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Abstract Energy modeling and efficiency analysis are
considered the foundation of manufacturing process
optimization to improve quality and efficiency and
reduce energy consumption and carbon emissions dur-
ing aluminum die-casting processes. This paper pro-
posed an energy modeling method to connect gas and
electric energy consumption with production rate of
aluminum die-casting processes based on data collect-
ed at workshops with various combination of ma-
chines and products. The detailed modeling process
involved the development of a data-acquiring system
and the comparison of various kinds of nonlinear
regression methods. The resulting models were vali-
dated with actual production data and were further
used to improve production scheduling. It was found
that if the modeling results are reasonably used and
production is accordingly well-scheduled, 10 to 15%
of energy savings could be realized without sacrificing
profits.
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Introduction

The manufacturing industry accounts for a significant
part of the world’s energy consumption and waste and is
responsible for nearly one third of global energy con-
sumption and 29.2% of global electricity-related CO,
emissions (Dunham 2015; Sieminski 2016). Energy
efficiency has become one of the key factors of the
manufacturing industry (Anderberg et al. 2010). Die-
casting processes are widely known for being highly
energy demanding. Approximately 25% of the total cost
for die-casting products is associated to energy con-
sumption (Brevick et al. 2004). In many countries,
legislations have become stricter and stricter over the
years regarding the energy consumption and emissions
of die-casting processes (Salonitis et al. 2016a). Produc-
tion managers face great challenges when trying to
implement energy efficiency initiatives under produc-
tivity concerns (Mohr et al. 2012; Trianni et al. 2013). It
is also noted that increasing resource utilization during
production could reduce the amount of energy con-
sumption in die-casting processes by 20 to 30% (Shao
2017; Trianni and Cagno 2012).

Researchers suggest that the efforts to reduce energy
consumption should start with evaluating the energy
consumption of manufacturing systems more accurately
(Cao et al. 2012; He et al. 2017; Zhong et al. 2016).
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However, traditional methods of studying energy con-
sumption of die-casting processes heavily depend on
experiments. Parameter calculation for resulting models
are widely considered weak due to the lack of the
needed data or model validation. For high-energy con-
sumption processes like die casting, modeling their en-
ergy consumption is complex, time-consuming, and
challenging. Specifically, aluminum casting has experi-
enced continuous growth (Das and Yin 2007;
Heinemann 2016) and dominates the nonferrous sector
in general, comprising 78% of total nonferrous ship-
ments (Rosen and Lee 2009). Some researchers also
pointed out that the energy consumption of the alumi-
num casting process is of the order of 617 GJ per ton in
using electricity and natural gas, which means the order
of 36-100 billion GJ for the global industry in 2017.
Salonitis et al. (2017) stated that there are huge oppor-
tunities for the metal casting industry to adopt the best
energy practices based on energy modeling. Therefore,
energy modeling and efficiency analysis of aluminum
die-casting processes are crucial for the energy efficien-
cy of the manufacturing industry.

Using real data of multiple machines and products at
aluminum die-casting workshops through an energy
data-acquiring system, this research built the mathemat-
ical relationship between specific energy consumption
(SEC), including both gas and electricity, and produc-
tion rate for aluminum die-casting processes. The high
energy efficiency zone was defined after various non-
linear regression methods were investigated. The per-
formance of different methods was compared to obtain
the optimum one, which was further validated by exper-
iments. The modeling results can be used to analyze the
energy efficiency of aluminum die-casting workshops
and further to support production scheduling with con-
sideration on energy usage. The study showed that the
modeling results can lead to 10 to 15% of energy sav-
ings without sacrificing profits. All the data-acquiring
and case studies were carried out in die-casting work-
shops of a furniture manufacturer in Zhejiang Province,
China.

Literature review
Energy consumption of die-casting processes has been
long studied in literature. Much of the research focused

on energy consumption using measurement and
statistical methods. For example, Lazzarin and Noro
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(2015) presented energy audits performed in five Italian
cast iron foundries and identified energy utilization in
various processes, from iron melting to the end of cast-
ing. They further discussed energy efficiency opportu-
nities in service plants of cast iron foundries in Italy
(Lazzarin and Noro 2016). A report of the Office of
Scientific and Technical Information Technical
(Schwam 2012) addressed multiple aspects of the alu-
minum smelting and handling in die operations for
energy efficiency improvement based on data from
North American Die Casting Association (NADCA).
Eglins and Roders (2005) presented a model about the
overall heat transfer within an aluminum die-casting cell
to find measures for an energy demand reduction.
DETR (Department of Environment 1997) analyzed
the energy ratio of the key energy-consuming equip-
ment and phases in the casting process. However, ener-
gy consumption data are scattered, inconsistent, and not
helpful to guide energy-saving measures.

