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Abstract Energy efficiency (EE) is an important strat-
egy for China to save energy and reduce energy-related
emissions.With significant regional diversities in China,
it is important to conduct the EE assessment at the
regional level. Usually, the regional EE assessment is
applied to 30 regions in Mainland China using the data
envelopment analysis (DEA) technique. With the BBelt
and Road^ strategy initiated by the Chinese govern-
ment, it is reasonable and necessary to take Hong Kong,
Macao, and Taiwan into consideration. However, such
data expansion for China’s regional EE assessment
using DEA can reverse the relative rankings of some
decision-making units, which is called the Brank
reversal^ phenomenon. In this paper, we illustrate in
theory that rank reversal occurs in general DEAmodels,
and apply the most popular five DEA models to assess
China’s regional energy efficiency from 2000 to 2014.
The empirical study shows that the 30 regions in Main-
land China have the least rank reversal when Tone’s
slack-based model (SBMT) is adopted. The main cause
of ranking reversal is the addition of decision-making

units lying on production frontier. Better understanding
of the rank reversal phenomenon is critical for the ener-
gy efficiency assessment using DEA to inform the pol-
icy makings.
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Introduction

In the past three decades, China’s economy has grown
aggressively. The rapid economic development causes
substantially increase of its energy consumption. Though
nowadays China’s economy steps into a Bnew normal,^
which means it is growing in a relatively balanced man-
ner, the energy consumption still maintains a high level.
According to the latest KeyWorld Energy Statistics (IEA
2017), China’s total final energy consumption reached
1914 Mtoe in 2015, accounting for 20.4% of the world’s
total final energy consumption (see Fig. 1).

Energy efficiency is regarded as the world’s Bfirst
energy^ in emission reduction and energy security im-
provement (IEA 2014). In order to combat the energy
crisis and air pollution caused by excess energy con-
sumption, China’s government makes great efforts in
improving its energy efficiency. With large regional
disparities, it is necessary and meaningful to measure
its energy efficiency from regional perspectives in Chi-
na. In previous studies, Hong Kong, Macao, and Taiwan
are usually excluded due to data availability. However,
along with the BBelt and Road^ strategy initiated by the
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Chinese government in 2014, Hong Kong, Macao, and
Taiwan are having more economic connections with
Mainland China, and data is getting complete gradually.
Therefore, it is important and useful to include Hong
Kong, Macao, and Taiwan when assessing China’s re-
gional energy efficiency.

The measurement of energy efficiency is often in the
form of an aggregated energy efficiency index. Among
the existing approaches to develop energy efficiency
index, data envelopment analysis (DEA) models have
been widely used as shown in the review by Zhou et al.
(2008) and Meng et al. (2016).1 DEA developed by
Charnes et al. (1978) is a well-established methodology
for evaluating the relative efficiency of a set of compa-
rable entities often called decision-making units
(DMUs) with multiple inputs/outputs (Meng et al.
2013). Energy efficiency values can be obtained by
solving above DEA models.

Based on the energy efficiency values and ranking
information of DMUs obtained by DEAmodels, a lot of
policy recommendations in energy efficiency improve-
ment are provided. Considering the efficiency values of
a certain DMU in different DMU sets are not compara-
ble, which results from the relativity of DEA efficiency
values, rankings of DMUs will provide more informa-
tion sometimes. In fact, the most widely use of the ranks
is to find the benchmarks. In our study, benchmark
provinces and other provinces have different energy
development paths, and affect the improvement of en-
ergy efficiency across the country. It is noticed that no
matter what type of DEA model is adopted, there is a
possible change of regional rankings in Mainland China
after adding Hong Kong, Macao, and Taiwan. This
phenomenon is called Brank reversal,^ which will be
discussed in this paper due to its effect on the stability
and rationality of policy recommendation.

This paper focuses on rank reversal phenomenon in
China’s regional energy efficiency measurement, and
contributes to the literature in the following aspects:
(1) explore China’s energy efficiency from the regional
perspective, including Hong Kong, Macao, and Taiwan;
(2) illustrate the rank reversal phenomenon of DEA

models in theory; (3) investigate the degree of rank
reversal in five different and widely used DEA models
for energy efficiency assessment in China; and (4) ana-
lyze the impact of rank reversal in policy making.

The remaining parts are organized as follows:
BLiterature review^ section reviews previous studies.
BModels and rank reversal issue^ section introduces five
different DEA models for energy efficiency assessment
and proposes the rank reversal index. BChina’s regional
energy efficiency analysis^ section applies the proposed
approaches to model the regional energy efficiency in
China using different datasets from 2000 to 2014. In
BEnergy efficiency rank reversal^ section, we show the
impacts of rank reversal on regional energy efficiency
assessment and study the degree of rank reversal in
different DEA models. The final section concludes this
paper.

