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Abstract Rapid and unorganized urban growth brings about urban sprawl, which leads
to the increase in the number of abandoned lands and brownfields within the cities.
Revitalization and redevelopment of these areas is one of the key factors of compact
urban development to achieve urban sustainability. However, not much research work
has been done on the redevelopment of brownfield on the base of compact urban
development paradigm in the recent literature. Most researches on this field have
mainly considered a single brownfield site for redevelopment on the bases of local
neighborhood demand and characteristics. The current paper proposes a brownfields
land use change modeling process according to a compact city paradigm in a larger
scale perspectives rather than local aspects. The proposed model is a statistical-based
weights-of-evidence (WoE) approach in the GIS environment. The growth of three
main land use types in Kajang city, Malaysia was predicted using several compact
development parameters and other urban and physical site characteristics. Maps that
have been created with this process were validated by actual growth maps of these land
use types using an area under curve (AUC) technique. The AUC of residential,
commercial and industrial land use were gained as 77.4, 78, and 67 %, respectively.
Finally, these maps were aggregated with an existing brownfields map in order to
project future land use types according to planning strategies, as well as compact
development characteristics. Results indicate that according to potential and suitability
of the site and neighborhood properties, each brownfield can serve the community as
single or mixture of several land use types. It is concluded that the combination of land
use change modeling techniques and compact urban development theory in GIS
environment can provide a strong tool for brownfields redevelopment planning and
strategies.
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Background

Brownfields are abandoned or underused properties that should be redeveloped or
reused because of the real or suspected presence of hazardous substances, pollutants, or
containment (Collins 2002; Oliver et al. 2005). Redevelopment of existing brownfields
is one of the important objectives to enhance the sustainable urban development theory
(De Sousa 2008; Nijkamp et al. 2002) and reduce urban sprawl (Nuissl and Schroeter-
Schlaack 2009). However, a brownfield redevelopment needs a comprehensive effort to
resolve and negotiate among several stakeholders with different interests (Bardos 2003;
Gross 2010). These complexities have caused many brownfields remain undeveloped,
especially in developing countries. According to the literature, there is a variety of
approaches for various aspects of brownfield redevelopment such as risk assessment
(Carlon et al. 2008), policy analysis (Linkov et al. 2006), optimization of remediation
(Biirger et al. 2007), remediation cost assessment (Kaufman et al. 2005), general
success factors for brownfield redevelopment (Lange and McNeil 2004), infrastructure
redevelopment (Attoh-Okine and Gibbons 2001), urban planning, and site prioritization
under budget constraints (Alvarez-Guerra et al. 2009), etc. (Schédler et al. 2011).
Hence, strong approaches are required to integrate these aspects and manage complex-
ities of information and results (Agostini et al. 2007; Bardos et al. 2000).

