
Vol.: (0123456789)

Energy Efficiency           (2024) 17:70  
https://doi.org/10.1007/s12053-024-10249-2

ORIGINAL ARTICLE

Analyzing the implementation of predictive control systems 
and application of stored data in non‑residential buildings

Marjan Savadkoohi  · Marcel Macarulla  · 
Blanca Tejedor  · Miquel Casals 

Received: 20 July 2023 / Accepted: 3 August 2024 
© The Author(s) 2024

Abstract In non-residential buildings, building 
energy management systems (BEMS) and the applica-
tion of data hold significant promise in reducing energy 
consumption. Nevertheless, BEMS have different lev-
els of complexity, benefit, and limitation. Despite the 
advanced technologies and improvements in build-
ing operation, there is a clear gap in the actual perfor-
mance of buildings that has been attributed to the adop-
tion of advanced technologies. Consequently, there is 
an increasing need for researchers and practitioners to 
study current practices in order to identify and address 
the challenges that compromise the core objectives of 
BEMS. For this reason, this paper aims to validate three 
research questions: (i) to examine the current state of 
BEMS and its functionalities; (ii) to analyze the type 
of control used; (iii) and to determine the availability of 
historical data compiled by BEMS and its application 
in non-residential buildings. A survey of 676 buildings 
and interviews with building professionals were con-
ducted. The findings confirmed that most of the build-
ings applied BEMS with scheduled control. In addition, 
a lack of digitized data for analysis and predictions was 

detected. Indeed, only 0.60% of the investigated build-
ings implemented predictive control. Finally, using 
hierarchical clustering analysis, responses were grouped 
to analyze similarities between them. The study find-
ings help to develop targeted actions for implementing 
predictive control in non-residential buildings.
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Introduction

European Union (EU) established energy targets to 
attain climate neutrality by 2050 (European Commis-
sion, 2020). These targets can be summarized in three 
groups: (i) to reduce greenhouse gas emissions; (ii) 
to increase the ratio of renewable energies; (iii) and 
to improve energy efficiency (European Commission, 
2019a). To ensure the realization of the aforemen-
tioned targets, the EU designed a set of transformative 
policies that EU members are committed to imple-
ment. Buildings are essential for accomplishing those 
targets in terms of optimizing building energy effi-
ciency and energy demand (IEA, 2021a), since they 
account for 35% of global final energy use and 38% 
of global energy-related  CO2 emissions in 2019 (Alli-
ance, 2020). Besides, based on the latest IEA report 
(IEA, 2021b), roughly 75% of buildings in the EU are 
not energy-efficient, with around 90% expected to still 
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be in use in 2050 (IEA, 2021b). Most building energy 
consumption occurs during the operational stage 
(Asdrubali & Grazieschi, 2020). Indeed, heating, 
ventilation, and air conditioning systems (HVAC) are 
significant contributors in this stage (Zhang, Chong, 
et al., 2019; Zhang, Xue, et al., 2019). HVAC systems 
often work inefficiently due to improper control strat-
egies (Afroz et al., 2018; Zhang, Chong, et al., 2019; 
Zhang, Xue, et al., 2019).

Building energy management systems (BEMS) 
play an important role in optimizing HVAC systems 
as it enables buildings to be more intelligent through 
real-time automatic monitoring and control (Molina-
Solana et  al., 2017; Xiao & Fan, 2014). Types of 
controls implemented in BEMS consist of classical 
developments based on rules (e.g., reactive “if-then-
else” controls (Drgoňa et  al., 2018, Drgoňa et  al., 
2020, Killian & Kozek, 2016, Zhang, Chong, et  al., 
2019)) to more advanced controls (e.g., model predic-
tive controls (MPC) (Al Dakheel et al., 2020; Behrooz 
et  al., 2018; Chen et  al., 2020; Drgoňa et  al., 2020; 
Himeur et al., 2021; Ke et al., 2020; Killian & Kozek, 
2016; Kuivjõgi et al., 2021; Li et al., 2020; Li & Wen, 
2014; Mullen et  al., 2015; Rohde et  al., 2020)). The 
achieved savings of control systems range between 
20-45%. They correlate directly with the technol-
ogy implemented to optimize the buildings’ energy 
consumption (Halhoul Merabet et al., 2021; Li et al., 
2020). Most existing commercial BEMS are reactive 
rule-based (Drgoňa et  al., 2018; Freund & Schmitz, 
2021; Hilliard, 2017; Hong et  al., 2020;  Macarulla 
et al., 2017; Yang et al., 2020; Zhang, Chong, et al., 
2019). This means they cannot predict future scenar-
ios or adapt to unexpected events. As a consequence, 
their energy-saving capabilities are limited (Drgoňa 
et  al., 2018; Freund & Schmitz, 2021; Macarulla  et 
al., 2017; Savadkoohi et al., 2023; Zhang et al., 2019). 
Therefore, recent developments in BEMS are focused 
on advanced control systems to overcome the low 
potential of current BEMS (Boodi et  al., 2018; Jang 
et al., 2019; Stoffel et al., 2023; Stoffel et al., 2024). 
Advanced control systems are central components 
of intelligent buildings (Chen et al., 2020). The ben-
efits of these systems are significant and have been 
widely recognized, as evidenced by the current inten-
sive interest of researchers (e.g., data-driven predic-
tive control (Ke et al., 2020), dynamic optimization of 
control setpoints (Rohde et  al., 2020), transfer learn-
ing with deep neural networks in smart buildings 

(Chen et  al., 2020), and real-time big data analytics 
for the energy efficiency improvement (Li et al., 2020; 
Drgoňa et al., 2018; Drgoňa et al., 2020; Sangi et al., 
2019). Nevertheless, the application of advanced con-
trol systems has not yet been generalized (Abuimara 
et al., 2021). These technologies’ field validations are 
still very limited and are in the early stages (Drgoňa 
et al., 2020; Granderson et al., 2018; Žáčeková et al., 
2014). This suggests a critical need to significantly 
increase the large-scale deployment of new tech-
nologies and innovations across the building industry 
(European Commission, 2019a).

