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Abstract In the context of an energy crisis, effi-
cient energy management has become an unavoid-
able issue for sustainability, regardless of the domain
under consideration. Smart grids are no exception;
they aim to motivate energy optimization according
to billing strategies and users’ comfort. In this paper,
two optimization problems (OP) are proposed involv-
ing billing strategies and users’ flexibility. A single-
centralized OP aims to minimize the total energy pro-
vided by a company, while a distributed OP targets min-
imizing individual user costs independently, involv-
ing users’ flexibilities, different billing strategies, and
a variable number of users, with random appliances
assigned during simulations. The resolution was car-
ried out using the Non-dominated Sorting Algorithm II
and Multi-Criteria Analysis, with a Game-based algo-
rithm also utilized. Additionally, simulations were per-
formed under three billing mechanisms. The findings
show that costs decrease exponentially with user par-
ticipation. Similarly, both individual user costs and
total costs at the energy provider level were minimized
as users’ flexibilities increased. The Peak-to-Average-
Ratio is minimized and exhibits a bimodal behav-
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ior when observed as a random variable. Regarding
the interplay of billing mechanisms, simulation results
demonstrate that the smart billing mechanism proposed
by the authors outperforms other billing models pro-
posed in the literature for both consumers and utility
companies.

Keywords Autonomous demand response · Optimal-
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1 Introduction

A smart grid is an electricity distribution network that
facilitates the exchange of information between suppli-
ers and consumers, enabling real-time adjustments to
the flow of electricity for efficient energy management.
This technology utilizes computer techniques and com-
putational algorithms to optimize energy production,
distribution, consumption, and storage, thereby facil-
itating better coordination across all aspects of the
electricity supply chain, from producers to end-users
(Shah et al., 2019; Wood et al., 2013). Consequently,
smart grids are expected to enhance energy efficiency
by minimizing line losses and optimizing production
output through instantaneous consumption control and
regulation (Asgari et al., 2023; Benysek et al., 2016;
Sharda et al., 2021; Silva et al., 2020). Moreover,
numerical techniques and algorithms, combined with
energy storage and energy-saving appliances, enable
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the smoothing and buffering of energy production by
reducing demand peaks (Dey et al., 2023). This reduc-
tion in production peaks not only improves energy man-
agement but also enhances the security of the energy
network, leading to decreased total production costs
(Dickison et al., 2016; Kefayati & Baldick, 2011; Park
et al., 2017). The typical connectivity of a smart grid
architecture is illustrated in Fig. 1.

Each user in the grid is equipped with a smart meter
embedded with Electrical Scheduling Control (ESC)
capabilities. This ESC system is smoothly integrated
into the smart meter, empowering users to control every
appliance within their homes. Furthermore, users have
the flexibility to upload specified software that can be
executed at the level of each smart meter, allowing for
customized energy management strategies tailored to
individual needs and preferences (Raza et al., 2023).

The Local Area Network (LAN) connection facili-
tates communication between each user in the grid and
the production company. This network serves as the
conduit for messages to be exchanged not only between
users but also between users and the utility company,
leveraging Advanced Metering Infrastructure (AMI)
architecture for seamless interaction (Güçyetmez &
Farhan, 2023).

Through this network, users can communicate with
one another, sharing insights, coordinating energy
usage patterns, and potentially optimizing consumption
collectively. Similarly, the utility company can dissem-
inate important information, such as tariff updates or
system notifications, directly to users’ smart meters.

By harnessing the capabilities of smart meters
and leveraging the interconnectedness facilitated by
LAN and AMI architecture, the energy grid trans-
forms into a dynamic ecosystem where communication
flows freely, enabling efficient energy management,
enhanced reliability, and improved grid resilience. This
architecture and communication are depicted in the
Fig. 2.

The Fig. 2 shows the following components of an
AMI system:

• Users: This refers to the consumers of the utility
company’s service, such as homeowners or busi-
nesses.

• Smart meters: These are devices that are installed
at the customer’s premises to measure their energy
use. Smart meters can collect data on a more fre-
quent basis than traditional meters, and they can
also transmit data to the utility company wirelessly.

• Distribution Management System (DMS): This is a
computer system that is used by the utility company

Fig. 1 Typical smart grid architecture connectivity
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Fig. 2 Advanced metering infrastructure

to monitor and control the distribution of electric-
ity. The DMS can use data from AMI systems to
identify and respond to problems on the distribution
grid.

• Load Control Devices: These are devices that can
be used by the utility company to reduce electricity
demand during peak periods. Load control devices
can be used to cycle off appliances or other equip-
ment.

• Home Area Network (HAN): This is a network
that connects smart meters and other devices in the
customer’s home. A HAN can be used to provide
customers with real-time information about their
energy use.

• Consumer Portal Layer: This is a web-based inter-
face that allows customers to view their energy use
data and manage their accounts.

• Utility Company: This is the company that provides
electricity to the customers.

Also, Figure 3 shows the components of a smart
meter system.

The “smart” electricity grid is also positioned as a set
of tools contributing to the reduction of greenhouse gas
emissions and should thus serve as an efficient means

to limit global warming; this is indeed a fundamental
aspect of the smart cities concept. On the other hand, the
concept of Demand-Side Management (DSM) encom-
passes energy-saving actions implemented at the level
of the final consumer, irrespective of the energy pro-
ducer side (Aram et al., 2015; Sharda et al., 2021). Fur-
thermore, Demand Response (DR) programs have been
proposed within the DSM framework; these programs
quantify “changes in electricity use by demand-side
resources from their normal consumption patterns in
response to changes in the price of electricity or incen-
tive payments designed to induce lower electricity use
at times of high wholesale market prices or when sys-
tem reliability is jeopardized” (Gils, 2014).

Within a DR program, energy provider companies
can directly and remotely control the energy con-
sumption of connected equipment (Pathan et al., 2020;
Rastegar et al., 2023); this approach is known as
Direct Load Control (DLC) (Ebrahimi and Abedini,
2022; Ramanathan and Vittal, 2008). Other models
incentivize users to reduce energy consumption dur-
ing peak hours by offering discounts on their overall
bill (Gellings & Chamberlin, 1987). However, com-
plete connectivity may not be feasible without asso-
ciated installations such as smart meters, which aim
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Fig. 3 Appliances encompass home or business electric devices
like lights, refrigerators, and televisions. Embedded Software
resides in smart meters, collecting and transmitting electricity

data. Computational Resources process smart meter data for util-
ity companies

to collect data, provide visualization for better con-
trol, and facilitate real-time energy distribution man-
agement (Mohsenian-Rad et al., 2010). Smart meters
are considered crucial for mapping reliable consump-
tion forecasting to enhance production and distribution
management, as well as for reactive review of elec-
tricity pricing in the competitive market (Fan et al.,
2017; Ortega et al., 2015; Peng et al., 2018). With smart
meters installed, users can self-organize and participate
in controlling their own consumption and billing man-
agement; in Mohsenian-Rad et al. (2010) and Shin-
wari et al. (2012), authors proposed smart and reac-
tive pricing aimed at encouraging participating users
in DR programs to minimize network costs as well as
their individual billing. With the wealth of data gath-
ered by these smart meters, the research has the poten-
tial to cultivate a sophisticated machine learning algo-
rithm tailored specifically for energy profiling tech-
niques (Abassi et al., 2023). These techniques encom-
pass a range of approaches, from clustering to predic-
tion methods (Ullah et al., 2020). Moreover, the efficacy
of these methods has been further refined and optimized

by the contributions of various authors as evidenced in
(Akhrif et al., 2022; El Khattabi et al., 2024a; El Khat-
tabi et al., 2024).

Actually, the common analytical tool used to study
autonomous DR systems is Game Theory (Yang et al.,
2012; El Khattabi et al., 2024b). Both competitive and
cooperative game theoretical frameworks have been
developed. Within DR programs, users can schedule the
operating time of their household appliances or electric
vehicles to avoid high energy consumption (Alvina et
al., 2017; Silva et al., 2020). Indeed, DR approaches
facilitate energy management at both individual and
production company levels. In (Ibars et al., 2010),
authors developed distributed demand management in
a smart grid with a congestion game for minimizing the
total cost of power generation. Another work proposed
Energy Delivery Transaction Pricing (EDTP) for load
participation and facilitating demand-side cost-comfort
optimization (Kefayati & Baldick, 2011; Malek et al.,
2022). Another paper introduced a novel demand-
side management technique to reduce system peak
load; users submit their energy demands to an energy
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provider that dynamically reviews and updates energy
prices based on user load profiles (Chauhan et al., 2022;
Nguyen et al., 2012). Similarly, other researchers devel-
oped Direct Costing Control (DDC) using machine
learning algorithms (Peng et al., 2018).

