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Abstract This paper discusses energy management in
the formation process of lead-acid batteries. Battery
production and electricity consumption in during battery
formation in a battery plant were analyzed over a 4-year
period. The main parameters affecting the energy per-
formance of battery production were identified and dif-
ferent actions to improve it were proposed. Furthermore,
an Energy Performance Indicator (EnPI), based on the
electricity consumption of battery formation (a difficult
and rather expensive parameter to measure), is intro-
duced to assess its energy efficiency. Therefore, a Soft
Sensor to measure the electricity consumption in real-
time (based on the voltage and current measured during
battery formation) and to calculate the EnPI is devel-
oped. Moreover, Energy Management (EM), aided by
the use of energy baselines and control charts is
implemented to assess the energy performance of
battery formation, allowing the implementation of
rapid corrective actions towards higher efficiency
standards. This resulted on the average in a 4.3%
reduction of the electricity consumption in battery
formation.
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Introduction

The energy-saving potential of the industrial sector is
around 974 million tons of equivalent oil (Fawkes et al.
2016), and energy management (EM) is one of the main
approaches to realize it. However, in spite of the positive
outcomes of EM in industry (Block et al. 2006; Gielen
and Taylor 2009; Gómez et al. 2018; Palamutcu 2010;
Poscha et al. 2015; Rudberg et al. 2013), there is a need
for more adequate methods and tools for a more com-
prehensive assessment of energy efficiency (EE) (Bunse
et al. 2011; Giacone and Mancò 2012). In addition,
Weinert et al. (2011) and Madrigal et al. (2018) stressed
the importance of developing novel energy monitoring
methods, to further support decision-making towards a
more efficient use of energy in production systems.

Lead-acid batteries are energy-intensive products
consuming over their life cycle large quantities of elec-
tricity and fuel (Pavlov 2011; Report Buyer 2015; Rydh
1999; Sullivan and Gaines 2012). They are widely used
in several applications (e.g., in vehicles). However, there
is a rather limited discussion in the specialized literature
approaching the energy consumption and management
of lead-acid battery manufacturing. Wang et al. (2015)
proposed an approach to optimize the energy costs of
battery manufacturing, rather than the energy consump-
tion, by addressing the energy price fluctuations.
However, the same authors point out that this approach
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is rather difficult to implement, and more realistic
energy consumption models and pricing mechanisms
are required to improve its results. Following a similar
approach, Wang et al. (2017) proposed an optimization
model to minimize the costs of the electricity used in
battery formation. This model focuses on the time-of-
day electricity price, and on the variation of the AC/DC
rectifier efficiency with the load rates (i.e., the ratio
between load power and the nominal power). The ener-
gy losses in the battery subcircuit are not considered
within this model. The optimization results from the
model define the starting time of the formation process,
moving the higher power loads to the lower time-of-day
electricity price, while moving the lower power loads to
the higher time-of-day electricity price. The same au-
thors point to a potential current overload of electric
systems if the model is implemented. Using a different
approach, an electricity management methodology was
introduced in the manufacturing of lead-acid batteries in
a battery plant (Sagastume et al. 2018). The implemen-
tation of this methodology resulted in total energy sav-
ings of 3.6%; most of the savings occurred in the for-
mation area where monthly savings of 3 to 5% of the
electricity used were saved, although how these savings
were achieved in the formation area is not extensively
discussed.

Lead-acid batteries are classified in Lighting,
Starting, and Ignition (LSI) batteries (mainly used in
the automotive sector), Traction batteries (for electrical
vehicles), and Stationary batteries. About 385 million
batteries (mostly LSI), accounting for a 41.5 billion
USD market value, were marketed in 2010 (Miloloža
2013).

Battery manufacturing requires large amounts of heat
and electricity to transform raw materials into the parts
and components required in the manufacturing process.
Additionally, sizable amounts of electricity are con-
sumed by auxiliary systems (i.e., air compression sys-
tem, assembly line, etc.) and also in the formation pro-
cess (first charge of the battery) during the manufactur-
ing (Jung et al. 2016; Pavlov 2011; Sullivan and Gaines
2010). Discussing the energy use in lead-acid battery
manufacturing, Rantik (1999) showed that about 4.8 MJ
of electricity, 1.67 MJ of heat, 0.14 MJ of liquefied
petroleum gas (LPG), and 0.10 MJ of oil are used per
kilogram of manufactured battery. The overall energy
consumption from raw material production to finished
battery, which depends on the use of either virgin or
recycled materials, was estimated in the range of 15 to

35 MJ per kilogram of finished battery. Battery
manufacturing uses between 5.8 and 8.9 MJ overall
energy per kilogram of battery (Rydh and Sandén
2005; Sullivan and Gaines 2012) (i.e., between 16.6 to
59.3% of the overall consumption). In particular, the
costs of electricity can account for over 90% of the
energy costs of battery manufacturing (Wang et al.
2017). In total, battery formation accounts for over
50% of the electricity consumed for battery manufactur-
ing (Jung et al. 2016; Sagastume et al. 2018), in some
cases spiking up to 65% of the total electricity
consumed (Wang et al. 2017). Therefore, an effi-
cient use of electricity during battery formation is
essential towards higher efficiency standards and
lower economic costs.