The integration of BEMS with advanced data anal-
ysis techniques has become increasingly important 
for effective energy management and optimization 
in buildings (Aguilar et  al., 2021; Fan et  al., 2021; 
Grillone et  al., 2021; Himeur et  al., 2022; Nagana-
than et  al., 2016; Yuan et  al., 2021). One such data 
analysis technique is Hierarchical Agglomerative 
Clustering (HAC), which offers a powerful approach 
for identifying patterns and grouping similar entities 
based on their energy managemnet characteristics. 
By applying HAC to the data collected from BEMS, 
it is possible to uncover distinct clusters or groups of 
buildings that exhibit similar BEMS profiles. This 
clustering approach provides valuable insights into 
building energy performance, facilitates benchmark-
ing, and enables targeted energy conservation strate-
gies. Moreover, the combination of BEMS and HAC 
can help in identifying pecularities, detecting anoma-
lies, and ultimately enhancing energy efficiency in 
building portfolios.

Considering the aforementioned aspects, this 
paper aims to analyze whether the application of 
advanced controls has been generalized in non-res-
idential buildings. For this reason, this study was 
divided into three steps: examining the current state 
of BEMS and its functionalities, analyzing the type 
of controls used, and determining the availability 
of historical data stored by BEMS and its applica-
tion in non-residential buildings. The remaining 
parts of the paper were organized as follows. In Sec-
tion 2, the problem statement and background of the 
research are discussed. In Section  3, the methodol-
ogy framework is provided by reviewing the current 
BEMS through surveys and interviews. In Section 4, 
the results of the cases were evaluated and discussed. 
Finally, the paper closes with the trends and the main 
conclusions of this research.
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Problem statement and background

In the building industry, words like building auto-
mation system (BAS), building automation and 
control system (BACS), building management sys-
tem (BMS), building energy management system 
(BEMS), energy management and control system 
(EMCS), home energy management system (HEMS), 
and intelligent building energy management systems 
(iBEMS) were used interchangeably to describe soft-
ware and hardware technologies that enable to man-
age energy in buildings (Al Dakheel et  al., 2020; 
Boodi et  al., 2018; Drgoňa et  al., 2018; Jang et  al., 
2019; Kwak et  al., 2015; Li et  al., 2020; Macarulla 
et al., 2017; Mariano-Hernández et al., 2021; Papado-
poulos et al., 2019; Papantoniou et al., 2015; Savad-
koohi et al., 2023; Serale et al., 2018; Whitney et al., 
2020; Xiao & Fan, 2014; Yang et  al., 2020; Zong 
et al., 2019). These terminologies have a wide range 
of definitions but always suggest automating  opera-
tions in buildings with different levels of efficiency 
and intelligence. Building energy management sys-
tem (BEMS) is the most common term found in the 
literature and is the word discussed in this paper.

Concerning the control systems implemented in 
BEMS, these can be summarized in two main groups: 
traditional or classical control strategies (TCS) and 
advanced control strategies (ACS) (Gholamzadehmir 
et al., 2020). On the one hand, TCS includes sequenc-
ing control (on/off control) and process control (P, PI, 
and PID control). On the other hand, ACS involves 
hard control (gain scheduling, nonlinear, robust, 
optimal control, and model predictive control), soft 
control (fuzzy logic and neural network control), 
and hybrid control (fusion of hard and soft control 
techniques) (Afram & Janabi-Sharifi, 2014a, 2014b; 
Afroz et  al., 2018; Behrooz et  al., 2018; Gholamza-
dehmir et  al., 2020; Homod, 2013; Yao & Shekhar, 
2021). In this context, several researchers have been 
reported that most existing control systems are based 
on TCS with a schedule (Afram & Janabi-Shar-
ifi, 2017; Drgoňa et  al., 2018; Drgoňa et  al., 2020; 
Homod, 2018; Reynolds et  al., 2018; Zhang et  al., 
2019) despite the advanced technologies. Such sys-
tems are limited to the energy manager’s experience 
to condition the building operation (Savadkoohi et al., 
2023) by turning on/off the HVAC system (Li et al., 

2020; Zhang, Xue, et  al., 2019). Furthermore, these 
systems have limited energy-saving capabilities, low 
performance, and cheap hardware and software solu-
tions. Consequently, they are not optimal or adap-
tive to the surroundings (Afram & Janabi-Sharifi, 
2017; Drgoňa et  al., 2020) since data collection and 
mechanisms to obtain hidden knowledge from BEMS 
data (e.g., data mining) are not yet available (Papado-
poulos et al., 2019; Srivastava et al., 2019). In other 
words, BEMS with TCS are used for simple data stor-
age without sufficient insight to optimize equipment 
operations (Abuimara et  al., 2021). Previous studies 
have demonstrated that capturing building historical 
data (e.g., building monitoring and operational data) 
and interpreting it in a meaningful way can help engi-
neers and energy managers improve energy-efficiency 
solutions and drive down costs (Molina-Solana et al., 
2017; Reynolds et al., 2018; Srivastava et al., 2019). 
Thus, implementing real-time analysis and predictive 
controls can make better use of existing building data 
(Jang et al., 2019; Srivastava et al., 2019).

