equilibrium model
(Whitehead 1999). As a housing market varies in housing characteristics and prices
by location, a combination of supply and demand-related factors results in the segmen-
tation of housing markets (Goodman and Thibodeau 2003). With the widespread use of
the hedonic model, such a problem has become more important not only in the
academy, but also in the assessment of housing values for property taxes. Housing
submarkets form from the interplay of four characteristics: heterogeneity, durability,
location fixity, and cost of supply (Rothenberg 1991; Bourassa et al. 1999; Hwang and
Thill 2009; Watkins 2001). In the current literature, three main principles of housing
submarkets are widely accepted: substitutability, similarity, and spatial continuity (Wu
and Sharma 2012). Substitutability is the core principle in defining and validating
housing submarkets. High substitutability means that attributes of houses in the same
housing submarket should have similar contribution in estimating the overall housing
prices with the hedonic model. Thus, the best way to evaluate substitutability is to
compare the model performances at the local submarkets (Watkins 2001). Similarity
refers to the similarity of housing structural attributes, such as room counts, house size,
and housing condition, as well as local neighborhood socioeconomic conditions
(Bourassa et al. 2003; Watkins 2001; Bates 2006). Spatial continuity means that a
housing submarket must occupy a continuous spatial space and submarkets should also
have clear geographic boundaries, which can be actual barriers such as administrative
boundaries and highways, or invisible segments (Wu and Sharma 2012).

Based on the above three principles of housing submarkets, scholars have developed
a series of submarket simulation approaches in practice. Spatial regression models, such
as the spatial lag model, spatial error model, and spatial filtering regression, are the
most frequently-applied approaches to detect and deal with the spatial autocorrelation
of underlying determinants. They are superb at improving the prediction accuracy of
the hedonic model, and preventing geographical bias (Griffith 2002; Li et al. 2016; Li
et al. 2018). However, most spatial regression models only give a global regression
result with respect to spatial autocorrelation, and thus the detailed local effects are often
ignored. Moreover, they are difficult to use with large datasets. Housing submarket
classification is an alternative way to analyze the actual structure of a housing market.

At the initial stage, boundaries of prior definitions such as zip code and census tract
in the United States were commonly accepted as housing submarkets. However, later
on studies found that a prior definition fails to address the principles of substitutability
and similarity (Wu and Sharma 2012). Consequently, data-driven methods emerged
that account for substitutability and similarity. Typically, such studies employ several
kinds of distance variables, for example, distance to the CBD or distance to the city’s
outer limit, to capture the spatial organization of housing submarkets (Bates 2006;
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Bailey 1999; Bourassa et al. 2003; Clapp and Wang 2006). These studies successfully
capture the principle of similarity, but neglect the role of spatial continuity, because
such distance variables are more likely to represent locational characteristics rather than
spatial patterns.

To include more aspects of spatial continuity while maintaining substitutability and
similarity, scholars have focused on the methods of spatial clustering to classify
housing markets (Hwang and Thill 2009). Spatial clustering combines data similarity
and spatial pattern, so it reflects similarity and spatial continuity at the same time. The
algorithms of spatial clustering can be divided into two broad groups.

The first group integrates spatial constraints into the traditional data clustering
methods such as hierarchical and non-hierarchical clustering in three ways. First, spatial
data, such as geographical coordinates, are treated as variables in the clustering process,
and a proper weight for the spatial variables is the key to maintaining an organized
spatial pattern of the classification result (Wise et al. 1997). The second method is to
define clusters of structural and neighborhood variables alone without any spatial
constraints, then merge the “isolated” observations and small clusters into the most
similar and spatially adjacent clusters (Fovell and Fovell 1993). The third way is to
locate the potential cluster for each observation by evaluating the similarity of its
adjacent neighbors, which is usually called “regionalization” (Guo 2008; Mennis and
Guo 2009).

The other broad group includes methods like spatial autocorrelation statistics and
spatial scan, which use spatial patterns to classify clusters (She et al. 2015). They
cluster observations due to the attributes of the observations themselves, their neigh-
borhoods, and the global condition. For example, spatial scan relies on a “geographical
window,” and clusters the observations by judging the levels of spatial density and data
similarity in the geographical windows (Kulldorff 1997).

However, these methods cannot comprehensively fulfill the three principles of the
housing submarket simultaneously. First, some of the methods are imprecise because of
their algorithms. For example, k-means clustering is not good at non-vertex dataset, and
spatial autocorrelation statistics are unable to precisely judge the boundaries of clusters
as they rely on statistical significance to divide the clusters but usually produce
insignificant results around the boundary area (Grubesic et al. 2014). Second, some
of them are defective when considering spatial continuity. For example, if geographical
coordinates are considered as variables, a proper weight is important (Wu and Sharma
2012). Moreover, house densities vary across urban space, which means the impossi-
bility of finding an appropriate and universalized spatial weight to maintain spatial
continuity. For instance, since city centers usually have denser clusters of dwellings
than the suburbs, the coordinate differences between nearby houses in city centers are
smaller than suburbs. Assuming the variations of other characteristics are similar
between these two areas, city centers are less likely to be divided into smaller clusters
because of the smaller differences in coordinates.

Third, some methods lack objectivity. Many algorithms need pre-given parameters
which affect the clustering result. However, as the setting standard for these parameters
varies due to local conditions, they are hard to precisely define, such as the desired
cluster number of k-means clustering.

Last, some methods are not practical in the context of big data and social data
revolution. Space and time complexity of the algorithms, which requires the processing
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memory capacity and processing time, make many well-developed methods unsuitable for
processing large datasets at a low cost (Guo 2008; Helbich et al. 2013; Li et al. 2017).

Recent studies have demonstrated that substitutability, similarity and spatial conti-
nuity might be insufficient to classify urban housing markets (Torrens 2008). First, as a
core principle of the housing submarket, substitutability does not have a stable and
accurate indicator in many studies. Second, similarity is problematic because the levels
of similarity within a single submarket and degrees of dissimilarity between submarkets
are arbitrarily defined. Third, spatial continuity, as a concept of spatial constraint,
theoretically underestimates the complexity of urban spaces, especially in sprawling
areas, where leapfrog development is common.

