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Abstract Anomaly detection in power consumption
data can be very useful to building managers. It allows
them to detect unexpected power consumption values,
identify unusual behaviors, and foresee uncommon
events. This paper proposes a novel unsupervised
approach to detect anomalies in power consumption
data. We combine the clustering-based methods with
the prediction-based ones to learn typical behavior
scenarios and to predict the power consumption of
the next hour. These scenarios are explored by apply-
ing the K-means algorithm on 24 different K-means
groups representing the 24 h of the day. This is based
on the assumption that identical daily consumption
behavior can appear repeatedly due to users’ living
habits. In order to detect the anomaly 1 h before its
occurrence, a Long Short-Term Memory (LSTM ) has
been trained to predict the next power consumption
value. This predicted value with some earlier data
values are concatenated into a vector then compared
with the learned typical scenarios. We used Auto-
Encoders to detect anomalous days in general and this
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novel method to specify at what time the anomaly has
occurred. Our approach not only detectss anomalies in
off-line mode but also allows real-time detection on
live data streams.
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Auto-Encoders · Power consumption

Introduction

Anomalies in data are patterns that do not match
the well-defined notion of normal behavior (Chandola
et al. 2009). Anomaly detection in power consumption
data can be very effective, making energy-efficient
home improvements as well as saving cost. Resi-
dential and commercial buildings consume 60% of
the world’s total amount of electricity (UNEP 2017).
Lighting, heating, and cooling constitute the biggest
part of energy consumption. But lighting all alone
is the most important energy usage (Energy 2010).
Techniques utilized for reducing the energy waste
nowadays, for example, rely on motion detector for
each source of light switching them on and off.

In general, the electric power demand is highly
affected by weather conditions. In summer, the growth
of power demand on the consumer side can be
correlated with cooling demands. Similarly, in win-
ter, power consumption increases because of heating
needs. The power consumption varies also during
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the same weather between weekends and weekdays.
Thus, anomaly patterns would differ from weekdays
to weekends.

In fact, anomalies can be classified into three cat-
egories (Chandola et al. 2009): (1) Point anomalies:
when an individual point is anomalous with respect
to the rest of the points. For example, a daily cooling
energy consumption can be very high comparing with
previously recorded values. (2) Contextual anomalies:
when the data is considered anomalous in a context
but normal in another. For example, a heating con-
sumption value might be normal in winter but not in
summer. (3) Collective anomalies: if a group of data
instances is not normal in comparison with the entire
dataset, it is considered as collective anomaly. While
point anomalies can happen in any type of dataset, col-
lective anomalies can only happen in datasets where
the data are related.

Finding abnormal behaviors helps to reduce wast-
ing energy and the cost of energy for the consumers.
Anomaly detection is considered a very important task
for improving energy efficiency by identifying unusual
behavior, e.g., forgetting to turn off stoves after cooking.
Figure 1 shows an example of unusual energy consump-
tion for a user in 3 consecutive days. Another major
issue that can be identified through anomaly detec-
tion techniques is power theft. In developing countries,
50% of the generated energy is lost by power theft as
reported by the World Bank (Antmann 2009).

Anomalous feedbacks can also be used to alert con-
sumers and to give them assistance towards identifying

faulty equipment or misconfigured machines consum-
ing more energy than required. Moreover, anomaly
detection in power consumption data can be used to
supply precise demand-response plans to customers
(Zhang et al. 2011). Finding anomalies in energy con-
sumption relies on identifying patterns in data and
many data mining and statistical approaches have been
applied to identify these patterns, e.g., Zhang et al.
(2011), Nadai and van Someren (2015), Liu et al.
(2011), and Chou and Telaga (2014). The majority of
these approaches propose to detect anomalies in off-
line mode since they have to handle a large amount of
data (Lee et al. 2001).