Simulation and visualization techniques have been
used by several researchers to calculate and compare the
energy and material flows without physical
implementation. For example, Salonitis et al. (2017)
presented a case study of selecting energy- and
resource-efficient casting processes based on simula-
tion. Mishra and Sharma (2017) investigated melting
of the bulk Al-7039 alloy during in situ microwave
casting through experimental trials in a multi-mode
applicator cavity and numerical simulation. Pagone
et al. (2016) developed a simulation tool to undertake
a systematic analysis of energy and material flows in the
casting process. Henninger et al. (2016) conducted sim-
ulations based on studies of energy-saving measures in
the aluminum tooling and die-casting industry. Krause
etal. (2012) provided a discrete event simulation (DES)-
based model of an aluminum die-casting process to
represent energy-oriented material flows. Singh et al.
(2012) proposed a new computer-aided system named
Sustainability Analyzer for die-casting processes using
three sustainability indicators including energy use, sol-
id water, and carbon emissions. However, the energy
data for simulations are mostly based on earlier data and
statistical analysis.

Meanwhile, the overall life cycles of products made
by die-casting processes are also common research
topics. For example, Yilmaz et al. (2015) used life cycle
assessment (LCA) as a decision support tool to evaluate
best available techniques (BATs) for cleaner production
of iron casting. Mitterpach et al. (2017) conducted
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environmental evaluation of gray cast iron via LCA.
LCA is mostly used under certain conditions, such as
neglecting complicated real-time situations and
variations of the parameters, and does not provide
accurate energy data. There is also much research
using modeling methods to look into the relation
between energy consumption and other process
parameters. From the process viewpoint, Selvaraj et al.
(2017) presented mathematical modeling of raw mate-
rial preheating in metal casting processes. Borset et al.
(2016) explored the potential for waste heat recovery
during metal casting with thermoelectric generators by
using on-site experiments and mathematical modeling.
Salonitis et al. (2016b) pointed out that constrained
rapid induction melting single shot up-casting
(CRIMSON) has advantages compared to conventional
sand casting processes regarding energy savings.
Watkins et al. (2013) used the sustainability characteri-
zation methodology to evaluate the sustainability of die-
casting manufacturing processes. Thiriez and Gutowski
(2006) studied the energy consumption of an injection
modeling process and created a model to represent the
SEC trends exhibited by each machine. However, the
applications of process improvement for energy savings
are often restricted because of the difficulty of its
implementation and expansion. Respectively, from the
operational viewpoint, Sharma et al. (2017) conducted
the sustainability modeling of die-casting processes
based on the process plan information. Bettoni and
Zanoni (2011) presented a power model focusing on
the relationship between SEC and the production rate
in order to improve energy efficiency in die-casting
processes. The model was based on previous work by
Gutowski et al. (2006). However, the data provided by
them are insufficient and there is no clear evidence to
support that the power form used by them is the opti-
mum one to characterize the regressive relation between
SEC and production rate.

In summary, energy modeling and efficiency analysis
of die-casting processes and the relationship with pro-
duction rate deserve further study.

Energy data acquisition and analysis system
of aluminum die-casting processes

This research collected energy consumption data for die-
casting processes at a typical die-casting workshop with
two casting machines. Each machine was designed to

produce two product types with corresponding types of
dies equipped. They are automatic, middle-sized, horizon-
tal cold chamber die-casting machines using electricity as
their power supply. Each was also equipped with a con-
tinuous furnace using natural gas. During data collection,
the workshop was under full operations with three shifts
per day and 6 days per week. In order to maintain their
temperature, the furnaces were continuously operated ex-
cept cases of emergency and necessary maintenance. We
developed an energy data acquisition and analysis system
with four main modules. The first module consisted of
digital meters for measuring energy consumption, includ-
ing voltage and current sensors for electricity and flow
sensors for gas. In addition, infrared sensors were used to
measure the production rate, and digital platform scales
were used to obtain weight of used materials. Once the
real-time energy and other data were collected by the first
module, they were transferred to the second module by the
standard serial communication protocol of RS232/RS485.
The second module was an integrated control panel with
the installed data acquisition software, which received the
original data, transformed them to the html form, and then
transferred them to the system server. The data acquisition
software was developed with the Microsoft Foundation
Class (MFC) framework on the Visual Studio 2015 plat-
form. The database was developed using SQL Server
2010. The relevant analysis tools and interfaces were
developed using Java Spring MVC framework. The third
module was used to receive and store the data and to
respond to query requests for analysis. The last module
was the analysis kit to conduct the energy efficiency
analysis and then assist users in making decisions for
improving production schedules. The four modules
worked together to monitor the real-time state of energy
efficiency so that managers were able to control the pro-
duction rate or adjust the production plan. Figure 1 depicts
the structure of the energy data acquisition and analysis
system developed in this research. Table 1 shows example
data of energy consumption and production rates for ma-
chines producing different products, including gas con-
sumption in m°, electricity consumption in KW+, used
material in kg, and pieces of products produced. A sample
data for gas consumption is shown in Fig. 2.