Therefore, the enhancement of building opera-
tional performance, taking full advantage of opera-
tional data through ACS, results in higher energy 
savings and improved indoor environmental condi-
tions (Behrooz et al., 2018; Xiao & Fan, 2014; Yao & 
Shekhar, 2021). It optimizes the behaviors of building 
facilities based on future predictions (Drgoňa et  al., 
2020; Kwak et al., 2015). In this direction, there is no 
evidence of the current use of ACS in the real built 
environment. For this reason, it is of great interest to 
analyze the application of advanced controls in the 
building industry, highlighting the influential fac-
tors and the gaps related to strategies and techniques 
implemented in BEMS. This study consist of answer-
ing the following research questions:

 i. What is the current state of BEMS in non-resi-
dential buildings in terms of their use, applica-
tion priorities, and the adoption of MPC meth-
ods?

 ii. How are data storage practices in buildings 
structured, particularly concerning the accessi-
bility and availability of historical data, to sup-
port the implementation of MPC in BEMS?

 iii. How useful is the stored data in current BEMS 
for enhancing the effectiveness of MPC systems?



 Energy Efficiency           (2024) 17:70    70  Page 4 of 20

Vol:. (1234567890)

Methodology

A flowchart of the research methodology is shown 
in Fig. 1. This methodology was developed based on 
established approaches used by researchers investi-
gating energy management practices in non-residen-
tial buildings and collaborating with professionals 
in the building industry (e.g., Abuimara et al., 2021; 
Cristino et al., 2021; Srivastava et al., 2019). A com-
bination of building surveys and interviews were used 
to study the impact of the research questions on the 
current application of  ACS in non-residential build-
ings.  It should be noted that the scope of this work 
was only focused on non-residential buildings with 
the professional role of building energy manager. 
However, the implications for residential buildings 
might differ due to different energy usage patterns and 
management needs. The data collection was centered 
in Catalonia, a region known for its diverse building 
stock ranging from historical buildings to modern 
infrastructure. This diversity improves the representa-
tiveness of our sample. Our collaboration with pro-
fessional associations ensured access to a variety of 
non-residential buildings, including educational insti-
tutions, commercial properties, and public buildings. 
This variety was important for a comprehensive anal-
ysis of BEMS. While the sample is representative of 
the Catalonia-Spain, there might be regional-specific 
factors such as climate, local regulatory frameworks, 
and energy policies that influence the generality of 
the results that should be considered when extrapolat-
ing our findings to other regions in Spain or beyond. 

The diversity within the Catalonia building stock 
adds robustness to our findings. However, differences 
in building management practices, technology adop-
tion rates, and energy consumption patterns in other 
regions could lead to variations in the applicability of 
our conclusions.

The survey, provided in Appendix A, was designed 
with seven generic questions according to the 
study’s main objective and literature review, aimed 
at addressing the three research questions outlined 
in section  2. The survey was distributed via email 
through the university and building maintenance 
associations to different building professionals who 
manage building energy. During this process, Spanish 
professional associations helped to promote the sur-
vey and encourage its affiliated professionals to par-
ticipate (e.g., Association of Maintenance Managers 
-AGEM-). AGEM in Barcelona operates   under the 
sponsorship of the Catalan Energy Institute, which 
contribute to promoting as a reference association in 
the technical management of buildings and mainte-
nance within Catalonia.

The collected survey responses provided valuable 
insights into the management practices of 676 non-
residential buildings. During the data analysis, efforts 
were made to validate the consistency of the answers 
and avoid duplications (e.g., multiple responses from 
the same building). In the second step of the research, 
in-depth semi-structured interviews were con-
ducted with the building practitioners who had par-
ticipated in the survey. Afterward, the interviewees 
were selected randomly from the list of respondents. 

Fig. 1  Flowchart of the research methodology
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In total, 42 semi-structured expert interviews were 
conducted. These interviews were designed and per-
formed to (1) identify key factors for selecting the 
type of control used and current undergoing issues 
on BEMS implementation, (2) determine the current 
state of data availability, storage, and its usage, and 
(3) integrate the expert (e.g., building operation prac-
titioner) knowledge and experiences to facilitate the 
adoption of advanced controls. Therefore, the inter-
views served to further refine the survey responses 
and to obtain the soft knowledge that cannot be 
captured through the survey alone such as identify-
ing barriers to implementing advanced controls, and 
market trends. Interviewees, who were mainly mid 
to senior-level building operators and energy manag-
ers, were also asked for clarifications regarding their 
answers. Additionally, the evidence of interviews 
was used to augment the literature review findings. 
Finally, the survey and interview data were linked and 
analyzed to identify patterns and summarize the main 
conclusions derived from the qualitative data.

Accordingly, HAC with Ward’s linkage as the clus-
tering method was applied for specifying the distance 
between the qualitative data and responses (Tokuda 
et al., 2022). Specifically, the Gower’s distance met-
ric was used with the "cluster" and "gclus" libraries 
in R (Ezugwu et al., 2022; Fionn & Pierre, 2014). It 
depicts how survey answers are iteratively combined 
into groups based on their dissimilarity (distance). 
Different clustering methods have been tested in the 
literature for classifying the large datasets into several 
categories according to typical patterns identified in 
the clustering analysis (i.e., K-means, Hierarchical, 
Gaussian Mixture Models, Self-Organizing Maps, 
Fuzzy C-means clustering, etc.) (Cristino et al., 2021; 
Grillone et al., 2021; Xiao & Fan, 2014). The choice 
of clustering method depends on the characteristics of 
the dataset and the specific objectives of the analysis. 
In this work, HAC as a complementary analysis was 
performed to enhance the reliability of the data col-
lected with the application of a survey and the knowl-
edge discovered in the interviews. Overall, HAC is 
advantageous for survey datasets as it provides a hier-
archical structure, allows for flexible interpretation 
of the number of clusters, supports visualization via 
dendrogram, and handles different levels of similarity. 
Unlike some other clustering methods that require the 
specification of the number of clusters beforehand, 
HAC does not require this parameter. It can handle 

datasets where the optimal number of clusters is not 
known in advance. The dendrogram allows for flex-
ible interpretation, as the number of clusters can be 
chosen by cutting the dendrogram at different levels. 
This statistical analysis is computed as the increase 
in the error sum of squares (ESS) after fusing two 
clusters into a single cluster. Therefore, the frequency 
distribution of the total number of 676 observations 
which were unequally distributed, was explored 
within categories according to similar characteristics 
in survey observations answered by the participants.