This paper aims at developing new tools to assess,
control, and manage the electricity efficiency within an
EM of the formation process of LSI lead-acid batteries,
based on the assessment of the operational parameters
that are usually measured in battery plants and saved in
databases.

Battery formation process

Lead-acid battery manufacturing consists of three
steps (Dahodwalla and Herat 2000; Rantik 1999):
grid manufacturing, battery assembly, and battery
formation.

Grids for lead-acid batteries are made of a lead alloy
and are produced either by lead casting in books
molds or by continuous processes like stamping or
extruding (Jung et al. 2016). Grid manufacturing
mainly consumes heat (usually obtained from LPG
or fuel oil) for lead melting and grid curing (Jung
et al. 2016).

In the assembly process, battery components are
assembled together, after which the battery is sealed
and ready to receive the electrolyte (sulfuric acid). The
main energy input is electricity (Jung et al. 2016).

After battery assembly, the formation process initi-
ates. Battery formation is the initial charge of batteries.
The electric charge in this process is used to transform
the lead alloys in the positive and in the negative grids,
into electrochemically active materials through
chemicals transformations (Pavlov 2011).

Battery formation is essential for adequate battery
performance and lifespan (Cope and Podrazhansky
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1999; Thi Minh 2009; Pavlov et al. 2000; Petkova and
Pavlov 2003).

Battery formation takes place in formation circuits,
which include two subcircuits: an AC/DC rectifier and a
batch of N batteries connected in series (Fig. 1).

The overall electricity consumed during battery for-
mation depends on the number of batteries (N) simulta-
neously formed in the circuit, the voltage (VDC) used in
the process, and the electric charge (C) required by the
battery model.

During battery formation, some heat is generated; a
cooling system is used to maintain an adequate temper-
ature. Therefore, during battery formation, the batteries
connected in series (i.e., the batch of batteries subcircuit)
are placed on cooling tables.

The current and the voltage used in the formation
circuit affect both the electricity consumption and the
battery performance and lifespan. Therefore, adequate
selection and control of the current and voltage used in
the formation circuit is essential for both the electric
efficiency and the quality of the finished battery, aspects
directly affecting the economic performance of battery
plants.

Different algorithms are in use to control the current
and voltage in the formation process. The Intermittent

Charge Regime (ICR) is the most often used algorithm
(Pavlov et al. 2000; Wong et al. 2008). It has two
operation modes: constant current (CC) and intermittent
current (IC), which are controlled using five control
parameters: three voltage levels (VINI, VIC1, VIC2) and
two current levels (IIC1, IIC2) (see Fig. 1).

With the ICR algorithm (Fig. 2), the battery is
charged to over 97% of its state-of-charge (SOC) in
CC mode. This mode uses a constant current (CC) and
stops when the voltage reaches the VIC1 value.
Afterwards, the IC mode starts. In this mode, to reduce
inner resistances and thus the temperature of endother-
mic reactions, the circuit opens when the voltage in-
creases to VIC1. With the circuit open, the voltage starts
decreasing until the low control voltage (VIC2) is
reached, after which the circuit closes again. The open-
close cycle continues until the battery is fully charged
(i.e., 100% of the SOC). Regulated current pulses (IIC2)
(with a 30-s period) are used in this mode (Weighall
2003; Wong et al. 2008).

The energy efficiency of battery formation, defined
as the ratio between the electricity actually used in the
formation of a batch of batteries and the electricity
supplied to the process, mainly depends on the technol-
ogy used, the maintenance system, the operational staff,
the operational standards, and the power quality in the
AC supply network (Kiessling 1992).

The formation process usually includes a data acqui-
sition system for the real-time measurement of different
parameters (i.e., voltage, current, energy accumulated in
batteries, electrolyte temperature in the battery, etc.).
These data are usually saved in a database. The forma-
tion process algorithm is, however, specific to each
battery model and the main control parameter, which
defines the end of the formation process, is the ampere-
hour accumulated in the battery (Chen et al. 1996;
Pavlov et al. 2000).