Auto-Regressive (AR), ARIMA (Auto-Regressive
Integrated Moving Average), and SARIMA (Seasonal
ARIMA) are some well-known time series forecast-
ing techniques that explores time series based on their
own past values. They were initially proposed by (Box
et al. 2015) and they were successfully used in fore-
casting economic, marketing, social problems, etc.
The basic idea of these methods relies on using their
own lags and the lagged forecast errors to explore
future behaviors. The Auto-Regressive technique con-
siders that the present value of the time series at time
t is a ponderation between all previous values of this
series and some weight factors. Similarly, the Moving
Average (MA) tries to model the series as the weighted
sum of random shocks or error terms. ARIMA model
combines of the MA model and the AR model, then it
integrates into it the transformations needed to convert
the series into a stationary one. Finally, if a time series

Fig. 1 An example of
energy consumption in 3
consecutive days
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exhibits potential seasonality, SARIMA can be used.
Instead of subtracting consecutive terms, SARIMA
uses seasonal differencing.

Contribution

In this paper, we proposed a novel approach for
anomaly detection in power consumption data, mak-
ing the following contributions:

• We proposed a new approach combining the
LSTM (Long Short-Term Memory) algorithm
with the K-means algorithm in order to detect
and to predict anomalies in power consumption
data. The motivation behind combining clustering
methods with prediction-based ones relies on (1)
the assumption that the power consumption of a
user switches between different typical behaviors.
These behavior scenarios can be learned through
the K-means algorithm. (2) On the other hand,
the behavior slightly changes over time and recent
data weights more than old data. Thus, the power
consumption relative to distant periods is not cru-
cial for prediction and the predicted values should
depend on the most recent seen values.

• We compared the performance of the proposed
approach with the individual LSTM and K-means
clustering applied separately, showing the supe-
riority of the proposed method. In fact, the pre-
dicted values using the proposed approach are
more close to the real power consumption data
than that of the single K-means or the single
LSTM. This allows less false alarms.

• An Auto-Encoder was used in order to visualize
the data and to detect anomalous days in gen-
eral without specifying at what time the anomaly
has happened. This can be useful to building
managers to analyze users’ behaviors in the past.

• In order to compare with other state of the art
methods, we manually inserted outliers and we
considered them true anomalies. The experiments
show the superiority of our method in terms of
accuracy and its ability to reconstruct the data.

This paper is organized as follows: the “Back-
ground information” section provides a brief descrip-
tion of the Auto-Encoder, the K-means, and the
recurrent neural network. The “Proposed method”
section presents our proposed method. In the “Data
set and behavior analysis” section, we describe the

dataset used. The “Results and discussions” section
shows the results with some discussions. Finally, the
“Conclusion and future work” section provides some
concluding remarks.

Background information

In this section, we provide the reader with a general
overview on the machine learning approaches used in
this study: Auto-Encoder, LSTM, and K-means. Auto-
Encoders are used in our study to detect anomalous
days whereas the LSTM and the K-means can be used
to detect anomalies in real time and to timely localize
the anomaly.

Auto-Encoder

The architecture of a basic Auto-Encoder (Bengio
2009) is presented in Fig. 2. Layer L1 is the input
layer, L2 is the hidden layer, and L3 is the output
layer. The Auto-Encoder is an unsupervised artificial
neural network that is trained to learn an approxima-
tion to the identity function. In other words, it tries to
reproduce the output vector x̂ = [x̂1; x̂2, ..., ˆxN ] that
is similar to the input vector x = [x1, x2, ..., xN ]. In
the training phase, the Auto-Encoder is forced to learn
a “compressed” representation of the input through
the hidden layer to reconstruct the the output. Actu-
ally, this architecture often ends up learning a lower
dimensional subspace very close to PCA (principal
component analysis). In order to detect anomalies,
Auto-Encoders are normally used where the objective
is to rebuild the inputs by minimizing the reconstruc-
tion error in Eq. 1:

Err =
√
√
√
√

N
∑

i=1

(xi − x̂i )2 (1)

Recurrent neural network

In traditional neural network, the information is only
propagated forward assuming that all inputs and out-
puts are independent. It is known as feedforward
neural network (FNN). The idea behind recurrent neu-
ral network (RNN) is to make use of the outputs of
the hidden layers as feedback connections to serve as
inputs to the neurons. In other words, RNNs integrate
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Fig. 2 Auto-Encoder
(image from: http://ufldl.
stanford.edu/tutorial/
unsupervised/
Autoencoders/)

the output from previous computations offering con-
text information for applications based on sequential
data. Figure 3 shows a recurrent neural network and
the unfolding in time. xt is the input at time t , and
st is the memory of the system which is calculated
using the previous state: st = f (Uxt +Wst−1). f is a
nonlinearity function, and ot is the output a step t .