Land use change modeling is important for various urban planning and management
issues. It is a suitable approach to deal with redevelopment and revitalization of existing
brownfields. Modeling of land use changes not only improve and select various land
development scenarios, but also to evaluate the impact of development alternatives. For
example, proper analysis and prediction of urban growth may prevent many social and
environmental problems caused by the urban sprawl (Hayek et al. 2011), suburbaniza-
tion process (Helbich and Leitner 2009) and unorganized land developments. The main
environmental problems that can be prevented are encroachment on valuable agricul-
tural, forest, and natural areas. In addition, land use change modeling can help local
planning authorities to provide better community facilities and services to sustain
developments (Hathout 2002). In fact, most of the urban development scenarios are
an act to achieve urban sustainability. Compact development, transit oriented develop-
ment, and smart city are good examples of development scenarios that are based on
sustainable development principles (Livingstone and Rogers 2003). One of the envi-
ronmental perspectives of compact urban development is to emphasize on containment
of rural developments and revitalization of central areas (Jenks et al. 1996; Lin and
Yang 2006). The rationale behind this concept is to try redeveloping existing brown-
fields inside the cities instead of growing built up areas through rural environments.
Cho et al. (2011) attempted to solve this problem by evaluating the hypothesis that land
value tax contained rural area development and encouraged compact and development
closer to and within built up areas. Rall and Haase (2011) assessed the brownfield
revitalization program of the City of Leipzig in the context of urban sustainability. The
assessment was performed through a triangular integrated evaluation method combined
with site surveys and interviews, as well as expert knowledge. However, these
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assessments and analyses can be improved significantly by modeling the land use
changes in order to predict and propose a proper land use types for each brownfield site.
Sebastian Schédler et al. (2012) described and proposed a framework which integrates
a GIS-based identification of areas to be remediated, an estimation of associated clean-
up costs, and an assessment of the planned future land use’s contribution to sustainable
urban development. In another research, Sebastian Schadler et al. (2013) proposed a
scheme to transfer the evaluation of site-specific sets of sustainability indicators into
automated quantitative and spatially explicit assessments, which can be integrated into
multidisciplinary spatial optimization algorithms. On the other hand, the main aim of
their study was to gain a site-specific understanding of sustainable land use planning,
and of the potential advantages that mixed land use development may have over
uniform use with only one single land use type for a brownfield site. However, the
current paper attempts to deal with brownfield redevelopment based on compact
development paradigms through land use change modeling to achieve urban
sustainability.

Land use Change Modeling

According to the literature, following four core principles are the bases of all land use
change simulation models; historical evidence based, suitability bases, neighborhood
bases, and actor interaction bases (Verburg et al. 2004a). The logic behind historical
evidence based is that, “past is the key for future”. Therefore, background information
can be helpful in predicting future land use change as demonstrated by Kuijpers-Linde
et al. (2007). Suitability bases may consist of several factors in a land parcel in order to
evaluate for an allocation of specific purpose (Abdullahi et al. 2013). Therefore, the
underlying premise is to achieve maximum profit and minimize liability. Neighborhood
bases deal with neighborhood interaction cells that affect the transition of one land use
to another (Li et al. 2008). Actor interaction bases assume that land use change is the
result of an interaction of several actors or agents. The agents can be one or a group of
factors. This core principle is a promising research tool for land use change modeling
(Jjumba and Dragiéevi¢ 2012; Matthews et al. 2007).

There are a few main concepts of land use changes such as Markov Chains,
Economic-based concept, Agent-Based Systems, Statistical Analysis, Cellular
Automata, and Artificial Neural Networks. The Markov Chain concept is based on a
continuation of historical trend of development. This concept calculates a probability
matrix of changes of one land use type to another. The main disadvantage of this model
is the lack of spatial bases of results therefore additional assumptions are required for
allocation (Al-sharif and Pradhan 2014; Verburg et al. 2004a). The Economic-based
concept is also an important reason for land use changes and is mainly based on the
suitability of a land, although the core principle of continuation of historical develop-
ment can also be included. In general, economic-based is not exactly a concept,
however, cannot be left out of the list of concepts of land use change (van
Schrojenstein Lantman et al. 2011). More recent applications of economic based have
been reported by Nelson and Hellerstein (1997) and Walker (2004) which all use as the
based theory to explain tropical deforestation. An Agent-Based Systems of land use
change modeling which is based on the core principle of actor interaction, consists of
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two main components: a map of a study area and a model with agents that represent
human decision-making (Parker et al. 2003). An agent is a representation of actors
important in the process with their own preferences (Grimm et al. 2006). These
preferences can be defined by expert knowledge, by using questionnaires, or by using
artificial neural networks technique (van Schrojenstein Lantman et al. 2011). Various
kinds of statistical computation can be derived from land use maps. For example,
logistic regression, frequency ratio, and weights-of-evidence techniques can be used to
analyze the probability of occurrence of a dependent variable on each class of inde-
pendent variables (Verburg et al. 2004a). The coefficients of each variable can be
calculated from historical land use changes. Furthermore, they can be projected for
future land use changes. Other statistical modeling approaches such as logit modeling
in the planning and policy environment are also so common; like Land Use Scanner
(Hilferink and Rietveld 1999), which has been used in producing sustainability out-
looks for the Netherlands (Kuijpers-Linde et al. 2007). The Cellular Automata (CA) is
the most well-known techniques in modeling of land use changes (White and Engelen
1993). The main logic behind CA modeling for land use changes is the current state of
each cell and its interaction with neighborhood cells. Therefore, this model is based on
core principles of historical trend and neighborhood interaction. However, CA does not
necessarily consider the relationship and interaction among the related parameters.
Thus, usually, the CA is integrated with other techniques such as Markov Chain (Al-
sharif and Pradhan 2014), Fuzzy Theory (Al-Ahmadi et al. 20092a6)b), etc. to increase
the strength of the modelling. The use of Artificial Neural Networks (ANN) has
increased significantly due to advances in computing performance and flexibility of
software (Skapura 1996). The pattern recognition capability (Pijanowski et al. 2002),
that makes a relationship between past and future land use and suitability maps
(Verburg et al. 2004b), are important parameters that can emphasize the strength of
ANN models in land use change modeling. The first to apply ANNs to a computer
simulation model was Pijanowski et al. (2002). The model trains itself on a dataset and
the corresponding land-use maps of different years enabling it to recognize and
reproduce the pattern of land-use categories (Mas et al. 2004; Pijanowski et al.
2005). Appropriate knowledge about the land use change modeling based on their
concepts allows modelers to select the most appropriate model for area of investigation.