On the other hand, billing models are also consid-
ered key points in pricing strategies and global energy
management. In Cakmak and Altaş (2020), authors pro-
posed a new billing model called Time-Shiftable Appli-
ances (TSAs) for residences, involving separate billing
rates rather than a single rate for total electricity usage.
This model enables fair billing for consumers. Addi-
tionally, they proposed three different billing models,
each offering benefits for the consumer (Cakmak &
Alta 2020). In (Bakr & Cranefield, 2013), authors pro-
posed an energy consumption scheduler for shiftable
appliances at the household level, along with a fair
electricity billing mechanism. The dynamic scheduler
considers users’ plans and corresponding energy con-
sumption. Other researchers developed an intelligent
framework to optimize users’ bills by scheduling appli-
ance activation during peak periods (Adika and Wang,
2014) and employing techniques for electricity storage
via batteries installed in the grid (Elio et al., 2021). In
(Babaei et al., 2021), energy consumption in the smart
grid was reduced using data mining approaches. The
study in Niharika & Mukherjee, V. (2018) utilized the
Symbiotic Organisms Search (SOS) algorithm to opti-
mize bills and costs in the grid through a day-ahead
load shifting approach, while in Ahmad et al. (2017),
Reinforcement Learning (RL) was adapted to sched-
ule load activations in smart homes. The corresponding
algorithm was based on human-appliance interaction,
dividing the day into various states where users interact
with appliances to optimize their bills according to the
resulting program (Ahmad et al., 2017).

Hybrid Price-based and Robust Demand Response
(HPDR) was proposed in Monfared et al. (2019),
Rehman (2020); it is more adaptable to local (indi-
vidual) pricing principles compared to other exist-
ing strategies as it is implemented in the day-ahead
scheduling of residential microgrids. Moreover, to
increase the accuracy of the proposed model, uncer-
tainty regarding decision variables and parameters
including generation units and load dispatch in the
microgrid was also considered (Monfared et al., 2019).
The studies in Yuce et al. (2016) and Ahmed et
al. (2016) aimed to reduce energy consumption dur-
ing peak hours through a smart appliance scheduling

approach. The algorithms used in these studies consist
of a combination of genetic algorithms (GA) and arti-
ficial intelligence (AI) with neural networks; similar
GA optimization was adopted in Khan et al. (2015). In
Sharifi and Maghouli (2019), authors proposed a strat-
egy to minimize the Peak to Average Ratio (PAR) and
the clients’ bills while considering related comfort. A
new DR strategy is proposed in Celik et al. (2017),
Rasheed et al. (2017); electricity pricing is updated
according to the energy consumption of each house in
real-time on the grid. In Assaf et al. (2016), Yaagoubi &
Mouftah (2015), authors proposed a new billing mech-
anism to charge users fairly based on their contribution
to minimizing total energy consumption in the grid.
A novel model of Decentralized Demand Side Man-
agement (DDSM) to minimize energy expenditure and
costs in the grid is proposed in Benysek et al. (2016),
Mocci et al. (2015), Ramchurn et al. (2011). Decentral-
ized DR systems can achieve satisfactory results and
resolve the large communication problems and privacy
issues of centralized demand response systems (Khan
et al., 2015).

Based on the above, the present paper deals with the
optimization of both:

• the total energy cost, defining the single-objective
function “at the level of the energy provider”;
this constitutes a centralized optimization problem
addressed herein,

• and the individual cost “at the level of the user”,
defined as a distributed optimization problem; this
involves a set of cost functions assigned to each
grid user.

Three different billing models were adopted: B1 and
B2 from the literature, and another model B3 defined
by the authors of this paper. The flexibility and the
number of users are the input parameters adopted for
the simulations.

Furthermore, our study delves into optimizing billing
strategy and user flexibility. Our work integrates a novel
approach focused on solving problems in a central-
ized manner. This means that the production company,
upon finding the optimal solution, distributes workload
schedules via the network architecture.

Based on our state-of-the-art review up to the point
of writing this paper, most papers address the problem
in a centralized manner, while others tackle cases where
the problem variables are continuous. In our paper, we
address the problem with various appliance types and

123



_####_ Page 6 of 30 Energy Efficiency (2024) 17 _#####################_

complex constraints, making it challenging to solve
using known quadratic optimization techniques.

Moreover, we approach the problem in a distributed
manner with a novel distributed algorithm. In addition
to this distributed model, we introduce an intelligent
billing mechanism and compare it with other billing
models integrated into our distributed model in terms
of cost minimization, PAR, and fairness.

Finally, our paper statistically compares these billing
models to determine the causal relationship between
cost, PAR, and user flexibility.

The remainder of this paper is organized as fol-
lows: Section “Methods” presents the system mod-
els adopted in the paper, the billing mechanisms, and
the indicators adopted for optimizations, costs, and
PAR ratio; Section “Resolution approach” outlines the
resolution method composed of a set of mathemati-
cal tools for solving the single-objective and multi-
objective optimization problems. The resulting sim-
ulations and data are depicted, analyzed, and statis-
tically discussed within Section “Results and discus-
sion”. Finally, Section “Conclusion” presents conclu-
sive remarks and includes related perspectives of this
work.

2 Methods

The present section exhibits the main process steps of
this study in terms of problem formulations, variables,
and parameters considered within the optimization
problems adopted herein, billing mechanisms, and con-
straints handling. The major resolution algorithms and
mathematical analyses are detailed in Section “Resolu-
tion approach”. Furthermore, Fig. 4 presents the work-
flow adopted in the present study; as displayed in Fig. 4,
the workflow is organized into four independent main
blocks corresponding to the problem input formulation
and generation, the resolution step, and the output data
organization and treatment. Finally, statistical analysis
is conducted to compare generated data populations,
model and analyze distributions.

2.1 System models

Assume a smart power grid where a group of N =
1, . . . , N consumers share a single energy source.

During one day, time is divided into fixed and equal
time slots H = {1, . . . , H}. In a building, there are

several categories of appliances, each with its specific
characteristics and features. In the present study, three
main classes of appliances are considered (Veras et al.,
2018): interruptible and deferrable (AI ), uninterrupt-
ible and deferrable (AI I ), and uninterruptible and non-
deferrable (AI I I ). An operation is referred to as being
uninterruptible if it cannot be stopped until it is fin-
ished. Non-deferrable and deferrable states correspond
to an operation that either can or cannot be started at the
first time slot of the operational window to be consid-
ered. The following paragraphs exhibit the modeling
parameters adopted for the rest of the study.

Let Ank , k = {I, I I, I I I }, be sets of user n’s appli-
ances of type k. The set of all appliances is then denoted
An such that:

An = AnI ∪ AnI I ∪ AnI I I .

Let xhank denote the scheduling state of appliance ank
at time slot h ∈ H, and Eank the corresponding energy
consumption, such that:

xhank =
{

1, if appliance ank is on at time sloth,

0, otherwise.

For each user n, the scheduling vector is denoted xn
such that:

xn = (xhank ),∀ank ∈ An,∀h ∈ H, (1)

and

x = [x1, . . . , xn], (2)

where x denotes the scheduling vector for all users of
the grid.

On the other hand, as introduced in Section “Intro-
duction”, DSM coupled with intelligent pricing meth-
ods should help optimize consumption costs in terms
of utility energy management for individual consumers
involved. Moreover, incentive-based DSM methods
have demonstrated high efficiency in utilizing exist-
ing infrastructures by addressing large-scale distributed
power generation, thereby ensuring stable system oper-
ations even in the face of potential complexity in the
optimization systems to be solved.

Another smart pricing technique is Time-Of-Use
pricing (TOU), which introduces a series of pricing
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Fig. 4 The workflow adopted in the present study
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indices such as “critical pricing at peak times and
low pricing at off-peak times”, “critical peak pricing”
(CPP), “extreme day” CPP (ED-CPP), and “extreme
day pricing” (EDP) (Park et al., 2017; Vardakas et al.,
2015).

In this paper, for a given company, the cost of elec-
tricity in each time slot in the grid is determined by a
generation cost function Ch .

Let Lh > 0 denote the total load in the system at time
slot h ∈ H, and Eank denote the energy consumption of
appliance k of user n. The production cost function is
defined as a quadratic function of the total energy load,
expressed by Eq. (3) :

Ch(Lh) = ahL
2
h + bhLh + ch, (3)

where ah > 0 and bh, ch � 0 for each hour h ∈ H.
The use of quadratic production cost functions in

TOU pricing frameworks stems from their capacity to
accurately depict production costs, capture non-linear
relationships present in cost structures, enable eco-
nomic efficiency optimization, and accurately model
consumer price sensitivity (Wood et al., 2013).