Many RNNs have been proposed, such as
Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber 1997). LSTM makes it easier to learn
long-term dependencies in the input. It is composed of

an input neuron, a recurrent hidden block whose basic
unit holds a memory cell with an associated cell state
and an output neuron. The hidden blocks are made of a
set of recurrently connected sub-blocks. Each block is
composed from one or more self-connected memory
cells and from the following multiplicative units: the
input, the output, and sigmoid layers called the forget
gates. Through this, one can continuously write, read,
and reset operations on the cells. These units allow
the LSTM cells to memorize the data for long peri-
ods, thereby solving the vanishing gradient problem

Fig. 3 A recurrent neural
network (image from:
http://www.wildml.com/2015/09/recurrent-
neural-networks-tutorial-
part-1-introduction-to-
rnns/)
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present in classical RNNs. For example, if we assume
that the input unit is closed, the new inputs won’t be
able to overwrite the activation of the cell. Therefore,
the network can use this information later when the
output gates are open.

K-means clustering

Clustering seeks to divide data into a finite number of
clusters. The K-means clustering is surely the most
well-known clustering algorithm: Given n data points
xi, i = 1...n, the goal is to attribute each data point to
one of the K clusters by finding the positions μi, i =
1...k, of the clusters that reduce the distance between
the data point and the cluster:

argmin
K

∑

i=1

∑

x∈ci

d(x, μi) = argmin
K

∑

i=1

∑

x∈ci

||x −μi ||22
(2)

where ci is the set of data points belonging to cluster
i. K-means is very popular because it is very simple
and converges rapidly. Algo. 1 shows the K-means
algorithm.

This algorithm searches for a global minimum but
converges to a local minimum since the problem is
NP-hard and the proposed solution is heuristic.

Proposed method

System overview

The key idea in our approach is that the most recent
observation should get a little more weight than older
observations. In other words, the predicted value with
some recent neighboring points should have more
importance and weight in the process of choosing

which scenario this actual behavior represents. An
illustration of this idea is presented in Fig. 4. We
assume that we are supplied with a training data set
Xi(i = 1, 2, ..., N), where all the provided data repre-
sent a normal behavior during the day. Our proposed
method has two stages: training phase and testing
phase. Before the training phase, we begin by gener-
ating 24 groups corresponding to the 24 h of the day,
one group for each hour. For example the group num-
ber one corresponds to the hour 1:00 A.M. and has
all the vectors of length 24 representing the power
consumption data of the user for the 24 h preced-
ing 1:00 A.M. Figure 5 presents the procedure used
for the group selection phase. After re-generating the
data, we applied the K-means algorithm to partition
each group into k disjoint clusters C1, C2, ..., Ck . In
the same time, we train a LSTM neural network which
returns the predictions of the next data point using the
last sequence of power consumption data. Let’s say we
are at time: t = n − 1, in order to predict the power
consumption at time t = n, we take the last 23 power
values and we use the trained LSTM to predict the next
power consumption as shown in Fig. 6.

In fact, many of the user’s behaviors are random
but, due to the user’s living habits, identical daily con-
sumption behavior can appear repeatedly. By taking
the power consumption data of a whole year as our
training data, we assume that the majority of these ran-
dom events have occurred and thus, they are included
in our training data. Some events are completely ran-
dom as turning on and off the coffee machine. Note
that the trained model won’t be affected by that since
the power consumed by these events is negligible.
Nevertheless, in case the user completely changes his
habits (for example he started a new night shift job),
then we have to reconstruct a new training data and to
retrain the whole model. In the next two subsections,
we are going to give the details of these two steps
summarizing our proposed method.

Finding the K clusters

We are going to use the K-means clustering approach,
and we’re going to assume that the observed data rep-
resent the normal behavior. The K-means algorithm is
used for clustering large amount of data. This algo-
rithm is going to generate different classes of time
series data by selecting the centroid representing all
the instances in each cluster. We begin by splitting the
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Fig. 4 Recent data weights
more than old data

time series data into segments. The length of the seg-
ment is fixed to 24 and the beginning of each segment
could be anywhere in the day.