Results and discussion

Table  1 displays the responses received from various 
building types, including offices (public administration, 
industry, and services); educational buildings (kin-
dergartens, primary schools, secondary schools, and 
universities); health services (primary health centers, 
elderly care centers, hospitals); commerce and retail; 
and museums. Table 2 presents additional information 
about the Spanish professional associations and details 
about the buildings and respondents. The obtained 
results were systematically categorized according to 
the research questions outlined in section 2.

Use of building energy management systems

According to the survey feedback, it was observed 
that 70.60% of the investigated buildings used BEMS, 
while 29.40% did not employ BEMS (Fig. 2). Thus, 
among the received answers, offices had the highest 
adoption rate of BEMS implementation (93.40%), 
followed by educational buildings (48.40%) and 
health services (38.30%). This discrepancy could be 
attributed to the fact that the private sector mainly 
manages offices, whereas the public sector manages 
educational buildings and health services. Conse-
quently, it can be inferred that the private sector has 
invested more in improving their building’s energy 
performance. However, it is crucial for public institu-
tions to allocate resources towards improving the per-
formance of their buildings. Moreover, accelerating 
the share of BEMS in both public and private sectors 
is of the utmost importance since any gaps and delays 
in its implementation could affect the pathways for 
achieving the 2030 and 2050 energy objectives (Euro-
pean Commission, 2020).
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Based on the feedback provided by building man-
agement professionals during the interviews, it was 
emphasized that BEMS should ensure easy integration 
with other protocols, while providing extensive con-
trol capabilities with minimal constraints. This ongo-
ing concerns regarding adoption of highly scalable 
and versatile BEMS with a reasonable cost has also 
been highlighted by Cristino et al. (2021). In addition, 
the importance of user-friendly configurability, and 
enabling practitioners and maintenance staff to easily 
navigate BEMS operations were emphasized during 
the interviews. Moreover, practitioners expressed a 
preference for avoiding dependence on a single sup-
plier due to uncertainties and financial challenges, as 
also noted by Al Dakheel et al., (2020). The findings 
further revealed that, based on the respondents’ expe-
rience, building managers tend to work with specific 

suppliers, limiting the potential for system integra-
tion. Our findings also noted that the implementation 
of BEMS often involves annual or monthly fees for 
data management including monitoring, control, and 
supervision. Moreover, only 1-5% of the total main-
tenance budget was allocated to system monitoring 
and Technical Control System (TCS). Communica-
tion issues among devices were highlighted by inter-
viewees as a significant concern as well, with reports 
indicating that approximately 40% of sensors experi-
enced connectivity failures, resulting in abnormal or 
missing data values that can compromise subsequent 
data analysis. Lack of participation by practitioners in 
pre-occupancy decisions during the building design 
stage was also mentioned as an operational challenge. 
All above mentioned barriers contribute to the perfor-
mance gap and mismatch between the operational and 
design phase of the buildings, as well as the individu-
als involved in energy management procedures such as 
designers and operators (Abuimara et al., 2021; Whit-
ney et al., 2020). Consequently, it was found that after 
the installation and commissioning of building con-
trol systems, inadequate functioning of the employed 
control systems in BEMS operations can be observed. 
This problem was further enhanced when practitioners 
monitor and supervise multiple buildings with incom-
patibilities and inter-relations affected by different 
installed BEMS brand (Van Dronkelaar et al., 2016).

Table 1  Building domain data source

Segment Total of 
answers

% of answers

Offices 348 51.48%
Educational buildings 275 40.68%
Health Services 47 6.95%
Commerce/retail 5 0.74%
Museums 1 0.15%
Total 676 100%

Fig. 2  Current application 
of BEMS
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Figure  3 shows the distribution of control meth-
ods deployed in the sampled buildings. Despite the 
recognized inefficiency of scheduled control systems 
in HVAC operation (Gholamzadehmir et  al., 2020; 
Jang et  al., 2019; Macarulla et  al.,  2017), it was 
found to be the most applied approach accounting 
for 95.40% of cases. As can be seen from the distri-
bution of responses, specifically, scheduled control 
was widely adopted in office buildings (93.10%), 
educational facilities (98.20%), and health services 
establishments (97.90%). These findings corrobo-
rate the previously identified barriers and limitations 
to restrain implementation of advanced controls. 
Nevertheless, our results indicated a considerable 
potential for enhancing existing scheduled control 
systems by incorporating intelligent functionali-
ties to optimize HVAC operation. During the inter-
views, practitioners also reported that the schedule 
control was adjusted based on environmental condi-
tions particularly in response to low external tem-
peratures. For instance, the operators, based on their 
own experience, modify the schedule to turn on the 
HVAC system earlier. Such modifications were typi-
cally prompted by occupant complaints or the fore-
cast of cold weather conditions. Additionally, manual 
control was reported in 4% of the sampled buildings, 
necessitating non-automated operation by operators 
to switch the HVAC system on or off.

