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Abstract
Despite the fact that at the global level, half the planet’s wildlife population has declined
since 1970, this trend is not homogeneous across species and areas. Indeed, focusing on the
ungulates, their increasing population and density has become worrisome in several rural
areas. Favoured by economic and social changes often related to human activities, ungulates
have conquered areas where coexistence with humans is difficult to maintain as a result of
the damage that ungulates cause to agricultural activities and forests. This work aims to
analyse the relationship between the number of ungulates and the characteristics of a specific
area they inhabit. Applying a Geographically Weighted Regression analysis (GWR), we
analysed and tested the spatial non-stationarity of the relationship between ungulates and
human activities. Mugello, an area in central Italy, was selected for this study. This area was
chosen due to the presence of a high number of ungulates that interact in different territorial
scenarios, including urban agglomerations located in the flat zone, agricultural areas in the
central-northern part and forested areas in the northern part of Mugello. This article looks at
the way the number of ungulates is directly related to human activities in a specific territory.
This contributes to the literature by providing useful information to stakeholders for future
planning and wildlife management in agricultural areas within the limits of sustainability.
Moreover, the social and economic implications are significant, especially considering such
agricultural areas are at risk of being damaged by the presence of ungulates. The result of the
analysis has validated the use of GWR, highlighting the relationship of selected variables
and the number of ungulates.
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Introduction

Wildlife management is an important issue that can be analysed from different points of
view. Various strategies are generally adopted to manage fauna. Some methods tend to
safeguard wildlife by creating protected areas, while others aim to control the growing
number of wild animals due to a tendency of some animal to alter the landscape and
interact negatively with the economic activities (Jensen et al. 2014; Gill 1992; Clasen
and Knoke 2013).

As reported by the World Wildlife Fund’s report of 2016, at global level, half the
planet’s wildlife population has declined since 1970. Due to human activity, including
exploitation and habitat degradation or loss, about 58% of the world’s mammals, birds,
reptiles, amphibians and fish have disappeared over the last four decades.

However, this trend is not homogeneous across species and areas. In fact, in the
United States and in several western European countries, agricultural area abandon-
ment, modern techniques of animal rearing and the decline of hunting activities have
fostered the increasing population and concentration of a small part of wild animals
represented by ungulates, such as wild boar and deer. The current article focuses on
these wild animals because their increasing numbers (in opposition to global wildlife
trends) have several damaging effects on agricultural and forestry activities.

Ungulate damages are often related to browsing on forest regeneration or the
removal of bark (Fratini et al. 2016). As consequence, the density of ungulates in a
territory where primary activities play an important role in local economies represents a
crucial issue that deserves attention. Several authors have reviewed and estimated the
economic impacts of ungulates (see, among others, Gill 1992; Gill and Beardall 2001;
Horsley et al. 2003; Apollonio et al. 2011). In a south region of Italy (Basilicata) Cozzi
et al. (2015) observed that between 2007 and 2012, the surface areas damaged by
ungulates increased from 2800 to 5850 ha and as consequence the estimated compen-
sations increased significantly from €550,000 up to €1,134,000. In North America, the
US Department of Agriculture Wildlife Service (USDA 2012) reported in 2009 that the
damage to agriculture, mainly due to the presence of wild boar and deer, was estimated
at about $71,000,000, mostly from lost revenue. Furthermore, during the same year,
damages from road accidents due to animal crossings involved around 29,000 people,
with a loss of about $1,000,000,000.

Côté et al. (2004) have argued that the sustainable coexistence, without notable
conflicts, on the same area of agricultural activities and wild animals is determined
mainly by the numerical dimension of game populations that should not exceed the
territory’s carrying capacity. A sustainable coexistence between human activities (par-
ticularly those that shape the landscape) and the existing animal species is an important
issue to be addressed. This requires analysing and redesigning new combinations that
account for both wildlife territory and human activities through environmental
planning.