The total load at time slot h is given by the sum-
mation of energy consumption of all appliances of all
users:

Lh =
N∑

n=1

|An |∑
j=1

Eanj x
h
anj (4)

The daily peak and average load levels are then com-
puted according to Eqs. (5) and (6):

Lpeak = max(Lh), h ∈ H, (5)

and

Lavg = 1

H

∑
h∈H

Lh, (6)

respectively. Therefore, the Peak-to-Average Ratio
(PAR) in load demand is given by:

PAR = Lpeak

Lavg
. (7)

The next paragraphs present three billing mecha-
nisms from the literature and describe their mathemat-

ical structures. These billing mechanisms also serve as
the foundation for formulating the optimization models
described in the present study.

2.2 Billing mechanisms

In this section, three billing models from the literature
are presented to determine which one can ensure the
optimality of the distributed multi-objective problem
defined above. The first billing model, denoted as B1

to charge user n, is formulated as in expression (8),
as defined in Mohsenian-Rad et al. (2010), Wu et al.
(2011), Zhu et al. (2011).

B1(n) = En

ET
×

H∑
h=1

Ch(Lh), (8)

where En is energy for a user n, ET = ∑N
i=1 Ei is the

total energy, Lh is load at each time slot h, Ch(Lh) is
the cost of the load at time slot h.

Additionally, the billing mechanism used in Bahar-
louei et al. (2013) denoted B2, is displayed by Eq. (9):

B2(n) =
H∑

h=1

xhn
Lh

Ch (Lh) (9)

The last billing model used in this study, denoted as
B3, was proposed by the authors in Abassi et al. (2022)
and has been modified to be adapted for the present
study (Abdelfattah et al., 2022) . This billing mech-
anism should take into account the importance given
by the user to each objective function in the system
(Bn1 ) and the daily load compared with the total load
in the grid (Bn2 ). The expressions for Bn1 and Bn2 are
respectively given by Eqs. (10) and (11).

Bn1 = En

ET
× ET × ∑H

h=1 Ch(Lh)

ET + WT (|A| − 1)
, (10)

and

Bn2 = wT − wn

ET
× ET × ∑H

h=1 Ch(Lh)

ET + wT (|A| − 1)
, (11)

where : WT = ∑N
i=1 wi denote the total flexibility of

all users in the system.
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The billing model adapted herein is defined as :

B3(n)=Bn1+Bn2=
[
En

ET
+ wT − wn

ET

]
ET

∑H
h=1 Ch(Lh)

ET + wT (|A| − 1)

=
[

En + WT − Wn

ET + wT (|A| − 1)

] H∑
h=1

Ch(Lh)

(12)

The primary objective of implementing the billing
model is to motivate users to participate in the global
optimization program. Consequently, these models
must be made publicly available so that each user can
provide the necessary information to determine the best
scheduling strategies in terms of minimizing billing
costs and maximizing comfort.

The next paragraphs display the formulation of
the mono-objective and multi-objective optimization
problem of energy involved in the present analysis.

2.3 Optimization problems

In this section, optimization problems are formulated
to achieve efficient smart grid energy minimization on
both global (provider) and local (consumer) levels. The
first problem consists of finding the optimal solution
for the system by adopting a centralized standpoint. In
this case, the optimal solution corresponds to the min-
imum cost desired by the energy production provider
(company). The second problem involves a distributed
approach adopted at the user’s level, to be implemented
within each dedicated smart meter. Each optimization
level corresponds to a set of objective functions to be
optimized. Hence, the centralized approach involves a
single-objective optimization function, while the sec-
ond deals with a multi-objective optimization function
(or a vector of functions). The next sections detail the
formulation of the objective functions adopted herein.

2.3.1 Centralized approach: The First characteristic
single-Objective Problem

Generally speaking, each energy provider company
aims to enhance its net income by optimizing the inter-
play between production and distribution parameters
throughout the entire process (Rong et al., 2016). For
example, the utility should be optimized by minimiz-
ing energy consumption during peak hours, as well
as minimizing the Peak-to-Average Ratio (PAR) as a

single-objective function to be optimized (Shah et al.,
2019). On the other hand, Time-Of-Use (ToU) is con-
sidered a practical indicator to be managed in order to
minimize production costs (Nicolson et al., 2018).

In this paper, it is proposed that the energy provider
company should determine optimal cost levels based
on the information provided by users’ scheduling. It is
also worth mentioning that the present study does not
include other non-quantitative or fuzzy indicators such
as users’ comfort. In the scenario where data is accessi-
ble to the company in a centralized manner, encompass-
ing scheduling vectors and energy consumption details
from each user’s ECS, the most efficient system cost
can be determined by addressing the subsequent opti-
mization problem as in Eq. (13):

min
xn

∑H
h=1 Ch(

∑N
n=1

∑|An |
j=1 Eanj x

h
anj ) (13)

The problem addressed in Eq. (13) presents an
opportunity for centralized optimization. When the
production company possesses complete information
regarding the scheduling of all users throughout the
day, a centralized approach can potentially yield solu-
tions that are globally optimal for the utility company.

However, as outlined in problem (13), this solu-
tion comes at the cost of user privacy. A centralized
approach often necessitates users transmitting their
plans through a local area network (LAN) to the util-
ity company. Additionally, the frequent exchange of
messages between users and the utility company, par-
ticularly within large grids, can incur significant com-
munication overhead.

In the next section, a Distributed Optimization
Approaches are discussed, offering a valuable alterna-
tive to centralized optimization in this scenario. They
address limitations such as privacy concerns and com-
munication overhead by enabling users to collaborate
without revealing all their data.

2.3.2 Distributed approach: The second
characteristic Multi-Objective problem

In the previous section, we formulated the single-
objective minimization of the global load at the energy
provider company. However, this approach overlooks a
crucial aspect: the comfort and preferences of the smart
grid users. By solely focusing on load minimization,
the optimal solution fails to account for the individual
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participation of each user in the Demand Side Man-
agement (DSM) program. Furthermore, it neglects to
preserve user privacy, as all user data is sent to the util-
ity company to solve the problem in (13). In this regard,
we must address the following questions: How do we
achieve optimal cost scheduling in the system, as shown
in (13), while taking into account users’ participation in
the DSM program and preserving their privacy? How
describe a solution strategy that can be autonomously
implemented and adjusted to adapt to changes occur-
ring within the system ? How can we address the prob-
lem (13) in a decentralized manner, leveraging the ECS
functionality of the smart meter, while minimizing the
need for extensive information exchanges between the
smart meters and the energy source? To address this
questions, let’s begin by illustrating an example that
first demonstrates how user flexibility can impact cost
minimization and enhance the Performance Assess-
ment Ratio (PAR) within the system.

For instance, within a smart grid, there are users
who are adamant about sticking to their initial energy
usage plans and are unwilling to change them under
any circumstances, while still insisting on preserving
their privacy. On the other hand, there are users who
are willing to actively participate in energy optimiza-
tion efforts and exhibit greater flexibility in terms of
adjusting their consumption schedules. Consequently,
the optimal solution for an integrated energy distribu-
tion system is heavily influenced by the extent of users’
engagement and participation levels.

To summarize this situation, let’s consider the fol-
lowing example to illustrate what should be carried out
in terms of the corresponding distributed system mod-
eling: suppose we have two users in the system with 2
loads of some given types each. The scheduling being
analyzed considers the next 4 hours, where the energy
consumption for each user and load is E1 = E2 = 10.
Additionally, let’s assume that the cost at every time
slot is given by expressions (14) and (15).

Ch(Lh) = 0.01L2
h + 2Lh,∀h ≤ 2, (14)

and :

Ch(Lh) = 0.03L2
h + Lh,∀h > 2 (15)

In a first hypothetical scenario, let’s consider that
both users prefer to schedule their loads for the first
two hours, as depicted in Table 1.

Table 1 First scheduling scenario preferred by the users

user x1
n x2

n x3
n x4

n

1 1 1 0 0

2 1 1 0 0

One can easily compute the cost and the PAR ratio
to find Cost = $88 and PAR = 2. Another situation
arises when the second user shifts their load to the last
two hours, as depicted in Table 2.

In the second scenario, the cost decreases to $68,
while the PAR ratio shifts to 1. It’s evident that the
scheduling situation represented by Table 2 is better
than the first one, as there are savings in consumption
in terms of global cost and PAR ratio. This exemplifies
a typical situation where a compromise is achieved in
optimizing consumption on a global scale, while affect-
ing the local consumption scale.

The preceding scenario suggests that the energy
provider company must develop a suitable distributed
and autonomous approach to differentiate between
participating users and non-participants with minimal
information exchange between users and the utility
company and minimal reliance on user data, while also
preserving users’ privacy. It’s also vital to ensure that
users have a motivating reason to actively engage with
the ECS features and adhere to the schedules they set.
To construct our distributed approach, we assume that
the utility company selects a suitable billing mecha-
nism bn to differentiate between participating users
and non-participants while preserving their privacy.
Thus, for additional user flexibility, the billing model
bn implies that each user in the grid should consider
the following main objectives: minimizing the user’s
bill, maximizing their comfort, and ensuring autonomy,
meaning that all execution of the approach is performed
at the level of user smart meters while preserving pri-
vacy.