Energy modeling of aluminum die-casting processes

This study built the regressive relation model between
SEC and production rate P in [piece/h] or [kg/h]

@ Springer
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following Gutowski et al. [28]. The SEC is defined as
the amount of energy required for processing a certain
amount of one kind of product. For casting processes, it
can be expressed as SEC,, in [m % /kg] for gas used in the
furnace for melting raw materials, and SEC,. in [KWh/
piece] for electricity used for machining finished prod-
ucts. The production rate P is defined as the production
rate of quality products rather than the overall one and
varies over shifts. Managers are able to control the
energy consumption state and effective production rate
P of each shift by taking measures such as rescheduling
the production plan to accelerate or decelerate the pro-
duction rate, reducing the machine idle time, optimizing
machine parameters, and enhancing workers’ skills to
improve the energy efficiency and quality rate. Since
there are two machines producing two kinds of prod-
ucts, capital letters are used to denote the machine and
lowercase letters are used to denote the product type.

@ Springer
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Fig. 1 Structure of the data acquisition and analysis system
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For example, SEC,,545, means the SEC of furnace A
melting raw material for product b using gas, and
SEC ecnp 18 the SEC of machine B producing product
b using electric energy. Pgaeap in [kg/h] and Pejecap in
[piece/h] are production rates for furnace A and machine
A for producing product b respectively. For a fixed cycle
time 7. of process ¢, the production rate P is related to
stand-by idling time #, and production time ¢,. P
increases when #,4, decreases and #, increases. More-
over, the SEC decreases when the production rate P
increases (Gutowski et al. 2006; Bettoni and Zanoni
2011). Figure 3 illustrates the general relationship be-
tween SEC,q4p and production rate Pg,.u;, based on
data acquired by the developed system. The area circled
out in red is considered the high-efficiency zone, which
is defined as the aggregation of data points near the
Pareto frontier of productivity and energy efficiency.
The energy model is used to describe the relation
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Fig. 2 Sample data for gas consumption

between SEC and P within the zone, which is marked by
green. Once the mathematical model is established, the
real-time state of the production should be within the
high-efficiency zone as much as possible to improve the
energy efficiency and productivity of the overall
production.

To obtain the specific optimum mathematical form
for the nonlinear regressive relation between SEC and P,
the most used modeling method in literature is nonlinear
regression. The general mathematical form for the rela-
tion can be represented by fszc_p in Eq. (1), where 6, 65,
..., 0, represent the unknown coefficients, and » repre-
sents the number of coefficients. Apparently, the mean-
ing and number of 0y, 6,, ..., 0, are determined by the
specific mathematical form of fzc.p € is the error be-
tween the calculation result by fszc.p and the real value
of SEC:

SEC:fSEC_p(P,Ql,Qz,...,9,1)-1-5 (1)

SECyus 15 [m'/kg] o Data of a shift
A

O High efficiency
zone
0.42 4 Model
0.35 4
0.28
T v T >
20 40 Py, |kg/h)

Fig. 3 Relationship between SEC, 445 and Pygeap
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Following the least square method, the optimum fgzc.
p under a certain mathematical form can be found by
determining the optimum group of 6y, 6,, ..., 6, leading
to the least aggregation of €, as Eq. (2). Here, 6 repre-
sents the vector of (8y, 05, ..., 6,)7, F(6) is the function to
get the least relative error, N represents the sample group
number of observed SEC and P used for the modeling,
SEC; represents one of the observed value of SEC, and
P; represents the relevant observed value of P.