The value K, the number of clusters, used for the
K-means algorithm are 5, 10, 11, 20, and 30. We were
unable to test the algorithm for larger k, since the

Fig. 5 Generating 24 groups corresponding to the 24 h of the day, one group for each hour
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Fig. 6 MainMethod

algorithm failed to converge. The superior perfor-
mance was attributed to k = 11. In theory, increasing
K can produce better profiles but in our case the algo-
rithm did not converge to an acceptable solution in the
allowed time frame. Ideally, there are some algorithms
like the BIC algorithm that may help choosing a more
optimal K. Due to computational and practical con-
siderations, we limited the search space for only five
values and we believe that the value k = 11 produced
meaningful centroids.

Predicting the next power consumption value

Prediction-based anomaly detection has been widely
used in statistics community (Abraham and Chuang
1989; Abraham and Box 1979). The motivation
behind these techniques is the assumption that an
observed behavior is going to reoccur in the future
(maybe with minor changes). Another key step in
these techniques is the assumption that the data used
for training describe well the process. In other words,
they are considered as “normal.” In this work, we
trained a RNN, more specifically an LSTM, that
returns the predictions of the next data point using the
last sequence of power consumption data. Assuming
that the model trained represents well the process, if
the predicted values are far distant from the expected
ones, we can say that the model detected an anomaly.
So in fact the model has to compare the predicted
value either with a predefined model or with the

real data stream values to determine if the data point
present is anomalous. The intuitive approach is to cal-
culate the euclidean distance between the predicted
data and the real data, and then to compare it with a
predefined threshold.

Dataset and behavior analysis

In order to test the efficiency of the proposed
method, several experiments are performed. This
section describes the dataset we used in our experi-
ments as well as an a general analysis of the user’s
behavior using the boxplot technique.

Dataset

The public dataset we used is called Dataport, and
it is collected from Pecanstreet1. The main goal of
Pecanstreet is to accelerate the research and the inno-
vation in water and energy consumption. The full
database contains data from smart meter readings of
power utilization from 67 electronic devices in nearly
1000 houses. A data sample is shown in Fig. 7 where
the “DataId” represents the id for each house, the
“Time” represents the datetime of the measure and
“use” represents the power consumption at that time
of the day. In this work, we randomly chose to study

1https://dataport.pecanstreet.org/
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Fig. 7 An example of power consumption data (in KW)

the behavior of one user during the period of January
2017 to December 2017. The user id number is 26 in
this database.

Behavior analysis

In Fig. 8, we used a boxplot to illustrate the energy
consumption of a user, taking 20 consecutive week-
days and 20 consecutive weekends. The boxplot is a
common statistical technique used to identify hidden
patterns through a graph approach. The box represents

Fig. 8 General characteristics of data using boxplot

the interquartile range which is the part between the
lower and the upper quartiles. The median is indicated
by a line. Outliers show the data points lying between
1.5 and 3 box lengths. This has been considered as
acceptable for most situations (Frigge et al. 1989).
According to Fig. 8, the behavior differs between
weekdays and weekends. The reason is that users tend
to spend more time at home during the weekends;
thus, they use more energy. Figure 9 presents a gen-
eral behavior model of this user. Looking at the upper
quartile (Q3) of the weekdays for example (the upper
part of Fig. 9), we can see that there is an uprise in
the power consumption at 6 o’clock, 18 o’clock, and
21 o’clock. This is explained by the fact that the occu-
pants of this house get up in the morning around 6
o’clock and they are all back home around 18 o’clock.

Results and discussions

This section is divided into two subsections. In the
first subsection, we try to find anomalies in a complete
unsupervised scenario. Detecting anomalies is find-
ing anomalous data points relative to some standard
data. Unfortunately in our case, there is no information
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Fig. 9 A boxplot with the exact value for mean, lower quartile and outlier, and upper quartile and outlier

about which ones among the outliers are true anoma-
lies or not (unsupervised data). Thus, in the first
subsection, we couldn’t adopt any performance mea-
sure and the results presented can only serve as an
indicator to alert consumers by giving them assistance
towards identifying faulty equipment or misconfigured
machines consuming more energy than required.

