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Abstract Energy modeling and efficiency analysis are
considered the foundation of manufacturing process
optimization to improve quality and efficiency and
reduce energy consumption and carbon emissions dur-
ing aluminum die-casting processes. This paper pro-
posed an energy modeling method to connect gas and
electric energy consumption with production rate of
aluminum die-casting processes based on data collect-
ed at workshops with various combination of ma-
chines and products. The detailed modeling process
involved the development of a data-acquiring system
and the comparison of various kinds of nonlinear
regression methods. The resulting models were vali-
dated with actual production data and were further
used to improve production scheduling. It was found
that if the modeling results are reasonably used and
production is accordingly well-scheduled, 10 to 15%
of energy savings could be realized without sacrificing
profits.

Keywords Aluminum die-casting process . Energy
consumptionmodeling . Data acquisition . Energy
efficiency analysis

Introduction

The manufacturing industry accounts for a significant
part of the world’s energy consumption and waste and is
responsible for nearly one third of global energy con-
sumption and 29.2% of global electricity-related CO2

emissions (Dunham 2015; Sieminski 2016). Energy
efficiency has become one of the key factors of the
manufacturing industry (Anderberg et al. 2010). Die-
casting processes are widely known for being highly
energy demanding. Approximately 25% of the total cost
for die-casting products is associated to energy con-
sumption (Brevick et al. 2004). In many countries,
legislations have become stricter and stricter over the
years regarding the energy consumption and emissions
of die-casting processes (Salonitis et al. 2016a). Produc-
tion managers face great challenges when trying to
implement energy efficiency initiatives under produc-
tivity concerns (Mohr et al. 2012; Trianni et al. 2013). It
is also noted that increasing resource utilization during
production could reduce the amount of energy con-
sumption in die-casting processes by 20 to 30% (Shao
2017; Trianni and Cagno 2012).

Researchers suggest that the efforts to reduce energy
consumption should start with evaluating the energy
consumption of manufacturing systems more accurately
(Cao et al. 2012; He et al. 2017; Zhong et al. 2016).
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However, traditional methods of studying energy con-
sumption of die-casting processes heavily depend on
experiments. Parameter calculation for resulting models
are widely considered weak due to the lack of the
needed data or model validation. For high-energy con-
sumption processes like die casting, modeling their en-
ergy consumption is complex, time-consuming, and
challenging. Specifically, aluminum casting has experi-
enced continuous growth (Das and Yin 2007;
Heinemann 2016) and dominates the nonferrous sector
in general, comprising 78% of total nonferrous ship-
ments (Rosen and Lee 2009). Some researchers also
pointed out that the energy consumption of the alumi-
num casting process is of the order of 6–17 GJ per ton in
using electricity and natural gas, which means the order
of 36–100 billion GJ for the global industry in 2017.
Salonitis et al. (2017) stated that there are huge oppor-
tunities for the metal casting industry to adopt the best
energy practices based on energy modeling. Therefore,
energy modeling and efficiency analysis of aluminum
die-casting processes are crucial for the energy efficien-
cy of the manufacturing industry.

Using real data of multiple machines and products at
aluminum die-casting workshops through an energy
data-acquiring system, this research built the mathemat-
ical relationship between specific energy consumption
(SEC), including both gas and electricity, and produc-
tion rate for aluminum die-casting processes. The high
energy efficiency zone was defined after various non-
linear regression methods were investigated. The per-
formance of different methods was compared to obtain
the optimum one, which was further validated by exper-
iments. The modeling results can be used to analyze the
energy efficiency of aluminum die-casting workshops
and further to support production scheduling with con-
sideration on energy usage. The study showed that the
modeling results can lead to 10 to 15% of energy sav-
ings without sacrificing profits. All the data-acquiring
and case studies were carried out in die-casting work-
shops of a furniture manufacturer in Zhejiang Province,
China.