To clarify how this approach preserves user privacy,
let us assume that the utility company uses the billing

Table 2 Second scheduling scenario preferred by the users

user x1
n x2

n x3
n x4

n

1 1 1 0 0

2 0 0 1 1
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model as shown in Eq. (8). In this case, each user in
the grid has the objective of minimizing their bill by
solving the following problem:

min
xn∈Xn

h(xn) = En
ET

× ∑H
h=1

xhn
Lh
Ch(Lh), (16)

where xhn is the scheduling vector for user n and Ch(·)
is the cost function defined in Eq. (3). It is noted that
this cost function is a public function and is known by
all users in the grid.

By replacing the definition of the cost function in
Eq. (16), we obtain:

h(xn) = En

ET
×

H∑
h=1

xhn
Lh

(ahL
2
h + bhLh)

= En

ET
×

H∑
h=1

(xhn Lh + bh) (17)

For preserving users’ privacy, other users must have
access only to the energy consumption scheduling at
hour h for all other users, denoted as Lh , without any
details about their planning. We also assume that other
users fix their scheduling vector and send only Local
Area Network (LAN) signals to other smart meters’
users containing the full energy consumption. Let L

′
h

denote the load for the other users, which depends only
on their scheduling vector, and Lh

n denote the load for
user n. It is clear that Lh = Lh

n + L
′
h . While L

′
h is a

fixed variable, the only variable in the problem becomes
Lh
n = ∑H

h=1(x
h
n ). In this case, the problem in Eq. (16)

depends only on the user’s scheduling vector xn and
could be solved without any information about other
users. Finally, users could solve the problem in Eq. (16)
without any information about other users’ scheduling
vectors, thereby preserving user privacy.

The first example introduced in this section implies
that users also take into consideration their comfort. In
such a case, each user is supposed to inject a local sub-
problem because the only optimization variable is user
’s energy consumption scheduling vector xn . Each sub-
problem can be viewed as a local bi-objective problem
involving two objective functions. The solution of each
sub-problem, in this case, is a set of non-dominated
solutions, representing trade-offs between the bill and
the user’s comfort.

The user can then choose one solution from this set
according to their own preferences. For example, a user
may choose a solution that maximizes their comfort,

even if it subsequently increases their bill. Conversely,
another user may select a solution that minimizes their
comfort in order to obtain a minimal bill.

Based on the above, Equation (13) leads to the
definition of a set of “k” solutions (with k = |N |).
The contrast is highlighted between participating and
non-participating users according to the importance
assigned to each objective function by the correspond-
ing user. This differentiation should be carried out at
the level of the related sub-problem definition. Finally,
the ultimate compromise (solution) will be combined
with the “k” solutions of each sub-problem. The opti-
mal solution is then reached when all users are partici-
pating in the program. In this paper, the user’s comfort
is defined as the difference between the basic schedul-
ing vector and the scheduling vector that minimizes the
user’s bill.

Let yhank represent the base scheduling state of user
n and the corresponding appliance ank at time slot h as
follows:

yhank =
{

1, if appliance ank is on at timeh,

0, otherwise.

The local bi-objective problem is formulated as fol-
lows:
Minimize:

f1(xn)=
H∑

h=1

bhn

⎛
⎝|An |∑

j=1

Eanj x
h
anj +

|Am |∑
m∈N \{n}

Eamj x
h
amj

⎞
⎠ ,

f2(xn) =
|An |∑
j=1

H∑
h=1

|xhanj − yhanj | (18)

2.3.3 Constraints definitions

In order to ensure a reliable problem resolution app-
roach, it is essential to define corresponding constraints
related to the appliances (AI , AI I , and AI I I ) as intro-
duced in the heading paragraph of Section “System
models”. The two optimization problems defined in the
previous sections must adhere to certain constraints to
determine whether a solution is feasible or not.

Let opanm denote the operating time required for
appliance anm to complete its corresponding task. This
is defined as:

- Equation (19) defines the first constraint C1

that corresponds to the energy consumption of each
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appliance during the day:

H∑
h=1

xhanm = opanm (19)

-Equation (20) and (21) defines the second constraint
C2 with regards to the appliance type AI I . The energy
consumption of each appliance during the day accord-
ing to its operating time to complete its scheduled tasks

H∑
h=1

xhanm = opanm , (20)

and each appliance types AI I when started, must com-
plete its task, and must not switch off. That is :

H−(opanm−1)∑
q=1

opanm+(q−1)∏
t=q

xtanm . ≥ 1 (21)

-For the appliance AI I I , the operation time is strict
and the appliance should not turn off the schedule time
run. This is translated by the following constraints C3:

end∑
h=start

xhanm = opanm , (22)

where start is the start time and end is the end time.
Hence, the setC = {C1,C2,C3} constitutes the fea-

sible space of the whole multi-objective optimization
problem defined in this paper.

3 Resolution approach

The two problems defined in Eqs. (13) and (18) pose
challenges for classical methods such as quadratic opti-
mization approaches due to their combinatorial and
multi-objective nature (Katoch et al., 2021). These
types of problems are generally classified as NP-
hard problems (Hochba, 1997). Consequently, a basic
Genetic Algorithm (GA) was adopted to solve the
single-objective problem defined in (13), while a
Non-dominated Sorting Genetic Algorithm II (NSGA-
II) was adopted to solve the multi-objective prob-
lem defined in (18). Therefore, it is worth recall-
ing the basics of GA for both single-objective and

multi-objective optimization problems, as exhibited
and detailed in the following paragraphs.

3.1 Basic Genetic Algorithm for the single-Objective
problem resolution

3.1.1 Genetic Algorithm

A genetic algorithm is a search metaheuristic inspired
by Charles Darwin’s theory of natural evolution (Cha-
har et al., 2021). This class of Evolutionary Algorithms
reflects the process of natural evolution, where species
evolve through a series of reproduction and the evo-
lution of subsequent generations. The generations in a
genetic algorithm consist of parameters that are manip-
ulated in the optimization process, while the fitness
function represents the objective to be maximized. In
general, a genetic algorithm consists of five phases
(Forrest, 1996; Kramer, 2017; Mirjalili, 2019):

Initial population: The initial population is composed
of a set of individuals randomly generated as the first
step. Each individual is then represented in binary form,
where each gene is a series of zeros and ones. The size
of each individual corresponds to |An|×H genes, with
the length being related to the precision required for
computing and interpreting the results.

Fitness function: The fitness function is formulated
and designed to be maximized or minimized in order
to select individuals based on their adaptation to the
problem. The fitness function value ¯f (xi ) of individual
xi in the population is designed to vary within the range
[0,1]. In the case of the present study, it is proposed to
adopt the fitness function displayed in expression (23).

¯f (xi ) = f (xi )∑
f (xi )

, (23)

where f the objective function.

Selection: The selection step involves choosing the
best-adapted individuals from the population gener-
ated at each step. The selection operator can be seen
as applying the principle of adaptation proposed by
Darwin’s theory. In genetic algorithms, the selection
operator discriminates the most influential individuals
that maximize the fitness functions, while the less sig-
nificant individuals are discarded and may disappear in
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the next generations. There are several selection tech-
niques in the literature, including but not limited to:

• Selection by rank: This technique always proceeds
by the selection of the individuals with the best
adaptation scores. so that the probability of selec-
tion is proportional to the score; a roulette wheel
named also wheel of fortune technique, is launched
for each individual resulting in the competitive set
of remaining individuals in the current generation.

• Tournament selection: This technique uses propor-
tional selection on pairs of individuals, and then
selects from these pairs the individual with the best
adaptation score.

• Uniform selection: The selection is done randomly,
uniformly, and without the intervention of an adap-
tation value.

The proposed approach adopts the method of Tour-
nament selection due to its simplicity and straightfor-
wardness in implementation. This technique involves
selecting individuals through pairwise comparisons,
where the winners of each pair form the population
of the new generation. While it may allow some “bad”
components to enter the mating pool, depending on the
number of comparisons made, it tends to select only the
best individuals. Tournament selection typically has a
time complexity of O(n) or O(n2), with the most com-
mon method involving pairwise comparisons, resulting
in an O(n) complexity. However, if the number of com-
parisons equals the number of population elements, the
complexity would be O(n2).