In the second subsection, we manually insert ran-
dom anomalies in order to provide performance mea-
sure. In other words, we insert outliers and we assume
that these outliers are true anomalies.

Anomaly detection without inserting artificial
anomalies

In this section, we present the results of our pro-
posed approach combining the LSTM method with
the K-means method and compare it with the individ-
ual K-means and LSTM methods applied separately.
We begin by using Auto-Encoders in order to detect
anomalous days without specifying at what time the
anomaly has occurred. The goal is to see later if the
days where our proposed method detects anomalies
are the same as the days detected as anomalous by the
Auto-Encoders.

Detecting anomalous days with Auto-Encoder

In this approach, we aim to find the anomalous days
without localizing the anomaly in the time. An Auto-
Encoder is a neural network trained to reconstruct the
input data. That’s why the output has the same size
of the input layer, while one of the hidden layers is
smaller than the input layer and it is called the bot-
tleneck layer. In this work, the Auto-Encoder used is
made from the following layers (24, 50, 20, 2, 20, 50,
24). We have 24 neurons for each of the input and the
output layer (the first and the last elements of the vec-
tor). The number of hidden layers used in our network
is five (the number of neurons in each of the five hid-
den layers is respectively 50, 20, 2, 20, and 50). Once
trained, the hidden layers will learn a feature detection
architecture. The bottleneck will force the network to
represent the data in a compact representation.

Using the mean square error (MSE) as an objection
function, an error of 0.017 can be obtained in nearly
30 epochs. The experimental results have shown that
a similar error permits the network to generalize well
and to be able to reproduce all the data that have small
variation with respect to training data. We built two
different models treating the days depending if they
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do belong to weekdays or weekends. For the mod-
els with two dimensions, we are able to visualize our
data. The result of visualization for the Auto-Encoder
with 5 hidden layers is shown in Fig. 10 for week-
days and Fig. 11 for weekends. Each of these colors
represents the reconstruction MSE of each point repre-
senting each of the nine test days. The reconstruction
error, which is the error between the original data and
its new representation, is used as an anomaly score.
A threshold can be set on the reconstruction error to
detect anomalies. If the reconstruction error is higher
than a given threshold, it means that the test day is
very different from the days in the training set con-
sidered as normal. We set the threshold at 0.04 for
weekdays and 0.06 for weekends. The thresholds used

were selected by observing the train dataset. In other
words, the model is capable to reproduce the majority
of the training dataset with an error smaller than 0.04
for weekdays of the training and 0.06 for weekends of
the training. The threshold of the weekdays is smaller
because apparently the occupant tends to have a more
obvious daily routine during weekdays. This can be
explained by the fact that, for example, the occupant
of this house always travels at the same time to and
from work (or school).

For weekdays, the reconstruction error for days 4,
5, and 7 was higher than the defined threshold, and for
weekends only day 2 has been considered as anoma-
lous. The actual power consumption values of these test
days are presented in the lower part of Figs. 10 and 11.

Fig. 10 In the top part, we visualize different test days belonging to weekdays using Auto-Encoders. Different colors represent the
reconstruction MSE. In the lower part, the actual power consumption values of these test days are presented
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Fig. 11 In the top part, we visualize different test days belonging to weekends using Auto-Encoders. Different colors represent the
reconstruction MSE. In the lower part, the actual power consumption values of these test days are presented

Local anomaly detection using our proposed method

Figures 12, 13, 14, and 15 illustrate the performance
of our method which combines the K-means and the
LSTM methods. The value of K for the clustering
was set to 11. This choice was adopted after five tri-
als (5, 10, 11, 20, 30). For the LSTM, the batch size
was set to 64 and we stopped the training after 200
epochs using the early-stop technique. The optimizer
used was Adam optimizer and the learning rate was set
to 0.0001. The model was evaluated with three stacked
LSTM layers of sizes 32, 64, and 100, with a standard
dropout on the output of each layer equal to 0.2. When
the predicted value is higher than the measured one
by a threshold margin, an anomaly is detected. The
threshold chosen was set to T = 6 and the error was

calculated using the MSE. Note that when the Y val-
ues of the anomalies (the red circles in the Figure) are
equal to zero, it means there is no anomaly.