Land use change modeling requires availability of rich spatial data, spatial analysis
tools, and displaying capability to illustrate the output maps. Geographic information
system (GIS) and remote sensing are the most useful tools to support modeling
(Tehrany et al. 2013). GIS can provide a proper environment to store, manage, analyze,
manipulate, and display spatial data associated with the models. In addition, GIS can
aid modelers to define and create spatial variables for the models (Openshaw and
Clarke 1996), predict land use changes based on several independent spatial variables
(Mertens and Lambin 2000), and evaluate predicted changes in a spatial pattern.
However, some capability of GIS is also questioned regarding the extent and type of
GIS used in the planning practice (Olafsson and Skov-Petersen 2014). Hence, updated
knowledge regarding the performance and limitation of GIS, as well as integration with
other models, will improve the strength of the analysis. There are numerous studies on
land use change modeling using integration of GIS technology (Li and Yeh 2002;
Pijanowski et al. 2002; Verburg et al. 2004a; Wu 1998). For instance, Thomas (2002)
stated that to assess land use modeling performance with respect to the redevelopment
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of brownfields, accessibility of information such as land capability, environmental con-
cerns, public preferences, etc. for both governmental agencies and decision makers are
required. He discussed a GIS-based decision support system to provide access to geospatial
data in various scales for better understanding of the brownfields redevelopment issue.

Although several applications of global parametric models have been used in land
use change modeling (Tayyebi et al. 2014), very few urban related studies have
considered city compactness as an objective of the land use change modeling process
to achieve urban sustainability. The lack of this application specifically for brownfields
redevelopment planning is the motivation to investigate the potential and capability of
this integration modeling for existing brownfields of Kajang City, Malaysia. In addi-
tion, the current study is an attempt to analyze the urban land use changes and spatial
patterns of the study area in a quantitative manner. This will benefit Malaysian case
studies as these effects are usually explained without quantitative perspectives in the
country (Nourqolipour et al. 2014). Therefore the main objective is to integrate the land
use change modeling concept with the brownfield redevelopment plan on the bases of
city compactness paradigms. Specifically, the present paper illustrates how statistical-
based weights-of-evidence (WoE) approach within GIS aids in the understanding of the
process of land use changes. WoE was used to measure the extent and direction of
various land use growth based on temporal datasets for the year 2008 and 2012. In
addition, the model was utilized to apply and evaluate the driving forces responsible for
the change of land use types in a compact pattern. One benefit of using the model is the
ability to extract and utilize the most effective factors from all the selected factors
before evaluating the probability of land use growth. By integrating the process with
brownfield redevelopment strategy, one of the environmental objectives of compact
development can be fulfilled. Hence, this study initially predicts land use changes of
Kajang City using the probability of growth of each land use according to
compact development evidences. Consequently, the extent and direction of each
land use types were projected. After validating the process, the created proba-
bility maps and the master plan of the study region was used to assess the
existing brownfields land use types. It should be mentioned that, due to
utilization of the standard and common urban related parameters as well as
statistical based methodology, this process can be easily replicated in other
international cities for brownfields redevelopment strategies.