L00))2
(2)

The minimum value of F(f) can be obtained by
solving a differential equation group (3), formed by n
equations of fgz-— p’s partial deviation to 6; i =1, 2, ...,
n). The optimum values of 6y, 6, ..., 0, are represented

. o~ o~ _\T
by a vector of 6 = (9 1,02,..., 6,,) . This research used

N
min F(6) = min 3. (SEC~f src-p(Pr. 01,02, .
i=1

the Newton iterative method to obtain the solution of 0:

oF N . ~
|, =2 (S50 Tsecr(P110)) (3)
Of sec-p —0
00 o=,

Based on the data collected over 5 months, various non-
linear regression curves, such as reciprocal, power, poly-
nomial cubic, exponential, and logarithmic functions, were
analyzed to obtain the optimum one for each pair of
machine and product. The expression and coefficients of
each fsgc— p is listed in Table 2, in which Ap Bs Cp and
Dp are the coefficients of polynomial cubic, and ag, bg, an
bp ag, br, cg, ar, by, and ¢; are the coefficients of recip-
rocal, power, exponential, and logarithmic respectively.

For each form of regression model fszc— p adjusted
coefficient of determination adjR* and residual standard
deviation s are used to evaluate its performance. Their
calculation formula are as follows:

adiR® = 1-(1-R?) —Ejz:/[:/lc; : (4)

? = 17%7 (5)
SSE = 3 ()" )
and
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Table 2 Forms and coefficients of none-linear curves used

Non-linear curves

Expression and coefficients

Reciprocal

Power

Polynomial cubic

SEC = 1/(ag + brP)

SEC = apP" (bp < 0)
SEC=Ap+ BpP+ CpP* + DpP>

Exponential SEC =ag—bgcg’

Logarithmic SEC=a; — b In(P+cyp)

ST — % (y»—y)z (7) Here, SSE is the sum of residual squares, SST is the
' sum of the total square, y; is the true value of the sample

i=1

Equation (8) is used for calculating residual standard
deviation s.

s = +/SSE/(N-n) (8)

of SEC,, y; is the value of the model output, and # is the
number of factors in the model. Apparently, adjR*<1.
A greater adjR* implies that the fitted values are closer
to the observations. Similarly, s can be considered the
estimation of the mean square variance. The smaller its

Table 3 Regression results for gas consumption for each pair of machine and product

Mach A and Prod a Mach A and Prod b Mach B and Prod ¢ Mach B and Prod d
Reciprocal ~ Model
CgavAa = SECga.va = SE CgasBc = SECga.de =
1 1 1 1
1.013 + 0.0468P gy, 3.482 + 0.035P g5 2.746 + 0.015P g4, 2.72 4 0.032Pgy5p4
adiR®>  0.975 0.963 0.935 0.931
K 0.00955 3.72E-4 4.852E-3 4.74E-3
Power Model
SEC guspa = 5469P 016 SECguenn = 1.6P 0 SECguspe = 1.152P,05  SECgaspa = 2.64P 05
ade2 0.989 0.967 0.958 0.952
K 9.976E-3 7.518E—4 1.506E-3 1.592E-3
Polynomial Model
cubic SECgasaa = 0.725 =0.01 = SECgqnp = 0.22 —4.393 SECgusp. = 0.548 —0.00 SECguspq = 0.4128 —0.00

28Pgusna +9.938 x 1
07 Pgasaa” —2.638 x 1

X107 Pggonp =5.34 x 1
0 O Pguor” +2.246 x 1

T24Pgupc +5.46 x 1
07 Pgaspe” —1.44 x 1

403P sy +1.885 x 1
07 Pgaspa® —3.102 x 1

0_7PgasAa3 O_spgmAb3 0_7PgasBz,'3 O_SPgade3
adiR®>  0.988 0.982 0.954 0.937
s 9.052E-3 2.594E—4 2.297E-3 1.452E-3

Exponential Model
SEC gysaa = 0.126 —0.69

2 % 0.973 e
adiR®>  0.985 0.969
s 9.063E-3 5.542E-4

Logarithmic Model
SEC gysa0a = 0.513— 0.07

941n (Pgasaa—31.91)
(Pgasna > 31.91)
adiR®>  0.997 0.954
s 8.567E-3 8.695E-3

SEC gqsap = 0.358— 0.051
In(Pgasps=29.1)
(PgasAh > 291)

SEC gusap = 0.0828 +0.22  SECgup. = 0.193 +0.38  SECqueps = 0.1 +0.391 x
5 % 0.987 st

5 % 0.975" s 0.983 swni
0.961 0.954
2.095E-3 1.356E-3

SECguspe = 0.359— 0.03  SECgusps = 0.294— 0.036
4In(Pgasp—49.41) 91n (Pygaspa—66.275)
(Pgasse > 49.41) (Pgaspa > 66.275)

0.971 0.944

9.806E-3 1.573E-3
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Table 4 Regression results for electricity consumption for each pair of machine and product