The aim of this study is to analyse how human activities and environmental
variables can influence the number of ungulates in a region. The usual regression
techniques are not fit to analyse this issue because they assume that these relationships
are constant across space. Therefore, we need an econometric model that implies the
spatial non-stationarity (Brunsdon et al. 1998). Spatial non-stationarity is a condition in
which we can observe a variability in space of the force of influence that the same
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determinant has on a certain element or economic phenomenon. The model we applied
to consider spatial non-stationarity is Geographically Weighted Regression (GWR).
This model is able to depict the non-stationary process regarding the correlation
between ungulates and human activities and tries to capture spatial variation by
calibrating multiple regression models that allow different relationships to exist at
different points in space. Therefore, GWR represents a tool that is able to analyse
how the problem of this delicate relationship (ungulate population versus human
activities) varies spatially. Moreover, investigating this topic is useful to formulate
specific policies and, accordingly, more efficient planning choices. The analysis of non-
stationary data may lead to a better understanding of these relationships and their
variations across space.

We applied the GWR model to data related to the Mugello, a region in northern
Tuscany, in Italy. The evolution of the population of the ungulates is one of the most
remarkable changes in the Italian fauna in recent decades. The deep socio-economic,
cultural and regulatory changes that have taken place since the middle of the last
century have led to favourable conditions for a progressive Breconquest^ of old areas
by ungulates. During the decade 2000–2010 in Italy, the number of ungulates (deer, roe
deer, ibex, mouflon) has increased over 32% (ISPRA 2013) making their coexistence
with humans difficult to manage. Mugello is a good case study for the peculiar features
of this area that suit the issue under investigation, i.e., the presence of a high number of
ungulates that interact in different territorial scenarios, including urban agglomerations
located in the flat zone, agricultural areas in the central-northern part and forested areas
in the northern part of Mugello.

The paper is organized as follows. A definition of the GWR model is provided in
section 2. Section 3 introduces the area of study. An application of the proposed model
is illustrated in section 4, while section 5 discusses ensuing results. Finally, section 6 is
dedicated to conclusions.

The Definition of GWR

The basic statistical tool used to investigate relationships between landscape patterns
and human activity is an Ordinary Least Squares (OLS) regression (Su et al. 2012).
Practically, OLS assumes that the analysed variables are constant in space. However,
this assumption represents an important limitation for a territorial analysis; as Tobler’s
first law of geography postulated, ‘everything is related to everything else, but near
things are more related than distant things’ (Tobler 1970). Therefore, an estimation
strategy should consider the spatial non-stationarity.

However, spatial non-stationarity is difficult to model. One way to deal with it is to
allow the estimated parameters to vary according to the location of the dependent
variable. Cassetti (1972) first proposed a way to estimate parameters that vary in space.
Nevertheless, his proposed method requires the knowledge (and therefore the specifi-
cation) of an explicit function to describe the variation of parameters in space.
Brunsdon et al. (1998), trying to overcome this limit, proposed GWR, i.e., a non-
parametric estimation of the spatially varied β parameters. The idea behind GWR is to
fix a point p in space and then regress a dependent variable using all the observations
around ‘a circle of inclusion’ to the point p, kernel-weighed using a certain exogenous
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metric with respect to the distance. GWR is a well-established model for the analysis of
spatial data in different fields (Helbich and Leitner 2009; Lu et al. 2011; Jivraj et al.
2013; Megler et al. 2014; Fotheringham and Park 2017).

The OLS standard equation is:

yi ¼ β0 þ ∑
k
βkxik þ εi ð1Þ

where
yi = estimated value of the dependent variable at i-th location.
β0 = intercept.
βk = slope coefficient for independent variable xk,
xik = value of the variable xk at i-th location.
εi = random error term for i-th location.
Hence, the βk parameters express the global and spatially independent relationship

between each independent variable and the dependent variable. GWR estimates the
model parameters, including those that are spatially non-stationary. Equation 1 can be
rewritten as follows:

yi ¼ β0 ui; við Þ þ ∑
k
βk ui; við Þxik þ εi ð2Þ

where
ui, vi = location coordinates of the i-th point in space.
β0 (ui, vi) = intercept for i-th location.
βk (ui, vi) = local parameters estimate for independent variables xk at i-th location.
xik = value of the variable xk at i-th location.
εi = random error term for i-th location.
To estimate the β0 and βk, GWR assumed that near independent variables have a

greater weight in the estimation than farther realizations. Therefore, the parameters are
estimated through a spatially-weighted least squares estimation.