Study Area

The proposed modeling was used to predicting the multiple land use changes for
Kajang City, Malaysia (3° 00" 19” N, 101° 46’ 42" E). The study area is located
21 km from Kuala Lumpur, the capital city of Malaysia (Fig. 1). According to the 2010
census data, the city has population of 246,618, with an estimated population growth of
9 % per annum. The study area covers approximately 60 km?. The west parts of the city
are mainly covered by agriculture and forest lands. Recent urban sprawl developments
have mushroomed Kajang City because of its proximity to three main cities of
Malaysia. Although there are many abandoned and brownfields in the city, most of
these new developments have been constructed at the outskirts of the agricultural and
forest lands. For this reason, the present research attempts to assess the brownfields
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Fig. 1 The map of Malaysia, Kajang city and two examples of brownfield sites

land use changes according to the city compactness paradigm to make Kajang City
more environmentally sustainable.

Data and Methodology

In the first stage, a contextualized definition of the compact urban development and its
indicators was needed. Generally, in a large scale study area, urban compactness is
measured based on the cellular bases and the concentration of the built up cells in a
specific area as in the study conducted by Li and Yeh (2004) which assesses the urban
compactness using entropy and compactness index methods. Due to availability of
several urban detail layers, the current study performed a compactness assessment in
more accurate and detail bases. There are three main city compactness indicators: urban
density, land use diversity, and urban intensity (Abdullahi et al. 2014; Burton 2002).
Each of these indicators is divided into several parameters according to the availability
of data and the objective of the research. In addition to city compactness indicators,
other related urban parameters that are important for land use changes and some
physical properties of the sites were included in the analysis, as shown in Table 1.
The overall methodology flowchart of the process is shown in Fig. 2.

Most of the data, such as the land use map of year 2008 and 2012, the road network,
the soil map, etc., were collected from the local planning authority of Kajang City.
Other layers were also extracted or created from existing layers. It was essential to
select the most important parameters among others, which have a significant effect on
the land use conversion for the specific study area. Therefore, an optimization process
was applied to select the most effective parameters. This process was performed by the
frequency ratio (FR) approach, which is the initial step of running the weights-of-
evidence technique (Pourghasemi et al. 2013a; Pradhan et al. 2010). FR had the ability
to examine the existence and changes (the increase or decrease) of land use types with
respect to each class of all parameters. In this manner, the effectiveness of each
parameter could be assessed by investigating the trend of land use changes based on
their classes. This process also assessed the spatial dependency of the factors. The
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Table 1 Land use change modeling parameters

No. Parameters Categories

1 Population density City compactness

2 Built up density City compactness

3 Residential density City compactness

4 Land use diversity City compactness

5 Proximity to public transportation facilities Site specific/City compactness
6 Proximity to recreation facilities Site specific/City compactness
7 Proximity to community facilities Site specific/City compactness
8 Proximity to infrastructure Site specific/City compactness
9 Proximity to road networks Site specific/City compactness
F Proximity to same land use types Site specific

il Distance from agricultural fields Site specific

es Soil and geology properties Physical properties

( Distance from flood zones Physical properties

classification of the parameters was defined according to their types. For instance, a
proximity analysis was performed for the distance-based parameters. Then these
distances were divided into classes, which include their spatial extent. Every cell are
in a distance class: “near” to, “middle”, and “far” from land uses or points of interest.
For ordinal parameters, such as the land use diversity and urban population, “high”,
“moderate”, and “low” mixed or density were applied respectively. In the case of
nominal parameters such as soil types or geology types, each type was used as one
class. The entire base layer of all factors was converted into a grid cell to assess the
growth of each land use type in their classes. For instance, the proximity to industrial
land use causes a reduction in existence of residential land use cells. In contrast, in areas
near to recreational facilities, more number of residential cells can be observed.