The results show that the combination of the LSTM
with K-means succeeded to predict values that are
most of the time consistent with the curve repre-
senting the real power consumption data. However,
some test days were very different from the learning
database and thus, the predicted values were deviated.
For example, the test day number 4 that belongs to
the weekdays (see Fig. 12) is so deviated from the
predicted curve even though no anomalies have been
detected (the error is below the threshold). This can
explain why this day has been considered anomalous
by the Auto-Encoder (see Fig. 10), since the overall
behavior of this day is not a common profile. Which
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Fig. 12 Power consumption values for five test weekdays (day 0 to day 4). The actual power consumption, the predicted one, and the
anomalies are presented
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Fig. 13 Power consumption values for four test weekdays (day 5 to day 8). The actual power consumption, the predicted one, and the
anomalies are presented

means, while Auto-Encoders judge the overall pro-
file of the day, our proposed method tries to localize
the anomaly and does not consider any uncommon
behavior as an anomaly. Contrary to the Auto-Encoder
algorithm that considered the day number 1 in week-
days as a normal day, the proposed algorithm detected

an anomaly at 19:00 P.M. where the power consump-
tion exceeded 4 KWH while the model has predicted
a value of 1.3 KWH.

Similar analysis can be applied to the rest of the
days, noting that weekdays numbers 5 and 7 were con-
sidered as anomalous by the Auto-Encoders (threshold
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Fig. 14 Power consumption values for five test weekends (day 0 to day 4). The actual power consumption, the predicted one, and the
anomalies are presented
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Fig. 15 Power consumption values for four test weekends (day 5 to day 8). The actual power consumption, the predicted one, and the
anomalies are presented

= 0.04). Our proposed method confirmed that and
localized the anomaly in the time (13:00 P.M. and
14:00 P.M. for day 5 and 23:00 P.M. for day 7). Tests
performed on weekends (Figs. 14 and 15) showed a
decrease of the prediction capability of the proposed

algorithm since the training days belonging to week-
ends are fewer. The only anomaly detected in week-
ends test days is in day 3 at 11:00 A.M. where the real
consumption data was higher than 3 KWH whereas
the predicted data was 0.5 KWH.
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Comparison, training cost, and computational speed

Figure 16 presents an example to compare between the
proposed methods, K-means alone and LSTM alone.
It shows that the combination of K-means with LSTM,
as we have proposed, gives results more close to the
real power consumption data than that of the single K-
means or the single LSTM. Compared between the 3
plots in Fig. 16, our proposed method is significantly
lower than the two others in the error rate. In fact,
the results show that between 12:00 A.M. and 6:00
A.M., the 3 methods are mostly consistent with the
curve representing the real power consumption data
(error<0.035). For the last part of the curve (after
16:00 P.M.), the K-means method and the LSTM

method are clearly separated from the original segment,
while our proposed method conserves a better overall
prediction specially at 19:00 P.M. and 21:00 P.M.

The proposed approach consists of a training phase
and a testing phase. In terms of training time, LSTM
needs about 80.6 min to train a model on a Quadro
K610M GPU and 0.24 s for the test phase. Concern-
ing the K-means algorithm, it needs around 11.25 s
on a 2.8-Ghz quad core CPU and 0.06 s for the test-
ing phase. This algorithm utilizes iterative refinements
until the centroids stop from moving. The complex-
ity of this algorithm is linear and it depends on the
number of data points. If we apply the K-means on N
data samples, the complexity would be O(k.N). The
authors of Soheily-Khah et al. (2016) provided a proof

Fig. 16 The power consumption data predicted using the proposed method, K-means alone, and LSTM alone
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of the finite convergence of the K-means algorithm.
However, in some particular cases, it fails to converge
to a local minimum. On the other hand, the complex-
ity of the methods relying on LSTM increases with
the increase of the number of layers. In fact, the com-
putational complexity of learning LSTM models per
weight and time step is O(1). Thus, assuming W is
the total number of parameters in the network, the cor-
responding computational complexity per time step
would be O(W). These deep learning algorithms are
time consuming and require powerful hardware for
training besides a large number of training data.