Mach A and Prod a

Mach A and Prod b

Mach B and Prod ¢ Mach B and Prod d

Reciprocal  Model
SEClecra = SECelecap =

1 1

SE Celech = SE Celech =

1 1

0.99 + 0.078Plecaa

adiR®  0.969 0.974
s 0.0157 1.3906E-3
Power Model
SECotecra = 2.891P 28] SEC,penr = 1.047P 241
adjR®  0.986 0.985
s 0.0068 7.40173E-3
Polynomial Model

cubic
7Pgusaq +7.05 x 1074
Peasaa® —4.7 x 10°°

PgmAa3 PeleCAh3
adiR? 0977 0.994
s 0.0095 1.654E—4

Exponential Model

2.46 + 0.045P ojocp

1.819 + 0.019P e 1.54 + 0.048Ptecpa
0.908 0.965
8.6589E-3 4.5074E-3

SEC glecpe = 086P;1252310 SECelecpa = 154P;lgc485d
0.958 0.986

2.0796E-3 1.86101E-3

SECelecaq = 0.88 —0.03  SECejecap = 0.379 —0.0037 SECepecpe = 0.698 —0.01  SEC,pecps = 0.867 —0.04

2P otecn —1.737 x 107
Pooens® +4.509 x 1077

9P, iecne +3.89 x 1074
Poocse’ —2.42 x 107°

067P iocpa +0.00104
Poecsa® —9.441 x 107°

P ()lech3 P, elecBd 3
0.976 0.987
3.9815E—4 1.56933E-3

SECelecaq = 0.174 +0.7  SECejecap = 0.162 +0.3 X SECpeepe = 0.387 +0.52 SECepecpa = 0.249 +0.54

72 x 0.938PL’/“CA“ 0_963Pe/m4b
adiR>  0.976 0.987
s 0.0111 4.613E-4

Logarithmic Model

SECjecaq = 0.589— 0.1  SEC jecap = 0.482— 0.073

ln(Pg]gcAb78.792)
(PelecAh > 8792)

0301(Poieena—11.82)
(Pe]ecAa > 1182)

adjiR?>  0.995 0.978
s 2.186E-3 8.603E-3

6 x 0.897 elese 5 x 0.937 eecnd
0.994 0.9792
2.678E-4 2.99718E-3

SECjecpe = 0.518= 0.03  SECjecpq = 0.569— 0.08

81n(Poiec—13.01) 261n(Pjecpa—11.46)
(Pelech > 1301) (Pelech > 1146)

0.986 0.993
5.3645E-3 7.42702E-4

value is, the better the model. The final regression
results for gas are listed in Table 3, in which the opti-
mum ones are highlighted. Table 4 is for electricity
consumption.

Figure 4 shows the regression results of gas usage for
each pair of machine and product, and so does Fig. 5 for
electricity consumption. The data regression processes
were carried out by the software of MATLAB 2016,
Origin 8 and SPSS 2016.

From Tables 3 and 4, the best regression model for
each group of machine and product can be easily select-
ed using the performance indices (i.e., adjR?> and s).
Specifically, Egs. (9) and (10) can be used to calculate
and evaluate the gas and electricity consumption for
machine A producing product a respectively.

SECguspa = 0.513-0.07941n (P gusna—31.91) (Pgusna > 31.91),

©)
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L 0.589-0.1030n (Pe,m—l 1.82> (Pe,m > 11.82).

(10)
Similarly, for the case of machine A producing prod-
uct b, the energy consumption models are

SEC gusap = 0.22-4.393 x 107 Pyy0,—5.34
X 107 Pyqonp” + 2.246

x 107 Pgasan’ (11)

SEC siecap = 0.379-0.00372P jpenp—1.737
X 107 P oenn’ + 4.509

X 1077 Pejecns” - (12)
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e Data of a shift

Fig. 4 Regression results for gas consumption

For the case of machine B producing product c, the
regression models are

SECgaspe = 1.152P 030 (13)
and
SECojecse = 0.387 + 0.526 % 0.897Pojecse. (14)

For the case of machine B producing product d, the
regression models are

SECgusq = 0.1 +0.391 x 0.983P4p4, (15)

and

SECtecpa = 0.569—0.0826/1 (P sjecps—11.46) (16)
when Pjeeps > 11.46.