[ Identifying compactness and urban related factors ]

EEE—
Land use map Factor
2008-2012 optimization
Cros§ Effective
tabulation factor
Master plan Brownﬁ.elds
extraction
- Residential ( Weights-of-Evidence }
- Commercial
- Industrial \1/ ﬁ
——

Land use growth Validation Final
probability map Assessment

Fig. 2 Methodology flowchart of the process
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However, various geological types do not have any significant effect on existence or
absence of residential cells. Hence, the proximity to industrial and recreational facilities
selected as important parameters. Moreover, geological characteristic assumed as not an
effective factor, hence were removed from the process.

As previously mentioned, historical evidence bases are one of the core principles of
land use change modeling. In order to investigate the trend of the land use changes
during a 4 years period, a cross-tabulation analysis of land use maps was performed
between the years 2008 and 2012. A cross-tabulation enabled the observation of the
significant growth of the main land use types. This process is a mathematical matrix,
which gives unbiased information concerning the entire area of interest, to derive
unbiased summary statistics (Pontius and Millones 2011). For this case study, the
matrix gave unbiased information concerning the relationship between the land use
maps of 2008 and 2012. It showed that only three main land use types (residential,
commercial and industrial) were growing and changing significantly than others. New-
build gentrification literature also proved that the land use change process is mainly
from pre-industrial or brownfields to residential, commercial or institutional uses
(Davidson and Lees 2005; Sabri et al. 2012). Furthermore, the growth of these three
land use types resulted in the reduction of agricultural fields. Hence, it is decided to
focus on residential, commercial, and industrial land use types, to evaluate and project
their growth through other land use types.

For the proposed land use change modeling, Bayesian theorem was applied, with an
update of prior probabilities through the weights-of-evidence (WoE) approach
(Bonham-Carter 1994; Pradhan et al. 2010). Dempster—Shafer theory of evidence
developed by Dempster (1967) and then by Shafer (1976) is a spatial integration model
with mathematical representations (Althuwaynee et al. 2012; Carranza 2009).

The selected parameters from the optimization process were utilized as evidence in
order to evaluate the probability of growth for each main land use type. The WoE
allowed the ability to assess and combine evidences according to variation of the land
use changes. The advantage of this theory is its flexibility to compute uncertainty and to
combine evidences from different sources of data (Thiam 2005; Tien Bui et al. 2012).
The model created an opportunity to analyze land use changes according to the city
compactness paradigm. In general, WoE evaluates the degree to which evidences
support the hypothesis, in this case the land use change occurrence, and the degree to
which those evidences do not refute the hypothesis (Dempster 1967; Shafer 1976). The
WoE has been widely applied in the literature in a variety of applications such as
geological mapping (Chen et al. 2013; Nampak et al. 2014), and natural disaster
management (Althuwaynee et al. 2012; Pourghasemi et al. 2013a, b; Tien Bui et al.
2012; Mohammady et al. 2012; Pradhan et al. 2014; Tehrany et al. 2014). However, a
few studies have utilized this approach in urban applications such as land use dynamic
modeling by Maria de Almeida et al. (2003) and mixed land use development proba-
bility mapping by Abdullahi et al. (2015). As an example, the WoE of residential land
use growth with respect to the proximity to the road is shown in Table 2. The value of C
was calculated by subtracting W+ (natural logarithm of occurrence) and W— (natural
logarithm of non-occurrence). This value represents the spatial association of each land
use pixel and each class of evidence. A positive value represents a higher number of
specific land use pixels occurring in this class. In contrast, a negative value represents a
lesser number of land use pixels occurring in this class. S2(W+) and S2(W-) are
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Table 2 Weights-of-evidence for residential land use growth based on “proximity to road” evidence