Literature review

Energy consumption of die-casting processes has been
long studied in literature. Much of the research focused
on energy consumption using measurement and
statistical methods. For example, Lazzarin and Noro

(2015) presented energy audits performed in five Italian
cast iron foundries and identified energy utilization in
various processes, from iron melting to the end of cast-
ing. They further discussed energy efficiency opportu-
nities in service plants of cast iron foundries in Italy
(Lazzarin and Noro 2016). A report of the Office of
Scientific and Technical Information Technical
(Schwam 2012) addressed multiple aspects of the alu-
minum smelting and handling in die operations for
energy efficiency improvement based on data from
North American Die Casting Association (NADCA).
Eglins and Röders (2005) presented a model about the
overall heat transfer within an aluminum die-casting cell
to find measures for an energy demand reduction.
DETR (Department of Environment 1997) analyzed
the energy ratio of the key energy-consuming equip-
ment and phases in the casting process. However, ener-
gy consumption data are scattered, inconsistent, and not
helpful to guide energy-saving measures.

Simulation and visualization techniques have been
used by several researchers to calculate and compare the
energy and material flows without physical
implementation. For example, Salonitis et al. (2017)
presented a case study of selecting energy- and
resource-efficient casting processes based on simula-
tion. Mishra and Sharma (2017) investigated melting
of the bulk Al-7039 alloy during in situ microwave
casting through experimental trials in a multi-mode
applicator cavity and numerical simulation. Pagone
et al. (2016) developed a simulation tool to undertake
a systematic analysis of energy and material flows in the
casting process. Henninger et al. (2016) conducted sim-
ulations based on studies of energy-saving measures in
the aluminum tooling and die-casting industry. Krause
et al. (2012) provided a discrete event simulation (DES)-
based model of an aluminum die-casting process to
represent energy-oriented material flows. Singh et al.
(2012) proposed a new computer-aided system named
Sustainability Analyzer for die-casting processes using
three sustainability indicators including energy use, sol-
id water, and carbon emissions. However, the energy
data for simulations are mostly based on earlier data and
statistical analysis.

Meanwhile, the overall life cycles of products made
by die-casting processes are also common research
topics. For example, Yilmaz et al. (2015) used life cycle
assessment (LCA) as a decision support tool to evaluate
best available techniques (BATs) for cleaner production
of iron casting. Mitterpach et al. (2017) conducted
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environmental evaluation of gray cast iron via LCA.
LCA is mostly used under certain conditions, such as
neglecting complicated real-time situations and
variations of the parameters, and does not provide
accurate energy data. There is also much research
using modeling methods to look into the relation
between energy consumption and other process
parameters. From the process viewpoint, Selvaraj et al.
(2017) presented mathematical modeling of raw mate-
rial preheating in metal casting processes. Børset et al.
(2016) explored the potential for waste heat recovery
during metal casting with thermoelectric generators by
using on-site experiments and mathematical modeling.
Salonitis et al. (2016b) pointed out that constrained
rapid induction melting single shot up-casting
(CRIMSON) has advantages compared to conventional
sand casting processes regarding energy savings.
Watkins et al. (2013) used the sustainability characteri-
zation methodology to evaluate the sustainability of die-
casting manufacturing processes. Thiriez and Gutowski
(2006) studied the energy consumption of an injection
modeling process and created a model to represent the
SEC trends exhibited by each machine. However, the
applications of process improvement for energy savings
are often restricted because of the difficulty of its
implementation and expansion. Respectively, from the
operational viewpoint, Sharma et al. (2017) conducted
the sustainability modeling of die-casting processes
based on the process plan information. Bettoni and
Zanoni (2011) presented a power model focusing on
the relationship between SEC and the production rate
in order to improve energy efficiency in die-casting
processes. The model was based on previous work by
Gutowski et al. (2006). However, the data provided by
them are insufficient and there is no clear evidence to
support that the power form used by them is the opti-
mum one to characterize the regressive relation between
SEC and production rate.

In summary, energymodeling and efficiency analysis
of die-casting processes and the relationship with pro-
duction rate deserve further study.