Crossover: In GAs, the goal is to improve the genera-
tion from the parent population through the crossover
operation. This operation is crucial in the algorithm,
as it involves randomly splitting a pair of parents from
the previous generation into a certain number of binary
words (chromosomes), which are then combined to cre-
ate new offspring. Essentially, the crossover process
aims to combine the favorable traits of each parent to
generate improved offspring in the subsequent genera-
tion.

Mutation: In any general optimization algorithm, in-
cluding genetic algorithms, it is crucial to avoid local
convergence. Mutation plays a key role in maintaining
genetic diversity within the population, preventing pre-
mature convergence to local optima. Mutation involves
randomly modifying a gene to generate a new solution,
ensuring exploration of the search space. It’s impor-

tant to recognize that while crossover is a fundamen-
tal operation in genetic algorithms, mutation serves as
an additional mechanism to introduce genetic variation
and prevent stagnation.

3.2 NSGA-II for the resolution of the Distributed
Multi-Objective Problem

NSGA-II stands out as one of the most widely rec-
ognized multi-objective optimization algorithms due
to three key characteristics: its ability to quickly iden-
tify non-dominated solutions, its efficient estimation of
crowded distances, and its straightforward implemen-
tation of the crowded comparison operator. In a study
by Deb et al. (2002), the efficiency of NSGA-II was
evaluated through simulations using various bench-
mark test problems commonly employed in optimiza-
tion techniques.

Based on the above, it’s evident that solving prob-
lem (18) requires identifying a set of Pareto optimal
solutions that are not dominated by any other feasi-
ble solutions (Deb et al., 2002). Given the technical
complexity of the problem, analytical procedures are
not suitable due to factors such as the non-linearity of
functions, the binary nature of variables, and the multi-
objective nature of the problem. Consequently, the use
of the non-dominated Genetic Algorithm II (NSGA-II)
is appropriate (Dickison et al., 2016).

3.2.1 Preliminary definitions

The NSGA-II algorithm, developed by Professor Deb
and his team, stands out as a robust method for multi-
objective optimization. It boasts three key attributes:
a rapid non-dominated sorting mechanism, an efficient
crowded distance estimation approach, and an effective
crowded comparison operator (Konak et al., 2006). In
their research, Deb et al. evaluated the performance
of NSGA-II across various test problems, demonstrat-
ing its superiority over other optimization techniques
such as PAES and SPEA in terms of discovering diverse
solutions (Kodali et al., 2008). As a result, NSGA-II has
become widely adopted in both academic and industrial
settings. It’s essential to introduce foundational con-
cepts to facilitate understanding of the process (Yusoff
et al., 2011).

• The principal of solution “Domination” : A solu-
tion x (1) is said to dominate another solution x (2)
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while the following conditions 1 and 2 below are
respected:

– Condition 1: x (1) is not worse than x (2) for all
objective functions vector f .

– Condition 2 : x (1) is strictly better than x (2) in
at least one objective,

in that case a solution x (1) dominates x (2) is
expressed as x (1) � x (2).

• The Non-Dominated set: Among a set of solutions
P, the non-dominated set of solutions P’ are those
that are not dominated by any member of P;

• The Globally Pareto-optimal set: defines the ulti-
mate non-dominated set of the entire feasible search
space S. This set is then qualified as globally Pareto-
optimal and it correspond to the convergence of a
MOGA algorithm.

3.2.2 NSGA-II description

General speaking, and according to Fig. 5, NSGA- II
can be roughly detailed by the following list (Deb et
al., 2002):.

• Population initialization: Initializing the population
based on the problem range and constraints;

• Non-dominated sort: Sorting process based on non-
domination criteria of the population that done;

• Crowding distance assignment: Once the non-
dominated sorting is completed, the crowding dis-
tance value is front-wise assigned . The individuals
in the population are selected based on the corre-
sponding rank and crowding distance;

• Selection: The selection of individuals is carried
out using a binary tournament selection with the
crowded-comparison operator.

• Genetic Operators: Real coded GA using simulated
binary crossover and polynomial mutation is per-
formed.

• Recombination and selection (Elitism approach):
Offspring population and current generation popu-
lation are combined and the individuals of the next
generation are set by selection process. The new
generation is filled by each front subsequently until
the population size exceeds the current population
size;

Fig. 5 NSGA-II Algorithm

123



Energy Efficiency (2024) 17 _#####################_ Page 15 of 30 _####_

With this approach,the multi-objective problem
defined in (18) which represents a distributed opti-
mization problem will be solved for each user resulting
in optimal non-dominated sets. The main lines of this
algorithm are illustrated in Fig. 5 (Lee et al., 2009; Liu
et al., 2015).

3.2.3 Multi-Criteria Analysis coupled with NSGA-II

The NSGA-II algorithm yields a set of Pareto optimal
non-dominated solutions based on the various objective
functions involved. Subsequently, users must choose
their preferred solution based on input parameters and
desired performance in cost saving and comfort. Let
Wn = [wn, 1 − wn] denote the preference vector
assigned by user n for cost saving and comfort, respec-
tively, where 0 ≤ wn ≤ 1. At this juncture, user
decisions should be bolstered by Multi-Criteria Anal-
ysis (MCA), which supports intricate decisions based
on predetermined criteria and objectives. MCA tech-
niques excel in addressing complex decision-making
scenarios with multiple and conflicting objectives and
criteria, facilitating the identification of a single pre-
ferred solution or the ranking and short-listing of poten-
tial solutions from a pool of candidates. Consequently,
MCA provides a practical framework for exploring var-
ious trade-offs, elucidating differences and similari-
ties among different exploitation scenarios. With this
approach, each user endeavors to address their own
multi-objective problem using their preference vector
Wn , with the optimal solution representing one among
the optimal Pareto front.

In this paper, NSGA-II and MCA were integrated at
the level of each user n to determine their optimal solu-
tion based on their preference vector Wn . Each user’s
optimal solution is contingent solely on their corre-
sponding scheduling vector, while the scheduling vec-
tors of other users are presumed to remain fixed. As a
result, the optimal solution for each user varies when
the scheduling of other users changes.

Based on the latter statement, the optimization prob-
lem defined in Eq. (18) can be regarded as a “consump-
tion game” among all users. This game can be formu-
lated through the following process:

• Players: Registeration of users in set N .
• Players’ strategies: Each user n ∈ N selects their

energy consumption scheduling vector xn accord-
ing to their preference vector Wn .

• Computing the payoffs Fn(xn, x−n) for each user
n ∈ N ; the vector x−n = [x1, ..., xn−1, xn+1, ...,

xN] denotes the vector containing the energy con-
sumption schedules and Fn denotes the billing
model implemented by the company to provide the
users in the smart grid.

The proposed model is a distributed model that
resolves at each user’s smart meter with only their per-
sonal load schedule. This configuration allows users
to preserve privacy and minimizes the controls per-
formed by the utility. That is, each user solves their
own problem and obtains the optimal solution that min-
imizes their bill and maximizes their comfort. While the
solution depends on the solutions of other users, it’s
important to update the solution according to the solu-
tions of other users (Game1). When any user updates
their schedule, the final solution (Nash equilibrium)
is obtained. With this paradigm, each user has a bill
according to their participation in the DSM program.

(Mohsenian-Rad et al., 2010) demonstrated that the
Nash equilibrium of that game always exists and is
unique. Thus, based on Mohsenian-Rad’s approach, a
distributed algorithm is proposed herein to reach the
Nash equilibrium among all users of the grid. The cor-
responding algorithm is presented in Algorithm 1.

Algorithm 1 Distributed Game-based algorithm
1: Randomly initialize xn and x−n .
2: while no ECS unit announces any new schedule do
3: P=Solve problem in (18) using NSGA-II algorithm;.
4: xn=Choose one solution among P using MCA;.
5: if xn changes compared to current schedule then;.
6: Update xn according to the new solution;.
7: Broadcast a control message to announce xn to the other

ECS units across the system;.
8: end if
9: end while
10: if a control message is received then
11: Update xn accordingly;.
12: end if

The Algorithm 1 is a distributed game-based approach
for solving a problem in (18) as distributed manner.
Here are some comments on the algorithm:

Initialization: The algorithm starts by randomly ini-
tializing xn and x−n , where xn represents the deci-
sion variables of the current ECS (Embedded Control
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System) unit, and x−n represents the decision variables
of other ECS units in the system.

Main Loop: The algorithm then enters a while loop,
where it continuously runs until no ECS unit announces
any new schedule. This loop seems to be the main iter-
ative process of the algorithm.

SolutionFinding: Inside the loop, the algorithm solves
a problem defined by Eq. (18) using the NSGA-II algo-
rithm. This involves finding Pareto-optimal solutions to
a multi-objective optimization problem.

Solution Selection: After obtaining solutions using
NSGA-II, the algorithm chooses one solution from
the Pareto front using MCA (Multi-Criteria Analysis).
MCA is likely employed to select a solution based on
certain criteria or preferences.