Therefore, in this study, to better reflect the complexity of urban space, we propose
the notion of spatial connectivity to replace spatial continuity. First, concentrating on
spatial continuity would result in small and numerous clusters in those “complex areas”
which impact the model’s accuracy (Batty and Xie 1996; Ewing et al. 2014; Hamidi
and Ewing 2014; Xie et al. 2007; Wei 2016; Wei and Ewing 2018; Wilhelmsson 2004).
Second, spatial continuity is hard to define when houses are treated individually since
they are recorded as discrete observations in the dataset. Third, aggregating houses into
continuous units, an alternative way to achieve spatial continuity, omits a wealth of
specific characteristics (Helbich et al. 2013). Thus, we regard small clusters with similar
characteristics in the same neighborhood as one submarket and name the spatial
relationship spatial connectivity.

Validation

The assessment of the classification result should comply with the principles of
substitutability, similarity, and spatial connectivity. Moreover, a proper validation
framework should improve prediction accuracy and theoretical explanation, as well
as consider local effects. While spatial connectivity can be examined by geospatial
information system (GIS) visualization, and data clustering naturally indicates within-
group similarity, the measurement of substitutability is usually the most concerned part
in the validation process for housing submarket classification in current studies
(Helbich et al. 2013; Wu and Sharma 2012). Various model accuracy indicators, such
as weighted mean squared error (WMSE), root mean squared error (RMSE), and
adjusted R-squared are commonly used to compare the goodness-of-fit of different
submarket classifications (Goodman and Thibodeau 2003; Helbich et al. 2013;
Manganelli et al. 2014). However, these measurements can only assess general model
performance and not the complexity of substitutability.

The optimal housing submarket classification should also be able to capture spatial
heterogeneity, which means that with a proper model, spatial autocorrelation in resid-
uals should be insignificant. Furthermore, previous validation processes usually use
identical variables in classification and validation, and add housing submarkets as
dummy variables, which overestimate the performance of housing submarkets because
these variables are already found related within groups and differentiated between
groups. Therefore, some new variables need to be included for validation to test the
ability of our models to explain these new variables. The results should also be
examined under a well-studied framework in order to validate the classification not
only in terms of model prediction but also theoretical explanation.
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Overall, the classification of urban housing submarkets deserves further research.
While concentrating on spatial continuity, current studies have not considered the
complexity of urban space and the application of large datasets. Such lack of consid-
eration may lead to submarket fragments. A suitable and feasible solution for housing
submarket classification in the context of big data, which can retain the three principles
of substitutability, similarity, and spatial connectivity at the same time, is also needed.
Moreover, while similarity and spatial connectivity are ensured by their algorithms, a
proper and objective validation is needed to test substitutability by evaluating model
improvement in terms of prediction accuracy, ability to consider local effects, and
theoretical rationality.

Methodology
Data and Study Area

Our study area is Salt Lake County (Fig. 1).It constitutes most of the Salt Lake City
metropolitan area, which is the largest metropolitan area in Utah and one of the
fastest growing areas in the U.S (Li et al. 2016). The county had 1.03 million
population in 2010, which represented an increase of 14.6% from 2000 (U.S.
Census Bureau 2001, 2011). We selected Salt Lake County as the study area for
three main reasons. First, the Salt Lake County Assessor’s Office provides com-
prehensive information for over 24,000 single-family houses, which is an appro-
priate size for testing our methodologies in both classification and validation.
Second, there have been plenty of empirical studies focusing on the underlying
determinants of housing values in Salt Lake County, which provide enough theo-
retical support and comparative examples for our validation (Dong et al. 2016; Li
et al. 2016; Liao et al. 2015; Lowry and Lowry 2014; Wei et al. 2018; Wei et al.
2016). Third, because of the region’s rapid growth, studies have raised the concern
of residential segregation in Salt Lake County, which would mean a high level of
spatial heterogeneity (Iceland and Sharp 2013; Korinek and Maloney 2010).

The property attributes were derived from the Salt Lake County tax assessor’s
dataset for the year 2011, which includes basic information about each building such
as building structure, land value, and final housing value. These values have been
found to be a little bit underestimated because of the delay in updating (Jarosz 2008),
but that shortcoming is compensated for by the fact that it is a comprehensive and
integrated dataset. Other sources are too dependent on real estate information, which
cannot reflect the whole housing market distribution and result in biased estimation.
The other advantage of this dataset is that it includes not only the structures and values,
but also the building use types. From this dataset, we can also easily extract non-
residential sites such as hospitals, schools, and supermarkets.

The socioeconomic data were collected from the American Community Survey
(ACS) dataset on census tract level. The Utah Automated Geographic Reference Center
(AGRC) offered the GIS data of part of the amenities, such as transportation infra-
structures, parks, churches, rivers, and streams. The vegetation information was derived
from Landsat TM 5 satellite images from U.S. Geological Survey by calculating the
Normalized Difference Vegetation Index (NDVI).
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Salt Lake County in Utah State
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Fig. 1 Salt Lake County