Although ACS were recognized as the most effec-
tive method for optimizing HVAC operation and 
improving thermal comfort through predictive control 
strategies (Halhoul Merabet et al., 2021; Yang et al., 
2020), in this study, the utilization of ACS was found 
to be limited, accounting for only 0.60% of the inves-
tigated buildings. This finding was aligned with previ-
ous studies that have been highlighted the challenges 
associated with implementing ACS in real-world 
scenarios (Abuimara et  al., 2021). These include 
but not limited to integration with existing systems, 
data quality and availability, cost of implementation, 
technical expertise, privacy and security concerns, 
regulatory and compliance issues, and scalability 
and flexibility (Aliero et  al., 2022; Liu et  al., 2023; 
Soleimanijavid et al., 2024). This work aslo revealed 
that building technical capacity was often overlooked, 
representing a significant limitation in the adoption of 
low-carbon and digital solutions, including predictive 
controls (IEA, 2021a). Furthermore, the actual sta-
tus of control systems highlighted the critical barri-
ers faced in achieving the EU’s energy targets, as also 
noted by other researchers (Abuimara et  al., 2021; 
Fuentes-del-burgo et  al., 2021; Himeur et  al., 2021; 
Kuivjõgi et al., 2021; Whitney et al., 2020). Another 
notable issue identified during interviews was the dis-
crepancy between the perception of maintenance staff 
and installation, with advanced control systems being 

Fig. 3  Current type of 
control methods
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often downgraded to simple control systems. Addi-
tionally, it was observed that a majority of the prac-
titioners interviewed lacked knowledge and exper-
tise in the field of BEMS and ACS (i.e., background 
knowledge and expertise, tools they use, feedback 
mechanism, etc.), as also stated in previous studies 
(Abuimara et al., 2021; Kuivjõgi et al., 2021).

Upon analyzing the correlation between the adop-
tion of BEMS and the type of control, it was found 
that some buildings employed scheduled-based con-
trol systems without utilizing a BEMS platform. This 
indicates that they relied on simple technologies such 
as fixed and manual time programmers, necessitat-
ing any adjustments to be made on-site. Remarkably, 
practitioners acknowledged that some HAVC sys-
tems have been operating during unoccupied hours 
of the building. During the interviews, practitioners 
also highlighted challenges associated with modify-
ing schedules and set points in BEMS, especially 
when managing multiple buildings simultaneously. 
The process of implementing these changes for each 
building was found to be time-consuming in order to 
select the optimal temperature set point for several 
buildings. Consequently, service interruptions could 
result in inefficiencies. Therefore, if a building man-
ager supervises multiple HVAC systems without cen-
tralized control, it can pose difficulties in maintaining 
thermal comfort. This is because, to maintain thermal 
comfort in the building, the HVAC system controller 

must be optimized for the daily modification of work-
ing days and unoccupied periods with distinct set-
point schedule. The aforementioned scenarios dem-
onstrated how enhancing BEMS practices is strongly 
reliant on the type of control system used. This can 
lead to a plausible explanation for the ongoing chal-
lenges in achieving the EU’s energy targets within 
the building industry, despite building energy effi-
ciency improvements being emphasized as the second 
most frequently cited action within all contributions 
(Global CCS, 2021).

As shown in Fig.  4, a substantial portion of the 
sampled buildings, over 50%, assigned equal pri-
ority to all factors in BEMS operation, reflect-
ing a positive trend. Specifically, 72.60% of cases 
reported that users’ thermal comfort, energy-saving, 
and efficiency in operative tasks hold equal weight-
age. In contrast, 27.40% of cases emphasized that 
their priority was only the user’s thermal comfort. 
This highlighted the criticality of prioritizing alter-
native approaches to BEMS, as it is directly linked 
to building energy performance. The perspectives 
of building management professionals and build-
ing owners of the same building play a critical role 
in the success of energy-efficiency decision-mak-
ing. Based on interviews, it was evident that most 
building owners do not possess adequate control 
and oversight of BEMS, with control predomi-
nantly relying on the bidder or the external entity 

Fig. 4  Priorities of BEMS
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responsible for service provision. Consequently, 
building owners often lack direct responsibility for 
energy costs (e.g., utility consumption and bill-
ing data), which underscores the need for active 
involvement and initiatives from all stakeholders 
to promote technology adoption in non-residential 
buildings.

Availability of data in building energy management 
systems

This section focuses on the availability of historical 
data, which is the most useful tool for applying ACS 
and getting feedback for BEMS decision-making. The 
current study revealed that the majority of buildings 
(86.40%) have not implemented data digitization, 
with only 13.60% of data being digitized for further 
use (see Fig.  5). Specifically, offices (99.10%) and 
educational buildings (80.40%) did not apply data 
digitization, potentially limiting the implementation 
of predictive controls. By contrast, data analytics and 
simulation would assist engineers and energy manag-
ers in proposing effective energy efficiency solutions, 
thereby enhancing building energy performance and 
behavior over time (Srivastava et al., 2019).

In line with the global status report of 2021 
(Global CCS, 2021), the utilization of tools for 
energy performance and management in building 
operations remained minimal. This was primarily 

attributed to the lack of access to digitized data, 
which significantly impacts the adoption of data 
usage in building energy simulation and data analyt-
ics. In a broader view, building digitization and data 
management can be leveraged to improve efficiency 
and drive down costs (Ma et  al., 2021). Notably, 
BEMS generates a tremendous amount of data from 
7.5 billion connected devices such as smart meters, 
sensors, and other Internet of Things (IoT) and 0.1 
billion connected devices for space conditioning by 
2021 (IEA, 2021b). Nonetheless, the lack of conveni-
ent tools for analyzing such data as highlighted in this 
study, will prevent its comprehensive interpretation 
and utilization.