The electric energy consumed in the formation of a
batch of batteries is calculated as (Kiessling 1992):

EB ¼ N � VDC � C ð1Þ

where:
EB—Electric energy consumed in the formation of a

batch of batteries (Wh)
N—Number of batteries in the batch
VDC—Voltage used in battery formation (varies be-

tween VINI and VIC1) (V)
C—Electric charge of the battery model (Ah)Fig. 1 Electric circuit for batteries formation
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As consumption of electricity in battery formation is
high and it influences both the production costs and the
quality of finished batteries, it must carefully be con-
trolled (Kiessling 1992; Jung et al. 2016).

Most of the electricity supplied to battery formation
is transformed into chemical energy stored in the bat-
tery; the rest is lost because of the heating resulting from
chemical reaction between the grids and the electrolyte,
or consumed in the decomposition of water into oxygen
and hydrogen. In addition, some energy is lost because
of heating of circuit components such as wires and
connectors. The electricity supplied to the formation
process is thus given by:

ET ¼ EBF þ ELB þ ELWC þ ELR ð2Þ
where:

ET—Electricity supplied to the formation circuit
(Wh)

EBF—Electricity used by batteries in the formation
process (Wh)

ELB—Energy loss within batteries during battery
formation because of the exothermal chemical reactions
that cause heat loss and the formation of H2 and O2

(Wh)
ELWC—Energy loss in the wires and connectors of

the formation circuit (Wh)
ELR—Energy loss in the AC/DC rectifier (Wh)
Most of ET is used in the batch of batteries subcircuit

(EBB) and is given by:

EBB ¼ EBF þ ELB þ ELWC ð3Þ

EBF has a similar value for each battery model, while
ELB and ELWC depend on the operational factors and the

technical state of the circuit components. Among others,
the voltage and current output of the AC/DC rectifier is
measured during battery formation process, to control
de ICR algorithm. Based on this measure, the energy
used in the batch of batteries subcircuit (EBB) can be
calculated and used to assess the energy losses in the
formation of a batch of batteries (Ponce and Moreno
2015):

EBB ¼ ∫t10 p tð Þ∙dt ¼ ∫t10 VDC tð Þ∙IDC tð Þ∙dt ð4Þ

where:
p(t)—Instant power (W)
VDC—Voltage in the power line of the battery

subcircuit (V)
IDC—Current in the power line of the battery

subcircuit (A)
Given the difficulties to analytically solve Eq. 4, a

numerical method (i.e., the trapezoidal rule) is applied.
Based on the calculation of EBB, an energy perfor-

mance indicator (EnPI) of battery formation is proposed
(i.e., the ratio between EBB and battery production).
Based on the EnPI, which is calculated for each forma-
tion process in the database, an energy baseline (EnB) is
developed for each formation circuit. Using both the
EnPI and the EnB is possible to assess the real-time
inefficiencies, thus allowing the implementation of rapid
corrective actions towards higher efficiency standards
(Cabello et al. 2016).

In general, directly measuring the electricity con-
sumption in the formation circuits is both expensive
and complicated. Thus, a soft sensor (SS) is developed
to calculate EBB.

Fig. 2 ICR algorithm: current
and voltage variations

1222 Energy Efficiency (2019) 12:1219–1236



Literature review

Soft sensors

Measuring and monitoring process parameters with ad-
equate instrumentation is essential to control industrial
processes, in order to guarantee optimum and safe op-
erations. However, some parameters are difficult or too
expensive to measure. In these cases, different ap-
proaches like SS are used. SSs use process parameters
measured with the available instrumentation to calculate
or estimate process parameters to difficult or too expen-
sive to measure.

There are two types of SS:

1. Model-driven: based on mathematical models de-
scribing the development of a process. These SSs
are most widely applied in the design and planning
of industrial process facilities (Kadlec et al. 2009).

2. Data-driven: based on data directly measured in a
process describing the real conditions. These SSs
are most widely used to monitor, control, and im-
prove process performance (Wang et al. 2010).

One main application of SSs in process monitoring is
to detect deviations from standard operation,
aiding to identify the causes. For this application,
SSs are usually based on univariate or multivariate
statistic methods applied to the historic data of a
process to define a relevant set of representative
features supporting the process of decision-making
(Kadlec et al. 2009).

Data-driven SSs use inferential models based on
process parameters directly measured. In simple pro-
cesses, where models are available or easy to obtain, a
regression analysis is often enough (Lin et al. 2007;
Kadlec et al. 2009). Moreover, for complex systems in
which the process mechanisms are not fully understood,
empirical models (i.e., neuronal networks or multiple
regression analysis) are used to derive the correlation
between variables (Wang et al. 2010).