Hybrid Spatial Clustering of Housing Submarkets

There were more than 240,000 single-family houses in Salt Lake County in 2011. This
large dataset requires an enormous computing capacity for running spatial clustering
and spatial regression models. We found that to merely construct a spatial weight
matrix of about 240,000 observations in the spatial regression models would require
over 500 GB memory in R, which exceed the computing power of a personal computer.
Currently, there is no classification framework that can simultaneously deal with a large
dataset, maintain a reasonable spatial organization, and remain objective within pre-
given parameters. Therefore, we developed a hybrid spatial clustering method that
combines substitutability, similarity, spatial connectivity and computing complexity. To
measure substitutability, we included the residual of a simple hedonic model as a
dimension in our data clustering, since spatial clusters of residuals reflect the similarity
of price mechanisms (Tu et al. 2007). Since there is always a trade-off between
similarity and spatial connectivity, we combined several different clustering and pro-
cessing methods to maintain them simultaneously. For spatial connectivity, our first
goal was to add spatial constraints into the observations. As adding spatial variables
into tranditional data clustering distorts the results, and regionalization algorithms are
too costy in computing time when applied to large datasets, we chose local spatial
autocorrelation statistics, which are widely accepted in spatial clustering and more
stable with large datasets (Assunc¢@o et al. 2006). They are also compatible with other
algorithms in multivariate spatial clustering (Peeters et al. 2015). To ensure the best
similarity result, we applied a two-step clustering combining k-means and hierahical
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clustering, which is capitable to handle large dataset processing and is more precise
than either of the single algorithm (Day 2003). Finally, the results of the two-setp
clustering may contain huge clusters which consist of several remote housing submar-
kets, so we used density-based spatial clustering of applications with noise (DBSCAN)
to break them down, and then use the decision tree algorithm to reclassify the outliers
defined the DBSCAN (Fig. 2).

Variables for Clustering

As spatial connectivity could be ensured by the hybrid spatial clustering method using
spatial information, the selection of variables for spatial clustering should consider the
dimensions of similarity and substitutability at the same time, which includes three
parts: housing structure, neighborhood social-economic conditions, and locational
indicators. These variables are widely accepted as determinants of housing value and
the basic components of the hedonic model, and they are also widely regarded as the
characteristics of housing submarket (Li et al. 2016; Li et al. 2018). Similarity was
obtained directly by the variable values, and substitutability was evaluated by using the
residuals of a linear model to reflect the similarity of housing value mechanism. The

Housing . .
Structure Neighborhood Location
[ | I
Substitutability Similarity
Spatial Weighted R
Standardization "
< Two-step Clustering
Spatial Connectivity
and Outlier >
Detection
| Outlier
X Reclassification
Hybrid Spatial Clustering
v

Housing
Submarket

Fig. 2 Theoretical and analytical framework for housing submarkets
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definitions and descriptions of the variables which were involved in the clustering
process are given in Table 1.

The structural variables represent the basic structures and quality of houses. We
included the house occupation status (number of families indicate if the house is for
rent/share or single family) (Wu 1996), inner house structure (main floor area, number
of rooms, number of full baths), and house general condition (year built, housing value,
building value which does not consider land value, and house condition rating).

Neighborhood socioeconomic conditions are also of great importance in defining
housing submarkets, since these conditions are highly associated with family welfare,
such as tax rate and educational zoning, and neighborhoods are an important compo-
nent in social network (Adair et al. 1996). We used neighborhood economic conditions,
which include tax rate and local income level, and demographic conditions, which
include local median age, population density, proportions of the population accounted
for by non-Hispanic Whites, African-Americans, and Asian-Americans. Hispanics are
not included because of strong multicollinearity.

Table 1 Variables for housing submarket classification

Housing structure Variable name
Similarity Housing Structure Occupation Number of Families NUM_FAMILI
Variables Inner Structure  Main Floor Area MAIN FL AR
Total Rooms TOTAL ROOM
Full Bath Numbers FULL BATHS
Condition Year of Built YEAR BUILT
Housing Value FINL VALUE
Building Value BLD_VALUE
House Condition OverallCon
Neighborhood Economic Local Housing Tax Rate = Tax
SOClal-Economlc Condi- Condition Neighborhood Median Median_age
tion Household Income
Demographic ~ Percentage White WhiteR
Condition Population
Percentage Black BlackR
Population
Percentage Asian AsianR
Population
Neighborhood Median Median_inc
Age
Neighborhood Population PopDen
Density
Location Indicator Distance to Nearest AgriDis
Agricultural Land
Distance to Nearest IndustryDi
Industrial Land
Substitutability Residuals of the OLS Residual

regression model
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Location is the most signficant factor in housing choices, which is highly related to
accessibility, commuting, and environment, contributing significantly to the formation
of housing submarket (Cho et al. 2006; Dubin 1992). We used two distances to
represents the basic zoning status of each house: its distance from the nearest agricul-
tural land, which is regarded as the urban edge of undeveloped area, and the distance
from the nearest industrial land, which is regarded as the traditional employment
region.

As substitutability should reflect people’s reference to the factors mentioned above
when buying houses, this paper used an OLS regression and its residuals to simulate
substitutability. Independent variables are the variables mentioned above except hous-
ing value, which are usually regarded as basic components of the hedonic model. The
dependent variable is the housing value. The residuals indicate the underlying substi-
tutability as the observations with similar residuals are likely to be explained by a same
mechanism (Tu et al. 2007).

Spatial Weighted Standardization (Getis and Ord’s Gi* Statistics)

Local spatial autocorrelation statistics, such as local Moran’s I and Getis and Ord’s Gi*,
have been proven effective as spatial clustering methods. The z-score of local spatial
autocorrelation statistics reflects not only the degree but also the significance of local
spatial autocorrelation of the pre-defined neighborhood. Thus, local spatial autocorre-
lation statistics have the potential to provide spatially weighted standardization for our
input data to remove outlier observations of the neighborhood and reflect area
differences.

Local Moran’s / index compares an observation to its neighborhood, which is
effective in detecting outliers and clusters (Anselin 1995). In this case, the effect of
outliers is strengthened, not weakened, which makes it difficult to classify these
outliers. On the other hand, Getis and Ord’s Gi* statistic compares the whole neigh-
borhood to all the observations to determine if the neighborhood is significantly
different. Thus, in this study, we used Getis and Ord’s Gi* statistics to spatially
standardize our dataset, whose spatial weight is based on the nearest neighborhoods
to avoid the influence of house densities. Getis and Ord’s Gi* can be formulated as
follows (Getis and Ord, 1992):

n _ . n
2 Wi XX ) owi;
=1 =1

2
2 n
wi | X Wiy
1 =1

n—1

n

™M=

J

Where x; is the attribute value for observation j, w; ; is the spatial weight between
observatlon i and observation j, n is the observation count, X is the mean value of all
the observations and S is the standard deviation of all the observations.