Literature review

Among the existing approaches to develop energy effi-
ciency index, DEA has been widely used due to its
practicability (Huang et al. 1995; Zhou et al. 2008).
Since the early 1980s, it has been widely investigated
and gain popularity in many application areas, especially
the energy efficiency measures. Following the literature
survey by Zhou et al. (2008) on issues relating to DEA
for energy and environment analysis, a systematic re-
view of studies on China’s regional energy and carbon
emission efficiency (EE&CE) assessments using differ-
ent DEA models is reported in Meng et al. (2016). It is
found that five DEA-type models have beenwidely used
in China’s regional EE&EC assessment, i.e., radial mod-
el, modified radial model (M-Radial), Tone’s slack-
based model (SBMT), range adjusted model (RAM),
and directional distance function model (DDF).

Among these five DEA models, radial model is
probably the most widely used model for measuring
energy efficiency. It adjusts inputs and outputs propor-
tionally. The most famous Radial models are the CCR
model (Charnes et al. 1978) and BCC model (Banker
et al. 1984). Following their seminal work, many studies
apply the radial model to estimate China’s regional
energy efficiency, for example, Wei et al. (2007), Shi
et al. (2010), Xue et al. (2014), and Al-Refaie et al.
(2016). While M-Radial model attempts to measure
energy efficiency by constructing an index which

1 Besides the DEA models, the decomposition techniques can also be
applied to measure the relative energy efficiency. Recently, Ang et al.
(2015) and Su and Ang (2016) have extended the traditional temporal
decomposition techniques to the so-called spatial decomposition tech-
niques in index decomposition analysis (IDA) and structural decom-
position analysis (SDA), respectively.
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utilizes radial indicators and slacks together. Hu and
Wang (2006) firstly develop an index called total factor
energy efficiency by using M-Radial model. It has been
widely adopted, such as Wang et al. (2012), Zhou et al.
(2014), Pan et al. (2015), and Fernández et al. (2018).

SBMT (Tone 2001) and RAM (Cooper et al. 1999)
models both belong to slack-based measure which con-
structs energy efficiency index with slacks of all the
inputs and outputs. DDF model (Chung et al. 1997)

allows adjusting the inputs and desirable/undesirable
outputs at different rates on the basis of different direc-
tion vectors for input-output variables. SBMT, RAM,
and DDF models, known collectively as non-radial
models, have become increasingly popular in recent
years due to their relatively strong discriminating power
and capability to expand desirable outputs and reduce
undesirable outputs simultaneously. For instance, Choi
et al. (2012), Wang et al. (2013), Hu et al. (2017), Zaim
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Fig. 1 Shares of world total final
energy consumption by region,
2015

Table 1 DEA models for energy efficiency measurement

Models Energy efficiency index

Radial
Min β

s:t: ∑
K

k¼1
λkxnk ≤xn0 n ¼ 1;⋯;Nð Þ

∑
K

k¼1
λkemk ≤βem0 m ¼ 1;⋯;Mð Þ

∑
K

k¼1
λkyik ≥yi0 i ¼ 1;⋯; Ið Þ

∑
K

k¼1
λkbjk ¼ bj0 j ¼ 1;⋯; Jð Þ

λk ≥0 k ¼ 1;⋯;Kð Þ

EE1 = β
∗

Modified radial (M-Radial)
Min β−ε eT s−n þ eT s−m þ eT sþi

� �� �
s:t: ∑

K

k¼1
λkxnk þ s−n ¼ βxn0 n ¼ 1;⋯;Nð Þ

∑
K

k¼1
λkemk þ s−m ¼ βem0 m ¼ 1;⋯;Mð Þ

∑
K

k¼1
λkyik−s

þ
i ¼ yi0 i ¼ 1;⋯; Ið Þ

∑
K

k¼1
λkbjk ¼ bj0 j ¼ 1;⋯; Jð Þ

λk ≥0; s−n ; s
þ
m ; s

þ
i ≥0 k ¼ 1;⋯;Kð Þ

EE2 ¼ ∑M
m¼1ϖm

β*em0−s−*m
em0
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and Gazel (2018), Khoshroo et al. (2018), Iftikhar et al.
(2018), Zhang and Chen (2018), and so on.

Based on the energy efficiency values and rankings
of different regions obtained from various DEAmodels,
a lot of policy recommendations for China’s energy
efficiency improvement are provided. If we focus on
the ranking, it is noticed that no matter what type of
DEA model is adopted, there is a possible change of
regional rankings in Mainland China after adding Hong
Kong, Macao, and Taiwan. This phenomenon is called

rank reversal, which is firstly observed in multiple
criteria decision-making (MCDM) approach by Belton
and Gear (1983). It is found that rank reversal can also
occur in DEA ranking models. Green et al. (1996) firstly
notice that the relative rankings of two DMUs can be
reversed when a DMU is added in the DEA cross-
efficiency evaluation method. Recently, Wang and Luo
(2009) and Soltanifar and Shahghobadi (2014) also
study the rank reversal in DEA ranking approaches.
Moreover, different DEA models may have the