Energy data acquisition and analysis system
of aluminum die-casting processes

This research collected energy consumption data for die-
casting processes at a typical die-casting workshop with
two casting machines. Each machine was designed to

produce two product types with corresponding types of
dies equipped. They are automatic, middle-sized, horizon-
tal cold chamber die-casting machines using electricity as
their power supply. Each was also equipped with a con-
tinuous furnace using natural gas. During data collection,
the workshop was under full operations with three shifts
per day and 6 days per week. In order to maintain their
temperature, the furnaces were continuously operated ex-
cept cases of emergency and necessary maintenance. We
developed an energy data acquisition and analysis system
with four main modules. The first module consisted of
digital meters for measuring energy consumption, includ-
ing voltage and current sensors for electricity and flow
sensors for gas. In addition, infrared sensors were used to
measure the production rate, and digital platform scales
were used to obtain weight of used materials. Once the
real-time energy and other data were collected by the first
module, they were transferred to the secondmodule by the
standard serial communication protocol of RS232/RS485.
The second module was an integrated control panel with
the installed data acquisition software, which received the
original data, transformed them to the html form, and then
transferred them to the system server. The data acquisition
software was developed with the Microsoft Foundation
Class (MFC) framework on the Visual Studio 2015 plat-
form. The database was developed using SQL Server
2010. The relevant analysis tools and interfaces were
developed using Java Spring MVC framework. The third
module was used to receive and store the data and to
respond to query requests for analysis. The last module
was the analysis kit to conduct the energy efficiency
analysis and then assist users in making decisions for
improving production schedules. The four modules
worked together to monitor the real-time state of energy
efficiency so that managers were able to control the pro-
duction rate or adjust the production plan. Figure 1 depicts
the structure of the energy data acquisition and analysis
system developed in this research. Table 1 shows example
data of energy consumption and production rates for ma-
chines producing different products, including gas con-
sumption in m3, electricity consumption in KW∙h, used
material in kg, and pieces of products produced. A sample
data for gas consumption is shown in Fig. 2.

Energy modeling of aluminum die-casting processes

This study built the regressive relation model between
SEC and production rate P in [piece/h] or [kg/h]

Energy Efficiency (2019) 12:1167–1182 1169



following Gutowski et al. [28]. The SEC is defined as
the amount of energy required for processing a certain
amount of one kind of product. For casting processes, it
can be expressed as SECgas in [m

3/kg] for gas used in the
furnace for melting rawmaterials, and SECelec in [KW∙h/
piece] for electricity used for machining finished prod-
ucts. The production rate P is defined as the production
rate of quality products rather than the overall one and
varies over shifts. Managers are able to control the
energy consumption state and effective production rate
P of each shift by taking measures such as rescheduling
the production plan to accelerate or decelerate the pro-
duction rate, reducing the machine idle time, optimizing
machine parameters, and enhancing workers’ skills to
improve the energy efficiency and quality rate. Since
there are two machines producing two kinds of prod-
ucts, capital letters are used to denote the machine and
lowercase letters are used to denote the product type.

For example, SECgasAb means the SEC of furnace A
melting raw material for product b using gas, and
SECelecBb is the SEC of machine B producing product
b using electric energy. PgasAb in [kg/h] and PelecAb in
[piece/h] are production rates for furnace A and machine
A for producing product b respectively. For a fixed cycle
time Tc of process c, the production rate P is related to
stand-by idling time tidle and production time tp. P
increases when tidle decreases and tp increases. More-
over, the SEC decreases when the production rate P
increases (Gutowski et al. 2006; Bettoni and Zanoni
2011). Figure 3 illustrates the general relationship be-
tween SECgasAb and production rate PgasAb based on
data acquired by the developed system. The area circled
out in red is considered the high-efficiency zone, which
is defined as the aggregation of data points near the
Pareto frontier of productivity and energy efficiency.
The energy model is used to describe the relation

Fig. 1 Structure of the data acquisition and analysis system
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between SEC and Pwithin the zone, which is marked by
green. Once the mathematical model is established, the
real-time state of the production should be within the
high-efficiency zone as much as possible to improve the
energy efficiency and productivity of the overall
production.