β μ; vð Þ ¼ X TW μ; vð ÞX� �−1
XTW μ; vð Þy ð3Þ

where
β (μ, v) = unbiased estimate of b.
W(μ, v) = n by n weighting matrix with its off-diagonal elements are zero which acts

to ensure that observations near to the specific point have bigger weight value.
In order to identify the weighting matrix (W), three key elements must be consid-

ered. These are the type of distance (e.g., Euclidean, Manhattan, etc.), the kernel
function and the bandwidth. As reported by Fotheringham et al. (2003) and Gollini
et al. (2015), different kernel functions (continuous or discontinuous) can be used for a
weighting scheme definition (e.g., Gaussian, exponential, box-car, Bi-square, and Tri-
cube models). Instead, there are two general processes for bandwidth construction that
are called fixed and adaptive kernel functions. As argued by Fotheringham et al. (2003)
and Wheeler and Páez (2010), contrary to the fixed function, an adaptive function
adjusts the window catchments for the density of data locations. In other words, we

R. Francesco et al.850



have a bandwidth that can be specified either as a fixed distance or as a fixed number of
local data (i.e., an adaptive distance). As Gollini et al. (2015) stated, in practice, a fixed
bandwidth suits fairly regular sample configurations, while an adaptive bandwidth suits
highly irregular sample configurations.

The Study Area

The area of Mugello (Fig. 1) is located in the northern part of the province of Florence
in Tuscany, Italy. Due to its morphological characteristics, the wild fauna has direct
contact with the territorial mosaic brought forward by anthropogenic activities. The
study area includes nine contiguous municipalities (LAU 2) stretching approximately
1100 km2. The population is almost 65,000 habitants with a density of 105 inhabitants
per km2. Mugello is mostly hilly (66.5%); including some plains (about 8.4% of the
territory) and major mountain ranges (25.1% of the area). The climate is characterized
by an average annual temperature of around 16 °C, with a rainfall pattern of around
600–700 mm annually.

By observing a digital elevation model of the area, we can note a flat zone in the
central part of Mugello that includes the principal towns of San Piero a Sieve, Borgo,
and Vicchio. The municipalities of Firenzuola, Palazzuolo sul Senio and Marradi are
characterized by a mountainous landscape.

The presence of different territorial scenarios makes this area suitable for our
analysis. Indeed, in Mugello there are several urban agglomerations located in the flat
zone and agricultural areas (mostly arable and livestock farms) distributed in the
central-northern part of Mugello. Finally, the areas near the mountains are predomi-
nantly covered by forests.

Regarding to the statistics on fauna, the only available and reliable data is provided
by the Regione Toscana (the local authority LAU 3). According to Piano Agricolo
Forestale (P.R.A.F) 2012–2015 (Regione Toscana 2012); the number of ungulates is
continuously increasing in the area. The increase of the deer and roe deer populations is
constant over time. The trend of estimated consistencies relative to other species
appears to be discontinuous (mouflon and fallow deer). Unfortunately, the estimations
of the wild boar population—which, due to their density, are considered one of the most
damaging species—are not available (Table 1).

Applied Methodology

Using the framework of the National Ecological Network (REN), this study analyses
ungulate distributions in the territory, looking for a correlation between the potential
number of wild species examined and four variables (listed below) that take into
consideration both the territorial characteristics and the anthropogenic activities taking
place in the territory (Fig. 2).

The habitat and the movement of ungulates are related to fundamental requirements,
including food production of the areas (trophic function), the availability of sufficient
space (home range and habitat) and protection. The literature related to biodiversity
analysis reflects these various aspects (Pélissier and Couteron 2007; Kry et al. 2008;
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Fitterer et al. 2012; Spangenberg et al. 2012; Riccioli et al. 2016). As stressed by Chen
and Koprowski (2015), the main threats to biodiversity are habitat fragmentation,

Fig. 1 Map of study area a) Italy b) Mugello
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destruction, and noise, whereas the global road networks represent one of the most
significant human influences on ecosystems and a spatially extensive source of the
anthropogenic disturbance.

Fig. 1 (continued)
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The following independent variables have been chosen to take into consideration the
available resources and relying on the existing literature on territorial analysis through
GWR (Su et al. 2012; Gao and Li 2011; Nilsson 2014; See et al. 2015; Huang et al.
2015). The independent variables chosen are: (i) distance from artificial areas; (ii);
distance from agricultural activities; (iii) ecological corridors; (iv) index of ecosystem
richness.