Table 1 (continued)

Models Energy efficiency index

Tone’s slack-based measure (SBMT)

Min
1− 1

NþM ∑N
n¼1s

−
n=xn0 þ ∑M

m¼1s
−
m=xm0

� �
1þ 1

Iþ J ∑I
i¼1s

þ
i =yi0 þ ∑ J

j¼1s
þ
j =bj0

� �

s:t: ∑
K

k¼1
λkxnk þ s−n ¼ xn0 n ¼ 1;⋯;Nð Þ

∑
K

k¼1
λkemk þ s−m ¼ em0 m ¼ 1;⋯;Mð Þ

∑
K

k¼1
λkyik−s

þ
i ¼ yi0 i ¼ 1;⋯; Ið Þ

∑
K

k¼1
λkb jk þ s−j ¼ bj0 j ¼ 1;⋯; Jð Þ

λk ≥0; s−n ; s
þ
m ; s

þ
i ; s

−
j ≥0 k ¼ 1;⋯;Kð Þ

EE3 ¼ ∑M
m¼1ϖm

em0−s−*m
em0

Directional distance function (DDF)
D
!

x; e; y; b; gð Þ ¼ Max ωxβx þ ωeβe þ ωyβy þ ωbβb

s:t: ∑
K

k¼1
λkxnk ≤xn0−βxgx n ¼ 1;⋯;Nð Þ

∑
K

k¼1
λkemk ≤em0−βege m ¼ 1;⋯;Mð Þ

∑
K

k¼1
λkyik ≥yi0 þ βygy i ¼ 1;⋯; Ið Þ

∑
K

k¼1
λkbjk ¼ bj0−βbgb j ¼ 1;⋯; Jð Þ

λk ≥0 k ¼ 1;⋯;Kð Þ

EE4 ¼ ∑M
m¼1 em0−β*

e geð Þ
∑M
m¼1em0

Range adjusted model (RAM)

Max ∑
N

n¼1
Rns−n þ ∑

M

m¼1
Rms−m þ ∑

I

i¼1
Ris−i þ ∑

J

j¼1
Rjs−j

s:t: ∑
K

k¼1
λkxnk þ s−n ¼ xn0 n ¼ 1;…;Nð Þ

∑
K

k¼1
λkemk þ s−m ¼ em0 m ¼ 1;…;Mð Þ

∑
K

k¼1
λkyik−s

þ
i ¼ yi0 i ¼ 1;…; Ið Þ

∑
K

k¼1
λkb jk þ s−j ¼ bj0 j ¼ 1;…; Jð Þ

λk ≥0; s−n ; s
−
m; s

þ
i ; s

−
j ≥0 k ¼ 1;…;Kð Þ

EE5 ¼ 1− ∑
M

m¼1
Rms−m

996 Energy Efficiency (2019) 12:993–1006



varying degree of rank reversal. This is an area
deserving further investigation.

Models and rank reversal issue

DEA models for energy efficiency assessment

Following the neoclassical production framework, we
consider a production process which use non-energy
inputs (x) and energy inputs (e) to product desirable
outputs (y) and undesirable outputs (b) jointly. The
reference technology T can be described as follows:

T ¼ x; e; y; bð Þ : x; eð Þ can produce y; bð Þf g;
where T is a closed and bounded set. In the traditional
framework of reference technology, the inputs and de-
sirable outputs are all strongly disposable, i.e., if (x, e,
y) ∈ T and (x', e') ≥ (x, e) (or y' ≤ y), then (x', e', y) ∈ T (or
(x, e, y') ∈ T).

As for the disposability of undesirable output, one
way is to treat undesirable output as input and utilize the
traditional model (Seiford & Zhu, 2002). In this case,
suppose that there are K DMUs (refer to regions in this
study), we can describe the reference technology under
strong disposability on undesirable output (T-SD) as:

X

Frontier II

Y

A

B

C

D

E

C2C1

D2D1

E1

A2

Frontier I

Fig. 2 Illustration of rank
reversal in DEA

Table 2 Summary statistics of inputs/outputs for China’s regional dataset, 2000–2014

Variables Unit Max Min Mean Std.

Inputs Capital stock Billion constant 2011 USD 8291.03 21.01 1101.48 1163.11

Labor force Ten thousand peoples 6459.37 21.66 2356.49 1731.12

Desirable outputs Total final energy consumption Mtoe 161.94 0.31 41.94 29.62

Undesirable outputs GDP Billion constant 2011 USD 1150.42 14.14 325.15 234.18

CO2 emissions Million tonnes 789.06 1.18 194.31 147.66
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T−SD ¼ x; e; y; bð Þ : ∑
K

k¼1
λkxnk ≤xn; ∑

K

k¼1
λkemk ≤em; ∑

K

k¼1
λkyik ≥yi; ∑

K

k¼1
λkb jk ≤bj;λk ≥0 k ¼ 1;⋯;Kð Þ:

� 	
ð1Þ

Another way to involve undesirable output into the
reference technology is to satisfy the following assump-
tions suggested by Färe et al. (1989):

(i) Weak disposability on undesirable outputs, i.e., if
(x, e, y, b) ∈ T and 0 ≤ θ ≤ 1, then (x, e, θy, θb) ∈ T.