Data-driven SSs have been successfully implement-
ed in energy consumption assessment and EM of several
technologies and facilities (Velázquez et al. 2013).

Several applications of SSs to improve the EE of
buildings have been described. Thanayankizil et al.
(2012) used an SS to estimate the occupancy rate in
rooms of an office building to improve the EE. Li et al.
(2014) developed an SS to assess in real-time, the

dynamic cooling load for different reference tem-
peratures in buildings. To assess heat consumption
in buildings at room level, Ploennigs et al. (2011)
proposed an SS based on measuring the tempera-
ture with a temperature sensor, which guarantees
thermal comfort while optimizing EE and reducing
the monitoring costs.

Moreover, some applications to steam boilers have
been discussed. Hadid et al. (2014) developed an SS to
assess the fuel consumption in a 750-kW industrial
boiler. The SS uses a linear model based on pressure
and temperature as control variables and a
Gaussian nonparametric model to calculate the
mass flow of gas with a relative error of 3.5%.
In a different application, Qi et al. (2015) devel-
oped an SS, based on a predictive control model,
to assess and control steam quality of an industrial
boiler, resulting in a reduction of its energy inten-
sity. Moreover, to assess the fuel quality in indus-
trial boilers, Zhao et al. (2015), and Kortela and
Jämsä-Jounela (2012) developed two SSs, based
on operational parameters measured in the exit
gases. Results show that both SSs can be used to
optimize the control systems and, thus, the com-
bustion processes.

Some applications have also been developed for
electric systems. Zhang et al. (2008) developed an SS
to measure significant parameters, which cannot be
directly measured, to control synchronous generators
(e.g., power angle and current of the stator circuit). In
an application to an electric system, Najar et al. (2015)
developed an SS to monitor the thermal performance of
electric transformers and the energy balance between the
low and middle voltages in High-Voltage (HV)/Middle-
Voltage (MD) substations in smart grids. The SS is
based on data measured by a smart meter installed in
the Low-Voltage substation.

Leonow andMönnigmann (2014) replaced an expen-
sive flowmeter used in low-speed radial pumps with a
SS to calculate the flow in real-time. Moreover,
Järvisalo et al. (2016) developed an SS, based on
real-time monitoring of the specific energy con-
sumption, to save electricity in air compressors.
Results show that the adequate application of this
SS can save energy as compared to the traditional
load/unload control scheme.

In general, different approaches exist to develop SSs
(Hong et al. 1999; Kalos et al. 2003; Warne et al. 2004;
Fortuna et al. 2005; Gomnam and Jazayeri-rad

Energy Efficiency (2019) 12:1219–1236 1223



2013; Chowdhury 2015). Specifically for batch
industrial processes, Kadlec et al. (2009) proposed
the following methodology.

1. Data inspection: a first inspection of data is devel-
oped to assess availability, trends, and accuracy.
Adittionally, a target variable is defined assessing
which regression model is needed (i.e., simple re-
gression model, complex regression model or neu-
ral network).

2. Selecting historical data: focuses on selecting ran-
dom data, which will be used to develop the model
to be used in the SS.

3. Data pre-processing: iterative step, repeated until
the data is considered ready for use in the evaluation
of the model. It aims at identifying missing data,
detection and handling of regular data, selection of
the important variables of the process.

4. Model selection and validation: since mathematical
models are the cornerstone to SSs, their adequate
selection is essential. Usually, the model type and its
parameters are specifically selected for each SS. A
simple procedure is to start with simple models
(e.g., linear regression) and, if needed, gradually
increase model complexity until adequate results
are obtained (Friedman et al. 2001).

After the SS is developed, an evaluation using inde-
pendent data should be carried out. The Mean Square
Error method, which quantifies the mean square dis-
tance between the calculated value and the real value
(Schluchter 2014), is used to this end.

Energy management methodology

Energy management entails all the actions to reduce
energy consumption and its costs (Vesma 2009). The
successful implementation of an EM strategy requires
the knowledge of the energy consumption and of how,
where, and when energy is consumed. In different in-
dustrial sectors, saving potentials of 10 to 30% of the
energy consumption have been identified, with signifi-
cant cost reductions associated, frequently without re-
quiring large investments (McKane et al. 2008).

An EM methodology is a systematic approach for
continuous improvement of the energy performance,
providing an institutional framework to manage energy
consumption and to identify saving opportunities
(Worrell 2011). In companies without a clear energy

policy, the development of energy efficiency projects
and the implementation of EM strategies and tools
proved effective to identify and realize energy saving
opportunities (Goldberg et al. 2011; Cabello et al. 2016).