The relationship between the number of ungulates and the observed variables is
directly connected to ungulate movement and could be summarized as follows: the
distance from the anthropogenic areas represents a threat, therefore constraining the
free passage of fauna. The distance from agricultural activities offers other opportuni-
ties for food, while the ecological corridors offer opportunities for safe passage. Finally,
ecosystem richness is an index widely adopted in ecology (in our case, we applied it to

Table 1 Ungulates population trend in Tuscany (source PRAF 2012–2015)

Year Roe deer Fallow deer Deer Mouflon

2000 91,872 8464 2600 2934

2001 98,151 11,138 2613 2424

2002 110,162 10,701 2735 1906

2003 108,011 8124 2977 1954

2004 112,893 8824 2785 1841

2005 117,223 9588 3000 2936

2006 138,366 10,097 3086 1161

2007 140,639 7593 3651 1760

2008 144,586 7814 3996 2543

2009 159,858 8268 4277 2433

2010 153,134 8841 3621 2562

Fig. 2 Interaction between humans, ungulates and territory
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land use). A major diversity of the territorial ecological mosaic (diversity of land use)
favours better satisfaction of the fundamental needs of animals. This is positively
correlated to the number of wild species (Riccioli et al. 2016).

The minimal unit of analysis is the cadastral parcel. For this purpose, we used a map
of cadastral boundaries (scale 1:7000) developed by the Tuscany Region. Table 2
shows the data sources. The spatial reference used in the analysis is EPSG projection
32,632-WGS 84/UTM zone 32 N.

We produced a thematic map for the dependent and each explanatory variable.
Moreover, we normalized data to compare values with different units of measurement.
The normalization is based on fuzzy logic (or the infinite values method) where the
logical variable can take on any continuous interval value of truth ranging from zero to
one (Zadeh 1965; Chen and Hwang 1992). Table 3 includes the normalization param-
eters used for variables, where each variable has a minimum and a maximum value
(control points).

Dependent Variable

The National Ecological Network was used as the dependent variable. It contains the
distribution of species richness (a potential number) in a specific area (polygons) of
amphibians, mammals, birds, fish and reptiles. This distribution is represented by the
overlay of the networks of each animal species and is categorized by a dense fragmen-
tation of the territory (Boitani et al. 2002). The analysis focused only on ungulates that
are mainly represented by deer, fallow deer and mouflon (Fig. 3). Other species (e.g.,
birds or amphibians) included in the REN are not correlated with the explanatory
variables used in the analysis.1

The REN database provides the potential number of species outside the protected
areas. In order to associate this value to the minimal unit of the analysis, the average of
the potential number of ungulates has been attributed to each cadastral parcel. The
darker colours represent the parcels with the higher potential numbers (expressed as
normalized values) of ungulates (Fig. 3).

Distance from Artificial Areas

The concept of distance from some features is widely adopted as covariate in the
literature (Malczewski 1999; Boncinelli et al. 2015; Feng and Liu 2016). In particular,
the greater distances from the artificial areas represent a positive factor with respect to
the passage of wild animals (Chen and Koprowski 2015). The calculation of this
variable was based on the 2012 Corine Land Cover (CLC) map developed within the
CLC project. According to the CLC legend, artificial areas include the urban fabric,
industrial, commercial and transport units, mines, dumps and construction sites, artifi-
cial, non-agricultural vegetated areas.

The distance module is based on the calculation of the fuzzy distance from a target
feature (agricultural areas, in our analysis) to each cadastral unit. Following Al-Ahmadi
et al. (2009), the fuzzy distance decay membership function is used to weigh the

1 REN also includes 244 species of nesting birds, 34 species of amphibians, 43 species of reptiles and 82
species of fish.
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strength of the proximity to a given feature. Instead of having a single crisp threshold
that denotes a distance from a feature, the fuzzy distance decay function is capable of
describing the potential number and the ability of movement of ungulates that increases
with distance from artificial areas.

A raster map with a pixel resolution of 75 m was created. An average distance from
the artificial areas was attributed to each cadastral parcel. The higher values in Fig. 4
represent the polygons of the parcels with greater distances (metres are expressed as
normalized values) from artificial areas.