In order to validate the resulting models (9-16),
validation experiments for the high-energy-efficiency
zones were carried out. The energy consumptions of

O High energy efficiency zone

the overall processes in real practice, G,.,, for gas and
E,.. for electricity, were measured and compared to
the calculation results using the corresponding regres-
sion models. For each model, the validation experi-
ments were conducted five times using different pro-
duction rates. The relative errors between the calcula-
tion results (i.e., G. and E.) and the real energy
consumption during experiments (i.e., G,y and E,.;)
were calculated by using Eqs. (17) and (18), where
5gm and 0., represent the relative errors of the pre-
diction results of gas and electricity consumptions:

Grea _Gc
Sgus = [GrearGel | 0954 (17)
Greal
Erea 7Ec
oo = Erea el 000, (18)

real

@ Springer
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Fig. 5 Regression results for electricity consumption

The resulting dg4 and 6, are listed in Table 5. All
values of g4, and d,. are lower than 5%, meaning that
the proposed models are rather accurate in predicting
energy consumption of the overall shifts.

The modeling results also show that there is no
clear evidence to imply that a certain form of model
can be used as the optimum one to characterize the
regressive relation between SEC and production rate
P in the high-energy-efficiency zone. However, for
each pair of machine and product and for either gas
or electricity, a specific optimum model can be
established. Managers can use the models to predict
energy consumption under a certain production rate
and further use the relational models to support
production scheduling with the consideration on the
trade-off between energy efficiency and productivity.
In general, the production should be kept within the
high-efficiency zone as much as possible.

@ Springer

O High energy efficiency zone

Energy efficiency analysis

The case studies carried out in this research were
targeted to meet orders with the certain amount of D
units and a delivery time 7. Two production strategies
were further studied. Under the first strategy, the ma-
chines were operated causally without considering en-
ergy consumption, which was the current practice. The
second strategy was to keep the operations within the
high-energy-efficiency zone as much as possible based
on the proposed models. The energy consumptions of
both strategies were measured using the data acquisition
system and were compared to analyze the energy-saving
potentials of the workshops.

The detailed operating information and results of the
three cases are listed in Table 6, where T,, G.,, and E_,
are defined as the operational time, gas consumption,
and electric energy consumption to meet demand D
under the first strategy. 7}, G,, and E), are those under
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Table 5 Relative errors between validation experiments and regression models

Mach A and prod a Mach A and prod b Mach B and prod ¢ Mach B and prod d
Exp shift group no. 1 MAT used[kg] 477.56 478.97 387.65 637.98
Num of pieces 189 156 101 124
Greas [m°] 116.343 84.343 112.124 130.765
G. [m’] 118.997 86.716 114.820 127.352
Ogas 2.281% 2.814% 2.404% 2.61%
Eyout [KWh] 64.654 48.983 54.456 55.345
E. [KWh] 63.266 47.299 52.555 56.255
Octec 2.147% 3.438% 3.491% 1.644%
Exp shift groupno. 2 MAT used[kg] 614.34 662.87 563.65 843.87
Num of pieces 244 221 148 167
Greas [m] 132.987 109.345 143.234 137.234
G, [m’] 129.655 105.870 146.45 138.459
Ogas 2.506% 3.178% 2.245% 0.893%
E,ear [KWH] 68.984 62.987 70.567 66.987
E.[KWh] 70.143 60.219 67.697 64.092
Octec 1.680% 4.395% 4.067% 4.322%
Exp shift groupno. 3~ MAT used[kg] 864.54 1107.87 775.98 1080.34
Num of pieces 345 367 205 215
Ghreas [ 151.788 129.876 184.346 154.98
G, [m’] 146.131 128.961 180.276 149.735
Ogas 3.727% 0.705% 2.208% 3.384%
E,eut [KWh] 82.908 80.765 90.345 76.987
E.[KWh] 80.830 79.023 85.988 73.758
Octec 2.506% 2.157% 4.823% 4.194%
Exp shift groupno. 4 ~ MAT used[kg] 1142.45 1238.98 1013.59 1394.09
Num of pieces 456 412 269 278
Ghreat [m°] 163.876 136.435 217.455 170.345
G. [m’] 158.997 132.960 214.459 166.877
Ogas 2.977% 2.547% 1.378% 2.036%
E ot [KWh] 88.982 82.987 109.543 88.943
E.[KWh] 89.605 83.611 107.762 85.895
Oclec 0.695% 0.752% 1.626% 3.427%
Exp shift group no. 5 MAT used[kg] 1330.87 1630.76 1179.09 1638.76
Num of pieces 532 543 314 326
Greas [m°] 161.897 159.987 230.234 180.456
G, [m’] 164.862 161.123 236.613 182.988
Ogas 1.831% 0.71% 2.771% 1.403%
E ot [KWh] 96.887 103.345 126.876 93.234
E.[KWh] 94.082 101.801 123.835 94.987
Octec 2.895% 1.494% 2.397% 1.88%

the second strategy. Relative energy efficiency evalua-
and R, were calculated using Egs.
(19) and (20) to compare the energy usage of the two

tion indices Rgq

strategies. Figure 6 shows the energy consumption data
details, and Fig. 7 shows the comparison of energy use

under the two production strategies.
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Table 6 Detailed information and measuring results of the three objective cases