ISO 50004 and 50006 (ISO 2012; 2014) offer guid-
ance for the implementation, maintenance, and im-
provement of EM systems, based on the use of Energy
Baselines (EnB) and Energy Performance Indicators
(EnPI) as a measure of the energetic performance. In
this study, the procedure defined in the ISO 50001
standard (ISO 2011) is used as a starting point in the
EM methodology developed for the battery formation
process:

1. Statistical analysis of the historic database: assess
the correlation between electricity consumption and
battery production and propose an effective EnPI.

2. Identify the main parameters affecting the energy
efficiency of battery formation and assess their in-
fluence based on the statistical analysis of the his-
torical database.

3. Develop tools for the real-time monitoring of the
electricity consumption in battery formation.

4. Validate and implement the developed tools.
5. Identify saving opportunities and implement ade-

quate measures to realize them.

Energy efficiency assessment of battery formation

The EM methodology is applied to a battery plant in
Barranquilla, Colombia. In this factory, battery produc-
tion increased at a yearly average of 14% between 2012
and 2014, and electricity consumption showed a similar
trend. Improving the electric efficiency is essential to
reduce the battery production costs.

The formation section consumed about 53% of the
overall electricity of the battery plant. There are 204
formation circuits, which in all cases use the ICR
algorithm (see Fig. 1). Each circuit includes a
subcircuit for forming a batch of 18 batteries. In
total, the formation of a batch of batteries takes 18
to 26 h. The batch of batteries is placed on 12
cooling tables (18 circuits per table). The formation
section operates 24 h 7 days a week, with short
stops for cleaning and maintenance. Overall, 168
battery models, with capacities varying between
160 to 735 Ah, are produced in the plant.
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The energy efficiency assessment (step 1 of the EM
methodology) is conducted using production data from
July 2014 and July 2015.

Given the significant differences between the capac-
ity and size of the different battery models manufactured
in the plant, the concept of equivalent production, intro-
duced by ISO (2014) is applied, introducing the equiv-
alent battery production (Peq–b):

Peq−b ¼ P∙kb ð5Þ

where:
P—Battery production (units)
kb—Battery capacity coefficient
The battery capacity coefficient is calculated as:

kb ¼ Cb

Cbmin
ð6Þ

where:
Cb—Capacity of the battery model (Ah)
Cbmin—Capacity of the smallest battery (Ah)
In this case, the EnPI proposed to assess the forma-

tion of each batch of batteries is:

EnPI ¼ EBB

Peq−b
ð7Þ

This EnPI is useful to assess the EE of each batch of
batteries formed, independently of the battery model.
Moreover, it can be used for comparative studies to
define the parameters affecting the EE.

Between July 2014 and July 2015, there are 55,000
formation batches (of 18 batteries each, for 168 models)
in the database. A random sample of 2902 batches, for a
98% confidence interval, is used to develop the EM
tools. The EnPI was individually calculated for each of
the selected batches.

To avoid the influence of outliers, the data is sieved
using the Hampel identifier method which applies the
median absolute deviation from the median (MAD), as
also applied by Lin et al. (2007):

MAD ¼ 1:4826∙Mk ð8Þ

with:

Mk ¼ median X 1−X *; X 2−X*;…;X n−X *� � ð9Þ

n—Number of data points

X1,2,3,….n—Raw data points

X * ¼ median X 1;X 2;…;X nf g ð10Þ
The out of the range data (X < X−MAD

� �
,

X > X þMAD
� �

) is identified as an outlier and re-
moved from the dataset. In total, 68 outliers were iden-
tified (i.e., 2.3% of the sample data). The outliers, in
agreement with Kadlec et al. (2009), were mainly
resulting from sensor malfunctioning.

Parameters affecting the energy efficiency of battery
formation

To identify saving opportunities to improve the EE of
battery formation, the main parameters affecting elec-
tricity consumption must be identified. To this end,
several interviews were conducted with the operational
staff of the formation section. In addition, a literature
review and a technical assessment of the formation
process were carried out. Results are summarized in a
fishbone diagram (Fig. 3).

Influence of technology on the EnPI

To assess the influence of technical conditions of the
formation circuit on the energy efficiency of battery
formation, the EnPI of more than 55,000 processes
registered from July 2014 to June 2015 was calculated
(for 204 formation circuits).