Distance from Agricultural Activities

The distance from the agricultural areas was measured with the intention to verify how
the distance from such cadastral unit could influence the number of ungulates. Thanks
to agricultural production, this variable represents an opportunity for animals to feed
themselves (van Wenum et al. 2004; Argenti et al. 2012; Apollonio et al. 2011; Clasen
and Knoke 2013; Jensen et al. 2014; Fratini et al. 2016). Farms and agricultural areas
were selected for the analysis. Data comes from the 6th Agricultural General Census
provided by the National Institute of Statistics (ISTAT 2010) and the CLC 2012.
Starting from a map that included the georeferenced farms and the agricultural areas,
a fuzzy distance was calculated. A raster map with a pixel resolution of 75 m represents
the result. These areas should offer an opportunity of food for ungulates, in an inversely
proportional measure with respect to the distance from them (i.e., shorter distances
from agricultural activities should favour a higher number of ungulates). Even in this

Table 3 Normalization of the parameters

Indicators Type of normalization Control points

a b

REN Linear increasing 0 152

Distance from artificial areas Linear increasing 0 6954

Distance from agricultural activities Linear decreasing 0 7061

Ecological corridors Linear increasing 0 405

Relative richness index Linear increasing 0 0.022

Table 2 Data sources

Source Years Type of elaboration

Corine Land Cover 2012 Richness of land use, distance from specific land use

REN - National Ecological Network 2005 Distribution of species richness (potential number)
in a specific area of wild animals

ISTAT, 6th Agriculture General Census 2010 Distance from georeferenced farms

Landsat 7 ETM + 2012 Normalized Difference Vegetation Indicator (NDVI)

Map of cadastral parcels 2012 Cadastral boundaries
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case, for each cadastral, parcel an average distance from agricultural activities has been
considered. The darker colours represent the parcels’ polygons with shorter distances
(meters are expressed as normalized values) from agricultural activities (Fig. 5).

Fig. 3 Map of REN (only ungulates are included in the analysis)

Fig. 4 Distance from artificial areas
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Analysis of Ecological Corridors

The forest environment has a fundamental role in the ability of animal populations to
find protection and food. The fragmentation of natural and semi-natural areas is one of
the principal threats to the ability of ungulates to find protection and displacement
opportunities through ecological networks (Jongman et al. 2004).

Some GIS tools can be used for the creation of aecological corridors, including Least-
cost paths, CorriDorDesign or Linkage Mapper tool implemented in ArcGIS (Hepcan
et al. 2009; Gurrutxaga et al. 2010; Liang et al. 2018; Majka et al. 2007; McRae et al.
2008; McRae et al. 2016) or spatial pattern indices (e.g., the patch corridor model)
developed for Fragstat (Kong et al. 2010; Vergnes et al. 2012). Generally speaking, there
are some important elements that must be considered for the creation of ecological
corridors, including land use, road density or physical barriers. In the current article, the
ecological network map was developed starting from the measurements of the Normal-
ized Difference Vegetation Indicator (NDVI) that it considers the above-mentioned
factors. This indicator operates on a specific colour spectrum (range) that excludes with
specified precision both anthropogenic components (e.g., roads, human activities, etc.)
and other non-forested areas (e.g., natural barriers such as rivers, lakes and rocks).

The ecological network map was calculated by relying on satellite images from
Landsat 7 ETM+ (Enhanced Thematic Mapper) from the year 2012. As suggested by
Bocchi et al. (1997), the NDVI relates the chlorophyll absorption spectrum in the red with
the typical reflection in the near infrared where it is strongly influenced by the type of leaf
structure. In order to measure the ecological corridors, values above 0.20 were selected.
As stated by Agone and Bhamare (2012), these areas, represented by scrub, grasslands
and dense forest, permit ungulate passage. An average value of adjacent pixels was

Fig. 5 Distance from agricultural activities
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assigned using a moving window filter for each pixel (cell 7 × 7, corresponding to a
geographic neighbourhood of 48 pixels). The maximum values correspond to the areas in
which animals move freely. An average value of this indicator was assigned to each
cadastral parcel. The higher values represent the polygons of the parcels with the higher
presence (expressed as normalized values) of ecological corridors (Fig. 6).

Relative Richness of Land Use

Land use heterogeneity is positively correlated with the ungulate presence in a given
area, as a relatively simplified agricultural landscape in which the territorial matrix is
represented by monoculture does not represent an opportunity for ungulates to find
food during all the seasons of the year. Notwithstanding the existence of numerous
indicators able to describe the heterogeneity of land use (including the Shannon index,
the fragmentation index and edge density analysis; see Eastman 2009), in the current
study, the richness of land use is measured by the relative richness index.