Case  Mach and Prod T [shiffl  Gea M) E [KWH] Ty [shifl  Gy[m’]  E,[KWh] R Rotee
Mach A and Prod a 18 3261.65 1827.654 17 2788.35 1562.77 14.51% 14.49%
Mach B and Prod ¢ 18 4426.19 2235.105 16 3929.44 1995.37 11.22% 10.73%
Mach B and Prod d 18 3580.92 1879.402 17 3123.96 1618.67 12.76% 13.87%

GAS CONSUMPTION: ELECTRIC CONSUMPTION:
0s ASECemial ni'/kg) A SECuccialkwh/piece]
0.4+
0.3
Case
No.l:
0.2
0.2
g Py, |piece/l
0.1 i . Py kg/h] o, . i 1 II"‘"‘ '|>
60 120 20 40 60
ASEC, .p|m'/kg) A SEC.pecn [kwh/piece]
0.284 0.484
0.244 0.444
Case
No.2:
0.40 4
0.204
Py |piece/h)
80 120 160 2 3 40
ASEC, op4 [n'/kg) ASEC yecpalkwhipiece)
0.20
0.42-
0.16-
Case 0.35+
No.3:
0.12+
0.28 -
Pyalkg/h) Py |piece/h)
0.08 L—y T T T T >
70 140 210 20 40

® Data of a shift casually

e Data of production according to high efficiency zone

- Optimum models

O High energy efficiency zone

Fig. 6 The energy consumption details of the three cases under both strategies
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- Data of production casually

. 3
Gas consumption [m’]

4000 4
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2000 4

1000 4

04

Case No.1 Case No.2 Case No.3

Fig. 7 Comparison of energy use under the two production strategies

Gca - Gh

ca

Rygs = x 100% (19)

EeE
Retee = =% " % 100% (20)

ca

As indicted by Table 6 and Figs. 6 and 7, if the
production was well-scheduled within the high-energy-
efficiency zone, 10 to 15% of the currently used energy
can be saved without sacrificing profits or production
efficiency. There was even a potential to improve both
energy efficiency and productivity.

Conclusions and future work

An improved method was proposed in this paper for model-
ing gas and electric energy consumption of aluminum die-
casting processes. The modeling objective is to represent the
mathematical relation between SEC and production rate.
The modeling process can be well-adjusted according to
complex conditions of multi-combinations of machines and
products so that it can be easily extended to other die-casting
situations. Environmental concerns can be well addressed
together with the productivity objective. The detailed pro-
cess was based on the development of an intelligent data-
acquiring system (DAQS) aiming at collecting energy-
related data, transferring and storing data, and conducting
analysis. The metering devices and communication proto-
cols are all standard ones in the industry and support both
discrete and continuous information. Comparison among a

Data of production according
- to high efficiency zone

Electric consumption [kwh]

Case No.1 Case No.2 Case No.3

family of nonlinear regression methods was conducted, and
performances of different regression methods were analyzed
using certain regression evaluation indices to obtain the best
one for each engineering situation. Furthermore, the model-
ing results are validated by a comparison against data for
validation experiments. The models were further used to
support production scheduling considering both energy use
and productivity. Final reports of case studies showed that if
the modeling results were reasonably used and production
was accordingly well-scheduled, the production rate would
be kept being within the high-energy-efficiency zone as
much as possible, and 10 to 15% of energy saving can be
realized without losing profits. The possibly broad applica-
tion of the proposed modeling method has the potential of
saving energy and improving profitability of the die-casting
industry. It is estimated that the overall operation costs can
be reduced by 5 to 10%.

