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Abstract At present, the contradiction between eco-
nomic development and resource and environmental
sustainability has become increasingly acute in China.
Improving the quality of the ecological environment has
become an important strategic goal for China’s national
economic and social development. In this paper, we
used the panel data of 30 provinces in China from
1986 to 2016 to measure the eco-efficiency and its
decomposition indexes based on a non-radial
metafrontier Malmquist-Luenberger data envelopment
analysis model. The results showed that the eco-
efficiency grows at an annual rate of 0.7% on the whole,
with the technical efficiency decreasing at an annual rate
of 0.6%, the innovation effect increasing at an annual
rate of 2.3%, and the technical leadership effect decreas-
ing at an annual rate of 1%. In the sample study period,
the cumulative growth rates of eco-efficiency change
index, technical efficiency change index, innovation
effect, and technical leadership effect were 20.4%, −

19.4%, 70.5%, and − 30.7%, respectively. It was also
found that regional eco-efficiency decreased from east
to west. Furthermore, convergence test results showed
that there were four convergence clubs and three diver-
gent individuals in terms of eco-efficiency. Areas with
high eco-efficiency tended to converge with areas with
high eco-efficiency and vice versa.

Keywords Non-radial metafrontierMalmquist-
Luenberger DEAmodel . Dynamic eco-efficiency.

Direct distance function . Convergence

Introduction

Economic and social development is the process of
continuous accumulation of capital and continuous op-
timization of structure. China has transformed from a
quantitative growth stage, pursuing the expansion of the
total scale, to a high-quality development stage, which
meets higher standards and diverse needs and is an
inevitable path for successful economic transformation.
A good ecological environment is the most inclusive
benefit of the people, upholding their simple expecta-
tions and basic requirements for a better life. It is not
only an inevitable requirement for building a high-
quality development system but also an important indi-
cator for improving the quality of economic develop-
ment. Eco-efficiency, as an important measure of the
development level of a regional circular economy, re-
flects the efficiency of resource use in regional econom-
ic development to mitigate environmental pressure. It
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effectively integrates sustainable development goals on
a macro scale into micro (enterprise) and meso
(regional) development planning and management, and
thereby has become an important reference for enter-
prises and relevant policymakers (Picazo-Tadeo et al.
2014). China has witnessed disparities in economic
development and obvious differences in resource, eco-
nomic, and environmental systems among regions. It is
necessary to scientifically measure and assess regional
eco-efficiency at different levels to identify weaknesses
in eco-efficiency among regions better. This is the pre-
mise and foundation for regions to formulate their cir-
cular economy development strategies, and an essential
strategic step to promote high-quality development in
China. Therefore, this study used a non-radial
metafrontier Malmquist-Luenberger data envelopment
analysis (DEA) model from a regional perspective to
measure the eco-efficiency of 30 provinces in China and
analyzed the convergence of regional eco-efficiency to
provide an empirical reference and decision-making
basis for regions to explore the development patterns
of the circular economy.

The marginal contributions of this study are two-fold.
First, we limit our inputs for measuring eco-efficiency,
focusing on pollutant emissions, and use a non-radial
metafrontier Malmquist-Luenberger model. This model
enables the application of different reduction scales for
different pollutants and solves the problem of the lack of
a feasible solution. Furthermore, this model also con-
siders the heterogeneity of the region, obtaining an in-
depth decomposition of the eco-efficiency. Second, we
measure eco-efficiency based on Chinese provincial
data of 1986–2016. We then apply Phillips and Sul
(2007)’s convergence model (PS convergence model)
to study the dynamic evolution and change characteris-
tics of eco-efficiency, this method is rarely used to
analyze the convergence of eco-efficiency in China.
Owing to the significant differences in regional devel-
opment and resource endowments, it is inappropriate to
apply the traditional convergence model to investigate
the convergence of eco-efficiency under homogeneous
production technology conditions. The PS convergence
model considers the conditions of heterogeneous pro-
duction technology, and it is a more suitable method to
investigate the convergence of eco-efficiency in China.

The remainder of this paper is structured as follows:
the “Literature review” section is the literature review.
The “A model to measure eco-efficiency” section pre-
sents the model to measure the eco-efficiency. The

“Results and discussion” section is the empirical results
and discussion. The “Research on the convergence of
regional eco-efficiency” section is the convergence anal-
ysis. The “Conclusions and policy application” section
is where the conclusion, suggestions, and policy appli-
cations are discussed.

Literature review

Early methods of eco-efficiency measurement mainly
include lifecycle assessment and direct use of GDP/CO2

as a simple substitute indicator of eco-efficiency. The
former is too demanding in terms of the data required,
and it is difficult to achieve consensus in selecting
weights for sub-indexes in the overall environmental
pressure index (Olsthoorn et al. 2001; Ebert and
Welsch 2004; Zhou et al. 2006). The latter is character-
ized by easy calculation and high data feasibility, but it
ignores other pollutants generated in the production
process, and thus it is gradually being replaced by
more complicated methods in practice. To this end,
Kuosmanen and Kortelainen (2005) first used the
DEA method to measure relative eco-efficiency under
static conditions. This method generates weights for all
environmental indicators when individuals are in the
optimal state, which means that the subjective random-
ness of weight selection is avoided and the calculation
becomes more objective. Then, the authors used this
method tomeasure the eco-efficiency of the three largest
urban road transportation systems in Finland. Barba-
Gutiérrez et al. (2009) and Camarero et al. (2013) also
used the static DEA method to measure eco-efficiency.
Gomez et al. (2018) considered the uncertainties in the
data to improve the DEA model to measure the eco-
efficiency. Gudipudi et al. (2018) found that larger Eu-
ropean cities are eco-efficient based in the DEA model
and regression model. Kiani Mavi et al. (2019) analyzed
the eco-efficiency based on a two-stage network DEA
model, and the case study found that Switzerland is the
highest in eco-efficiency.