Updating Schedule: If the selected solution differs
from the current schedule (xn), the algorithm updates
xn according to the new solution and broadcasts a con-
trol message to announce this new schedule to other
ECS units in the system.

Receiving Control Messages: If a control message is
received from another ECS unit, the algorithm updates
xn accordingly.

The Algorithm 1 could potentially be implemented
in practice within smart grid technologies. Here’s how:

Distributed Control in Smart Grids: Smart grids
often involve distributed control systems where various
devices (like ECS units in the algorithm) make deci-
sions autonomously based on local information. The
algorithm’s approach of each ECS unit making deci-
sions based on its local information and occasionally
sharing updates with others fits well within this frame-
work (Mahela et al., 2020; Pipattanasomporn et al.,
2009) .

Optimization in Smart Grid Operation: Smart grids
face various optimization problems, such as load bal-
ancing, energy trading, and grid stability enhancement.
The algorithm’s ability to solve optimization prob-
lems using techniques like NSGA-II can be useful
in addressing these challenges, especially in scenarios
involving multiple conflicting objectives.

Communication Infrastructure:The algorithm relies
on communication among ECS units to exchange con-
trol messages. In a smart grid context, communication

infrastructure, such as advanced metering infrastructure
(AMI) or communication networks between devices,
would be necessary to facilitate this communication
(Anupong et al., 2022) .

Integration with Existing Technologies: The algo-
rithm can potentially be integrated with existing smart
grid technologies and standards. For example, it could
be implemented within a distributed energy manage-
ment system (EMS) or integrated into existing SCADA
(Supervisory Control and Data Acquisition) systems
(Sadeeq and Zeebaree, 2021) .

It is worth to note that the quality of the solutions pro-
duced by the Algorithm 1 in terms of optimality, fair-
ness, and convergence, depends mainly on the choice of
a billing model; that is to say, the energy provider com-
pany should consider the preferences of each user by
means of dedicated customization a the users’ billing
models. After all, the billing model shall charge the
users according to their participation in the program.
The next section, exhibits three different billing charg-
ing models to be implemented within the smart grid.

3.3 Constraint handling

The problems presented in this paper must adhere
to the constraints discussed in Section “Constraints
definitions”. Generally speaking, there are two major
approaches for solving these types of problems. One
approach is to include a penalty for solutions that vio-
late the constraints and then optimize based on the
resulting fitness computation. This method requires
several parameters for each constraint. Therefore, set-
ting up the appropriate parameters necessitates exten-
sive experimentation to define the penalty function
(Michalewicz, 1995; Michalewicz and Schoenauer,
1996).

The other method corresponds to adaption of the
Pareto-dominance principle that is used comparing a
pair of solutions and to get the constraint violation
into account (Snyman & Helbig, 2017). In sum, the
penalty constraint handling is one of the techniques
that are widely used in the evolutionary algorithms
in general, and this is also the case for the NSGA-
II. In consequence, the constraint handling technique
adopted in the present work was inspired from (Deb,
2000). The non-feasible and feasible solutions are con-
trasted on the basis of their constraint violation using
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the following formulation :

F(x) =
{
f (x), if g(x) ≤ 0

fmax + ∑m
j=1 < g(x) >, otherwise,

where g(x) is the jth constraint; m is the number of
constraints presented in the problem and :

< g(x) >= max(0, g(x)). (24)

4 Results and discussion

This section is dedicated to presenting the solutions of
optimization problems defined above. The simulations
are performed according to the following process;

• Number of users are assigned to the smart grid and
are varied for each simulation;

• The appliances of each user are randomly gener-
ated within the set of appliances AI , AI I , and AI I I ;
this configuration allows diversifying the resulting
solutions;

• Concerning the distributed GA, the parameters of
the NSGA-II are exhibited in Table 3 as they are
used within the DR model for the validation step;

• The values of Table 3 parameters were obtained via
simulations with a control map, which corresponds
to a series of tests with different configurations that
were assigned to the NSGA-II. Then, the best com-
binations adopted for the multi-objective problem
resolution are indicated by the NSGA-II in the some
table.

It is worth noting that the simulations carried out in
the present work targets two main objectives; the first
corresponds to the improvement of the convergence of
the Algorithm 1 under the different billing mechanisms

Table 3 NSGA-II parameters

Parameter Value

Population size 500

Maximum number of iterations 1.000

Selection method Tournament (3)

Crossover method tow Point

Crossover probability 85%

Mutation method Bit Flip

Mutation probability 1%

proposed. The second objective deals with the opti-
mal resolution of the optimization problems and then
exploring the impact of the users’ flexibility on the total
cost of the system by means of the indicators “user’s
bills” and “PAR ratio”. From a multiobjective stand-
point, an optimal billing model should take into account
all these parameters leading to motivate the users to par-
ticipate to the global program. For these reasons, each
simulation compared the three billing models that were
introduced in Section “Billing mechanisms” in order to
select the best of them. The optimal solution of the sys-
tem is obtained in a centralized way using the genetic
algorithm described in Section “Genetic Algorithm”.
In the distributed case, each solution is obtained using
Algorithm 1 under different billing mechanisms.

4.1 Load scheduling comparison for one day:
Centralized approach VS Distributed approach
under different billing models with a full flexibility
scenario

In this section, the distributed load schedules during a
day are compared according to the three billing scenar-
ios; subsequently, the optimal billing model is selected.
It is assumed here that all users have the same number
of appliances, and all users are participating in the pro-
gram; a maximum flexibility is supposed at this level.
The initial schedules are generated in such a way that
we exactly two hours of peak time are reached; Figure 6
depicts this scenario.

According to the simulations, it is remarkable that
the sum of the loads are minimized at the peak hours
regarding the single-objective optimal solution which
is related to the energy provider company. This is also
the case for the multi-objective distributed scenarios
with regards to the user’s billing methods. Hence, com-
pared to the initial schedule, the optimality is supposed
reached out since the user’s flexibility is maximized.
Furthermore, Table 4 present the Coefficient of Vari-
ation (CV) for each distributed scheduling load under
different scenarios.

4.2 Cost comparison: Centralized problem vs.
Distributed approach according to the number
of users under billing models with a full flexibility
scenario

In this section, simulations are conducted to com-
pare the resulting costs related to both the company’s
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Fig. 6 Daily load
comparison

optimal solution and the users’ distributed problem
according to different numbers of users. The cost com-
putation also involves the different billing mechanisms.
Figure 7 displays resulting costs versus the number of
users for each case.

From Fig. 7, it is remarkable that all the optimiza-
tion problems likely show similar results. The differ-
ence between the optimized costs and initial loading
schedule cost showed salient difference.

These findings clearly demonstrate that the Dis-
tributed multi-objective approach resulted in sim-
ilar performance compared to the single-objective
approach. This is quite reasonable as a maximum level
of flexibility brought by the users is assumed; thus, the
global minimum (related to the company optimum) is
equivalent to the distributed minimum related to each
user’s insight. Furthermore, the curves in Fig. 7 exhibit

Table 4 Daily load main statistics

Scenario μ(kWh) std (kWh) CV Skewness

Initial
scheduling

1.666 2.357 1.414 0.707

Centralized
scheduling

1.666 0.471 0.282 0.190

Under B1 1.666 0.711 0.426 0.137

Under B2 1.666 0.696 0.418 0.045

Under B3 1.666 0.711 0.426 0.137

an exponential behavior of the costs with regards to
the number of users on the grid. Efficient techniques
of energy distribution optimization should therefore
reveal valuable gains in cost reduction, as highlighted
by the gap between the curves in Fig. 7. Equations (25),
(26), and (27) propose exponential fittings of the cost’s
evolution under different billing mechanisms. The fit-
ting results are plotted in Fig. 8. Moreover, it would be
interesting to note the point-wise difference increase
between these costs as a function of the number of
users. This evolution is plotted in Fig. 9 for the differ-
ent billing mechanisms, showing also an exponential
increase according to n.

{
cB1(n) = −0.0311 + 0.0928 × e0.0284×n

R2 = 0.9986
(25)

{
cB2(n) = −0.0319 + 0.0927 × e0.0287×n

R2 = 0.9984
(26)

{
cB3(n) = −0.0339 + 0.0902 × e0.03044×n

R2 = 0.9975
(27)

4.3 PAR ratio Comparison under several scenarios

The following simulations exhibit the PAR ratio com-
puted under different billing mechanisms with regards
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Fig. 7 Cost Versus number
of users

Fig. 8 Fitting results

Fig. 9 Cost difference
function �c according to
the number of users
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Fig. 10 PAR comparison

to the distributed problem. Figure 10 displays the PAR
ratio computed in each simulation; notably, for all sim-
ulated cases, the PAR was minimized compared to the
unscheduled plan. In summary, the average PAR for
the entire simulation is 1.527 for billing B1, while it
is about 1.627 for B2, and it reached 1.5424 for the
model B3. These results clearly demonstrate that the
distributed approach presents more efficiency in terms
of PAR minimization under Billing models B1 and B3.