Local spatial autocorrelation is superb at finding clusters of selected attributes.
However, the results are not enough to define housing submarkets. First, spatial
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clustering solely relying on spatial autocorrelation highly depends on the statistical
signficance. However, the z-scores of spatial autocorrelation statistics are not
always signficant, resulting in difficulties in classifying the insignificant observa-
tions. Second, it is difficult to integrate the results of multiple variables, as their
spatial patterns may be different. To solve these problems, previous studies usually
combine it with traditional data clustering methods (Peeters et al. 2015). For
example, k-means clustering is frequently combined with local spatial autocorre-
lation statistics and is also able to process large datasets. However, k-means
clustering is sensitive to a pre-given parameter, the number of clusters k& (Day
2003; Poudyal et al. 2009). To fix this, Day (2003) proposed a two-step hybrid
clustering method integrating k-means clustering and hierarchical clustering by
first doing k-means clustering with a large number of pre-clusters and then
organizing these pre-clusters into final clusters using hierarchical clustering. In
this way, an optimized number is defined relying on the hierarchical tree of the
hierarchical clustering. Moreover, it avoids the inability of k-means to process
non-convex datasets and the large memory requirments of hierachical clustering.
Thus, we applied the two-step hybrid clustering to identify housing submarket,
which consists of small cluster detection by k-means clustering, and small cluster
aggregation by hierarchical clustering.

Two-Step Clustering: K-Means Clustering and Hierarchical Clustering

Since k-means clustering is efficient with large datasets but relies on pre-given
cluster counts, it was applied to organize the whole field into 2500 small clusters
(Hartigan and Wong 1979). Each of the output clusters contained a small group
of houses with similar attributes standardized by the spatial weighted standardi-
zation. With such a large number of clusters, the influence of the cluster number
is minimized.

Ward’s hierarchical agglomerative clustering was then applied to the small
clusters derived from the k-means using their centroids to merge them based on
similarity (Murtagh and Legendre 2014). The number of the final clusters was
determined by R package “Nbclust,” which uses over 20 indices to select the
best solution by different evaluations of within-group difference (Charrad et al.
2014). Nbclust indicated that 7 and 27 are the optimal cluster numbers. As
previous studies have demonstrated most metropolitan counties in the United
States have more than 20 housing submarkets (Bourassa et al. 2003; Wu and
Sharma 2012; Royuela and Duque 2013), we selected 27 as the optimal cluster
number (Fig. 3).

Although the two-step method is efficient in the clustering process, the spatial
connectivity has not been examined. Similar housing submarkets in different urban
sectors are regarded as the same submarket if they have similar local spatial autocor-
relation z-scores as shown in Fig. 3. Therefore, we needed to break the large indentified
clusters into smaller housing submarkets in accordance with their spatial patterns. The
algorithm should be able to ascertain if a part of a cluster is close to other parts of the
cluster. To achieve this, we applied a density-based clustering method with the coor-
dinate information of each house to detect the spatial connectivity within each cluster
indentified in the previous steps.
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Fig. 3 Housing submarket classification results of hierarchical clustering

Spatial Connectivity Test and Outlier Detection: DBSCAN

As we can see in Fig. 3, there were several clusters having several separated
housing sectors. To distinguish these spatially separated clusters, we needed to
assess the spatial connectivity within a cluster and separate it if there is not enough
spatial connectivity between sectors. An algorithm which captures the distribution
of the houses and breaks each cluster due to a standard rule of spatial connectivity
(distance, density, neighbors of Thiessen polygons, etc.), was thus needed. At the
same time, urban sprawl should also be accounted in the classification process,
which requires the tolerance of leapfrog housing submarket. Therefore, the combi-
nation of distance and density would be a good rule for spatial connectivity for Salt
Lake County: a density threshold which defines that the leapfrog housing cluster as
a part of the submarket or just outlier, and a distance which take the qualified
leapfrog submarket into account. Considering these expectations, we applied a
density-based clustering algorithm, which is called Density-based spatial clustering
of applications with noise (DBSCAN) (Ester et al. 1996). Because spatial informa-
tion should be exclusively considered in this step, only the locational information
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(the x coordinates and y coordinates of the centroid) of each house were treated as
clustering variables. With the DBSCAN algorithm, a spatially connected cluster
forms when there is enough density of observations within a pre-given radius, and
other observations are tagged as outliers. In this way observations in a spatially
connected cluster may not fully maintain spatial continuity, but they obtain a high
spatial connectivity for which a minimum density is required over a given distance.
These arguments of connectivity are flexible due to the reality requirements. We set
the search radius as 1.75 miles, which is equivalent to the average block group size
in Salt Lake County. The density requirement was set as 30. If the threshold was too
low, many isolated outliers would be wrongly classified, and if it was too high, the
houses in the sparsely-settled east edge in Salt Lake County would be clustered
fragmentally. After all the spatial clusters are properly processed, the outliers were
picked out and further reclassified because they were imprecisely clustered.

Two kinds of observations were considered as outliers. The first one consisted of the
outlier observations identified by the DBSCAN model, who had no similar nearby
neighborhood. The second one consisted of the small clusters that lacked enough
observation counts to be regarded as a complete and functional housing submarket.
The threshold value of defining an outlier cluster depends on the optimal definition of
housing submarket. We selected 400 as the threshold for the minimum acceptable
submarket size because the observation count of each cluster started to increase steadily
when it reaches 424. The output of DBSCAN is represented in Table 2. To maintain the
general size of submarkets, we further classified these observations into the most
similar nearby submartkets. As most houses are tagged with proper submarkets, a
classification method is suitable at this stage, which relies on a tagged dataset to
determine the categories of untagged observations.

Outlier Reclassification: Decision Tree

In the outlier detection process, unconnected observations and clusters that are too
small are tagged as outliers. Even if they were imprecisely or randomly clustered in
previous processes, they were supposed to belong to a nearby housing market and
should be reclassified by similarity. To ensure spatial connectivity, we used a decision
tree to reclassify these outliers with their coordinates considered. Conditional inference
trees algorithm was applied, which estimates a regression relationship by binary
recursive partitioning in a conditional inference framework. Compared with traditional
decision tree algorithms, the conditional inference trees algorithm is more likely to be
unbiased (Hothorn et al. 2006a; Hothorn et al. 2006b; Strasser and Weber 1999; Strobl
et al. 2009).