Factor Class  Frequency W+  W- C S2(W+)  S2(W-)  S(C) C/S(C)
Ratio

Proximity to residential Near 1.08 0.08 —0.04 0.12 0.000007 0.000004 0.00 38.23

Middle 1.04 0.04 —-0.02 0.07 0.000007 0.000004 0.00 20.49

Far 0.87 -0.14 0.06 —0.20 0.000007 0.000004 0.00 —59.78

variances of W+ and W—, respectively, and S(C) is the standard deviation of the contrast.
Finally, C/S(C) is the standardized value of C which represents the significance of the
spatial association and measures the relative certainty of the posterior probability
(Bonham-Carter 1994). Further detailed description of the mathematical formulation
is available in Maria de Almeida et al. (2003), Pradhan et al. (2010) and Regmi et al.
(2010). The probability value of the land use growth for every cell of the study area is
calculated by considering the prior probability of occurrence and non-occurrence of land
use types in each class of evidence. The majority of the evidences are distance-based or
accessibility. Hence assessing the weights across the different distance ranges is possi-
ble. The other two evidences were the main city compactness characteristics and
characterized in ordinal bases. The transitional probability was computed according to
the proportion of the observed transition in each predefined class of evidences.

The output of this process is the three land use growth probability maps which show
the probability of each land use growth according to the selected evidences separately.
Each map was later classified into three classes: areas with very high, moderate, and
low probability of growth of a specified land use type. Finally, all three maps as first
scenario which was equal priority scenario were aggregated with the same weights. The
first scenario was to illustrate the overall view of the study area regarding the growth of
each single land use types, as well as mixture of them. The other scenarios were defined
according to the master plan of the study area, where each land use growth map had
different priority values. Hence, the site potential and suitability, the local demands of
the neighborhood, and the local planning and development policy can assist to assign a
proper priority to each land use type.

The next step was to extract the existing brownfields of Kajang City. For this
process, the site indicators and criteria as listed in study conducted by Thomas
(2002) were tested. All open spaces such as the buffer zone around rivers and
highways, recreational play grounds, and natural landscapes were excluded from the
analysis. As shown in Fig. 3, most of the small brownfield sites are located in the
center, south, and southeast. They are near dense residential and commercial areas or
compact regions. In contrast, brownfields with larger area are located in the east, west,
and central west near to industrial and agricultural fields or less compact regions.

Results and Discussion
In the first step to understand the current trend of land use change of the study area, a

cross tabulation process was run between the land use map of year 2008 and 2012. This
process revealed that residential land use attempts to capture almost all types of
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Fig. 3 Brownfields of Kajang city

activities. However, this growth is more noticeable through open spaces and agricul-
tural fields. In fact, the growth in main land use types through brownfields and
abandoned land is desirable. However, loss of 345 ha of agricultural fields in 4 years
only from residential land use development is an unsustainable problem that should be
avoided. Unfortunately, loss of agricultural fields can be seen from the growth of
commercial and industrial land use as well. By running a cross tabulation process,
the total growth and total loss of each land use types were computed. Residential,
commercial, and industrial land use had growth values of 367, 72, and 75 ha, respec-
tively, during 4 years period. Moreover, in overall Kajang City has lost more than
348 ha area of its agricultural fields in same period.

After evaluation of the land use growth with respect to all selected parameters, it was
noticed that some of them do not have influence on these growths. Therefore, by
running the optimization process, the most effective factors as shown in Table 3 were
extracted. Residential and industrial land use types apparently are more similar in factor
effectiveness rather than commercial land use. However, it should be noted that most
the factors have an inverse relationship with these two land use types: the proximity to
community and recreational facilities, the population density, and the land use diversity.
In contrast, commercial and residential land uses have a direct relationship in case of
the most factors.

The probability value of land use growth (C/S(C) value) for every cell of study area
was calculated considering the prior probability of occurrence and non-occurrence of
land use types in each class of evidences. A summarized weights-of-evidence calcula-
tion for each land use growth is given in Table 4.