In recent years, research has deepened and re-
searchers argue that although the eco-efficiency assess-
ment under the static DEA model has made a great
breakthrough in terms of weight selection, it cannot
analyze the dynamic temporal changes of eco-efficien-
cy. Therefore, based on the eco-efficiency assessment
model under the static DEA model, Kortelainen (2008)
proposed a method of measuring the time-varying
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characteristics of eco-efficiency based on theMalmquist
productivity index. They decomposed eco-efficiency
changes into efficiency changes and technology chang-
es, and empirically analyzed sample data from 20 coun-
tries from 1990 to 2003. In addition, Picazo-Tadeo et al.
(2012) proposed an eco-efficiency measurement meth-
od under static conditions based on the direct distance
function. Picazo-Tadeo et al. (2014) further measured
the dynamic eco-efficiency of Organization for Eco-
nomic Co-operation and Development (OECD) mem-
ber countries under the direct distance function. Godoy-
Duran et al. (2017) assessed the eco-efficiency in south-
east Spain. Monastyrenko (2017) assessed the eco-effi-
ciency of the European electricity industry based on both
the DEA model and the Malmquist-Luenberger produc-
tivity index. Moutinho et al. (2018) assessed eco-
efficiency of the Latin America countries from 1994 to
2013. Arabi et al. (2016) measured eco-efficiency during
an 8-year period of power industry restructuring in Iran
by using the DEA model, and they found that the eco-
efficiency improvement is significant.

As for the study on China’s eco-efficiency, there are
also many literature based on the DEA model to evaluate
the eco-efficiency. Huang et al. (2014) investigates the
dynamics of regional eco-efficiency in China from 2000
to 2010, and they found significant differences of eco-
efficiency among the regions. Fan et al. (2017) studied on
the eco-efficiency of China’s industrial parks in 2012, and
the results showed that large differences exist in the eco-
efficiency among different industrial parks. Hu et al.
(2019) also measured the eco-efficiency of China’s 281
centralized wastewater treatment plants in 126 national-
level industrial parks based on a slack-based DEAmodel.
Liu et al. (2017) assessed the tourism eco-efficiency of
Chinese coastal cities from 2003 to 2013. Long et al.
(2017) measured the eco-efficiency of China’s cement
manufacturers based on directional distance function and
directional slack-based measure. Xing et al. (2018) mea-
sured the eco-efficiency based on a super-efficiency
slack-based model. Zhao et al. (2018) assessed the land
eco-efficiency based on a super-efficiency DEA model
and Malmquist index, and they found that the average
annual growth rate of land eco-efficiency is 14.3%. Shao
et al. (2019) measured the eco-efficiency of China’s
industrial sectors between 2007 and 2015 based on a
two-stage network DEA model, and the findings showed
that eco-efficiency of China’s industries achieved consid-
erable improvement. Wang et al. (2019b) also evaluated
the eco-efficiency of China’s industrial sectors by using a

hybrid super-efficiency DEA model. Wang and Yang
(2019) evaluated the eco-efficiency of 30 Chinese prov-
inces from 2006 to 2015 based on a modified super-
efficiency slack-based model, and they found a
descending order from the coast to the inland of China.
Zhou et al. (2019b) used a non-radial slack-based model
to measure the eco-efficiency of Bohai Rim from 2005 to
2015, and they found that the evolution of eco-efficiency
in Bohai Rim has polarized regional disparity. Addition-
ally, the other related studied can be found in Zhou et al.
(2019a), Hou and Yao (2019), Yang and Deng (2019),
Wang and Zhang (2018), and Ma et al. (2018).

Nevertheless, the existing literature evaluating eco-
efficiency focuses primarily on a broad definition of
eco-efficiency and rarely measures it per a clear defini-
tion, especially in China. Furthermore, rarely does the
literature consider an infeasible solution based on a clear
definition of eco-efficiency to measure it, discriminating
the power problem and technology heterogeneities si-
multaneously. Therefore, these studies may not provide
a holistic overview of eco-efficiency. With a clear defi-
nition of eco-efficiency, this study improves prior re-
search by considering the infeasible solution, discrimi-
nating power problem and the technology heterogene-
ities, with Chinese data.

A model to measure eco-efficiency

Construction and decomposition of the eco-efficiency
index

To construct the eco-efficiency index, it was assumed
that there were K decision-making units (DMUs), the
time span was T, and the output increase value of eco-
nomic activities in period twas vt. In addition, assuming
that economic activities generated n types of environ-
mental pressure, then the environmental pressure in
period t was expressed as pt ¼ pt1;…; ptn

� �
. Two basic

concepts are involved here: the pressure generation
technology set (PGTS), which refers to all possible
combinations of increases in value and environmental
pressure during period t, and the pressure requirement
set (PRS, or technology), which refers to all possible
combinations of p for the production increase value v.
The two sets must simultaneously satisfy the following
assumptions: 1) economic activities are inevitably ac-
companied by the generation of environmental pressure
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(pollutant emissions), 2) lower increase values can be
obtained under the same environmental pressure condi-
tions, 3) the environmental pressure can be increased
when the increase value is given, and 4) the technology
set is a convex set.