We used 70% of the non-outlier dataset as the training data to build the decision tree,
and the remaining 30% as the test data to test the precision of the decision tree. 70%
and 30% are widely-applied ratios in model assessment, as most data are involved in
model training and rest small part plays as the assessment dataset. After training the
model with the test dataset, the correctly classified observation count was 72,778 out of
74,283, indicating a high precision of 97.97%. Then the outliers were reclassified by
the model.

In sum, five specific steps and methods were employed to identify the housing
submarkets: selection of clustering variables, spatial weighted standardization (Getis
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Table 2 Clustering results of DBSCAN

Hierarchical DBSCAN Counts Hierarchical DBSCAN Counts Hierarchical DBSCAN Counts

clustering results clustering results clustering results
results results results
1 1 1540 10 1 13,415 18 1 17,073
2 Outlier 6* 2 1033 19 1 1495
1 297 11 1 9598 2 2302
2 6578 12 1 4403 20 1 4209
3 2242 2 2418 21 1 12,454
4 64* 3 3243 22 Outlier 5%
3 1 228%* 4 181%* 1 6416
2 16,366 13 1 2958 23 Outlier 12*
4 Outlier 2% 2 255% 1 10,624
2 24951 14 1 8567 2 40%*
5 1 3573 15 1 11,051 24 1 790
2 3873 2 3168 25 1 1197
6 1 19,661 3 53% 2 1543
2 3172 16 1 10,873 3 275%
7 1 1030 2 2430 26 Outlier 6%
2 6944 17 Outlier 17* 1 93*
8 1 424 1 3142 2 48%
2 71* 2 90* 3 57*
9 1 5646 3 606 4 113*
2 7944 4 1517 5 607
3 1546 5 3126 6 85%
6 2109 27 1 116*

*: Qutlier clusters or observations

and Ord’s Gi* statistics), two-step clustering consisting of (k-means clustering and
hierarchical clustering), spatial connectivity test and outlier detection (DBSCAN), and
outlier reclassification (decision tree).

Validation

In this study, using a comparison between a non-submarket model and a submarket-
based model, we assessed the housing submarket classification regarding the following
aspects: the accuracy of prediction and the abilities of controlling local effects and
providing theoretical explanation.

Model Design

In the validation process, we built and compared two hedonic models, a non-submarket
regression model and a submarket-based regression model in terms of the following

aspects: housing structure, community, and amenities. The amenities category was
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divided into four subgroups: service and consumer goods, aesthetics and physical
settings, public services and accessibility (Fig. 4). The non-submarket regression model
represents the traditional application of the hedonic model, and the equation of the non-
submarket regression is as follows:

HV;= By + B:X; + & (2)

Where 3 is the intercept, (; is the coefficient of X;, X; is the vector of attributes of
property i, €; is the vector of residuals.

As to the submarket-based model, it should be able to capture local effects for
further validation. Thus, we used a linear regression hedonic model to which the
classification results of the housing submarket are added as dummy variables in the
submarket-based regression model, and a matrix instead of a single linear equation is
built to make both slope coefficients and intercept coefficients unique and comparable
for each housing submarket (Gujarati 1970).

The equation of the submarket-based regression model is as follows.

HVi:ﬁj‘i‘GijﬂiXi—FE,’ (3)
Where (3; is the intercept for submarket j, Gj; is the vectors of dummy variables of the

relationship between submarkets j and property i. 3; is the coefficient of X}, X; is the
vector of attributes of property i, ¢; is the vector of residuals.

Service and Aesthetics .
. Public o
consumer and physical . Accessibility
. Service
goods settings
A 4

House . .
Structure Amenity Community

P Housing
Submarket

A 4

Housing
Value

Fig. 4 Theoretical framework for housing value
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This model only reports the significance of each variable for a single submarket, as
the significances for the dummy variables describe the differences but not the coeffi-
cients of other submarkets directly. Thus, an iteration for each submarket were done
and we extracted the coefficients and significances for each of the submarkets as the
result.

Variables

The independent variables for validation are shown in Table 3, and the dependent
variable is the estimated housing value.

Among these variables, housing structure, neighborhood social-economic condi-
tions, and locational variables are also involved in the classification process. Under the
framework of the hedonic model, neighborhood social-economic conditions and loca-
tional variables were merged as community characteristics to distinguish them from the
physical environment variables which are combined with amenity variables.

We selected urban amenities as the “extra component” of the validation process to
test the theoretical explanation ability of the submarkets since urban amenities are well-
studied and widely used housing value determinants (Li et al. 2016; Hui et al. 2018;
Jim and Chen 2007; Tian et al. 2017; Waltert and Schldpfer 2010). Housing prices
respond to urban amenities variously in different regions, as the consequences of
various preferences and the presence of associated negative factors such as noises or
safety issues (Boustan 2013; Chi and Marcouiller 2013; Geoghegan 2002; Li et al.
2016; Osland and Thorsen 2013). For example, both the distance to CBD and forest
coverage have been found to have spatially varying effects. (Gao and Asami 2007,
Kong et al. 2007; Li et al. 2016; Sander and Polasky 2009; Wu et al. 2017). Geo-
graphically sensitive effects further result in strong spatial autocorrelations in residuals
when using a simple linear model to estimate housing values, in which case considering
housing submarkets should mitigate spatial autocorrelation. Thus, urban amenities are
suitable to test the rationality of the classification of housing submarkets not only by
enhancing validation robustness by introducing new determinants, but also by provid-
ing theoretical cross-validation from existing studies.