Following the previous discussion, existing tech-
nologies offer the capability to collect and store vast 
amounts of data from in-situ and external sources 
such as environmental data, energy consumption, 
and costs (Molina-Solana et  al., 2017). In this 
regard, BACnet and Modbus protocols were found 
to be commonly employed for data communica-
tion in which accessibility and availability of a sig-
nificant amount of historical data can be crucial for 
assessing the actual building performance and occu-
pant behavior (Serale et  al., 2018). According to 
Fig. 6, the results obtained from the surveyed sam-
ples were as follows: 67.90% of buildings monitored 
and stored data with a data acquisition interval of 
15 minutes; 7.80% of buildings only monitored data 

Fig. 5  Digitization of data
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with access to an online platform with recent val-
ues, and 24.30% of buildings did not employ moni-
toring and control systems to store data.

Concerning the features of the historical data 
presented in Fig.  7, this mainly involved informa-
tion related to energy consumption (80.30%), with 
higher availability among offices (94.50%), edu-
cational buildings (70.20%), and health services 
(34.00%). Based on the obtained results, only 
13.60% of stored data of all non-residential build-
ings referred to energy consumption and environ-
mental data. Hence, predictive models could only 
be implemented in the 13.60% of buildings that 
collect both indoor and outdoor environmental data 
(Drgoňa et al., 2020).

Usage of data in building energy management 
systems

Based on the survey results (see Fig.  8), 62.30% of 
buildings conducted a comparative analysis using his-
torical data, mainly offices (92.00%) and educational 
buildings (36.7%). 31.80% of samples used data for 
facility performance evaluation, including educational 
buildings (57.8%) and health services (100%). In addi-
tion, no data usage was reported by 5.80% of the build-
ings. Therefore, a meager percentage of cases (0.10%) 
focused on applying data to implement predictive 
control and improve optimal decision-making. More 

precisely, only one building, a museum, was found to 
employ a predictive control system. This museum was 
part of a lighthouse demonstrator for an efficient build-
ing, applying a predictive control system developed 
by a startup. This observation is consistent with prior 
research findings, which highlighted the challenge of 
data management as one of the major barriers to build-
ing digitalization (IEA, 2021a). The obtained findings 
were entirely consistent with the EU report which 
highlighted that a large portion of generated data from 
sources (90%), was not currently analyzed and used 
(IEA, 2021a). In this case, with increasing available 
data through the building life cycles, data management 
and utilization have become a significant challenge 
(Zhan & Chong, 2021). Interviews revealed that meas-
ured data was collected and incorporated into the con-
trol system; however, its performance depends on the 
accuracy and quality of stored data in a real application 
(Gholamzadehmir et al., 2020).

As the energy efficiency investment in the building 
industry in Europe has grown from 141.9 billion USD 
to 193.0 billion USD (2015-2021) (IEA, 2021b), it 
is evident from the obtained results that the owners 
and enterprises made high investments, but data was 
still not used. For this reason, one of the main chal-
lenges that could affect the performance of BEMS in 
existing buildings was found to be the lack of effec-
tive data interpretation and utilization for optimiz-
ing HVAC control systems. Besides, the interviews 

Fig. 6  BEMS historical 
data availability
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pointed out that a lack of a convenient intelligent sys-
tem for remote operation of buildings was one of the 
challenges faced by building professionals that poten-
tialy leading to higher operating costs of the HVAC 
systems (Zhan & Chong, 2021). Another example 
discovered during interviews was that building infor-
mation modeling (BIM) or Deemed-to-satisfy provi-
sions (DTS) could present high computation time 
and complexity as the practitioners found them chal-
lenging to make energy-efficient decisions. It can be 
considered as a significant limitation in improving 
building performance. Moreover, the obtained results 
indicated that BEMS were not operating as energy-
efficient as they could be in non-residential buildings, 
which was in accordance with the results presented 
by Yang et al., (2020).

Survey analysis

HAC with Ward’s linkage as the clustering strategy 
was employed using an arbitrary dissimilarity matrix 
to analyze the survey responses. By examining the 
dendrogram presented in Fig. 9, two main cut-off dis-
tances between groups (reffered to as cut-tree #1 and 
cut-tree #2) could be identified. Determining where to 
cut the dendrogram in HAC involves finding an opti-
mal point that best captures the underlying structure 
of the data. However, it requires some trial and error, 
especially, the choice may also depend on domain 

knowledge and the specific goals of analysis. The first 
cut-tree (i.e., cut-tree #1) distinguished two different 
clusters. Cluster C1-A included 348 observations, 
consisting office buildings that implemented BEMS 
with scheduled control. These buildings had avail-
able energy consumption data, mainly for compara-
tive analysis, but lacked data digitization. In addition, 
their priorities focused on users’ thermal comfort, 
energy-saving, and efficiency in operative tasks. On 
the other hand, cluster C1-B consisted of a mix group 
of 328 observations. At a lower distance level (i.e., 
cut-tree #2), one more cluster may be detected. Clus-
ter C2-A, represents similar characteristics to cluster 
C1-A defined in the first cut-tree (i.e., C1-A). Clus-
ter C2-B consisted of 275 observations of educational 
buildings which were not implemented BEMS using 
scheduled control. These buildings have no digitized 
historical data available. However, their priority was 
the user’s thermal comfort. In addition, they applied 
facility performance evaluation. Cluster C2-C con-
sisted of a mix group of 53 observations, including 
other types of buildings, covering various categories. 
Therefore, these two selected cut-trees were consid-
ered to provide a clearer identification of the clusters 
within the dataset.