Analysing the landscape pattern of the study area, the CLC map was modified to
eliminate all land cover that does not represent opportunities for food provision
(artificial areas) for ungulates. The relative richness index can be written as:

R ¼ n=nmax � 100 ð4Þ

where:
R = relative richness index.
n = number of different classes present in the geographic neighbourhood.
nmax = maximum number of classes possible.

Fig. 6 Ecological corridors
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The geographic neighbourhood was defined by a 7 × 7 square grid (48 pixels
adjacent to the reference pixel were examined). Generally speaking, there is not any
definitive theory as to what is the ultimate size a kernel should be. In landscape ecology
software (e.g., Idrisi) there is some defined mask, usually 3 × 3, 5 × 5 or 7 × 7 (Eastman
2009), and it is an art to find the right kernel size related to the kind of data under
analysis. With a pixel resolution equal to 75 m, a 7 × 7 square grid allowed us to
analyse about 27 ha (one-third of the average area of the cadastral parcels), which could
be a good compromise for calculating the diversity of land use. In order to perform a
proper analysis to all case study areas (including the edges), the variable was also
calculated on the areas surrounding Mugello.

Using the relative richness index, we can identify the richer areas in terms of land
use (higher values) that represent areas most suitable for ungulates. As for previous
explanatory variables, an average value of relative richness of land use was assigned to
each cadastral parcel. In Fig. 7, the darker colours represent the area of the parcels with
higher relative richness values (expressed as normalized values).

Results and Discussion

Out of a total of 1356 cadastral parcels, four were excluded from the final analysis
because they represented unusual values and were considered outliers. Therefore, the
sample was accordingly reduced to 1352 cadastral parcels. First, a standard regression
was performed, i.e., the Ordinary Least Squares (OLS). The OLS analysis produced a
coefficient of determination (R2) equal to 0.50. The overall model significance is
statistically significant at the 99% level according to a Wald test. Table 4 reports the
OLS results.

The distance from artificial areas is statistically significant at the 95% level while the
distance from agricultural activities, ecological corridors and relative richness areas are
statistically significant at the 99% level. The highest positive determinant is related to
the ecological corridors, while the highest negative determinant is represented by the
relative richness of land use. The negative coefficient of the variable distance from
artificial areas indicates that increasing the distance from artificial areas decreases the
number of ungulates. The variance inflation factors (VIF) slightly above values of one
confirm a low redundancy of each variable, and thus a low degree of multicollinearity.

Figure 8 includes the map of the standardized residual (StdResid) values. A Moran’s
I was calculated on the residuals to test their spatial autocorrelation.2 In other words, the
intention was to verify whether the model residuals are spatially random. The resulting
Moran’s I equals 0.34, indicating a positive autocorrelation of the residuals. The
statistical test of Moran’s I reveals a z-score of 31.769 and a p-value equal to 0.000.
Therefore, the likelihood that this clustered pattern could be the result of a random
chance is less than 1%.

In addition, a Koenker test (K(BP)) was performed to determine whether the
independent variables in the model have a consistent relationship to the dependent
variable, both in geographic space and in data space. Considering that K(BP) is
statistically significant, it can be deduced that the observed explanatory variables have

2 A distance threshold equal to 3 km is considered in order to calculate the spatial weights matrix.
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a spatially consistent correlation to the REN. Therefore, the relationships vary across
the study area and are spatially non-stationary.

Assuming that the coefficients vary across space, the next step focused on the
analysis of the variables through the GWR, in order to verify how the determinants
in the model are able to influence the potential number of ungulates in the study area.

Based on R2 analysis, a fixed kernel type of bandwidth was selected. In fact, the R2

of the fixed bandwidth (0.74) is higher than the R2 of the adaptive one (0.67). This is
probably due to the evidence that, by using the cadastral map, the parcels (and
observations) are uniformly distributed across the territory; their distribution is
constant and presents a low dispersion.

Fig. 7 Relative richness of land use

Table 4 Estimated parameters of OLS model

Variable Coefficient Robust St. Error t p-values VIF

Intercept 124.469 2.574 48.352 0.000 –

Distance from artificial areas −0.044 0.018 −2.483 0.013 1.288

Distance from agricultural activities 0.098 0.017 5.681 0.000 1.467

Ecological corridors 0.321 0.013 24.818 0.000 1.510

Relative richness −0.046 0.023 −2.000 0.004 1.069

R2 0.502

Adjusted-R2 0.501

Wald 1254.11 0.000

Moran’s I 0.338 0.000

K(BP) 105.219 0.000
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As suggested by Harris et al. (2010), the optimal bandwidth was identified using the
Akaike Information Criterion (AICc). Therefore, a bandwidth with a value of 5123.02
was identified. In addition, the Gaussian kernel weighting function is expressed by the
following equation:

wij ¼ exp −
1

2

dij
b

� �2
 !