In the future, we will investigate other die-casting pro-
cesses and situations to further verify the proposed proce-
dure. Rather than monitoring production rate, we will also
explore other optimization techniques, such as optimiza-
tion of process parameters and engineering conditions, to
obtain balanced solutions for equilibrium of energy saving
and economic objectives based on the proposed modeling
procedure. The data acquisition, related information col-
lection, and model validation may also be applied to other
complex engineering situations beyond casting processes.
Since scheduling is just one aspect of the overall die-
casting process optimization, we will study how to incor-
porate the proposed energy modeling method to improve
the overall die-casting processes, such as job sequencing,
choice of die tools, and others.
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Nomenclature
Ap Bp Cp

Dp

adjR*

ag, bE9 CE

ar, bL’ cr

ag, bR

ap bp

D

E

E reals

F(O)

fSEC—P

Greal

P elec

gas
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Coefficients of polynomial cubic

Adjusted coefficient of determination
Coefficients of exponential functions
Coefficients of logarithmic functions
Coefficients of reciprocal functions
Coefficients of power functions
Demanding amount of products of orders

Calculation result of energy consumption of
the overall processes for using electric energy
[KWh]

The energy consumptions of the overall
processes in real practice for using electric

energy [KW+h)

Coefficient of F test

The function to get the aggregation of least
relative error

The alternative mathematical form to be used
during the modeling process

Calculation result of energy consumption of
the overall processes for using gas [m°]

The energy consumptions of the overall
processes in real practice for using gas [m°]

The sample group number of observed SEC
and P used for the modeling

The number of unknown coefficients of the
regression model

Production rate

Production rate of die-casting machine pro-
ducing finished products [piece/h]

Production rate of furnaces using gas [kg//]

RZ
Rga,w Relec

SEC

SE Celec
SEC,

gas

SSE

SST

T
Tc

]LH?GL‘H’ Eca

Th 9Gh ’Eh

lidle

Vi
Vi

6elec» 6gas

91, 929 cees Qn

Coefficient of determination
Relative energy efficiency evaluation indexes

Specific energy consumption. The amount of
energy required for processing a certain
amount of one kind of product

SEC of producing finished products from the
machine using electric energy [KW-h/piece]

SEC of melting raw materials using gas in
furnace [m°/kg]

Sum of residual squares
Sum of the total square
Residual standard deviation
Delivery time

Cycle of time of process

The real-time, gas consumption, and electric
energy consumption of meeting the demand D
operating casually

The real-time, gas consumption, and electric
energy consumption of meeting the demand D
using high energy efficiency strategy
Stand-by idling time

Production time

One of the observed values of production rate
P

One of the observed values of SEC
One of the values of the model output

Relative error indexes to measure the accuracy
of the prediction results

The unknown coefficient vector of the
regression model

The unknown coefficients of the regression
model

Optimum solution vector of the unknown
coefficients
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é17é27~~-79n

ApBp CpDp
ag, bg, cg
ar, by, cp
ag, br

ap bp

Ereal

F(0)

fSEC—P

Greal

P elec

P gas

Optimum solution group of the unknown
coefficients

The relative error between the calculation
result by regression model and real value

Coefficients of polynomial cubic
Coefficients of exponential functions
Coefficients of logarithmic functions
Coefficients of reciprocal functions
Coefficients of power functions
Demanding amount of products of orders

Calculation result of energy consumption of
the overall processes for using electric energy
[KWh]

The energy consumptions of the overall
processes in real practice for using electric

energy [KW+h)

Coefficient of F test

The function to get the aggregation of least
relative error

The alternative mathematical form to be used
during the modeling process

Calculation result of energy consumption of
the overall processes for using gas [m°]

The energy consumptions of the overall
processes in real practice for using gas [m°]

The sample group number of observed SEC
and P used for the modeling

The number of unknown coefficients of the
regression model

Production rate

Production rate of die-casting machine pro-
ducing finished products [piece/h]

Production rate of furnaces using gas [kg//]

RZ
Rgas s Relec

SEC

SE Celec

SEC s

T
Tc

7‘;,‘[19 GC(l’ Eca

Th7 Gh9 Eh

lidle

Vi

5&/@0 5gas

0
01,05, ... 0,
0
01,05,...,0,
9

Coefficient of determination
Relative energy efficiency evaluation indexes

Specific energy consumption. The amount of
energy required for processing a certain
amount of one kind of product

SEC of producing finished products from the
machine using electric energy [KW-h/piece]

SEC of melting raw materials using gas in
furnace [m°/kg]

Residual standard deviation
Delivery time
Cycle of time of process

The real time, gas consumption, and electric
energy consumption of meeting the demand D
operating casually

The real time, gas consumption, and electric
energy consumption of meeting the demand D
using high-energy-efficiency strategy
Stand-by idling time

Production time

One of the observed value of production rate P

One of the observed value of SEC

Relative error indexes to measure the accuracy
of the prediction results

The unknown coefficient vector of the
regression model

The unknown coefficients of the regression
model

Optimum solution vector of the unknown
coefficients

Optimum solution group of the unknown
coefficients

The relative error between the calculation
result by regression model and real value
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