The tests of Bartlett to variance verification were
applied to assess whether or not the standard deviations
of the sets of EnPI values corresponding to the different
circuits differed significantly. Results showed that there
were no significant differences (at the 95% confidence
level) between the standard deviation of the sets of EnPI
of the different circuits. Moreover, to evaluate if there
were significant differences between the mean values of
the sets of EnPI of the different circuits, Fisher’s least
significant difference (LSD) test was applied. Results
showed that there were some differences (95% confi-
dence level) between the mean EnPI values: 8 circuits
had a significantly lower EnPI value (better per-
formance) and 7 circuits with had a significantly
higher EnPI value (poorer performance) than the
average. A detailed electricity review in each cir-
cuit to identify the factors causing the differences
was carried out for each circuit.
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Influence of the operational staff on the EnPI

The formation section operates 24/7 with five operator
teams working in 12-h shifts (two teams per day) and 36
h a week. The 12-h shifts start at 5 am and 5 pm,
respectively. In order to assess the influence of fatigue
of the staff on the energy performance, the starting time
of formation processes was sorted as shown in Table 1.

Each team includes one supervisor, who oversees the
operational practices during the setting of the batches of
batteries in the circuits, prior to the start of battery forma-
tion. In order to guarantee the quality of the formed
batteries, the supervisor controls the parameters and oper-
ation of battery formation (e.g., by setting the formation
process algorithm), keeps track of the production rate, and
oversights battery handling during the setting of the
batches of batteries in the circuits (i.e., prior to the start
of battery formation). Meanwhile, the energy consump-
tion and factors like the technical conditions of wires and

connectors and their maintenance are not oversight. In the
plant, the supervisor efficiency depends on the quality
control of the formed batteries, while the energy con-
sumed during battery formation does not affect its perfor-
mance evaluation. One particularity of this process during
the period analyzed was the fluctuation of the operators in
the different teams, while the supervisors remained.
Therefore, considering that the main staff influencing the
outcome of battery formation is the supervisor by setting
and oversighting the operational practices used by the
team operators, the analysis focuses on its influence in
the EnPI.

Another staff-related parameter affecting the EnPI is
the formation pocesses starting hour (see Table 1),
which influences the fatigue of both operators and su-
pervisors, thus affecting the operational practices of the
team. Therefore, based on the database information, a
statistical analysis was carried out to highlight the influ-
ence of both parameters on the EnPI. Both parameters
are included in the database of the process. For the
statistical assessment was considered 1 year of data
(July 2014 and June 2015), with 55,500 formation pro-
cesses included, during which no changes of supervisor
occurred. Additionally, the formation processes were
organized in four groups according to their starting hour.

The same statistical approach used in BInfluence of
technology on the EnPI^ is used here. The test of

Fig. 3 Parameters affecting the energy efficiency of the battery formation process

Table 1 Interval of the
analyzed formation pro-
cess starting time

Shift Start time End time

1 5 am 11 am

2 11 am 5 pm

3 5 pm 11 pm

4 11 pm 5 am
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variance verification was applied, to assess the differ-
ences in the standard deviation of the sets of EnPI values
corresponding to each supervisor, thus, establishing if
the data sets are comparable between each other. Results
showed that there are no significant differences (at 95%
confidence level), between the standard deviation of the
sets of EnPI values. Moreover, to evaluate if there are
significant differences between the mean values of the
sets of EnPI values corresponding to each supervisor
Fisher’s LSD test was applied. Results showed signifi-
cant differences (95% confidence) between the mean
EnPI values. From these results, it can be concluded
that the supervisor and the starting hour of battery
formation influences the EnPI.

Saving opportunities

The circuits identified in BInfluence of technology on
the EnPI^, with the lowest and highest EnPI values were
evaluated in detail to identify the causes of inefficiencies
in the formation section. To this end, the energy loss in
the connection lines and in the wires and connectors of
the battery batch subcircuit was measured. Each mea-
sure was repeated 10 times on each of the circuits
selected for the assessment.

To compare on the same basis, themeasurements in the
different circuits were carried out during the formation of
the same battery model. Results showed that the average
energy loss between the best and the worst formation
circuit differ by about 3 kWh. This difference results from
the use of wires and connectors in poor technical

conditions on the worst circuits, which is confirmed by a
thermographic assessment of the formation circuits pre-
sents the thermographic assessment of one circuit. This
shows that wires and connectors in good technical condi-
tions operate at around 45 °C, while the ones in poor
technical conditions operate at temperatures up to 94.8 °C
(see Fig. 4). Therefore, wires and connectors in poor
technical conditions increase the electrical resistance in
the circuit increasing the electricity consumption of bat-
tery formation. This point to significant saving opportu-
nities requiring the implementation of different measures:

& Assess regularly the formation circuits
& Establish a procedure to certify the technical condi-

tion of wires and connectors
& Clean the surface of connectors before using them in

the formation process
& Improve the maintenance system of the formation

circuits to avoid inefficiencies on wires and
connectors

& Redesign connectors
& Establish 8-h work shifts instead of the actual 12-h

work shifts

Another source of inefficiencies is detected in the
voltage used in the formation process, which averages
17.6 V (i.e., higher than the maximum of 16 V recom-
mended for this process (Kiessling 1992; Prout 1993;
Pavlov 2011)). From Eq. 3, the electricity consumed is
directly proportional to both, the voltage (V) and the

Fig. 4 Thermographic assessment of a battery batch subcircuit

Energy Efficiency (2019) 12:1219–1236 1227



electric current (A). As the formation algorithm operates
at constant current and the internal resistance of the
batteries is almost constant for batteries in the batch,
the use of higher voltages results in higher electricity
consumption. Aside from the energy loss, the excess of
electricity consumed increases the production of H2 and
O2 (IEC 60095-1: 2000; Pavlov 2011), the output volt-
age of the transformers was adjusted to the minimum
possible (16.4 V), which is closer to the recommended
value.

Energy management tools

Assessing the EnPI of the battery formation section is
the first step towards the development of EM tools.
Figure 5 shows the correlation between the monthly

electricity consumption and the monthly equivalent bat-
teries produced of the formation section (with data from
2012 to 2015). From the correlation is obtained the
monthly EnB of the formation section is obtained.

The high correlation (R2 = 0.97) obtained for the EnB
proves the usefulness of the EnPI. Furthermore, the EnB
obtained is useful to forecast the monthly electricity
consumption of the formation section and, thus, to as-
sess its overall electricity performance.

A tool for the control of the electricity consumption
in the formation section at circuit level is needed, on the
one hand, because of the differences in the technical
state of the different formation circuits, which influences
the EnPI of battery formation, and, on the other hand,
because the formation circuits are used on a daily basis
so that rapid corrective action is necessary to reduce the

Fig. 6 Energy management tools for two formation circuits

Fig. 5 Monthly EnB of the
formation section
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electricity consumption. Figure 6 shows an example of
the control tools developed to assess the electricity
consumption at the circuit level for each batch, for two
specific circuits.

These tools allow rapid detection of inefficiencies at the
circuit level. Additionally, they can detect the
malfunctioning of the sensors used to control the ICR
algorithm.

Similarly, for the rapid detection of malpractices and
issues associated with the operational staff, control
graphics are developed to assess the trends of the EnPI
of the operational staff (see Fig. 7).

The figure shows EnB and the control graph con-
structed for the supervisor whose processes of formation
were developed with better energy efficiency. These

tools are used to assess the electricity consumption
efficiency associated with the different work teams,
permitting the rapid detection of negative trends of the
EnPI associated with malpractices of the employees.

Soft sensor for the electricity consumption of battery
formation

There are 204 formation circuits in the formation sec-
tion. Given that measuring devices for the real-time
monitoring of the electricity consumption in each circuit
are both expensive and complicated, a SS is developed,
based on the different parameters measured in real-time
to control the ICR algorithm. The SS is designed to
calculate the electricity consumption and the EnPI of

Fig. 8 Scatter plot: power quality
analyzer measures vs. SS
measures

Fig. 7 Energy management tool for the operational staff teams
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the formation circuits.The methodology described in
BBattery formation process^ is used to develop the SS,
which is validated using the approach of Qi et al. (2015).
This approach is based on direct measurement of the
parameter to be calculated by the SS and compares
its dispersion with respect the values measured by
the hard sensors.

A power quality analyzer is used to directly measure
the electricity consumption in the formation

process of 170 batches for 5 different battery
models in 17 formation circuits. For these
batches, the electricity consumption is also mea-
sured with the SS. The results are compared in a
scatter plot (Fig. 8).

Results show a strong linear correlation (R2 = 0.99)
between the measures with the power quality analyzer
and the SS estimated value. The mean absolute error is
1.55 with a standard deviation of 1.93. These results

Fig. 9 EM methodology of the battery formation section
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validate the accuracy of the SS to measure the electricity
consumption in the formation circuits.

Results and discussion

Results

The EM actions of the proposed methodology were
applied in the formation section, starting in January
2016, during 6 months. Results showed a reduction of
the electricity consumption during this period.

The EM procedure, developed to implement the EM
tools in the battery formation section is shown in Fig. 9.
The developed tools are applied at two levels: plant level
and section level.

Considering the trend analysis of the monthly aver-
age (EnPIaver, see Fig. 10) of the formation process, the

electricity consumption is assessed on a monthly basis,
in the general meeting of the plant management. Based
on the trends (increasing, constant, or decreasing), the
plant management decides which actions/investments
are needed to improve or maintain the energetic perfor-
mance of the formation section. Figure 10 shows the
monthly electricity consumption from 2011 to 2016.
The results of the implementation of the EM tools,
developed in BConclusions,^ to the formation section
are compared with the previous performance of the
section.