According to Kortelainen (2008), eco-efficiency can
be defined as the ratio of economic added value to
environmental pressure indicators. If the increase value
rises relative to environmental pressure, it indicates that
eco-efficiency has improved. Under this definition, the
eco-efficiency of period t can be expressed as follows:

Eco‐performancet ¼ vt

w1pt1 þ…þ wnptn
ð1Þ

where v is the added value, p is the environmental
pressure indicator, and w is the weight. Following the
methods of Kortelainen (2008) and Picazo-Tadeo et al.
(2014), we measured the relative eco-efficiency. Its val-
ue can be calculated using the direct distance function
(Wang et al. 2019a). The directional distance function
(DDF) of period t can be expressed as follows:

D
!t

vt; pt; g ¼ gv;−gp
� �h i

¼ max βj pt−βgp
� �

∈PRSt vt þ βgvð Þ
h i

ð2Þ

where g = (gv, −gp) is the direction vector. To model the
current, real-world situation, the direction vector was set
to g = (0, −p), i.e., the maximum reduction degree of the
environmental pressure was measured when the output
increase value was constant. To describe the dynamic
temporal characteristics of eco-efficiency, we construct-
ed the eco-efficiency change index and its decomposi-
tion indexes based on the Luenberger productivity index
(Boussemart et al. (2003) compared the Malmquist in-
dex and Luenberger index in detail and argued that the
Luenberger index had a more considerable application
prospect in the future). The eco-efficiency change index
(Ecoch) between periods t and t + 1 can be expressed as
follows1:

Ecocht;tþ1 vt; pt; vtþ1; ptþ1; g
� �

¼ D
!t

vt; ptð Þ−D!
t
vtþ1; ptþ1
� � ð3Þ

Due to the selection arbitrariness of the reference
technology set, the eco-efficiency change index can also
be expressed as follows:

Ecocht;tþ1 vt; pt; vtþ1; ptþ1; g
� �

¼ D
!tþ1

vt; ptð Þ−D!
tþ1

vtþ1; ptþ1
� � ð4Þ

In order to eliminate the influence of arbitrariness, we
took the average of Eqs. (3) and (4):

Ecocht;tþ1 vt; pt; vtþ1; ptþ1; g
� �

¼ 1

2

h
D
!t

vt; ptð Þ−D!
t�
vtþ1; ptþ1

�i
þ
h
D
!tþ1�

vt; pt
�
−D!

tþ1�
vtþ1; ptþ1

�i� �

ð5Þ

The technical efficiency change index (EC) between
periods t and t + 1 can be expressed as follows:

ECt;tþ1 vt; pt; vtþ1; ptþ1; g
� 	

¼ D
!t

vt; ptð Þ−D!
tþ1

vtþ1; ptþ1
� � ð6Þ

The technological progress change index (TC) be-
tween periods t and t + 1 has the same structure as the
eco-efficiency change index and can be expressed as
follows:

TCt;tþ1 vt; pt; vtþ1; ptþ1; g
� 	

¼ 1

2

h
D
!tþ1

vt; ptð Þ−D!
t�
vt; pt

�i�
þ
h
D
!tþ1

vtþ1; ptþ1
� �

−D!
t�
vtþ1; ptþ1

�i�

ð7Þ

The relational expression between the eco-efficiency
change index and its decomposition indexes can be
obtained by combining Eqs. (5) to (7):

Ecocht;tþ1 vt; pt; vtþ1; ptþ1; g
� � ¼ ECt;tþ1 þ TCt;tþ1 ð8Þ

Non-radial metafrontier Malmquist-Luenberger DEA
model

The DDF for the decision-making unit k′ at the techno-
logical level of period t can be solved as follows:

1 For eases of expression, the distance function D
!

v; p;−pð Þ was

expressed as D
!

v; pð Þ.
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D
!t

vt; ptð Þ ¼ maxβ

∑
K

k¼1
λkprk;1≥v

t
k
0

∑
K

k¼1
λkptk;1≤ 1−βð Þpt

k
0
;1

s:t
⋮

∑
K

k¼1
λkptk;n≤ 1−βð Þpt

k
0
;n

λk ≥0 k ¼ 1;…;K

ð9Þ

The decomposition indexes constructed based
on Eq. (9) requires all pollutants to be reduced
on the same scale when the increase value is
fixed. However, due to the existence of slack,
when a certain pollutant p1 reaches the maximum
reduction scale β, another pollutant p2 may not
have already reached the maximum reduction scale
(assuming that the scale is β1 and β1 > β) and may
be further reduced, the problem also names as
discriminating power problem (Dirik et al. 2018).
Additionally, in contrast to the DDF defined for
the same period, the DDF of the mixed period
may have no feasible solution (Arabi et al.
2015). Therefore, to solve this problem, a global
non-radial DDF (NDDF) according to Zhou et al.
(2012), Chang et al. (2012), Tang and Li (2019),
Pan et al. (2019), and Oh (2010a) (Eq. (9)) can be
transformed as follows:

D
!G

vt; ptð Þ ¼ max
1

n
∑
n

i¼1
βi

s:t:

∑
T

t¼1
∑
K

k¼1
λt
kv

t
k ≥v

t
k
0

∑
T

t¼1
∑
K

k¼1
λt
kp

t
k;1≤ 1−β1ð Þpt

k
0
;1

⋮
∑
T

t¼1
∑
K

k¼1
λt
kp

t
k;n≤ 1−βnð Þpt

k
0
;n

λt
k ≥0;βi > 0 k ¼ 1;…;K

ð10Þ

Then, Eqs. (7) and (8) can be transformed as follows:

TCt;tþ1 vt; pt; vtþ1; ptþ1; g
� 	

¼ D
!G

vt; ptð Þ−D!
t
vt; ptð Þ

� �
− D

!G
vtþ1; ptþ1
� �

−D!
tþ1

vtþ1; ptþ1
� �� �

ð11Þ

Ecocht;tþ1 vt; pt; vtþ1; ptþ1; g
� �

¼ D
!G

vt; ptð Þ−D!
G

vtþ1; ptþ1
� �

¼ ECt;tþ1 þ TCt;tþ1 ð12Þ

As we know, there are significant differences in the
development levels of eastern, central, and western Chi-
na. Therefore, a more reasonable choice is to consider
the heterogeneity of the region, based on a metafrontier,
to measure the eco-efficiency change index (Oh 2010b).
According to Li and Song (2016), Oh (2010b), Chang
and Hu (2018), and the Luenberger index, the eco-
efficiency change index can be decomposed as the tech-
nical efficiency change index (the same as Eq.(6)), best-
practice gap change (BPC) index, and a technology gap
change (TGC) index as follows:

BPCt;tþ1 vt; pt; vtþ1; ptþ1; g
� 	

¼ D
!I

vt; ptð Þ−D!
t
vt; ptð Þ

� �
− D

!I
vtþ1; ptþ1
� �

−D!
tþ1

vtþ1; ptþ1
� �� �

ð13Þ

TGCt;tþ1 vt; pt; vtþ1; ptþ1; g
� 	

¼ D
!G

vt; ptð Þ−D!
I
vt; ptð Þ

� �
− D

!G
vtþ1; ptþ1
� �

−D!
I
vtþ1; ptþ1
� �� �

ð14Þ

Ecocht;tþ1 vt; pt; vtþ1; ptþ1; g
� �

¼ D
!G

vt; ptð Þ−D!
G

vtþ1; ptþ1
� �

¼ ECt;tþ1 þ BPCt;tþ1 þ TGCt;tþ1 ð15Þ
where D

!I
vt; ptð Þ (ðD!I

vtþ1; ptþ1ð Þ) is a group-based
global NDDF (I = 3, including eastern, central, and
western China, respectively. The details are available
in Oh (2010b) and Li and Song (2016). BPC > (or <)
0 indicates that the contemporaneous technology fron-
tier shifts toward the intertemporal technology frontier
and reflects the innovation effect (Li and Song 2016; Oh
2010b). TGC > (or <) 0 means that a technical gap
between a specific group and global technology de-
creases (increases). Hence, TGC captures the technical
leadership effect of a given group (Oh 2010b; Li and
Song 2016). Moreover, Eqs. (11), (13)–(15) show that it
is easy to obtain TC = BPC + TGC.
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Results and discussion

Data and descriptive statistics

This study used China’s provincial panel data of 1986–
2016 as the research sample. Referring to the method of
Picazo-Tadeo et al. (2014), we used the gross domestic
product (GDP, with 2000 being the base period) of each
region as a proxy indicator of the output added value
and expressed the air pollution index with industrial
sulfur dioxide (SO2), carbon dioxide (CO2), and indus-
trial smoke dust (Smoke) emissions. We also referred to
the study of Li and Lu (2010) to investigate the carbon
emissions of various provinces in China by using the
CO2 emission coefficient per unit of energy and 2.13
tons of CO2/ton of standard coal equivalent. This study
estimated the CO2 emissions of 30 provinces except
Tibet, Hong Kong, and Taiwan in 1986–2016. The
energy data came from China Energy Statistical Year-
book and China Statistical Yearbook. SO2 and smoker
emissions came from China Statistical Yearbook. De-
scriptive statistics for each variable are listed in Table 1.

Measurement and decomposition of provincial
eco-efficiency of China

Table 2 presents the eco-efficiency change index of each
province and its decomposition indexes.

It can be seen from Table 2 that China’s eco-
efficiency change index (Ecoch) grew at an average
annual rate of 0.7% on the whole, with the average
annual growth rates of EC, innovation effect (BPC)
and technical leadership effect (TGC) being − 0.6%,
2.3%, and − 1%, respectively. During our sample, the
cumulative growth rates of the eco-efficiency change
index, technical efficiency change index, innovation
effect, and technical leadership effect were 20.4%, −
19.4%, 70.5%, and − 30.7%, respectively. Among them,
eco-efficiency growth was mainly driven by innovation

effect, whereas the efficiency of resource utilization did
not play a promoting role and even slowed down the
growth of eco-efficiency (the mean value of EC is less
than zero). The positive growth of eco-efficiency indi-
cates that the environmental pressure generated by the
increase in GDP in China was declining, and the envi-
ronmental pressure of economic growth eased. The
negative efficiency growth indicates that extensive eco-
nomic growth was still the dominant pattern of China’s
economic development, and inefficient use of resources
is still an issue which needs to be addressed. Positive
innovation effect (BPC) is the main contributor to de-
velopment for the whole country (the mean value of
BPC is great than zero). The mean value of technical
leadership effect (TGC) is less than zero which means
the technology gap between the intertemporal technol-
ogy for a specific group and the global technology
becomes larger. That is to say, the technology difference
between eastern, central, and western China becomes
larger during our sample. Furthermore, innovation effect
is larger than technical leadership effect (that is TC =
BPC + TGC > 0), which means that technological prog-
ress shows that China made improvements in technolo-
gy introduction and technological innovation. To ana-
lyze the changes in efficiency and technology of prov-
inces, this study takes the EC as the ordinate and the TC
as the abscissa to draw a scatter plot, as shown in Fig. 1.

