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Survival analysis—part 2: Cox proportional hazards model
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Abstract
Learning objectives:

1. To understand the log-rank test and limitations of the log-rank test in comparing survival between groups.
2. To understand the fundamental concepts of the proportional hazards assumption.
3. To understand basic steps in the development of the Cox proportional hazards model and reported hazard ratios.
4. To understand how results of a Cox model run using STATA© (a commonly used proprietary statistical software) can be

understood and interpreted.
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Introduction

As mentioned in the first part of survival analysis, observational
studies and randomized clinical trials (RCT) often involve a time
to event outcome, where patients are followed up from the start
of the study (e.g., after coronary artery bypass grafting) until the
occurrence of the outcome of interest (time to event, e.g., time to
first myocardial infarction after surgery) or the end of follow-up
period [1]. In outcomes research, especially RCTs, a hazard ratio
is often estimated from a Cox proportional hazards (CPH) model
and is reported as the main measure of therapeutic efficacy. In
this review, the authors elaborate on the rationale for the use of
CPH model, its important assumptions, limitations and the key
aspects related to the inappropriate interpretation of results from
CPH models [2].

Rationale for the Cox proportionate hazard
model

In 1972, David Cox developed the proportional hazards mod-
el which derives robust estimates of covariate effects using
proportional hazards assumption. In this review, we shall il-
lustrate CPH model using an example of an observational
study comparing mid-term survival after surgery for stage III
lung cancer among males and females. The data for this ex-
ample is available in the “survival” package in R (The R
Foundation for Statistical Computing, Austria). As it is pub-
licly available, institutional board approval was not needed for
presenting these results. The first step in the analysis would be
to report the observed survival for males and females in our
cohort. These survival estimates can be easily calculated by
the Kaplan andMeier method. These values can be graphed to
present the survival estimates for patients in each patient
group (i.e., two survival curves, one each for males and fe-
males). Figure 1 presents the survival estimates for females
and males in our study of post-surgical patients with stage III
lung cancer. This is to be followed by a formal statistical test, a
log-rank test, to investigate whether the survival estimates for
the two groups are statistically different (reported as p value in
Fig. 1). This hypothesis testing is performed at a pre-specified
confidence level (most commonly we set it at the 95% confi-
dence level; hence, the importance of a p value < 0.05). The
log-rank is a test of the whole survival estimates, rather than of
the survivor functions at a particular time [3].

While log-rank test enables effective comparison of the
survival in these two groups (females versus males), it has
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certain important limitations. (i) Firstly, the log-rank test can
only assess the effect of one variable at a time on prognosis.
(ii) The log-rank test can be used to investigate the impact of a
categorical confounder by looking at survival curves for the
main exposure within strata defined by that confounding var-
iable. However, it does not allow us to investigate the simul-
taneous impact of multiple categorical variables or continuous
variables (e.g., age, body mass index, ejection fraction) on
survival. In an observational study, it is important to control
for multiple potential confounders in the analyses. (iii) The
log-rank test can only tell us if there is a statistically significant
difference between groups. It cannot provide a hazard rate or
hazard ratio. Hence, it cannot quantify this difference. [4]

On the other hand, the CPHmodel enables us to investigate
the effects of several continuous and categorical variables on
survival, while accounting for possible confounders. Unlike
the log-rank test (and other non-parametric models), CPH fa-
cilitates quantification of differences in survival distribution
between two groups. We do this by estimation of a hazard
ratio. The hazard ratio is the ratio of the event rate at any given
time in one group (e.g., treatment group) relative to the other
(e.g., control group) [5].

What is CPH?

The hazard ratio (HR) is analogous to odds ratio used in mul-
tiple logistic regression analysis. It is the ratio of the total

number of observed to expected events in two independent
comparison groups. In our example of survival outcomes be-
tween females and males,

HR ¼ Σ Observed Events in females in t
Σ Expected Events in females in t

� �
=

Σ Observed Events in males in t
Σ Expected Events in males in t

� �

Here, the event is death and t is the survival time. With the
use of the equation listed above, we havemerely examined the
association between the type of valve implanted and long-
term survival. However, in an observational study where the
two groups are not equally balanced with respect to patient
characteristics, it is important to measure the impact of con-
founders. Furthermore, it is often of interest to evaluate the
association between several risk factors (both categorical and
continuous) and survival time. CPH is one of the most com-
monly used regression techniques to examine this association
while accounting for confounding. The CPH model can be
described as follows:

h tð Þ ¼ h0 tð Þe b1X1þb2X2þ…þbpXpð Þ

where h is the expected hazard at time t and ℎ0(t) is the base-
line hazard when all predictors X1, X2…, Xp are equal to 0.