ð5Þ

where
wij =weight of j-th observation for i-th location,
dij = Euclidean distance between points i and j,
b = kernel bandwidth.
Hence, if observation j coincides with location i, the weight value is one. Where the

distance is greater than the kernel bandwidth, the weight is set to zero.
The GWR showed a higher R2 compared to the OLS estimation. An analysis of

multicollinearity was applied to the GWR in a manner similar to how it was applied to
the OLS method. This diagnostic evaluates local multicollinearity, since results become
unstable in the presence of strong local collinearities. All observations show a condition
number less than the threshold of around 30 suggested by both Myers (1986) and
Belsey et al. (2004) for indicating regression calibration issues.

The map of the standardized residual values is provided in Fig. 9. The very large
positive residuals (StdResid residual >0.85) are mainly located in the southern and central-
northern parts of Mugello (the municipalities of Vaglia, Barberino and Firenzuola).
Therefore, given the variables included, the model tends to underestimate the number of
ungulates in this study area, while it tends to overestimate them (StdResid residual <−1.05)

Fig. 8 OLS standardized residuals
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in the northern part of the study area (municipality of Firenzuola). Again, another important
question is related to the spatial autocorrelation of residuals. Moran’s I on residuals yields a
value equal to 0.19, showing a lower spatial dependence than the correlation measured in
the global regression. The statistical tests of Moran’s I have revealed a z-score of 17.968
and a p-value equal to 0.000. This evidence confirms that if the non-stationarity of the data
is controlled for, the residuals are less spatially correlated. Compared to the OLS residuals
map (Fig. 8), the GWR residuals show less autocorrelation in the flat zone of Mugello (the
municipalities of Barberino, Scarperia, Borgo and Vicchio) and in the central-eastern area
close to the flat zone (the municipalities of Borgo and Palazzuolo).

Statistics of the coefficients in Table 5 provide a comparison between the OLS and
the GWR models. Despite the fact that medians from the GWR appear quite similar to
those of the OLS, the minimum and maximum values show a substantial variation that
confirms again the hypothesis of spatial non-stationarity of the examined variables.

Fig. 9 GWR standardized residuals

Table 5 Global (OLS) and local (GWR) coefficients’ statistics of the regression model

Variable OLS GWR

min Q1 median Q3 max

Intercept 124.47 86.758 113.935 135.703 154.060 174.449

Dist. from artificial areas −0.044 −0.365 −0.074 −0.034 0.014 0.299

Dist. from agricultural act. 0.098 −0.369 0.023 0.089 0.234 0.800

Ecol. corridors 0.321 0.035 0.176 0.264 0.330 0.517

Relative rich. −0.046 −0.341 −0.133 −0.028 0.033 0.121
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Indeed, through a graphical analysis of the GWR coefficient maps (Fig. 10), it is noted
that each variable’s coefficient shows a non-stationary distribution and the patterns of
the coefficients are more homogenous than the patterns exhibited in the data. This
provides additional support for the use of GWR in our analysis.

Fig. 10 Maps of coefficients a) distance from artificial areas; b) distance from agricultural activities; c)
ecological corridors d) relative richness of land use
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The artificial areas consist mainly of urban agglomerations that find their maximum
expansion close to the main towns. The roads connecting the above-mentioned centres
are also considered an artificial element. These areas reach their maximum capillarity in

Fig. 10 (continued)
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the flat zone and in the western part of Mugello. The results of the GWR help provide a
better interpretation of the results of the OLS. In fact, from the negative sign of this
variable by the OLS, it must be concluded that the ungulate population is concentrated
in proximity to artificial areas, i.e., close to urban areas. In the first analysis, this result
could seem counterintuitive. In truth, it may be noted that the more positive estimates
are concentrated precisely around the main urban areas that, as already mentioned, are
the core of the artificial areas of Mugello. The high density of ungulates favors their
presence near urban areas: it is probable that in these areas, human activities provide the
animals with indirect support, such as food from waste or water from hydraulic
infrastructures.