(ii) Desirable and undesirable outputs are null-joint,
i.e., if (x, e, y, b) ∈ T and b = 0, then y = 0.

The first property means that the proportional reduc-
tion in desirable and undesirable outputs is possible, and
the second implies that the only way to remove all the
undesirable outputs is to cease the production process.
According to above assumptions, the reference technol-
ogy under weak disposability on undesirable output T-
WD can be characterized as:

T−WD ¼ x; e; y; bð Þ : ∑
K

k¼1
λkxnk ≤xn; ∑

K

k¼1
λkemk ≤em; ∑

K

k¼1
λkyik ≥yi; ∑

K

k¼1
λkb jk ¼ bj;λk ≥0 k ¼ 1;⋯;Kð Þ:

� 	
ð2Þ

Based on the production framework under strong and
weak disposability, previous studies have developedmany
alternative nonparametric models for energy efficiency
measurement. Table 1 summarizes the most popular five
DEA models applied in this field, namely the Radial, M-
Radial model, SBMT model, DDF model, and RAM.

Rank reversal in DEA models

In this section, we intend to discuss the occurrence of rank
reversal without change in the production possibility set.
Figure 2 illustrates how this phenomenon occurs in theo-
ry, considering a production progress that transforms only
one input X to one output Y. According to the production
theory, efficiency can be defined by the distance between
each DMU and its production frontier. The DMUs that lie
on the production frontier are called efficient DMUs with
efficiency values equal to unit. DMUs that lie under the
production frontier are deemed to be relatively inefficient.
And theDMUswhich are near to production frontier have
higher efficiency values than others.

Assume that A, B, C, D, and E are five DMUs in
group I who perform under production frontier I. Thus,
the rank of efficiency for five DMUs is A = B = 1 > C >
E > D. When some DMUs in group I are added, the
production frontier of the remaining DMUs changes to
frontier II. In this case, the rank of efficiency for five
DMUs is B = E = 1 > C >A >D. Obviously, the phe-
nomenon called rank reversal occurs. More specifically,
for instance, E has lower efficiency than C under frontier
I. However, under frontier II, the efficiency of E is equal

to unit and higher than C. Different fromE, A is efficient
DMU which lies on frontier I, and the changing of
frontier makes its efficiency even lower than C under
frontier II. There are some other DMUs (like B) which
always lie on production frontier in both cases. Based on
above analysis, generally speaking, the increase of
DMUs is likely to result in rank reversal to some DMUs
by affecting the production frontier.

In order to investigate the rank reversal phenomenon
in various DEA models, we define the difference be-
tween the rank of DMUk in group I and group II as rank
reversal index (RRI), i.e.,

RRIk ¼ Rk Ið Þ−Rk IIð Þ ð3Þ
where k represents the kth DMU; Rk(I) and Rk(II) are the
ranks of the kth DMU in group I and group II, respective-
ly. The larger ∣RRIk∣means the greater difference of rank
for DMUk between group I and group II, and vice versa.

China’s regional energy efficiency analysis

In this section, we apply five different DEA models
discussed in BModels and rank reversal issue^ section
to measure China’s regional energy efficiency. Along
with the rapid development of the cross-strait trade scale
and economic integration, putting Mainland China,
Hong Kong, Macao, and Taiwan together when study-
ing China’s regional energy efficiency issues becomes
possible. It can help constructing a production frontier
matching reality more. As mentioned above, previous
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studies usually adopt 30 provinces inMainland China as
DMU set, and in this case, some provinces like Beijing
stay in first place for a long time. So no policy sugges-
tions can be made for Beijing’s energy efficiency im-
provement, which is not helpful to the overall improve-
ment of energy efficiency level of China. Inclusion of
Hong Kong, Macao, and Taiwan into the DMU set may

provide new benchmarks to these provinces and provide
different policy recommendations.