It can be seen from Fig. 1 that no province has its
technical efficiency change index greater than zero from
1986 to 2016, and only Beijing witnessed no decrease in
the technical efficiency level or no increase in the tech-
nical efficiency level. The overall inefficiency and the
inefficiency of most provinces further indicate that re-
source utilization efficiency in China did not improve
over the sample period at both the overall level and the
provincial level. This means that the eco-efficiency im-
provement was always generated by technological prog-
ress (The TC of all the province is great than zero).
Among all provinces, only Beijing witnessed no loss

Table 1 Statistics of variables

Variable Unit Mean Maximum Minimum Standard deviation

GDP CNY100,000,000 5687.928 59,017.121 34.540 7986.105

CO2 100,000,000 tons 1.647 8.285 .039 1.457

SO2 10,000 tons 55.170 176.006 1.026 36.499

Smoke 10,000 tons 53.882 211.647 0.787 38.188
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in EC and TC during the sample period. Other provinces
all underperformed. For example, Shanghai, Fujian, and
Hainan had higher technological growth rates, but their
contribution to eco-efficiency growth was offset by a
high rate of resource inefficiency, making the overall
eco-efficiency growth unsatisfactory. It can be seen from
the results of Table 2 and Fig. 1 that the provinces
should improve the efficiency of resource utilization
while maintaining the introduction of advanced equip-
ment and independent innovation and R&D. This will

enable municipalities to shift from an extensive
resource-based economic development pattern to an
intensive economic development pattern. In this way,
technological progress and efficiency improvements can
be made simultaneously to achieve the goal of sustain-
able economic and ecological development.

The above analysis is a static analysis of provincial
eco-efficiency. To clarify dynamic temporal changes in
China’s eco-efficiency, this study calculated the mean of
eco-efficiency and its decompositions from the temporal
perspective, as presented in Table 3. China witnessed
eco-efficiency growth in 1986–2002. There was a tem-
porary decline in 2003–2005. Since 2006, the eco-
efficiency rebounded and then kept rising. The tempo-
rary decline in eco-efficiency in 2003–2005 was mainly
due to a significant decline in resource utilization effi-
ciency, and the small growth in technological progress
could not compensate for the significant decline in
efficiency. The reason for this change may be that the
proportion of the secondary industry relative to other
industries has increased during this period, resulting in a
decline in energy efficiency (Tang and Hu 2016). This
shows that in 2003–2005, the extensive growth pattern
was obvious, and the energy-saving and emission-
reduction efforts were insufficient in China. Moreover,
during the whole sample period, the EC and technical
leadership effect (TGC) growth alternated, while the
innovation effect (BPC) showed significant positive
growth after 2003. This indicates that the provinces
attached great importance to the introduction of ad-
vanced technologies and R&D of new technologies,
which offset the negative impact of declines in efficien-
cy and technical gap between a specific group and the

Table 2 Mean of eco-efficiency change index of 30 provinces
during 1986–2016

Province Ecoch EC BPC TGC

Beijing 0.032 0.000 0.032 0.000

Tianjin 0.011 − 0.007 0.018 0.000

Hebei 0.004 − 0.004 0.009 0.000

Shanxi 0.002 − 0.003 0.011 − 0.005
Inner Mongolia 0.003 − 0.002 0.013 − 0.008
Liaoning 0.004 − 0.004 0.009 0.000

Jilin 0.007 − 0.002 0.035 − 0.025
Heilongjiang 0.006 − 0.007 0.036 − 0.022

Shanghai 0.012 − 0.020 0.032 0.000

Jiangsu 0.009 − 0.004 0.013 0.000

Zhejiang 0.009 − 0.009 0.018 0.000

Anhui 0.006 − 0.011 0.038 − 0.021
Fujian 0.009 − 0.023 0.032 0.000

Jiangxi 0.007 − 0.001 0.033 − 0.026
Shandong 0.006 − 0.005 0.011 0.000

Henan 0.007 − 0.006 0.038 − 0.026

Hubei 0.007 − 0.010 0.042 − 0.026

Hunan 0.007 − 0.002 0.035 − 0.026

Guangdong 0.011 − 0.011 0.022 0.000

Guangxi 0.006 − 0.001 0.026 − 0.019
Hainan 0.007 − 0.025 0.032 0.000

Chongqing 0.006 − 0.004 0.036 − 0.025
Sichuan 0.006 − 0.004 0.025 − 0.016
Guizhou 0.003 − 0.003 0.013 − 0.008
Yunnan 0.004 − 0.009 0.023 − 0.010
Shaanxi 0.005 − 0.002 0.025 − 0.018
Gansu 0.004 − 0.002 0.017 − 0.011
Qinghai 0.002 − 0.005 0.011 − 0.004
Ningxia 0.001 − 0.004 0.008 − 0.003
Xinjiang 0.002 − 0.004 0.014 − 0.007
Average value 0.007 − 0.006 0.023 − 0.010
Cumulative growth 0.204 − 0.194 0.705 − 0.307
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Fig. 1 Distribution of EC and TC among provinces
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global technology on eco-efficiency and thereby led to a
positive growth trend in eco-efficiency overall.

Analysis of regional differences

To further analyze the differences in regional eco-
efficiency of China, this study compared the changes
in the eco-efficiency change index and its decomposi-
tion indexes (EC and TC) among the eastern, central,
and western regions2 (Fig. 2).