Following Glaeser (2000), we divided amenities into four general categories: con-
sumer goods and services, public services, physical environment, and accessibility. The
group of consumer goods and services includes theaters, sports and exercise services,
laundries, banks, restaurants and auto services. The attractiveness of these amenities is
widely recognized, but they also have offsetting negative effects on their neighbor-
hoods (Gao and Asami 2007; Sander and Polasky 2009). Public services include
hospitals and clinics, libraries, schools, and religious facilities, which have long been
regarded as important factors in housing studies (Diao and Ferreira Jr 2010; Huh and
Kwak 1997; Park and Lah 2006). The physical environment consists of rivers, streams,
parks, lakes, and surrounding greenery, whose effects are highly related to their
locations (Kong et al. 2007; Li et al. 2016; Wu et al. 2017). Transportation facilities
are represented by commuter railway stations, bus stops, main roads, and light rail
stations. They are similar to consumer services in that they have offsetting negative
effects (Diao and Ferreira Jr 2010; Duncan 2011).

Most of the variables were calculated by the distance to the nearest facility, and the
distances and values were applied by a logarithm transformation to ensure approximate
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Table 3 Variables for validation

General category Detailed category

Description

Variable name

Housing Structure Variables

Community and locational condition ~ Neighborhood
Location Indicator Social-Economic Condi-
tion

Location Indicator

Amenity Service and Consumer goods

Public Service

Aesthetics and physical
settings

Mobility, Accessibility, and
Commuting

Number of Families
Main Floor Area
Total Rooms

Full Bath Numbers
Year of Built
Building Value

House Condition

Local Housing Tax Rate

Median Age

Percentage White
Population

Percentage Black
Population

Percentage Asian
Population

Median Household
Income

Population Density

Distance to Nearest
Agricutural Land

Distance to Nearest
Industrial Land

Theaters

Sport & Exercise
Services

Laundries
Banks

Retail Services
Restaurants
Auto Services
Hospitals & Clinics
Libraries
Schools
Religion Places
River

Streams

Parks

Lakes

NUM_FAMILI
MAIN_FL_AR
TOTAL_ROOM
FULL_BATHS
YEAR_BUILT
Bldv
OverallCon

Tax

Median_age
WhiteR

BlackR
AsianR
Median_inc

PopDen
AgriDis

IndustryDi

DisThea
DisExec

DisLaun
DisBank
DisReta
DisRest
DisAuto
DisHeal
Libr
DisEduc
Worship
River
Streams
Parks
Lakes

Neighborhood Vegetation NDVI

Index

Commuter Rail Stations

Bus Stops
Main Roads
Light Rail Stations

CommuterRa
Bus

DisRoad
LightRail
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normal distributions. The vegetation information was derived from Landsat TM 5
satellite image from U.S. Geological Survey. An NDVI index was calculated, and
negative values were set to zero indicating that no vegetation exists. The neighborhood
vegetation index of a single house was the average NDVI index in 0.25-mile range.

Classification Results

The final clustering result can be seen in Fig. 5, including 43 submarkets. The average
size of our submarket is 5813 houses, and to our surprise, it nearly matches the average
size of housing submarkets in the study of Wu and Sharma (2012), which is 5748.
Figure 6 better portraits the general location of specific submarkets.

We can find several general patterns of our results. First, we observe a blank zone in
the horizontal middle of the county, which is the central business district (CBD)
separating the whole county into west and east parts. Interestingly, the submarkets
are also divided by the main business area, as all the submarkets have their majorities
on either side and none of them are evenly divided by the blank zone. The widest part

_-i.:_ | &

5 10 Miles

Fig. 5 Final housing submarket classification results
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Fig. 6 Final housing submarket classification results with submarket index

of the main business area is lower than the break threshold of spatial connectivity in the
DBSCAN process(1.75 miles), thus the east-west division is not caused by the classi-
fication algorithm. The spatial pattern of the submarkets is concordant with the current
residential pattern in Salt Lake County, which could generally be divided into three
parts. As the CBD divides the county into the east and the west part, there is also a
north-south pattern in the west part. The east part consists of mid-aged, middle-class,
and white majority communities. The northwest part has more low-income and His-
panic families, while the southwest part, as a newly developed area, is a common
choice for recent arrivals who are young and middle-class.

Second, small submarkets are likely to be close to the CBD and the periphery area.
This phenomenon suggests that even though we replaced spatial continuity with spatial
connectivity to avoid submarket fragments, city centers and city edges still appear of
higher complexity as there are more small submarkets in these areas. Figure 7 shows
the submarkets around the city center of Salt Lake City, consisting of 11 submarkets,
many of which are small.
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25 5 1 Mile

= o

Fig. 7 Submarkets around Salt Lake City center

Third, main roads frequently appear as submarket boundaries. For example, for
housing submarkets 18, 37, and 38, the largest submarkets in the northeast area (Fig. 8),
Foothill Drive serves as an important boundary. State Route 266 (4500 S) is the south
edge of submarket 18. In addition, a small part of 700 E is the west edge of submarket
37. Other local roads, such as 1300 E, 1300 S, Parleys Way, and 2100 S are also
important boundaries for submarkets 18 and 37.

Besides the characteristics of boundaries and submarket sizes, according to Table 4
which provides the spatial statistical variations between submarkets using the z-scores
of Getis and Ord’s spatial statistics, we can also find that adjacent submarkets can be
casily distinguished by their attributes of housing structures, neighborhood socioeco-
nomic conditions, and locational indicators. For example, submarkets 18, 37, and 38
have considerable differences in the distance to agricultural land. Submarket 37 is
nearer to the downtown area and has the smallest houses when compared to other two
submarkets (Fig. 8). Almost all of the housing structural indicators are different. For
example, submarket 18 is to the south of submarket 37, and larger houses can be found
in this area. Submarket 37 is to the east of the other two submarkets, along or in the
Wasatch Mountains, and has larger houses with mountain views. According to the
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dataset, the average house size is 1180 square feet in submarket 37, 1475 square feet in
submarket 18, and 1898 square feet in submarket 38. These differences are significant
according to the Mann-Whitney U test. Their communities also differ from others in
terms of Asian rate, income, age, and population density.