To obtain the specific optimum mathematical form
for the nonlinear regressive relation between SEC and P,
the most used modeling method in literature is nonlinear
regression. The general mathematical form for the rela-
tion can be represented by fSEC-P in Eq. (1), where θ1, θ2,
…, θn represent the unknown coefficients, and n repre-
sents the number of coefficients. Apparently, the mean-
ing and number of θ1, θ2, …, θn are determined by the
specific mathematical form of fSEC-P. ε is the error be-
tween the calculation result by fSEC-P and the real value
of SEC:

SEC ¼ f SEC−P P; θ1; θ2;…; θnð Þ þ ε ð1Þ

Following the least squaremethod, the optimum fSEC-
P under a certain mathematical form can be found by
determining the optimum group of θ1, θ2,…, θn leading
to the least aggregation of ε, as Eq. (2). Here, θ repre-
sents the vector of (θ1, θ2,…, θn)

T, F(θ) is the function to
get the least relative error,N represents the sample group
number of observed SEC and P used for the modeling,
SECi represents one of the observed value of SEC, and
Pi represents the relevant observed value of P.

min
θ

F θð Þ ¼ min
θ

∑
N

i¼1
SECi− f SEC−P Pi; θ1; θ2;…; θnð Þð Þ2:

ð2Þ
The minimum value of F(θ) can be obtained by

solving a differential equation group (3), formed by n
equations of fSEC − P’s partial deviation to θi (i = 1, 2,…,
n). The optimum values of θ1, θ2,…, θn are represented

by a vector of θ̂ ¼ bθ1; bθ2;…; bθn
� �T

. This research used

the Newton iterative method to obtain the solution of θ̂:

∂F
∂θi

����
θi¼bθi

¼ −2 ∑
N

j¼1
SEC j− f SEC−P P j; θ̂

� �� �

∂ f SEC−P
∂θi

����
θi¼θ̂î

¼ 0

ð3Þ

Based on the data collected over 5months, various non-
linear regression curves, such as reciprocal, power, poly-
nomial cubic, exponential, and logarithmic functions, were
analyzed to obtain the optimum one for each pair of
machine and product. The expression and coefficients of
each fSEC−P is listed in Table 2, in which AP, BP, CP, and
DP are the coefficients of polynomial cubic, and aR, bR, aP,
bP, aE, bE, cE, aL, bL, and cL are the coefficients of recip-
rocal, power, exponential, and logarithmic respectively.

For each form of regression model fSEC − P, adjusted
coefficient of determination adjR2 and residual standard
deviation s are used to evaluate its performance. Their
calculation formula are as follows:

adjR2 ¼ 1− 1−R2
� � N−1ð Þ

N−kð Þ ; ð4Þ

R2 ¼ 1−
SSE
SST

; ð5Þ

SSE ¼ ∑
N

i¼1
yi−ŷîð Þ2; ð6Þ

and

Fig. 2 Sample data for gas consumption

Fig. 3 Relationship between SECgasAb and PgasAb
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SST ¼ ∑
N

i¼1
yi−y

� �2
ð7Þ

Equation (8) is used for calculating residual standard
deviation s.

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSE= N−nð Þ

p
ð8Þ

Here, SSE is the sum of residual squares, SST is the
sum of the total square, yi is the true value of the sample
of SECi, ŷi is the value of the model output, and n is the
number of factors in the model. Apparently, adjR2 ≤ 1.
A greater adjR2 implies that the fitted values are closer
to the observations. Similarly, s can be considered the
estimation of the mean square variance. The smaller its

Table 2 Forms and coefficients of none-linear curves used

Non-linear curves Expression and coefficients

Reciprocal SEC = 1/(aR + bRP)

Power
SEC ¼ aPPbP bP < 0ð Þ

Polynomial cubic SEC = AP + BPP +CPP
2 +DPP

3

Exponential SEC = aE − bEcEP

Logarithmic SEC = aL − bLIn(P + cL)