It can be found that the eco-efficiency change index and
its decomposition indexes differed significantly across dif-
ferent regions in China. The eco-efficiency change index
and technological progress change index (BPC + TGC)
showed an obvious decrease from east to west. The EC of
the central and western regions was approximately equal,
but the eastern region clearly lags behind. The three index-
es all showed a ladder-like distribution. Namely, the
ladder-like changes in the eco-efficiency change index
and technological progress change index show that the
gap between the overall eco-efficiency and technological
level of the eastern, central, and western regions and the
frontier narrowed down at decreasing rates. This means
that the relative gap among the three regionswaswidening.
This gap may be mainly due to the ladder-like develop-
ment patterns in China (Lin and Huang 2011). In China,
the initial resource endowments and economic and social
development levels were the highest in the eastern region,
followed by the central region and then the western region.
The higher resource endowments and economic develop-
ment levels allowed the eastern region to reduce the pace
of economic development in exchange for higher resource
utilization efficiency and better quality of economic devel-
opment. The central and western regions faced the dual
pressures of accelerating economic growth to match the
development of the eastern region and reducing emissions
and pollution to meet national emission reduction targets.
However, because other conditions such as resource en-
dowments and the economic foundation are relatively
backward in the central and western regions, it is difficult
to achieve great improvement in resource utilization effi-
ciency and technological progress.

Table 3 Mean of eco-efficiency from 1986 to 2016

Year Ecoch EC BPC TGC

1986/1987 0.002 0.033 − 0.031 − 0.001
1987/1988 0.004 − 0.038 0.044 − 0.002
1988/1989 0.002 − 0.026 0.030 − 0.001
1989/1990 0.002 − 0.022 0.025 − 0.002
1990/1991 0.003 − 0.022 0.026 − 0.001
1991/1992 0.006 − 0.089 0.098 − 0.003
1992/1993 0.009 0.001 0.013 − 0.005
1993/1994 0.012 0.028 − 0.009 − 0.007
1994/1995 0.015 0.102 − 0.076 − 0.011
1995/1996 0.005 0.111 − 0.100 − 0.006
1996/1997 0.006 − 0.042 0.053 − 0.004
1997/1998 0.006 0.003 0.002 0.001

1998/1999 0.007 0.017 − 0.003 − 0.006

1999/2000 0.002 − 0.025 0.030 − 0.003
2000/2001 0.003 − 0.007 0.014 − 0.004
2001/2002 0.002 0.015 − 0.009 − 0.004
2002/2003 0.000 − 0.034 0.030 0.004

2003/2004 − 0.002 − 0.011 0.008 0.001

2004/2005 − 0.002 − 0.048 0.044 0.001

2005/2006 0.004 − 0.022 0.031 − 0.005
2006/2007 0.005 − 0.008 0.023 − 0.009
2007/2008 0.007 − 0.012 0.030 − 0.011
2008/2009 0.008 − 0.010 0.029 − 0.012
2009/2010 0.006 0.003 0.015 − 0.012
2010/2011 0.005 − 0.023 0.038 − 0.009
2011/2012 0.008 0.006 0.019 − 0.016
2012/2013 0.019 − 0.011 0.045 − 0.015
2013/2014 0.007 − 0.026 0.031 0.002

2014/2015 0.017 − 0.020 0.062 − 0.024
2015/2016 0.036 − 0.017 0.194 − 0.141

2 Eastern provinces are Beijing, Tianjin, Hebei, Liaoning, Shanghai,
Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan; central
provinces are Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui,
Jiangxi, Henan, Hubei, Guangxi, and Hunan; western provinces are
Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai,
Ningxia, and Xinjiang. Fig. 2 Comparison among provinces

1082



Energy Efficiency (2020) 13:1075–1087

Research on the convergence of regional
eco-efficiency

This study tested the convergence of regional eco-
efficiency to further analyze the geographical aggregation
characteristics of eco-efficiency in each region and judge
whether the eco-efficiency of each province showed a
trend of convergence (club convergence) or divergence.
Due to the significant differences in regional development
and resource endowments, as well as in the regional eco-
efficiency in China, it is not appropriate to apply the
traditional convergence model used to investigate the con-
vergence of eco-efficiency under the homogeneous pro-
duction technology conditions. The differences in eco-
efficiency among regions can bemore accurately described
only when the convergence of provincial eco-efficiency
can be investigated under heterogeneous production tech-
nology conditions. The PS convergence model can effec-
tively express the convergence characteristics of variables
under heterogeneous conditions. Therefore, this study used
the PS convergence model to analyze the convergence of
China’s provincial eco-efficiency. The PS convergence
model was proposed by Phillips and Sul (2007). The
advantages of this model are as follows: 1) This model is
constructed based on a nonlinear time-varying factor mod-
el including temporary heterogeneity, which eliminates the
biases of the traditional convergence test model under
heterogeneous conditions due to endogenous errors
(Phillips and Sul 2007); 2) this method does not rely on
any special assumptions about stable trends; and 3) when
there is no convergence in the full sample data, it is
possible to further test whether there is a club convergence
and also allow the existence of divergent individuals. The
core of this method is the logt test, and the core test
equation is as follows:

log
V1

Vt

� �
−2logL tð Þ ¼ cþ blogt þ ut; t

¼ rT½ �; rT½ � þ 1;…; T ð16Þ

Vt ¼ 1

N
∑
N

i¼1
hit−1ð Þ2 →

t→∞
0 ð17Þ

hit ¼ logyit

N−1 ∑
N

i¼1
logyit

¼ δitμt

N−1 ∑
N

i¼1
δitμt

¼ δit

N−1 ∑
N

i¼1
δit

ð18Þ

where logyit is the logarithmic form of eco-efficiency; hit
is the relative transition parameter which traces out an
individual trajectory for each i relative to the average,
and it measures the extent of the divergent behavior; and
hit will converge to unit as the δit converge to a constant
δ (Phillips and Sul 2009). μt is the common factor, and
δit is the heterogeneous component, r ∈ (0, 1),3 and
L(t) = log t. A unilateral heteroscedastic and sequence-
related robust t test can be performed to check whether b
is significant. If the statistics of the t test indicate that b is
not negative, then a convergence exists; otherwise, if tbb
< −1:65 (a critical value at the 5% significance level),
there is no convergence in the full sample. If the conver-
gence hypothesis is rejected at a given significance level, a
further test can be performed to check for club conver-
gence and divergence areas (Phillips and Sul 2007).

According to the method of estimating the produc-
tivity of the base period proposed by Krüger (2003), the
productivity index of period t can be expressed as the
multiplication of the distance function for the base peri-
od and the productivity change index of the subsequent
period. However, this study calculated the eco-
efficiency index and its decomposition indexes via the
direct distance function. The smaller the value of the
distance function was, the closer the distance was to the
frontier. When the value of the direct distance function
was zero, the index was located at the frontier. It can be

seen from Eq. (10) that D
!G

vt; ptð Þ≤1. Therefore,
1-D
!G

v1986; p1986ð Þ was used as the eco-efficiency esti-
mate of the base period. The level of eco-efficiency
during period t can be expressed as follows:

Ecot ¼ 1−D!
G

v1986; p1986
� �þ ∑

t−1

t¼1986
Ecocht;tþ1 ð19Þ

According to the results calculated using Eq. (19), the
eco-efficiency convergence test was then performed
using Eq. (16). It can be seen that the t value of the
convergence test of the full sample was − 46.18 < tcritical
= − 1.65, indicating that the eco-efficiency of the 30
provinces did not converge overall. A further test was
performed to check for club convergences. According to
the procedure for testing club convergences, we found
four convergence clubs and three divergent municipali-
ties based on provincial eco-efficiency.

3 Through the Monte Carlo simulation experiment, PS (2007) recom-
mended that r = 0.3 be an appropriate choice when T < 50.
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Club 1 included Shanghai, Tianjin, Jiangsu, Zhejiang,
Fujian, Guangdong, and Hainan. The eco-efficiency levels
of the seven provinces ranked among the top ten in China
during the sample study period. These provinces are all in
the eastern coastal areas and have common development
advantages, i.e., faster access to advanced technologies than
inland areas and a higher likelihood to use technological
progress to drive eco-efficiency (He 2011). The mean value
of the technological progress change index (BPC + TGC)
during the sample study period was 0.024 (or 2.4%), which
was about 1.8 times of technological progress change index
of the whole country and 2.6 times of the technological
progress change index in other non-eastern provinces. Club
2 included Liaoning, Heilongjiang, Jilin, Shandong, Anhui,
Jiangxi, Henan, Hubei, Hunan, Guangxi, Chongqing, and
Sichuan and thereby spans the eastern, central, and western
regions. The eco-efficiency convergence of Club 2 indicates
that the eco-efficiency of these provinces tended to be the
same. Club 3 included Liaoning, Hebei, Shaanxi, and Gan-
su, which all are central and eastern provinces. Club 4
included Shanxi, Xinjiang, Qinghai, and Guizhou. These
four provinces had small improvements in eco-efficiency
during the sample study period, and their annual growth
rates also were the lowest in China. The average annual
growth rates of the eco-efficiency between the four prov-
inces is about 0.2%,which is less than one third of thewhole
sample. They were areas with high pollution discharge. It is
well known that Shanxi is a major coal province in China.
Its economic growth is heavily dependent on coal resource
consumption. Excessive use of coal resources leads to huge
emissions of carbon dioxide, sulfur dioxide, and solid par-
ticulatematter. In addition, the resource utilization efficiency
in Shanxi lags behind other regions, which restricts the
area’s growth in eco-efficiency. Guizhou, Xinjiang, and
Qinghai belong to the western region. With economic
growth as the primary development goal, they did not attach
importance to the improvement of resource utilization effi-
ciency in the development process, which made the pollut-
ant emission level relatively high. As a result, their eco-
efficiency was low.

Compared with other provinces, Beijing, Inner Mon-
golia, and Ningxia had unique change dimensions.
These three provinces failed to form a club with the four
convergence clubs, and each was individually defined
by divergent characteristics. Beijing is the most devel-
oped province in China. Their eco-efficiency levels
witnessed different changes, possibly due to their re-
spective characteristics. For example, Beijing is the
capital of China locating in coastal areas and has

superior geographical positions and convenient ways
to access information. The eco-efficiency levels of Bei-
jing were also among the top one in China (annual
growth rate is 3.2%). Inner Mongolia and Ningxia
witnessed incompatible change trends with the lowest
eco-efficiency. The eco-efficiency’s average annual
growth rate of the two provinces was only 1/3 of the
national average growth rate, which is caused by the
negative annual growth rates of EC and TGC. There-
fore, these provinces should focus on improving the
resource utilization efficiency and decreasing the tech-
nical gap from the development area to narrow the gap
with other provinces with high eco-efficiency.