Let us assume that in our example, that patient sex is the
only predictor variable influencing survival. In this simple

model of one predictor variable, the CPH would be ℎ(t) =
ℎ0(t)e

b1X1, where X1 is the sex of the patient. Let us start with
the comparison of two participants (one in each group) in
terms of the expected hazards; the first patient is female
(X1 = Female) and the second patient is male (X1 =Male).
The expected hazard for the two patients would be h(t) =
h0(t)e

b1Female and h(t) = h0(t)e
b1Male respectively. The HR

would be the ratio of these two expected hazards,
HR = (h0(t)e

b1Female)/(h0(t)e
b1Male) = e(b1 ∗ (Female −Male)).

It is clear from this equation that the time component is
cancelled. Hence, the HR does not depend on time t, indicat-
ing a proportional hazard over time.

Assumptions for CPH

Like any other statistical model, CPH relies on certain impor-
tant assumptions:

Fig. 1 This is an observational study comparing the all-cause mortality of
post-surgical stage III lung cancer patients. The survival estimates of
males and females in our cohort were calculated using the Kaplan and
Meier estimates. This figure presents the estimated survival of males (red)
and females (blue) with their respective 95% confidence intervals (col-
ored bands). The difference in survival between these females and males
was compared with the log-rank test (observed p value = 0.001)
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1. The proportional hazards assumption: In CPH, the hazard
ratio is assumed to remain constant throughout the follow-
up. In our example, it is reasonable to assume that the
hazard for both the groups (females and males) remains
same for the entire follow-up. However, this might not be
true in all circumstances. For instance, in clinical trials
comparing surgical versus medical therapy, as in
Coronary-Artery Bypass Surgery in Patients with Left
Ventricular Dysfunction (STICH trial), the surgical arm
was associated with high mortality immediately after ran-
domization due to procedural risk but conferred lower
long-term mortality [6]. In such cases of deviation from
proportional hazard assumption, alternative analysis strat-
egies such as accelerated failure timemodel or a milestone
analysis should be considered. [7]

2. Independence of survival times between distinct individ-
uals in the study population. This means that the survival
time of one patient does not depend upon the survival time
of another. This assumption of independence is a criteri-
on, which is also applied to other statistical methods like
linear and logistic regression.

3. The last assumption is that the censoring is uninformative
about the outcome of interest, i.e., it is important that
those who have been censored have the same risk of suf-
fering the study end-point as those who continue to be
followed. To explain this further, the Cox model holds
only if patients that are censored have the same risk of
mortality, if they were still included in the study. For
example, consider that we are conducting a trial to evalu-
ate the benefit of a medication on 5-year survival with a
regular periodic follow-up. Consider that a patient does
not come for his next follow-up visit, because he suffers
from a side effect of the treatment and hence visits another
physician. Then, this patient will be censored from the
trial. However, this type of censoring is not uninforma-
tive. Given his side effects, he may now be at a higher risk
of suffering from the end-point specified in our study. But
consider another scenario. A patient fails to keep his
follow-up appointment because he moved to another city;
this, however, is an example of uninformative censoring.
We can safely assume that this patient continues to have
the same risk of suffering the end-point in the new city,
although he is censored from our present study.

Benefits of CPH

The CPHmodel is very popular among clinical researchers for
numerous reasons. It does not need the researcher to specify
the function of the baseline hazard. Provided proportional
hazards assumptions are met, the results are robust. With re-
sults from the CPH model, the coefficients obtained can be

used to model and predict the expected survival of patients
with specific values of covariates included in the model. To
understand this, we will again go back to the example dataset
of 228 stage III lung cancer patients who underwent surgery.
Wewould like to understand the association of patient sex and
age at surgery with all-cause mortality. For this purpose, we
will fit a CPH including these two covariates in the model.

From (Table 1), we observe that both variables indepen-
dently influence all-cause mortality. Keeping sex constant
(i.e., comparing only males or only females), a unit increase
in age increases the risk of mortality by 1%. However, for
patients with the same age, compared to males, females have
a 41% reduced risk of mortality. Another benefit of a regres-
sion model, like the CPH model, is that it can be used to
predict outcome for patients with specific values for covariates
included in the model. While understanding the results of
regression models, it is important to consider the confidence
interval. The range of confidence interval provides an under-
standing of uncertainty inherent in the analysis.