A majority of evidences were based on distance or accessibility and it was possible
to examine the probability of growth of land use types across the different distance
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Table 3 Most effective parameters for land change modeling

Important factors Land use type

Proximity to residential Residential, commercial, industrial
Proximity to commercial Residential, commercial, industrial
Proximity to industrial Residential, commercial, industrial
Proximity to roads Residential, commercial, industrial
Proximity to public transportation Residential, commercial, industrial
Proximity to community facilities Residential, industrial

Proximity to recreational facilities Residential, Industrial

Proximity to infrastructure Residential, industrial

Proximity to agricultural fields Residential, commercial, industrial
Population density Residential, commercial, industrial
Land use diversity Residential, commercial, industrial

classes. On Table 4 and as shown in Fig. 4, the probability of growth for each land use
types is higher in close proximity to the same land use types. In contrast, the residential
and industrial land uses tend to keep distances from each other. In general, proximity to
recreational and community facilities offer advantages for the housing environment. In
this specific case study, the proximity caused positive probability values for residential
and negative values for industrial land use growth. This confirms the inverse relation-
ship of the residential and industrial land uses theory.

Accessibility to main roads and public transportation facilities is another important
characteristic of site suitability. Having proper accessibility is a positive factor for most
of new developments. However in Kajang City, most of the industrial land uses are
located near agricultural fields or rural areas, which not much urban development is
observed. This issue can be seen from the proximity to agricultural fields as well.
Consequently, in the case of industrial land use, negative values are for classes near to
main roads and public transportation facilities.

Population and land use diversity evaluation were in the range of high and low
population and single to mixed land use, respectively. These two compactness-based
evidences revealed straightforward effects on the land use growth. Higher population
and higher land use diversity resulted positive values of C/S(C) for residential and
commercial land uses. In contrast, the area in single land use and lower population
density has a higher probability for industrial land use growth.

Land use growth map for residential, commercial, and industrial are given in Fig. 4,
respectively. The white areas are constraint areas such as transportation, flood zone, and
water bodies, which have been removed from the analysis.

For the validation of land use change simulation, it is desirable to quantitatively
evaluate the degree of fitness or similarity between the projected land use and the actual
land use map. This similarity assessment was performed using the relative operating
characteristic (ROC) based area under curve (AUC) to evaluate the probability of
growth maps created by WoE approach (Chen et al. 2013; Pontius and Schneider
2001; Van Eck and Koomen 2008). To run AUC, WoE was applied on the land use map
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Table 4 Summarized weights of evidence for main three land use growths

Factors Class C/S(C) C/S(C) C/S(C)
Residential Commercial Industrial
Proximity to residential Near 364 —14 —365
Middle —264 41 330
Far -156 —45 126
Proximity to roads Near 53 167 —137
Middle 29 —88 —40
Far —86 -89 172
Proximity to recreational facilities Near 129 - —225
Middle 42 - —85
Far —188 - 300
Population density Low —158 -99 251
Moderate 112 40 —-114
High 18 60 —142
Proximity to commercial Near 14 198 —163
Middle 60 —-131 —6
Far =77 =70 159
Proximity to public transportation Near 63 117 -172
Middle -3 -99 -6
Far —62 -17 174
Proximity to infrastructure Near 40 - =70
Middle 60 - 30
Far —-105 - 37
Land use diversity Low =79 -120 216
Moderate 74 73 =76
High 2 56 —-156
Proximity to industrial Near -206 —60 380
Middle 108 65 —241
Far 76 -6 —-166
Proximity to community facilities Near 72 - —222
Middle 88 - =75
Far -174 - 287
Proximity to agricultural fields Near -132 —42 2
Middle 21 6 75
Far 100 36 =78

of 2008 in order to create the main land use (residential, commercial and industrial)
probability of growth for the future. Subsequently, the similarity of these three maps
was assessed by the actual residential, commercial and industrial land use of year 2012.
In this manner, the process determined how well the method and parameters produced
the land use growth map. The AUC of 50 % indicates random results. The AUC of
residential, commercial and industrial land use were gained as 77.4, 78, and 67 %,
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Fig. 4 a) Residential, b) commercial and c¢) industrial land use growth map from WoE model

respectively. Lower AUC value of industrial land use indicated that, industrial land use
growth is more depend on economical perspectives rather than physical or proximity to
same land use type parameters.