To compare the efficiency results in different
DMU sets, China’s regional data from 2000 to 2014
are adopted to construct the comparison groups I and
II. Group I includes Hong Kong, Macao, Taiwan, and
30 regions in Mainland China, while group II only

Table 3 EE of China’s regions in groups I/II with different DEA models, 2014

Energy efficiency Radial M-Radial SBMT DDF RAM

I II I II I II I II I II

Hong Kong SAR 1.000 – 1.000 – 0.347 – 0.746 – 0.997 –

Macao SAR 1.000 – 1.000 – 1.000 – 1.000 – 1.000 –

Taiwan 0.717 – 0.752 – 0.062 – 0.230 – 0.935 –

Anhui 0.960 0.993 0.969 0.994 0.084 0.657 0.135 0.693 0.941 0.974

Beijing 0.772 1.000 0.795 1.000 0.191 1.000 0.537 1.000 0.983 1.000

Chongqing 0.727 0.766 0.784 0.801 0.070 0.547 0.111 0.554 0.953 0.974

Fujian 0.904 0.912 0.908 0.916 0.060 0.466 0.148 1.000 0.947 0.964

Gansu 0.893 0.903 0.915 0.919 0.058 0.452 0.091 0.808 0.959 0.973

Guangdong 0.959 0.962 0.961 0.965 0.065 0.505 0.240 1.000 0.892 0.924

Guangxi 0.955 1.000 0.965 1.000 0.096 0.750 0.150 0.770 0.954 0.985

Guizhou 0.913 0.913 0.915 0.915 0.058 0.454 0.076 0.476 0.948 0.966

Hainan 0.610 0.636 0.681 0.684 0.058 0.456 0.096 0.472 0.987 0.991

Hebei 1.000 1.000 1.000 1.000 0.048 0.374 0.109 0.764 0.837 0.876

Heilongjiang 0.923 1.000 0.925 1.000 0.128 1.000 0.131 1.000 0.944 1.000

Henan 0.892 0.902 0.898 0.909 0.073 0.573 0.234 1.000 0.909 0.945

Hubei 0.890 0.923 0.898 0.934 0.082 0.638 0.155 0.640 0.921 0.963

Hunan 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Inner Mongolia 0.957 0.957 0.961 0.961 0.033 0.252 0.206 0.633 0.924 0.923

Jiangsu 1.000 1.000 1.000 1.000 0.070 0.536 0.300 1.000 0.890 0.922

Jiangxi 0.971 1.000 0.974 1.000 0.106 0.831 0.240 0.824 0.964 0.991

Jilin 0.760 0.811 0.779 0.832 0.080 0.614 0.192 0.556 0.956 0.977

Liaoning 0.908 0.976 0.927 0.980 0.083 0.643 0.123 0.647 0.884 0.949

Ningxia 1.000 1.000 1.000 1.000 0.039 0.302 0.076 0.497 0.976 0.981

Qinghai 0.964 0.992 0.967 0.993 0.056 0.434 0.144 0.762 0.983 0.988

Shaanxi 0.773 0.802 0.801 0.830 0.068 0.527 0.128 0.522 0.939 0.964

Shandong 0.883 0.891 0.889 0.899 0.059 0.457 0.138 1.000 0.827 0.882

Shanghai 0.876 1.000 0.895 1.000 0.130 1.000 0.193 1.000 0.946 1.000

Shanxi 0.923 0.932 0.935 0.944 0.049 0.385 0.092 0.647 0.913 0.936

Sichuan 0.773 0.774 0.775 0.775 0.068 0.534 0.070 0.566 0.878 0.934

Tianjin 0.799 0.862 0.818 0.884 0.076 0.586 0.240 0.445 0.964 0.979

Xinjiang 0.792 0.793 0.807 0.808 0.034 0.264 0.069 0.471 0.923 0.934

Yunnan 0.889 0.906 0.914 0.920 0.068 0.531 0.099 0.559 0.942 0.967

Zhejiang 0.974 0.983 0.975 0.984 0.069 0.538 0.191 1.000 0.923 0.952

Average of 30 regions 0.888 0.920 0.901 0.928 0.105 0.577 0.190 0.744 0.933 0.960
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includes 30 regions in Mainland China as most pre-
vious studies did.

Data source

As for inputs, we take labor force and capital stock as
non-energy inputs and total final energy consumption
(TFEC) as the only energy input. For outputs, we choose
gross domestic product (GDP) and CO2 emissions as
desirable and undesirable outputs, respectively. The data
on TFEC and CO2 emissions are collected from IEA,

the data on labor force and GDP using PPP come from
Word Bank, and the data on capital stock using PPP are
from the Penn World Table (Version 9.0). Particularly,
the data on labor force and capital stock of Taiwan are
obtained from Chinese Taiwan Statistics; the data on
CO2 emissions and TFEC of Macao come from Word
Bank and China Energy Statistical Yearbook. The data
of 30 regions in Mainland China are calculated accord-
ing to their ratio of China’s total amount on the basis of
data published by IEA or World Bank. Table 2 presents
the summary statistics of all inputs/outputs in this study.
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Fig. 3 Regional average energy
efficiency values in China, 2000–
2014

Fig. 4 Average energy efficiency
values in China’s nine economic
regions, 2000–2014
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Energy efficiency results

Firstly, energy efficiency (EE) values of all regions
in groups I and II using different DEA models in
2014 are shown in Table 3. From the perspective
of models, it is found that EE values obtained
from SBMT and DDF models are lower than those
calculated by Radial, M-Radial, and RAM models.
Besides, SBMT model has higher discrimination
power since there are less efficient DMUs in this
case. So we further explore China’s regional ener-
gy efficiency from 2000 to 2014 by applying
SBMT model.