We provide, below, an outline of steps used to conduct a
CPH model. In the supplement, we present an example using
STATA© (STATACorp, Station College, TX), a simple yet
powerful proprietary statistical software. We have also pro-
vided a simplified dataset that readers can download and open
in STATA©.

Steps in survival analysis using CPH

1. Create a null hypothesis, e.g., survival time S(t) for fe-
males = S(t) of males

2. Derive survival estimates using the Generate Kaplan and
Meier method. This method accounts for right censoring
observed in the data.

3. Log-rank test to investigate whether the survivor curves
for the two groups are statistically different (p value).

4. Check the proportional hazards assumption for each co-
variate considered for the multi-variable CPH model.
Hypothesis testing and plotting residuals from the model

Table 1 The results of the CPH model explained in the text. The table
provides the hazard ratios and their 95% confidence interval with p values
for each variable included in the model. Hazard ratios are exponentials of
the coefficients. When the coefficient is a positive number, then the
hazard ratio is greater than unity. Similarly, when the coefficient is a
negative number, the hazard ratio will be less than unity. If the hazard
ratio > 1, then the risk is higher for the study group versus the control
group. The converse is true when the hazard ratio is < 1

Covariate Coefficient Hazard ratio Confidence interval p value

Age at surgery 0.017 1.01 0.99–1.03 0.06

Female sex − 0.513 0.59 0.43–0.83 0.001
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against time are some methods to test the CPH assump-
tions. For all conventional time to event analyses, inde-
pendence of observations and non-informative censoring
are important assumptions that need to be accepted. There
are different techniques available when patients are clus-
tered together in groups, for example, they are operated by
the same surgeon, or treated in the same hospital in a
multi-institutional study. However, they are not the focus
of this paper and will be discussed in future articles.

5. If proportional hazard assumption is met, CPH model
could be employed to investigate the effects of multiple
continuous and categorical variables on the time to event
end-point. We can account for possible confounding and
quantify differences in survival between the two groups,
i.e., by the estimation of hazard ratio. If the proportional
hazards assumption is not met, then other extensions of
the Cox model are available to account for this. While
reading a journal article, we would recommend readers
to observe if authors have specified CPH testing in their
methods section. The supplement section may provide
plots or results of CPH tests for each covariate included
in the model. Results obtained from the CPH model are
naturally valid only if the data fulfils CPH tests.

Conclusion

Time to event outcomes are commonly used in cardiology and
cardiothoracic surgery literature. The CPH model is the most
widely used multivariate statistical model for survival analy-
sis. Understanding the rationale and assumptions behind CPH
model are important when using the Cox model in time to
event analyses. The Cox model provides hazard ratios for
variables included in the model. These hazard ratios can be
easily understood by clinicians and they aid decision- making.
The ability of the model to provide results easily understood
by non-statisticians has likely led to the widespread use of this
model in medical literature.

Further reading

Applied Survival Analysis: Regression Modeling of Time-to-
Event Data

Author(s): David W. Hosmer, Stanley Lemeshow, Susanne
May

First published: 26 February 2008 Print ISBN:
9780471754992 |Onl ine ISBN: 9780470258019
|DOI:https://doi.org/10.1002/9780470258019 Copyright ©
2008 John Wiley & Sons, Inc. All rights reserved. Book
Series:Wiley Series in Probability and Statistics

This is a reference book on survival analysis. It provides
detailed information regarding all aspects of analyzing time-
to-event data.

Applied Survival Analysis using R.
Author: Dirk F Moore
Print ISBN: 978-3-319-31,243-9 |Online ISBN: 978-3-

319-31245-3 |DOI: 10.1007/978-3-319-31245-3 Copyright
© 2016, Springer International Publishing Inc. All rights re-
served. Book Series: Statistics for Life Sciences, Medicine,
Health Sciences.

This book covers methods of survival analysis with solved
examples using R. R (The R Foundation for Statistical
Computing) is an open-source versatile statistical language.
While it has some learning curve, researchers can use R for
advanced statistical computing.

An Introduction to Survival Analysis using STATA.
Authors: Mario Cleves, William W. Gould, and Yulia V.

Marchenko.
ISBN-13: 978-1-59718-174-7| Publisher: Stata Press,

Copyright: 2016.
This is an excellent practical manual for applied re-

searchers that want to start analyzing time-to-event data
using STATA© (The STATACorp, College Station, Texas).
STATA© is a proprietary statistical software. It also has many
user-written commands that allow researchers to apply ad-
vanced statistical methods. However, beginners have access
to a Graphical user interface (GUI) that helps to learn the
code easily.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s12055-020-01108-7.
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