Furthermore, Figures 11 and 12 display the statis-
tical distribution of the PAR ratios under the different
scenarios.

According to these figures, and regardless of the
billing mechanisms, all PAR distributions exhibit a
Gaussian mixture behavior of two Gaussian models as
bimodal distributions, as presented in Eq. (28). Conse-
quently, chi-square tests were carried out to emphasize
the pairwise similarities of these distributions. Table 5
displays the p-values of the chi-square tests. These val-
ues are extremely less than the risk α, which is typically

set to 5%, indicating a quasi-similarity between the
PAR distributions regarding the billing models adopted
in this work. Hence, Table 6 presents the two Gaus-
sian models for each billing mechanism with the cor-
responding chi-square test statistics.

⎧⎪⎪⎨
⎪⎪⎩

f1(x) = 1

σ1
√

2π
e

−1
2 (

x−μ1
σ1

)2

f2(x) = 1

σ2
√

2π
e

−1
2 (

x−μ2
σ2

)2
(28)

4.4 Impact of users’ flexibility on their bills

In the previous three sections, one can observe the
efficient reduction in energy loads achieved by the
optimization methods, leading to corresponding cost
savings. However, these simulations were conducted
assuming maximum user flexibility, which may not
be realistic in a more generalized perspective of user

Fig. 11 Probability
distribution of the PAR
ratios
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Fig. 12 Probability distribution of the PAR ratios

behavior. Therefore, it would be valuable to further
investigate this study through an additional flexibility-
sensitivity analysis.

In this section, the impact of single-user participa-
tion in the program is discussed for each billing model.
The selection of a specific participation vector Wn for
each user will visibly impact their bill. A robust billing
model should charge users with more flexibility differ-
ently compared to other users who do not participate
in the optimization program.

Let’s consider a scenario where a loading plan
involves three users, all of whom have fixed their
schedules and thus refused to participate in a com-
mon program, except for the first user, for whom ran-
dom flexibility was uniformly generated in order to
study its impact on the bills of this set of users. Then,
Figures 13, 14, and 15 respectively display the simu-
lated bills for all users according to the billing models
B1, B2, and B3. In these figures, the horizontal axis
represents the flexibility of user 1, while the vertical
axis represents the billing of the users.

From all the figures, it’s evident that the variation in
user 1’s flexibility significantly impacts the bills of all
users.

Table 5 p-values of KHi2 test

Test (Difference in PAR) χ̃2 p values

PAR under B1 and PAR under B2 4.14 0.041

PAR under B2 and PAR under B3 6.89 0.008

PAR under B3 and PAR under B3 5.35 0.02

For billing model B1, user 1’s flexibility affects not
only their own bill but also those of the other users in
the grid. Initially, the bills of all users are high, but they
receive discounts once user 1’s flexibility exceeds the
50% threshold, resulting in all users paying the same
price. This billing model fails to motivate other users
to participate in the program.

For billing model B2, bills are also minimized after
a threshold of 50% for user 1, who receives a discount
on their bill. However, the other users also receive dis-
counts even though they are not participating. Further-
more, user 2 receives a discount on their bill, although
their flexibility is the same as user 3, who receives the
highest bill. This billing model is not fair either.

Regarding billing model B3, it is notable that user
1’s bills are minimized at each value of flexibility.
Additionally, users 2 and 3 receive identical bills and
also benefit from a relatively small billing saving even
though they did not participate in the program. This
reduction can be attributed to the flexibility of user 1,
which allows for a relative minimization of the sys-
tem’s cost, subsequently decreasing the personal bills
of the other users as well. Hence, billing model B3

Table 6 Gaussian models parameters

Billing
mechanism

μ1
(USD)

σ1
(USD)

μ2
(USD)

σ2
(USD)

B1 1.380 0.186 2.436 0.249

B2 2.455 0.295 1.372 0.174

B3 1.363 0.175 2.433 0.289
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Fig. 13 Users’ bills vs. user 1’s flexibility under billing mechanism B1

should encourage other users to take part in the energy
optimization program.

4.5 Billing results from participating
and non-participating users

This section generalizes the previous section so that a
higher number of users are involved. Hence, in order
to quantify the impact of the user’s flexibility on the
personal bill, 10 users were included in this analysis,
all having a unique load of the same type. Users 1 to 5
are supposed to be flexible, while users 6 to 10 are not.

According to Figs. 16, 17, and 18, it is evident that
the users receive the same bill, even though 5 users
are flexible for billing model B1. Concerning billing
model B2, the flexibility of the users does not have an
impact on the billing. Additionally, users 4 to 6 observe
lower bills than the others. A preliminary analysis sug-
gests that this minimization is due to the first stage of
the algorithm, which started with these users (4 to 6).
Regarding billing model B3, the users participating in
the optimization program (1 to 5) receive minimal and
equal bills since they are supposed to have the same
energy consumption and flexibility, while the others (6

Fig. 14 Users’ bills vs. user 1’s flexibility under billing mechanism B2
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Fig. 15 Users’ bills vs. user 1’s flexibility under billing mechanism B3

Fig. 16 Bills of
participating and
non-participating users
under billing B1

Fig. 17 Bills of
participating and
non-participating users
under billing B2
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Fig. 18 Bills of
participating and
non-participating users
under billing B3

to 10) have relatively higher bills since they did not par-
ticipate in the program. This result demonstrates that
billing model B3 fairly charges the users in this case.

4.6 Impact of the percentage of users participating
in the program on the total cost of the system

According to the simulations in Fig. 19, it is evident
that the number (or percentage) of participating users
in the program significantly impacts the total cost of the
system. In this simulation, the users’ loads are assumed
to be fixed, so the only variable that varies is the number

of participants in the optimization program. The total
cost is noted to be very sensitive to the number of users
for all billing models.

A likely linear behavior can be observed for the total
cost according to the number of participating users.
Equations (29), (30), and (31) propose three linear mod-
els to fit these variations with the corresponding fitting
parameters R2 according to each billing model. The
fitting results are also plotted in Fig. 19.

{
cB1(np) = −0.00730 × np + 0.10133

R2 = 0.9596
(29)

Fig. 19 Total cost versus users’ flexibility
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{
cB2(np) = −0.00650 × np + 0.09552

R2 = 0.9572
(30)

{
cB3(np) = −0.00730 × np + 0.10133

R2 = 0.9596,
(31)

where np is number of users participating in the pro-
gram.

4.7 Cost analysis based on the optimization steps

This section aims to demonstrate the cost reduction
per algorithm step to reach convergence. Conver-
gence of both algorithms is assumed to occur when
the cost stabilizes after a given number of iterations.
Figures 20 and 21 plot the number of iterations per
algorithm and the corresponding simulated costs. The
flexibility of the users is set to maximum for this simu-
lation to ensure convergence of the algorithm for each
billing model when all users are participating in the
program. Hence, Figure 20 shows that the centralized
algorithm converges to the optimal solution after 40
iterations, as do the three billing models, which con-
verge to the optimal solution in 40 iterations according
to the distributed algorithm, with a decreasing expo-
nential behavior for both algorithms.

4.8 User’s gain based on flexibility

In this scenario, 10 users were considered in the grid,
and it is assumed that the loads are fixed with a sin-
gle variable to be changed, which is the flexibility of

the users. This setup allowed for detecting the decrease
rate per user according to the corresponding user’s flex-
ibility level denoted Fn , and the total flexibility in the
system, also the amount of billings according to the
total billings in the system. Table 7 presents the results
obtained for the three billing models, respectively B1,
B2, and B3, where F and BR represent the user’s flex-
ibility rate and billing reduction rate, respectively. As
observed, for billing model B1, the flexibility of the
users still has no impact on the individual bills, although
the invoices are minimized. For billing model B2, it is
observed that user 7 is not a participant (flexibility =
1.59%), but they benefit from a 13.54% reduction in
their bill. For billing model B3, the personal bills are
proportional to the flexibility of the users. This result
shows that billing model B3 is the fairest model com-
pared to the other two models.

According to Table 7, it is remarkable that the varia-
tion coefficient (CV) of the billing reduction for mech-
anism B3 is lower than the CV related to billing B2.
This indicates that the billing reduction of 7% under
mechanism B3 is quite stable, showing less variability
compared to billing B2, which displays a CV of over
60%. Regarding billing B1, it is evident that it presents a
constant decrease at all levels of flexibility, which may
not be realistic for users if they choose to participate
in the optimization program. Hence, this situation may
deviate from the objectives and the core characteris-
tics of smart grid management, which aim to optimize
billing as the input combinations vary.