Performance measure by inserting labeled anomalies

In this part, we are going to manually insert outliers
randomly in our test data. We are also going to assume
that all the inserted outliers are true anomalies. The
pseudo-code of the algorithm we used to insert anoma-
lies is represented in Algo. 2 and it was inspired from
the work presented in Jokar et al. (2015). Among
the 6240 samples of the original dataset, we used
6000 samples for training (250 days) and 240 samples
for testing (10 days). We then randomly generate 40
anomalies, 4 anomalies per test day.

Evaluation metrics

Table 1 summarizes the confusion matrix we used in
order to evaluate the performance of our algorithm.
Equations 3, 4, and 5 show the definitions of accu-
racy, precision, and recall respectively. The accuracy

reflects the proportion of the correct predictions to all
the samples. Precision shows the ability of the algo-
rithm to identify positive and negative data whereas
recall shows the ability to detect all the positive sam-
ples.

accuracy = T P + T N

T P + T N + FP + FN
(3)

precision = T P

T P + FP
(4)

recall = T P

T P + FN
(5)

Results and discussion

Figure 17 provides case study of of our method
(LSTM+K-means) and three state of the art methods:
Auto-Regression (AR), Auto-regressive Integrated
Moving Average (ARIMA), and Seasonal AutoRe-
gressive Integrated Moving Average with eXogenous
regressors model (SARIMAX). This test has been per-
formed on the day number 1 of the Week-Days test.
We can notice that the AR method detects only two out
of 4 anomalies and it has one false-positive detection.
Meanwhile, ARIMA and SARIMAX also detect two
out of four anomalies but they don’t have any false-
positive detection. Finally, our method detects three
out of four anomalies and it has one false-positive
detection.

To demonstrate more convincing results, the same
experiment has been repeated on all test days and the
results are reported in Table 2. We can notice that
the accuracy of the AR method is the lowest and the
results contain the highest false-positive rate. Mean-
while, the accuracy of ARIMA is better and it has less
false-positive samples but still the recall is the low-
est. Our method and SARIMAX yield the best recall
score (0.80) while our method has a better accuracy
(0.89) and a better F1 score (0.71). Note that while
false-positives are bad, they are not the worst outcome.
A false positive can generate a false alarm and can
cause waste of time in the monitoring system. The
worst scenario is having a high false-negative rate. In

Table 1 Confusion matrix
Positive Negative

True TP: an anomaly sample predicted correctly TN: a normal point predicted correctly

False FP: a normal point not predicted correctly FN: an anomaly sample not predicted correctly
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Fig. 17 The red shaded regions represent anomaly periods. Red stars represent the inserted anomalies. Red circles represent the
detected anomalies. The red dash line is the mean square error between the predicted power consumption and the real power
consumption

other words, it is the case where a problem is occurring
but the monitoring team is not aware of this problem.
Moreover, our method yields a RMSE of 1.032 where for

all other methods this value lays between 1.52 and 2.07.
Which means, our proposed method is better in predict-
ing the power consumption and in detecting anomalies.
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Table 2 Comparison with
some state of the art
methods

Method Accuracy Precision Recall F1 RMSE

Auto-Regression (AR) 0.78 0.417 0.77 0.54 2.07

ARIMA 0.80 0.45 0.72 0.553 1.52

SARIMAX 0.79 0.43 0.80 0.559 2.03

Our method 0.89 0.65 0.80 0.71 1.032

Conclusion and future work

Analyzing unexpected patterns in time series data is a
very challenging problem. In this paper, we developed
the LSTM+K-means anomaly detection method. Our
method is based on cascading two famous machine
learning approaches: the LSTM and the K-means.
First, the K-means algorithm is applied for each of the
24 groups representing the 24 h of the day in order to
partition each group of data into k clusters. After learn-
ing the clusters within each group, a LSTM is trained
in order to predict the power consumption of the next
hour. The predicted value is concatenated with pre-
vious data to find the corresponding centroid in the
corresponding group. We also used Auto-Encoders
to detect anomalous days without specifying at what
time the anomaly has occurred. Results are compared
with other state of the art methods showing the supe-
riority of the proposed method in terms of higher
accuracy and better anomaly detection rate.
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