The above analysis tells us that we can divide eco-
efficiency into four convergent clubs and three divergent
individuals, among 30 provinces, using the logt test.
However, the convergent analysis is only a static out-
come, which cannot provide a dynamic evolution about
eco-efficiency. Therefore, according to Camarero et al.
(2013), Panopoulou and Pantelidis (2009), and Phillips
and Sul (2007), we use the relative transition paths from
Eq. (18) to describe the dynamic evolution of each club
and divergent individuals. Figure 3 plots the relative
transition paths (hit) of four convergent clubs (calculated
as the cross-sectional mean of hit of the members of each
club) and three divergent individuals. As the full panel
diverges (previous analysis shows that the full sample
does not converge), the transition paths do not tend to
unify. However, we cannot find a convergent trend for
each clubs (or individuals) consistent with the former
static convergence analysis that no clubs (or individuals)
can be merged, with obvious differences between dif-
ferent clubs and individuals. This findings are also sim-
ilar to the findings in Fig. 2, which show differences in
eco-efficiency between the subjective groups (eastern,
central, and western China, respectively). Moreover,
from Fig. 3, we can find that div3_Ningxia and club4
are increasing relative to the core,4 which means that
any differences among these two and the whole sample
are increasing. That is, their eco-efficiency is worsening
relative to the whole sample. We also find div_Beijing is
increasing relative to the core; therefore, its eco-
efficiency is also worsening relative to the sample.
Overall, the main findings from the time trend of the

4 It is to note that all the eco-efficiency is less than one, and its absolute
value will grow larger with low eco-efficiency after taking the loga-
rithm, so that we have seen hit decreasing with higher eco-efficiency in
clubs (or individuals) and increasing with lower eco-efficiency in clubs
(or individuals).
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relative transition paths for clubs and divergent individ-
uals are consistent with the previous static convergence
analysis. Furthermore, the time trend of the relative
transition paths increases our understanding of the dif-
ferential change in clubs and divergent individuals.

Conclusions and policy application

This study used China’s provincial panel data from 1986
to 2016 and employed the non-radial metafrontier
Malmquist-Luenberger DEA model to measure China’s
eco-efficiency and its decompositions. On this basis, the
geographical aggregation characteristics and dynamic
evolution trends of China’s provincial eco-efficiency
were analyzed. The results showed that China’s eco-
efficiency increased at an average annual rate of 0.7%
overall, with the technical efficiency decreasing at an
annual rate of 0.6%, the innovation effect increasing at
an annual rate of 2.3%, and the technical leadership
effect decreasing at an annual rate of 1%. In the sample
study period, the cumulative growth rates of eco-
efficiency change index, technical efficiency change
index, innovation effect, and technical leadership effect
were 20.4%, − 19.4%, 70.5%, and − 30.7%, respective-
ly. In China, regional eco-efficiency was mainly driven
by innovation effect, and technical efficiency did not
play its expected role of positively affecting eco-effi-
ciency. Instead, the contribution of technical efficiency
actually slowed down the growth rate of eco-efficiency.
The eco-efficiency and its decomposition indexes ex-
hibited a decreasing trend from east to west.

Furthermore, the findings showed four convergence
clubs and three divergent provinces in terms of China’s

regional eco-efficiency. Areas with high eco-efficiency
tended to converge with other areas with high eco-efficien-
cy, and these were mostly coastal areas. Areas with low
eco-efficiency tended to converge with other areas with
low eco-efficiency, and these were mostly provinces with
low resource efficiency. Compared with other provinces,
Beijing, Inner Mongolia, and Ningxia exhibited trends in
eco-efficiency levels which did not conform to any con-
vergence clubs. Finally, a relative transition paths analysis
allows us to better understand the temporal differences in
eco-efficiency among clubs and individuals.

For the purpose of improving the overall eco-
efficiency and narrowing the gaps between regions in
China, the government must scientifically and individ-
ually analyze regional eco-efficiency and their evolution
trends, giving consideration to both efficiency and fair-
ness, and build an energy-saving and emission-
reduction regional distribution mechanism. Further-
more, an industrial development regional balance mech-
anism must be defined to promote balanced and coordi-
nated development of regional energy, economic, and
environmental systems. In order to achieve incremental
change, the government should focus on supervising
and assisting provinces with low resource utilization
efficiency and severe environmental pollution, such as
Ningxia, in strengthening efforts in energy conservation
and emission reduction, learning and using new tech-
nologies. In this way, the adjustment of the industrial
structure can be accelerated and the industrial layout can
be optimized, so that these provinces can catch up with
areas with high eco-efficiency. Provinces with high eco-
efficiency levels such as Shanghai, Tianjin, Jiangsu,
Zhejiang, Fujian, and Hainan should be appropriately
monitored so that they can further consolidate their
existing advantages, tap the potential of energy conser-
vation and emissions reduction, and lift their eco-
efficiency to new levels. Moreover, in order to maintain
balance, the government should mainly control conver-
gence clubs with low eco-efficiency levels and appro-
priately control divergence individuals with low eco-
efficiency levels. Finally, the governments should
strengthen their efforts in promoting and implementing
the concepts of energy conservation, emission reduc-
tion, and ecological development. Governments should
also raise enterprises’ and industries’ awareness of sus-
tainable development and encourage industries and en-
terprises to adapt to local conditions and effectively
improve the technology utilization efficiency to achieve
their own efficient and sustainable development.

Fig. 3 Relative transition paths (hit) of clubs (individuals)
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