Figure 3 shows the change of energy efficiency over
time in group I and group II, respectively. We find that
the regional average EE values in group II are larger
than those in group I during the observation period. It
indicates that the addition of Hong Kong, Macao, and
Taiwan leads to the shift of production frontier, and the
regions in Mainland China in group I are farther away
from the frontier than group II. In other words, although
the energy efficiency of Mainland China seems barely
satisfactory, it can be improved greatly compared with
Hong Kong and Macao. Focusing on the variation of
EE, it is found that the variation trend of group I and
group II is basically the same. China’s energy efficiency

Table 4 Rankings of 30 regions in Mainland China in groups I/II, 2014

Ranking
Radial M-Radial SBM-T DDF RAM

I II RRI I II RRI I II RRI I II RRI I II RRI

Anhui 8 10 -2 7 10 -3 7 7 0 17 16 1 17 12 5

Beijing 27 1 26 26 1 25 2 1 1 2 1 1 4 1 3

Chongqing 29 29 0 27 28 -1 13 13 0 21 24 -3 11 18 -7

Fujian 16 19 -3 18 20 -2 20 20 0 14 1 13 13 1 12

Gansu 17 21 -4 16 19 -3 24 24 0 26 12 14 8 17 -9

Guangdong 9 14 -5 10 14 -4 19 19 0 6 1 5 25 1 24

Guangxi 11 1 10 9 1 8 6 6 0 13 13 0 10 14 -4

Guizhou 14 18 -4 15 21 -6 23 23 0 27 27 0 12 20 -8

Hainan 30 30 0 30 30 0 22 22 0 24 28 -4 2 13 -11

Hebei 1 1 0 1 1 0 27 27 0 22 14 8 29 30 -1

Heilongjiang 13 1 12 14 1 13 4 1 3 18 1 17 15 24 -9

Henan 18 22 -4 20 22 -2 12 12 0 7 1 6 24 1 23

Hubei 19 17 2 19 17 2 9 9 0 12 19 -7 22 25 -3

Hunan 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

Inner Mongolia 10 15 -5 11 15 -4 30 30 0 8 20 -12 19 22 -3

Jiangsu 1 1 0 1 1 0 14 15 -1 3 1 2 26 1 25

Jiangxi 6 1 5 6 1 5 5 5 0 5 11 -6 6 11 -5

Jilin 28 25 3 28 25 3 10 10 0 10 23 -13 9 15 -6

Liaoning 15 13 2 13 13 0 8 8 0 20 18 2 27 29 -2

Ningxia 1 1 0 1 1 0 28 28 0 28 26 2 5 23 -18

Qinghai 7 11 -4 8 11 -3 25 25 0 15 15 0 3 16 -13

Shaanxi 26 26 0 25 26 -1 18 18 0 19 25 -6 18 19 -1

Shandong 21 23 -2 22 23 -1 21 21 0 16 1 15 30 28 2

Shanghai 22 1 21 21 1 20 3 1 2 9 1 8 14 1 13

Shanxi 12 16 -4 12 16 -4 26 26 0 25 17 8 23 27 -4

Sichuan 25 28 -3 29 29 0 16 16 0 29 21 8 28 21 7

Tianjin 23 24 -1 23 24 -1 11 11 0 4 30 -26 7 1 6

Xinjiang 24 27 -3 24 27 -3 29 29 0 30 29 1 21 26 -5

Yunnan 20 20 0 17 18 -1 17 17 0 23 22 1 16 1 15

Zhejiang 5 12 -7 5 12 -7 15 14 1 11 1 10 20 1 19
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decreased during the 10th Five Years Plan phase (2001–
2005), and then increased from the beginning of the 11th
Five Years Plan (2006) until to 2009. Difference appears
after the year 2011. It can be interpreted that energy
efficiency of Mainland China was going up in 2012 and
2013, but that of Hong Kong and Macao increased
more. It suggests China’s government can make more
effort to improve its regional energy efficiency in Main-
land China to catching up Hong Kong and Macao.

Shifting our interest to the regional differences, we
divide the whole studying area into nine regions: Hong
Kong, Macao, and Taiwan, northeast region, north coast
region, east coast region, south coast region, Mid-
Yellow River region, Mid-Yangtze River region, south-
west region, and northwest region. Figure 4 presents the
average EE values from 2000 to 2014 in nine regions
mentioned above. It shows that energy efficiencies of
Hong Kong, Macao, and Taiwan are much higher than

Fig. 6 Bubble chart for RRI values of 30 regions in Main-
land China by different DEA models, 2014. Note: AH (An-
hui), BJ (Beijing), CQ (Chongqing), FJ (Fujian), GS (Gan-
su), GD (Guandong), GX (Guangxi), GZ (Guizhou), HN
(Hainan), HeB (Hebei), HLJ (Heilongjiang), HeN (Henan),