On the other hand, in some area, neighborhood submarkets are similar in some
dimensions, yet in other dimensions, one is significantly “better” than the other one.
For example, submarket 5 and submarket 26 in the southeast corner of Salt Lake
County are very similar to each other. The houses are newly constructed and in good
condition, and community constitutions are dominated by young white people of high
incomes. However, even though submarket 26 has smaller main floor areas, the other
characteristics of submarket 26 are “better” than submarket 5, since it is away from
industries, the houses are newer and of better condition, and the residents tend to be
younger and have higher incomes. Moreover, the differences in residuals indicate that
submarket 5 and submarket 26 may have different market mechanisms. These differ-
entiations also indicate that the submarkets are able to capture spatial heterogeneities of
the attributes.
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Furthermore, submarket segmentation is also sensitive to accessibility to
various facilities, despite the fact that these facilities are not included as the
variables in the classification process. For example, submarket 2 and submarket
16, as shown in Fig. 9, are two adjacent submarkets located near the industrial
area of Salt Lake County. While submarket 2 is located around open spaces,
natural landscapes and golf clubs, submarket 16 is not directly adjacent to open
spaces and natural landscapes, as it is surrounded by, or even mixed, with other
submarkets or non-residential facilities as shown in Fig. 9. The west side of
submarket 16 is a large area of large stores and companies, and the east side of
it is the city center of Salt Lake City. Thus, whereas submarket 2 has great
accessibility to natural landscapes, submarket 16 is located near commercial
facilities and the urban center. This indicates that our submarket classification is
able to capture the different underlying preferences for urban amenities. These
spatial patterns indicate that our classification fits the local conditions. The
validation process further assesses the classification results quantitatively and
comprehensively.

Other submarkets S

Submarket 2
Submarket 16

Fig. 9 Submarket 2 and 16
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Validation Results

The regression results of the non-submarket model can be found in Table 5. The
basic summary of the submarket-based model can be found in Table 6. All the
coefficients are multiplied by 1000 to ensure better visualization. We need to point
out that the relationship between effects and distances are inverted because higher
value with a nearer distance will have a positive effect. So, with all the distances,
the coefficient of a positive value represents a negative effect on the neighborhood
house values.

Even though the adjusted r-squared value of the non-submarket model is relatively
high, we can still observe a higher adjusted r-squared value of 0.922 with the
submarket-based model. The higher adjusted r-square value of the non-submarket
indicates that the amenity is a suitable addition to the traditional hedonic model and
a proper validation framework for housing submarkets and our housing submarket
classification explains more when removing the influence of the degree of freedom.
Besides the improvements in general prediction accuracy, a better ability to explain
local effects can also be found in the submarket-based model. Measuring the global
Moran’s [ index based on the spatial relationship of the nearest 500 observations, we
can observe a significant and high spatial autocorrelation of the non-submarket model,
indicating that there is a strong spatial heterogeneity among the effects of various
amenities, which the model is unable to capture. On the other hand, the same mea-
surement shows a very low global Moran’s I index (0.02) for the submarket-based
model. The spatial autocorrelation is still significant because perfect substitutability
only exists in a perfect theoretical submarket, while the effects of most amenities vary
with distance in the real world (Li et al. 2016). The improvements could be found
directly in the value distribution of the coefficients, as some of which are different
compared with the non-submarket model results, which represents that the submarket-
based model can account for spatial heterogeneity. For example, light rail stations show
a strong areal variation of their effects and some of them even show inconsistent effects
with the non-submarket model (Fig. 10), which illustrates that the submarket-based
model is more precise in capturing local effects and that sometimes the non-submarket
model may be misleading.

These improvements demonstrate that the submarket-based model is more efficient
in various kinds of predication accuracies. However, they cannot prove that the
coefficients and housing submarkets are meaningful in the real world. Both our
classification and current validation comparisons come from data science technologies,
which may lead to a common fallacy: the algorithms are good in finding underlying
relationships, but they cannot guarantee that the relationships they find make sense.
Thus, we still need to find out if our submarket-based model could help us better
interpret the effects according to existing theories.

According to the results, we can find certain types of spatial patterns for various
amenities. For instance, as shown in Fig. 10, submarkets that have light rail stations or
light railways in them do not have strong positive reactions to the light rail system.
Most of the light rail stations show negative effects on local housing values. However,
we can see that many housing submarkets which are not directly adjacent to but near
the light rail system show positive reactions. It is mainly because the light rail transit
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Table 5 Result of the non-submarket model

Variable Coefficient
Intercept 4193.720 o
Housing structure NUM_FAMILI —21.532 o
MAIN FL AR 0.072 ok
TOTAL_ROOM 6.768 ok
FULL_BATHS 5.353 ok
YEAR_BUILT —0.655 ok
Bldv 405.719 ok
OverallCon 16.318 ok
Community and location Tax —3068.394 o
Age csv_Ag 1.709 o
WhiteR 1.584 ok
BlackR 2.440 ok
AsianR 2717 o
Income csv 0.002 ok
PopDensity —0.002 ok
AgriDis —14.774 ok
IndustryDi 3.909 ok
Consumer and service DisThea 13.480 ok
DisExec —31.191 HokE
DisLaun —19.709 wEE
DisBank 0.005
DisReta 0.444
DisRest 7.996 ok
DisAuto —5.456 ek
Public service DisHeal —0.159
Libr 4.393 ok
DisEduc 13.044 ok
Worship -7.516 ok
Physical environment River 34.698 ok
Streams —12.865 HAE
Parks 4.226 ok
Lakes —14.031 ok
NDVI 337911 o
Accessibility CommuterRa —38.345 ook
Bus —0.084
DisRoad 1.477 ok
LightRail 25.370 ok

Adjusted R-Squared: 0.8511

Spatial Autocorrelation in Residuals: 0.23%#*

0.05 ~ 0.1*% 0.01 ~ 0.05%* <0.05%**

All the coefficients are multiplied by 1000 to ensure better visualization
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Table 6 Basic statistics of submarket-based model