The application of HAC to our observations ena-
bled the identification of significant variations among 
different building sectors. Figure 10 shows frequency 
distributions among three different clusters derived 

Fig. 7  Type of stored data
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from cut-tree #2. A total of 676 observations resulted 
in two optimal clusters (i.e., clusters A and B) which 
exhibited relatively similar convergence values and a 
substantial number of observations. Clusters A and 
B displayed unique characteristics. It means in each 
group, there was one unique type of parameter from 
the eight different categories analyzed. One of the 
first results of this analysis confirmed that offices and 
educational buildings, with similar heating and cool-
ing conditions hold a significant share in non-residen-
tial sector.

Overall, according to the obtained result, it was 
evident that office and educational buildings had 
distinct preferences and characteristics regard-
ing the implementation of control systems. Office 
buildings predominantly used BEMS with sched-
uled control, whereas educational buildings relied 
on scheduled control in the absence of the BEMS. 
These characteristics became more evident at the 
category level, where the lack of digitized his-
torical data was detected to implement BEMS and 
control systems. Moreover, the HAC analysis sup-
ported the identification of common tendencies in 
office and educational buildings. Those buildings 
played an increasingly important role in reducing 
the operational costs by the current implemen-
tation of control systems. Nevertheless, correc-
tive solutions were different in terms of enhanc-
ing the energy efficiency and reducing the cost. 

Educational buildings, which were mainly man-
aged by the public sector, needed more targeted 
financing actions with easy-to-understand infor-
mation on the benefits of implementing BEMS to 
improve energy performance. This approach could 
facilitate the work of public authorities. Available 
technical assistance might be considered a start-
ing mechanism of a forward-looking approach to 
implement ACS over time. In this way, a practical 
guide can be provided to the complex public build-
ing sector, to systematically address key barriers in 
small and manageable steps. In the case of offices 
mainly belonging to the private sector, they had the 
necessary infrastructure for the implementation of 
ACS. However, they needed to enhance informa-
tion tools, particularly continuous building data 
collection and training for improving practitioners’ 
skills. These measures would make office buildings 
more resilient and accessible to implement ACS.

Other types of non-residential buildings such 
as health services, commerce/retail and museums 
were categorized together in cluster C2-C (Fig. 10). 
These buildings often had the similar energy use 
patterns for heating, cooling and operating appli-
ances (Nematchoua et  al., 2019). Persuant to our 
obtained result as shown in Fig. 10, those buildings 
defined a mixed characteristics regarding the use of 
BEMS, type of control, data availability, etc. In this 
case, a generalized consensus approach could not be 

Fig. 8  Use of stored data
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employed in order to optimize the operating BEMS. 
Instead, an intersectional approach and critical 
analysis of the underlying factors influencing their 
overall performance were necessary. The key strat-
egy, therefore lies not only in investing in the imple-
mentation of ACS but also in maintaining the equi-
librium between economic factors and the building 
practitioners’ knowledge.

Conclusions

The main scientific contribution of this study was 
to analyze the implementation of advanced con-
trol systems in non-residential buildings. It specifi-
cally examined the types of control systems used, 
data storage practices, and their role in address-
ing the current challenges that buildings face in 

Fig. 9  Dendrogram describing the hierarchical clustering analysis using Ward’s method based on the number of observations for 
each cluster in both cut trees

Fig. 10  Frequency of 
characteristics based on 
the result of Hierarchical 
clustering
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achieving EU energy performance targets. A total 
of 676 non-residential buildings were assessed, tak-
ing into account the inputs from several building 
energy managers and practitioners. The frequency 
distribution of the observations using hierarchical 
clustering analysis was explored within three cate-
gories according to similar characteristics in survey 
responses. The findings revealed that two optimal 
clusters, primarily composed of offices and educa-
tional buildings, presented a significant proportion 
of the observations and had the highest shares in 
non-residential buildings. By analyzing the differ-
ences between offices and educational buildings, 
it can be inferred that the priorities and challenges 
associated with BEMS implementation are limited 
on how this technology is being used in the sense of 
its efficiency and integration.

This study demonstrated that despite the wide-
spread development of smart meters and sensors, 
predictive controls were rarely implemented in 
non-residential buildings (0.60%). In addition, spe-
cific barriers such as building technical capacity 
and motivations for engaging in BEMS practices 
affected the application of such controls in non-res-
idential buildings. The obtained results confirmed 
the hypothesis that there is a common consensus in 
which most buildings used BEMS with scheduled 
on/off based control. This strategy requires high 
efforts to change the HVAC system schedule since 
it is based on trial and error experiments, leading to 
less energy savings. The findings also revealed that 
the usual demand across all segments was a flexible, 
integrated, versatile, and scalable control system. 
Furthermore, practitioners had no preference for 
BEMS associated with specific brands. In this case, 
they were willing to implement an effective and 
robust level of system functions in BEMS. It was 
found that most investigated buildings monitored 
and stored data mainly involving information related 
to energy consumption. Furthermore, practitioners 
did not store environmental data due to the lack of 
knowledge about its significance and potential appli-
cations. Therefore, this research demonstrated that 
a considerable amount of historical data was not 
stored for predictive control and decision-making. If 
the frameworks were in place to access such data, 

they could provide valuable information to users in 
real-time to control HVAC systems efficiently. Thus, 
it could facilitate the development of strategies to 
mitigate the barriers to implementing advanced con-
trols in non-residential buildings. By way of exam-
ple, the barriers to data storage were related to con-
nectivity problems.