HuB (Hubei), HuN (Nunan), IM (Inner Mongolia), JS
(Jiangsu), JX (Jiangxi), JL (Jilin), LN (Liaoning), NX
(Ningxia), QH (Qinghai), SaX (Shaanxi), SD (Shandong),
SH (Shanghai), SX (Shanxi), SC (Sichuan), TJ (Tianjin),
XJ (Xinjiang), and ZJ (Zhejiang)

4.40 
4.07 

0.27 

6.63 

7.17 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Radial M-Radial SBMT DDF RAM

30

1

| |

30

k
k

RRI∑
=

Fig. 5 Average |RRI| values of
30 regions in Mainland China by
different DEA models, 2014

1002 Energy Efficiency (2019) 12:993–1006



those of other regions. In Mainland China, Mid-
Yangtze River region performs the best while the
northwest and Mid-Yellow River region are the
worst. The northwest region includes Gansu, Qing-
hai, Ningxia, and Xinjiang; their discrepancy in the
level of economic and technology development may
be the main reasons of low energy efficiency. The
Mid-Yellow River region includes Shannxi, Shanxi,
Henan, and Inner Mongolia, and their developments
all depend on the coal industry. It implies that China
can pay more attention to northwest and Mid-Yellow
River region to improve the regional energy effi-
ciency throughout the country.

Energy efficiency rank reversal

In this section, we demonstrate the phenomenon of rank
reversal in DEA and further investigate the degree of
rank reversal on five DEAmodels discussed in BModels
and rank reversal issue^ section. We first analyze rank
reversal phenomenon in the year of 2014 in detail as it is
the most recent year with complete data. After that, we
choose a 15-year period (2000–2014) to get more
information.

We sort 30 regions in Mainland China according to
their EE values in group I and group II, respectively,
where the region with the largest EE value ranks first.

Table 5 RRI values of 30 regions in Mainland China by SBMT model, 2000–2014

RRI 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Anhui 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

Beijing 2 2 1 1 2 0 − 1 2 4 5 3 2 2 1 1

Chongqing 0 0 0 − 1 0 0 0 0 0 1 0 0 0 − 1 0

Fujian 1 − 1 0 0 0 0 0 0 0 1 0 0 0 0 0

Gansu 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0

Guangdong 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Guangxi 1 0 − 1 0 0 − 1 0 0 − 2 − 1 1 1 0 0 0

Guizhou 0 0 0 0 0 0 0 0 0 − 2 0 0 0 0 0

Hainan 1 0 0 0 0 − 2 0 0 1 1 0 0 0 − 1 0

Hebei 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Heilongjiang 2 1 1 1 0 0 1 0 0 0 0 1 1 2 3

Henan 1 0 − 1 0 0 0 0 0 0 0 0 0 − 1 0 0

Hubei 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hunan 0 0 0 0 1 7 0 0 0 0 0 0 0 0 0

Inner Mongolia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Jiangsu 1 0 0 0 0 0 0 0 0 0 0 1 1 0 − 1
Jiangxi 3 − 1 − 1 − 1 − 2 − 3 − 1 0 3 3 0 − 1 0 0 0

Jilin 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0

Liaoning 1 − 1 0 0 − 1 0 0 0 1 1 1 0 0 0 0

Ningxia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Qinghai 1 0 0 0 0 0 0 0 0 1 0 0 0 3 0

Shaanxi 0 0 − 1 0 0 0 0 0 1 1 0 0 0 0 0

Shandong 1 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0

Shanghai 4 3 3 2 3 2 4 3 5 6 5 4 3 3 2

Shanxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sichuan 1 − 1 0 0 − 1 − 1 0 0 − 5 − 5 − 7 − 7 0 0 0

Tianjin 1 1 2 1 2 1 0 0 2 2 1 2 0 1 0

Xinjiang 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Yunnan 1 0 0 0 − 1 0 0 0 − 6 − 12 0 0 0 0 0

Zhejiang − 18 0 0 0 0 0 0 0 0 1 0 1 0 0 1
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Table 4 shows their ranking and RRI values calculated
using Eq. (3). The ranks of most regions change after
adding Hong Kong, Macao, and Taiwan. Beijing has the
highest |RRI| value by using Radial and M-Radial
models, respectively. For DDF and RAMmodels, Tianjin
and Jiangsu have the highest |RRI| value, respectively.

On the other hand, the highest |RRI| value for SBMT
model is 3, which is much smaller than those for other
DEA models. It indicates that addition of DMUs in
SBMT model has less impact on the ranks of DMUs
than in other DEAmodels.We also find that there are 25
regions with RRI values equal to 0 in SBMT model. It
denotes that rank reversal does not occur in these regions
after adding these three DMUs (Hong Kong, Macao,
and Taiwan). Different from SBMTmodel, RAMmodel
only have two regions whose RRI values equal to 0.