After the aggregation of land use growth maps as the first scenario (equal priority),
with the brownfields map, from a total area of brownfields (2,908,550 mz), 400,000 m*
was assigned as the single land use growth (Fig. 5 and Table 5). The rest of them were
projected for mixture of two or three land use types.

Single land use developments are assigned to brownfields located in an area with
high probability of growth for only one land use type. For instance, as shown in Fig. 4,
the central west of Kajang City is only suitable for the industrial land use type.
Therefore, most of the brownfields located in these arecas were automatically assigned
as a single land use development for industrial purposes. However, according to Fig. 4a
and b, most of the commercial land use growth are suitable for residential as well.
Residential-commercial mixed land use area covered more than one third of whole city
(1,107,877). This large area could be expected due to the high similarity of the C/S(C)
value and the direct relationship of residential and commercial land use with respect to
all evidences. These areas can be developed in vertical mixed use, which means the
basement floors are for commercial use and upper floors for housing purposes. In
addition, significant differences of the C/S(C) values of commercial and industrial
caused only 136,000 m? area to become a mixture of these two land use types. Areas
with mixture of residential-industrial are mainly located in the borders of these land use
types. It should be mentioned that the industrial use which assigned for these areas are
mainly light industry. The rest of the area was assigned as a mixture of all three land use
types. Considering the size, potential, and suitability of these locations, these
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Fig. 5 Projected land use types for existing brownfields

brownfields can serve the neighborhood as mixed land use development. Further
scenarios can be defined by consideration of local expert knowledge in order to give

different priority values for each land use type.

Conclusion

Rapid urban growth has resulted in intensive loss of natural and valuable agricultural
lands especially in fast growing regions. Therefore, the simulation or projection of the

Table 5 Projected land use types for existing brownfields

Land use diversity Land use type Area (m?)
Single land use development Residential 140,222.3
Commercial 0
Industrial 258,892.5
Total 399114.8
Mixed land use development Residential-commercial 1,107,877.2
Residential-industrial 625,962.9
Commercial-industrial 136,064.8
Residential, commercial, industrial 639,531.7
Total 2,509,436.6
Total 2,908,551.4
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future urban growth and land use changes provide very beneficial information for local
planners and decision makers. However, like other urban related issues, land use change
modeling is often difficult to simulate due to its complexities, uncertainties, and several
numbers of involved parameters and/or stakeholders. These difficulties need to be dealt
with multidisciplinary geospatial techniques and other systematic procedures.

The present paper illustrates the application of GIS-based WoE for modeling the
brownfields land use changes. The future land use type of each existing brownfield
could be identified. This projection can be in single land use or a mixture of two or
more land use types depending on brownfield properties, potential, and surrounding
environment conditions. The model process was based on the trend and historical land
use changes of the study area. Furthermore, the projected land use changes were based
on city compactness paradigms such as urban density, urban intensity, and land use
diversity in order to develop the city according to sustainable development theory.
Several other urban related factors were involved in the analysis as well. However, the
results show that one of the main controlling factors for these changes was based on
spatial autocorrelation of land use types.

The WoE model is a statistical-based model. Hence, the parameters were evaluated
statistically instead of subjective choice of weighing technique by expert knowledge,
which is the main source of uncertainty. For this reason, it can be concluded that the
model revealed reliable and promising results for brownfields land use change model-
ing. The final outputs provide valuable land use growth maps and information about the
future of existing brownfields of the city. Redeveloping and revitalizing these areas
according to compact development concept will make Kajang City environmentally
more sustainable.
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