This research also suggested that improving build-
ing performance and energy efficiency was not yet 
systematically integrated into the public sector. There-
fore, reliable data was not available. To address the 
knowledge gap identified as a professional/technical 
barrier, an effective action plan could be an ongo-
ing training of building management professionals. 
Further, financial barriers should be solved by poli-
cymakers to invest more in the public sector with a 
representative action plan for more financial flexibility 
and promoting best practices in this type of buildings. 
More concrete actions should be taken with the public 
and private sectors to develop lighthouse buildings as 
exemplars. These initiatives would help to acquire the 
technical competence to implement advanced controls 
adapted to different types of non-residential buildings. 
Thus, this will improve the desire to solve the chal-
lenges confronting this industry. In addition, better 
partnerships between building designers in the instal-
lation phase and practitioners in the operation phase 
were needed, to ensure innovative solutions for posi-
tive outcomes in reality.

Finally, this research identified the main group 
of non-residential buildings with current challenges 
and several barriers that affect the implementation 
of advanced control systems. Additionally, it could 
effectively provide public institutions, researchers, 
and building professionals with a deeper understand-
ing of what today’s BEMS is delivering and how it 
can be improved upon by prioritizing effective miti-
gation and adaptation actions. The prospective scope 
for future work is to expand this experiment to a 
wider scale in other regions by providing the basis 
for the adoption of advanced controls to overcome 
the existing barriers that hold back progress in non-
residential buildings. In this manner, it could also 
potentially continue field validations of commercial-
ized BEMS based on advanced controls that can pro-
vide benefits for building operators and managers.
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Appendix A

The interview questionnaire (Energy management of 
the building)

1- Does your enterprise use a BEMS (Building 
Energy Management System)?

  Yes
  No
  Other

If so, specify when the building had an energy 
management system and the commercial name of the 
system.

2- What is the type of control system used for the 
facilities?

  Manual control
  Schedule control
  Advanced or Predictive control
3- What is the top priority in building energy man-

agement?
  User’s thermal comfort
  Energy savings
  Operational efficiency
  All above
  Other
4- Has any type of data digitization been done for 

building management or maintenance tasks?
  Yes
  No
5- Is building data monitored and stored in real-

time? (e.g., Tª, RH%, etc.)
  No data collection
  Signal inputs are monitored.
  Yes, data is monitored and stored.
6- Is historical data available for the building (envi-

ronmental/consumption)?
  Yes, environmental data.
  Yes, energy consumption.
  Yes, environmental data and energy consump-

tion.
  No
7- What is the use of the information collected from 

the facilities (e.g., boiler)?
  No use of data
  Comparative analysis with historical data
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Table 2  Detailed information about the Spanish professional associations and the respondents

Enterprise Buildings Number of 
Buildings

City Country Sector activity Enterprise
Size

UPC- Polytechnic University 
of Catalonia

Campus Diagonal South I
ETSAB
EPSEB
FME

5 Barcelona Spain Education Big – National
(>100 employees)

UPC- Polytechnic University 
of Catalonia

Campus Diagonal Nord
ETSETB
ETSECCPB
FIB

37 Barcelona Spain Education Big – National
(>100 employees)

City hall
Sant Just Desvern

City hall 1 Sant Just
Desvern

Spain Public Administra-
tion

Big – National
(>100 employees)

UPC- Polytechnic University 
of Catalonia

Campus Terrassa
ESEIAAT 

12 Terrassa Spain Education Big – National
(>100 employees)

UPC- Polytechnic University 
of Catalonia

Campus Baix Llobregat
EETAC 
EEABB

2 Castelldefels Spain Education Big – National
(>100 employees)

UPC- Polytechnic University 
of Catalonia

Campus Manresa
EPSEM

5 Manresa Spain Education Mid-Size
(10 - 100 employees)

UPC- Polytechnic University 
of Catalonia

Campus Diagonal Besós-
EEBE

13 Barcelona Spain Education Big – National
(>100 employees)

UPC- Polytechnic University 
of Catalonia

Campus Diagonal South 
2-ETSEIB

9 Barcelona Spain Education Big - National
(>100 employees)

UPC- Polytechnic University 
of Catalonia

Infrastructure Service-
Vertex Building

1 Barcelona Spain Education Big – National
(>100 employees)

University of Lleida-UdL Infrastructure Service 5 Lleida Spain Education Big – National
(>100 employees)

City hall Vilanova i la Geltrú City hall 1 Vilanova i la Geltrú Spain Public
Administration

Big – National
(>100 employees)

Autonomous University of 
Barcelona-UAB

Campus UAB 24 Cerdanyola del Vallés Spain Education Big – National
(>100 employees)

Roca Village Commercial center, Outlet
(Properties + rented spaces)

5 La Roca del Vallés Spain Commerce
Retail

Big – International
(>100 employees)

Rovira & Virgili University 
- URV

Campus Tarragona
Campus Terres de l’Ebre

5 Tarrgona Spain Education Big – National
(>100 employees)

Terrassa Hospital Hospital 56 Terrassa Spain Health Services Big – National
(>100 employees)

Quirón Health service Teknon Clinic Hospital 1 Barcelona Spain Health Services Big – International
(>100 employees)

Pompeu Fabra University - 
UPF

Campus Barcelona 16 Barcelona Spain Education Big – National
(>100 employees)

Girona University-UdG Campus Montilivi 14 Girona Spain Education Big – National
(>100 employees)

ICT Public Innovation Agency-
Neàpolis

Public Innovation Agency 
for ICT

1 Vilanova i la Geltrú Spain Industry Mid-Size
(10 - 100 employees)

National Museum of Science 
and Technology of Catalonia 
(MNACTEC)

Museum 1 Terrassa Spain Heritage Building
Culture

Mid-Size
(10 - 100 employees)

Government institution of 
Catalonia- GENCAT 

Infrastructure Services of 
the Catalan Government

(schools, CAPs, hospitals, 
police stations etc.)

318 Catalonia Spain Industry - Services Big – National
(>100 employees)
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