In order to investigate the degree of rank reversal in
different models, Figs. 5 and 6 present the average |RRI|
values of 30 regions in Mainland China by different
types of models. From Fig. 5, SBMTmodel has the least
rank reversal, followed by M-Radial and Radial model.
The ranks of 30 regions in RAM model change most
after adding Hong Kong, Macao, and Taiwan. Thus, we
suggest using the SBMTmodel to get more stable policy
recommendations on energy efficiency improvement.

Bubble charts for RRI values of 30 regions by DEA
models are shown in Fig. 6 to illustrate the phenomenon
of rank reversal visually. The size of bubbles represents
|RRI| value—larger bubbles imply larger |RRI| values.
Bubbles in color denote positive RRI values and those in
white denote negative RRI values.

Firstly, from the viewpoint of horizontal axis, it is
apparent that |RRI| values in RAM model and DDF
model are larger than those in other DEA models as a
whole. It implies that the ranks of 30 regions changemost
in RAM model and DDF model. SBMT is proved to
show the least rank reversal according to its smaller |RRI|
values for all the 30 regions. As for Radial model andM-
Radial model, significant differences for ranks between
groups I and II are mainly observed in four regions, i.e.,
Beijing, Guangxi, Heilongjiang, and Shanghai.

Secondly, from the viewpoint of vertical axis, we
observe that some regions always have positive changes
by applying five DEA models, such as Heilongjiang and
Shanghai. On the contrary, some regions always present
negative changes in any types of DEA models, for ex-
ample, Guizhou, InnerMongolia, Qinghai, andXinjiang.

To verify the stability of SBMT model on rank re-
versal, we show the regional RRI values of SBMT

model from 2000 to 2014 in Table 5. We find that the
degree of rank reversal has been small during the
15 years period excluding Zhejiang in 2000 and Yunnan
in 2009. Even though, rank reversal occurs in some
regions. Take Beijing as an example, its RRI values of
2007 to 2014 are all positive, which means that the
rankings of Beijing decline after adding Hong Kong,
Macao, and Taiwan. It implies that Beijing has more
energy efficiency improvement potential when includ-
ing Hong Kong, Macao, and Taiwan into the DMUs.

Discussions and conclusion

Along with the Belt and Road strategy initiated by the
Chinese government, taking Hong Kong, Macao, and
Taiwan into consideration is reasonable and necessary
when exploring China’s regional energy efficiency.
However, it is noticed that no matter what type of
DEA model is adopted, there is a possible change of
regional rankings in Mainland China after adding Hong
Kong, Macao, and Taiwan. This phenomenon is called
rank reversal which means the relative rankings of two
DMUs can be reversed when one or more units are
added. This paper focuses on the rank reversal in
China’s regional energy efficiency ranking after adding
Hong Kong, Macao and Taiwan into the DMUs set.

Based on the principle of rank reversal in DEA in
theory illustrated in this paper, rank reversal in DEA is
caused by the change of the position for production
frontier when some DMUs are added. The most popular
five DEA models in efficiency measurement, including
Radial model, M-Radial model, SBMT model, DDF
model, and RAM model, are applied to assess China’s
regional (30 regions and Hong Kong, Macao, and Tai-
wan) energy efficiency. The degrees of rank reversal in
five different DEA models are investigated using
China’s regional data. Among these models, SBMT
model shows the least rank reversal when measuring
energy efficiency for 30 regions in Mainland China.

According to our study, rank reversal is an important
factor to be considered for energy efficiency evaluation
using DEAmodels. The policy suggestions based on the
ranking of DMUs are subject to their pre-defined pro-
duction frontier.When some regions without data before
(or are excluded for some other reasons) are added,
policy suggestions may change due to rank reversal.
Taking Beijing as an example, according to the results
obtained fromRadial model, Beijing’s EE ranking drops
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from no. 1 to no. 27 among the 30 regions in Mainland
China after taking Hong Kong, Macao, and Taiwan into
consideration in year 2014. Obviously, rank reversal can
result in different policy implications for Beijing’s future
energy development.

The influence of rank reversal on policy makings can
be further expanded from China’s regional study to
other countries and regions’ study. For instance, EU as
an important economy which is worth studying, its
members have changed over time. The policy implica-
tions proposed based on DEA model which has less
rank reversal will be more robust. Besides, the regions
in China can be further compared with some other
developing countries along the Belt and Road initiative,
such as the Southeast Asian Countries.

Rank reversal which reflects the robustness of a DEA
model should be gained more attention in the future
studies. Besides energy efficiency assessment, rank re-
versal issues can also happen in other efficiency assess-
ment using DEA, such as the CO2 emission and pollu-
tion efficiency. This is an important aspect that should
be considered when selecting DEA models for efficien-
cy assessment. Theoretically, the ideal DEA ranking
model shall not change the ranks of other DMUs after
the addition or removal of one or more DMUs. The
development of suchDEAmodel with rank preservation
would be a meaningful topic for future research.
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