Positive submarket Negative submarket

Counts Median Counts Median
(Intercept) 33 5522.977 4 —42,074.248
DisThea 19 179.381 13 —604.087
DisReta 13 16.164 14 -16.815
DisRest 12 17.310 11 —60.162
AgriDis 4 26.994 28 —26.123
IndustryDi 10 57.221 20 —39.817
DisRoad 26 16.836 14 —30.967
DisEduc 16 36.728 10 —313.537
DisLaun 16 122.585 13 —68.826
DisBank 19 44.643 15 —73.814
DisHeal 16 23.839 18 -31.500
DisAuto 9 28.266 15 —15.560
DisExec 12 253.543 18 —42.916
NUM_FAMILI 3 13.699 23 -23.127
MAIN FL AR 38 0.049 0.000
TOTAL_ROOM 33 4.092 —1.565
FULL BATHS 26 7.758 —5.946
YEAR BUILT 7 0.156 29 -1.019
Bldv 43 469.793 0 0.000
Tax 7 3303.340 15 —3975.319
Age _csv_Ag 17 7.940 15 —9.393
WhiteR 23 1.938 8 —13.191
BlackR 9 10.179 23 —11.388
AsianR 26 9.158 8 -18.917
Income csv 12 0.009 28 —0.003
PopDensity 8 0.029 33 —0.030
OverallCon 33 15.759 3 =7.203
Lakes 5 22.187 26 —39.847
CommuterRa 9 1017.806 29 —536.237
Bus 17 14.302 13 —14.080
Libr 13 57471 16 —130.098
LightRail 19 76.548 12 —143.762
Parks 12 9.292 15 —18.520
Worship 6 38.286 23 —22.984
River 20 428.914 11 —390.391
Streams 4 44.043 32 —-16.237
NDVI 18 289.989 11 -319.924
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Fig. 10 Effects of light rails stations on housing values in Salt Lake County

system has a strong negative effect on the local level because of safety issues and noise
pollution (Li et al. 2016; Liao et al. 2015).

The effects of other amenities may be more related to sectors and locations. Take
major roads as an example. Figure 11 illustrates the effects of main roads, from which it
is evident that most of the positively influenced housing submarkets concentrate on the
county edge area. These areas disproportionately rely on the highway system in daily
life. On the other hand, those areas that respond negatively to main roads are found
mostly around downtown and the industrial area, where there is less reliance on the
highway system for commuting and essential activities. Thus, the positive effect of the
main road appears when the local community lives away from employment centers and
other amenities.

As these spatial patterns concur with other current studies (Li et al. 2016), our
housing submarket classification can explain the underlying effects of various factors,
which implies that it is suitable for theoretical explanations. Compared to the non-
submarket model, we find improvements in substitutability, which is reflected not only
in general prediction accuracy and spatial explanation accuracy, but also in theoretical
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rationality and spatial explanation ability. These improvements show that our classifi-
cation can maintain substitutability, similarity, and spatial connectivity.

Discussion and Conclusion

The housing submarket is one of the central topics of housing and urban studies, in
which regard it is closely associated with urban inequality, sustainable development,
and residential segregation (Baker et al. 2016; Wei 2015). Based on the experience of
housing studies in economics, sociology, and geography, several principles of the
housing submarket have been recognized, and a many data-driven methods have been
developed. However, spatial continuity, which is one of the basic principles, may lead
to imprecise classification, because it ignores the complexity of urban space. Moreover,
most current methods are incompatible with large datasets, and most of the county-level
tax assessor’s datasets are too large for them. Furthermore, while spatial factors and
similarity are easy to assess, the validation process of substitutability in current studies
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is too centered on model predication accuracy improvement rather than comprehensive
assessment. A classification that is unbiased and suitable to process large datasets and
validation that account for substitutability are urgently needed.

Relying on various data clustering techniques and emphasizing the importance
of spatial connectivity of housing submarkets, this study first puts forward an
innovative hybrid classification method for housing submarkets. It is based on
various variables to capture similarity, residuals of a simple linear model between
housing value and these factors to represent substitutability, and the notion of
spatial connectivity instead of spatial integrity in order to reflect the complexity of
urban space. This study integrates several clustering algorithms to handle big
datasets as well as classify housing submarkets while maintaining an acceptable
substitutability, similarity, and spatial connectivity. Using the dataset of Salt Lake
County, our results show that, while ensuring similarity based on the local level,
our submarket classification aggregates submarket fragments together to avoid two
pitfalls: (1) an extremely large number of clusters, which would increase the
difficulty of understanding the study area, and (2) small submarkets, which could
result in inaccurate local prediction results because of small sample size. We
further find that our submarket-based model is able to capture residential differ-
ences, the complexity of urban space, and housing structure differences. More-
over, the model analyzes the role of accessibility to various amenities and shows
that roads are important boundaries for submarkets. In addition, this method is
computationally fast and economical, enabling it to handle county-level data with
a personal computer.

We also have developed a comprehensive validation process for substitutabil-
ity, which complements well-known existing assessments of similarity and spatial
connectivity. To avoid a biased assessment, a comprehensive framework is
introduced into the validation process, which is based on the three aspects of
substitutability: prediction accuracy, the ability to consider local effects, and
theoretical rationality. Compared to non-submarket models, our submarket-
based model provides improvements in all three of these aspects and, in partic-
ular, it excels in discovering local effects. Our validation not only shows that the
classification method is suitable for classifying housing submarkets in terms of
the three aspects but also provides a potential assessment which is more inte-
grated and comprehensive for other housing submarket classifications.

Our classification method is suitable for planners, estate agencies, tax assessors
and decision-makers for modeling housing submarkets and estimate housing values
efficiently and economically. The results show that the classification is able to
model residential differences, as well as capture the variation of houses and
preferences in the neighborhood. The validation framework is also meaningful as
it directly tests if a new classification method could be reasonable and useful in
reality. The submarket-based model also shows that it is possible to combine the
concept of the housing submarket with the hedonic model to assess comparable
potential influences of various factors at the local level. The whole process of
classification and validation would be beneficial for local governments as it not
only provides a feasible way to assess housing values more precisely, but also
contributes a better methodology for understanding local urban space, residential
segregation, and housing inequality.
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