Results show that regardless of the increasing trend
of both, the battery production and the electricity con-
sumption, the energy performance of section improved
as a result of the implementation of the EM tools.
Table 2 shows the results of the implementation.

Comparing the electricity consumption during the
implementation of the EM tools (EC: Measured) to the

Fig. 10 Monthly electricity
consumption of the battery
formation section

Table 2 Results of the EM tool implementation during 2016

Month Battery
production

Peq–b EC: EnB
(MWh)

EC: measured
(MWh)

Electricity
saving (MWh)

Electricity
saving (%)

January 113,693 204,994 484.5 467.2 17.2 3.6

February 105,971 201,604 477.0 455.8 21.2 4.4

March 109,503 217,982 513.1 494.4 18.7 3.6

April 121,108 214,352 505.1 484.0 21.1 4.2

May 100,242 211,275 498.3 475.6 22.7 4.5

June 938,40 195,613 463.9 438.7 25.1 5.4

Total 644,357 1,245,820 2941.9 2815.8 126.1 4.3

EC electricity consumption
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EnB predictions (EC: EnB) shows an average reduction
of the electricity consumption of the formation section
by 4.3% (varying between 3.6 and 5.4%). In total, a
reduction of 126 MWh as compared to the EnB was
achieved during the 6-month implementation period
(with monthly reductions of 17 to 25MWh). This shows
that the EM tools improved the energetic performance
of battery formation, reducing the production costs.
However, there are other improvement opportunities as
shown in Fig. 11 for two of the formation circuits.

In both circuits, the variability of the EnPI during the
formation of different batches of the same battery model
points to further saving opportunities. In future studies,
the AC/DC rectifiers must be included in the assess-
ment, to identify the energy losses associated with this
component.

Discussion

The energy efficiency of battery manufacturing is a
cornerstone for its economic costs and its quality stan-
dards (Sagastume et al. 2018). Additionally, the ade-
quate control of the electricity consumed during battery
formation is fundamental for its quality and lifespan
(Duarte et al. 2017). However, most battery-related
studies focus on discussing the potentialities of new
materials, new battery technologic developments, bat-
tery applications (i.e., in electric or conventional vehi-
cles, in energy storage applications, etc.), and some
specific processes of manufacturing (e.g., charging,
discharging, and equalization of battery formation),
rather than discussing the energy use and control of
battery manufacturing. The studies of Wang et al.

Fig. 11 EnPI of the formation batches in circuits 6 and 15 for 2016

Fig. 12 Electricity consumption
vs equivalent battery production
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(2015) and Wang et al. (2017) focused on lowering the
costs of electricity at plant and at battery formation
levels. In both cases, the optimization can result in lower
costs of electricity (i.e., by reallocating the power loads
in lower time-of-day electricity prices), without actually
reducing the energy consumption. In particular, optimiz-
ing the process of battery formation following Wang
et al. (2017) can result in current overload because of
the reallocation of the highest power loads of the circuits
to the lower time-of-day electricity prices. Thus, the
optimization should consider all the formation circuits
of the area, rather than just one circuit. Moreover,
Sagastume et al. (2018) focused more on the control and
management of the electricity consumption at the battery
plant level, than at the formation area level.

Overall, this study shows how to implement an ener-
gy management strategy, based on a soft sensor, to
effectively reduce and control the electricity used during
battery formation. Since the soft sensor proposed uses
the standard automation required to control the forma-
tion process, it can be introduced with low investments.
This approach permits to individually (i.e., at formation
circuit level) and globally (i.e., at formation area level)
control and manage the electricity consumption of the
battery formation process (Figs. 12 and 13).

Conclusions

The formation process accounts for over half of the
electricity consumption in the manufacturing of lead-
acid batteries. The EM methodology proposed in this
study is based on a SS, which is a cost-effective alter-
native to measure the electricity consumption of battery

formation. This methodology permits to rapidly detect
inefficiencies in the formation circuits, related with ei-
ther the technical condition of the formation circuits or
the operational staff. The proposed EnPI permits to
assess the energetic performance of battery formation
at both, the formation section and the plant management
level.

Results show that although the plant overall electric-
ity consumption increased as a result of the increasing
battery production, the specific consumption per battery
was reduced, thus improving the energetic performance
of the plant. In total, the implementation of the EM
methodology resulted in an average reduction of the
electricity consumption of the formation section of
4.3% for the 6-month period assessed.
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