From Fig. 22, a particular behavior of billing reduc-
tion is highlighted. For the billing mechanisms B2

and B3, the billing reduction is observed to decrease
with flexibility levels, even below the levels of billing

Fig. 20 Number of
iteration: centralized
algorithm
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Fig. 21 Number of iteration: distributed algorithm

reduction for B1, which was estimated at 10%. This
leads to the question of whether an optimum value of
flexibility can be estimated based on the analysis of
multiple billing mechanisms, or at least to compare the
billing reductions based on their respective evolution.

In conclusion, the competitiveness of Billing mod-
els B2 and B3 is questionable. Indeed, for flexibilities
less than 10%, billing model B2 performs better than
B3, and vice versa when flexibility is higher than 10%.
However, it should be noted that B3 has been shown

to be more stable than B2 mechanisms, as discussed
earlier, as it exhibits less reduction variability (VC =
7%) compared to B2 (VC = 60%).

5 Conclusion

In this work, a two-fold Optimization Problem of smart
grid’s energy management was studied. The central-
ized Optimization Problem resolution allowed simu-
lating the billing results with regards to a given energy

Table 7 Billing reduction(%) vs Flexibility(%)

User Billing B1 Billing B2 Billing B3
F (%) BR (%) F (%) BR (%) F (%) BR (%)

1 18,91 10 18,91 5,2 18,91 9,05

2 4,38 10 4,38 14,06 4,38 10,59

3 11,74 10 11,74 5,2 11,74 9,81

4 2,5 10 2,5 18,75 2,5 10,79

5 6,11 10 6,11 18,75 6,11 10,41

6 5,48 10 5,48 13,54 5,48 10,47

7 1,59 10 1,59 13,54 1,59 10,89

8 15,17 10 15,17 5,2 15,17 9,45

9 19,62 10 19,62 3,12 19,62 8,97

10 14,46 10 14,46 2,6 14,46 9,52

Mean 10.00 Mean 9.996 Mean 9.995

Std 0.0000 Std 6.0489 Std (%) 0.6845

CV (%) 0.00 (%) CV (%) 60.51 (%) CV (%) 6.85 (%)
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Fig. 22 Billing
reduction(%) Vs
Flexibility(%)

provider company, while the distributed Optimization
Problem took into account the levels of comfort in
terms of the users’ flexibility. Three billing strategies,
namely B1, B2, and B3, were proposed by the authors.
The analysis also considered the number of users, ran-
dom appliances, and random flexibility assigned to the
users for the simulations. The optimization procedure
included NSGA-II, MCA, and a Game-based algorithm
designed by the authors. The most important findings
can be summarized as follows:

• For all billing strategies, the total cost exponen-
tially increases with the number of users. The dif-
ference between the unscheduled program cost and
the costs under the three billing strategies also expo-
nentially evolves with the number of users.

• The PAR ratios related to the billing and the
unscheduled program exhibit random behavior
with the simulation number. This variation was par-
ticularly observed to be bimodal, resembling a 2-
Gaussian mixture. This could be very interesting
for energy provider management to determine how
energy management can tend towards the lowest
mode in terms of technical aspects.

• Simulations also proved that as the users’ flexibil-
ity increases, there is a considerable drop in the
total billing, especially for the participating users
within the optimization program. Conversely, the
non-participating users did not benefit from cost
reduction and their bills remained much higher.

• The billing mechanism B3 proposed by the authors
was observed to be competitive since it resulted
in the best decrease of the cost according to the

percentage of flexible users. Moreover, B3 showed
lower standard deviation and thus a lower CV of the
billing reduction versus flexibility; the VC did not
exceed 7%, compared to B2, which reached 60%
CV.

Hence, it is noticeable that the distributed optimization
problem, which included a variety of billing strategies
and individual users’ flexibility, led to simulating dif-
ferent scenarios and producing various output data in
terms of individual and total cost, according to the num-
ber of the three-fold parameters: the participating and
non-participating users fractions, the total number of
users, and the flexibility, which expresses the level of
both comfort and users’ implication in the optimiza-
tion program. In other words, the distributed approach
is quite interesting in adopting a parametrized energy
management, better than the centralized way, which is
more interested in total costs.

Further work will focus on the application of other
optimization approaches coupled with different billing
mechanisms, while an inferential analysis of the pro-
duced data is also targeted in order to quantify the
stability and robustness of the resolution approaches
to different input data variabilities.Additionnaly, we
will explore the possibility of testing additional billing
mechanisms to further augment the comparison and
provide a more comprehensive evaluation of our
approach. Another work currently in progress aims to
project the proposed study to a larger user administra-
tion size in Morocco.

123



_####_ Page 28 of 30 Energy Efficiency (2024) 17 _#####################_

Author contributions Abdelfattah Abassi: Conceptualization;
Formal analysis; Methodology; Programming; Results analysis
and discussion; Writing the original draft.
Mostapha El Jai: Statistical analysis and inference; Results anal-
ysis and discussion; correcting and editing the final manuscript.
Arid Ahmed and Hussain Benazza: Investigation, Methodology,
Project Supervision; review and editing the manuscript.

Declarations

Conflict of interest The authors declare that they have no com-
peting interests.

References

Abassi, A., Arid, A., & Benazza, H. (2023). Moroccan con-
sumer energy consumption itemsets and inter-appliance
associations using machine learning algorithms and data
mining techniques. Journal of Engineering for Sustainable
Buildings and Cities, 4(1), 011004.

Wood, A.J., Wollenberg, B.F., Sheblé, G.B. (2013) Power
Generation, Operation, and Control. Wiley, Hoboken,
New Jersey, USA. https://books.google.co.ma/books?
id=JafyAAAAQBAJ

Adika, C. O., & Wang, L. (2014). Smart charging and appliance
scheduling approaches to demand side management. Inter-
national Journal of Electrical Power & Energy Systems,
57, 232–240.

Ahmad, A., Khan, A., Javaid, N., Hussain, H. M., Abdul, W.,
Almogren, A., Alamri, A., & Azim Niaz, I. (2017). An opti-
mized home energy management system with integrated
renewable energy and storage resources. Energies, 10(4),
549.

Ahmed, M. S., Mohamed, A., Homod, R. Z., & Shareef, H.
(2016). Hybrid lsa-ann based home energy management
scheduling controller for residential demand response
strategy. Energies, 9(9), 716.

Akhrif, O., Benfaress, C., Jai, E. L., M., El Bouzekri El Idrissi,
Y., & Hmina, N. (2022). Completeness based classification
algorithm: a novel approach for educational semantic
data completeness assessment. Interactive Technology and
Smart Education, 19(1), 87–111.

Alvina, P., Bai, X., Chang, Y., Liang, D., & Lee, K. (2017).
Smart community based solution for energy management:
an experimental setup for encouraging residential and
commercial consumers participation in demand response
program. Energy Procedia, 143, 635–640.

Anupong, W., Azhagumurugan, R., Sahay, K. B., Dhabliya,
D., Kumar, R., & Babu, D. V. (2022). Towards a high
precision in ami-based smart meters and new technologies
in the smart grid. Sustainable Computing: Informatics and
Systems, 35, 100690.

Dickison, M.E., Magnani, M., Rossi, L. (2016) Multilayer
Social Networks. Cambridge University Press, Cambridge,
United Kingdom. https://books.google.co.ma/books?
id=blCJDAAAQBAJ

Asgari, S., Haghir, S., & Noorzai, E. (2023). Reducing energy
consumption in operation and demolition phases by inte-

grating multi-objective optimization with lca and bim.
Energy Efficiency, 16(6), 54.

Raza, M., Rind, Y., Javed, I., Zubair, M., Mehmood, M.Q.,
Massoud, Y. Smart meters for smart energy: A review of
business intelligence applications. IEEE Access PP, 1–1.
https://doi.org/10.1109/ACCESS.2023.3326724

Babaei, M., Abazari, A., Soleymani, M. M., Ghafouri, M.,
Muyeen, S., & Beheshti, M. T. (2021). A data-mining
based optimal demand response program for smart home
with energy storages and electric vehicles. Journal of
Energy Storage, 36, 102407.

Baharlouei, Z., Hashemi, M., Narimani, H., & Mohsenian-Rad,
H. (2013). Achieving optimality and fairness in autonomous
demand response: Benchmarks and billing mechanisms.
IEEE Transactions on Smart Grid, 4(2), 968–975.

Gils, H. C. (2014). Assessment of the theoretical demand
response potential in europe. Energy, 67, 1–18.

Benysek, G., Bojarski, J., Jarnut, M., & Smolenski, R. (2016).
Decentralized active demand response (dadr) system for
improvement of frequency stability in distribution network.
Electric Power Systems Research, 134, 80–87.
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