Figure 10b shows that the agricultural activities mainly located in the flat zone have
a major impact on the ungulates, such that when the distance from agricultural activities
increases, the number of ungulates decrease. This result confirms that, as mentioned
above, agricultural activities represent a food-opportunity for ungulates: this is also
(unfortunately) confirmed by the fact that agricultural activities are the most affected
economically by the presence of ungulates.

The coefficient map of ecological corridors in Fig. 10c reveals a very interesting
pattern. Indeed, the lowest impact of this variable is concentrated in the north of
Mugello where there are the highest values of this factor. In contrast, the highest
impacts are located in the south of Mugello where there is the lowest presence of
ecological corridors. Therefore, the GWR results seem to indicate a decreasing mar-
ginal effect of this factor. An Bextra unit^ of ecological corridors has a greater effect
where the presence of ecological corridors is scant.

Fig. 11 Map of local R2
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Analysing the heterogeneity of land use with the map of the coefficients of relative
richness (Fig. 10d), it is estimated that the maximum impact on the number of
ungulates is located mainly in the centre of Mugello. The lowest and negative coeffi-
cients are concentrated in the borders of the region. This result does not confirm the
hypothesis that ungulates concentrate in areas with higher heterogeneity of land use.

This could related to the above-mentioned presence of ungulates near urban areas
that represent areas with low heterogeneity of land use. However this result deserves
more in-depth future analysis.

The visual analysis of the local R2 provides additional useful information. Figure 11
shows where the model’s accuracy is stronger in replicating the observed values. It is
observed that there are large variations in space in the model goodness-of-fit statistics.
The R2 values range from 0.10 to 0.83. The best prediction of the number of ungulates
by the GWR is in a large area in southern Mugello. This area corresponds to the most
populated, urban and flat area and it has a lower ungulate population. In contrast, in
northern Mugello, the model replicates the ungulate population less well, with some
areas showing goodness-of-fit statistics with a lower magnitude, from 0.10 to 0.22.
This evidence can be used to develop future models related to ungulate populations. As
mentioned above, in general the GWR R2 value (0.74) shows a strong significant
relationship between the dependent and the selected independent variables. Despite this
consideration, the study of the potential number of ungulates is complex. Therefore, for
a more exhaustive analysis, the impact of other variables related to the dependent
variable should be tested, especially for areas with lower R2 that indicate the need for
additional covariates. For example, further studies could focus on the number of
hunters, factors related to seasonality (the nutrition needs of different ungulate
species vary in summer compared to in winter), different vegetation cover or types of
forestry (Côté et al. 2004; Cozzi et al. 2015; Gill and Beardall 2001; Jensen et al. 2014;
Horsley et al. 2003; Trdan and Vidrih 2008; Allen et al. 2016).

Conclusions

This work analysed the possible correlations existing between the number of ungulates
and human activities on a specific territory. This was conducted by performing a GWR
in the area of Mugello, located in the province of Florence. The use of GIS simplified
the implementation of the methodology and offered advantages in terms of model
goodness-of-fits and interpretation power of the results with respect to the traditional
data analysis techniques. Moreover, the results are georeferenced and showed through
thematic maps, which are easy to read and available for further analysis.

Our starting hypothesis was that the relationship between ungulate populations and
the selected variables (i.e., distance from artificial areas, distance from agricultural
activities, ecological corridors and relative richness of land use) are spatially non-
stationary. In other words, the impacts of the covariates have different weights across
space. However, classic regression techniques, assuming that the relationships between
dependent variables and explanatory variables are homogeneous throughout the area,
are not able to gather this phenomenon. Considering this, we compared the OLS
regression results with those of the GWR.
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Therefore, we demonstrated spatial non-stationarity and using GIS tools we mapped
the results. The use of GWR has allowed for a detailed analysis of the spatial
interactions between the dependent variables and the explanatory variables examined.

This is relevant because we detected the areas where these interactions are stronger
with the aim to better understand the difficult balance between ungulates and human
activities on the territory. Considering the huge damages that these animals cause to
rural areas every year, this article can provide useful information to stakeholders in
order to improve policy strategies and geographical policy targeting.

The main limit of GWR is that it requires a demanding calculation process, so we
can test only a small set of variables at once or for limited areas. Moreover, this model
is linked to the availability of georeferenced databases that are often difficult to acquire.
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