Table 3 Regression results for gas consumption for each pair of machine and product

Mach A and Prod a Mach A and Prod b Mach B and Prod c Mach B and Prod d

Reciprocal Model
SECgasAa ¼

1

1:013þ 0:0468PgasAa

SECgasAb ¼
1

3:482þ 0:035PgasAb

SECgasBc ¼
1

2:746þ 0:015PgasBc

SECgasBd ¼
1

2:72þ 0:032PgasBd

adjR2 0.975 0.963 0.935 0.931

s 0.00955 3.72E-4 4.852E-3 4.74E-3

Power Model
SECgasAa ¼ 5:469P−0:746

gasAa SECgasAb ¼ 1:6P−0:527
gasAb SECgasBc ¼ 1:152P−0:35

gasBc SECgasBd ¼ 2:64P−0:6
gasBd

adjR2 0.989 0.967 0.958 0.952

s 9.976E−3 7.518E−4 1.506E−3 1.592E−3
Polynomial

cubic
Model

SECgasAa ¼ 0:725 −0:01
28PgasAa þ9:938� 1
0−5PgasAa

2 −2:638� 1
0−7PgasAa

3

SECgasAb ¼ 0:22 −4:393
�10−4PgasAb −5:34� 1
0−6PgasAb

2 þ2:246� 1
0−8PgasAb

3

SECgasBc ¼ 0:548 −0:00
724PgasBc þ5:46� 1
0−5PgasBc

2 −1:44� 1
0−7PgasBc

3

SECgasBd ¼ 0:4128 −0:00
403PgasBd þ1:885� 1
0−5PgasBd

2 −3:102� 1
0−8PgasBd

3

adjR2 0.988 0.982 0.954 0.937

s 9.052E−3 2.594E−4 2.297E−3 1.452E−3
Exponential Model

SECgasAa ¼ 0:126 −0:69
2� 0:973PgasAa

SECgasAb ¼ 0:0828 þ0:22

5� 0:987PgasAb

SECgasBc ¼ 0:193 þ0:38

5� 0:975PgasBc

SECgasBd ¼ 0:1 þ0:391�
0:983PgasBd

adjR2 0.985 0.969 0.961 0.954

s 9.063E-3 5.542E-4 2.095E-3 1.356E-3

Logarithmic Model
SECgasAa ¼ 0:513− 0:07

94In PgasAa−31:91
� �

PgasAa > 31:91
� �

SECgasAb ¼ 0:358− 0:051

In PgasAb−29:1
� �
PgasAb > 29:1
� �

SECgasBc ¼ 0:359− 0:03

4In PgasBc−49:41
� �

PgasBc > 49:41
� �

SECgasBd ¼ 0:294− 0:036

9In PgasBd−66:275
� �

PgasBd > 66:275
� �

adjR2 0.997 0.954 0.971 0.944

s 8.567E−3 8.695E−3 9.806E−3 1.573E−3
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value is, the better the model. The final regression
results for gas are listed in Table 3, in which the opti-
mum ones are highlighted. Table 4 is for electricity
consumption.

Figure 4 shows the regression results of gas usage for
each pair of machine and product, and so does Fig. 5 for
electricity consumption. The data regression processes
were carried out by the software of MATLAB 2016,
Origin 8 and SPSS 2016.

From Tables 3 and 4, the best regression model for
each group of machine and product can be easily select-
ed using the performance indices (i.e., adjR2 and s).
Specifically, Eqs. (9) and (10) can be used to calculate
and evaluate the gas and electricity consumption for
machine A producing product a respectively.

SECgasAa ¼ 0:513−0:0794In PgasAa−31:91
� �

PgasAa > 31:91
� �

;

ð9Þ

andSECelecAa ¼ 0:589−0:103In PelecAa−11:82
��

PelecAa > 11:82
� �

:

ð10Þ
Similarly, for the case of machine A producing prod-

uct b, the energy consumption models are

SECgasAb ¼ 0:22−4:393� 10−4PgasAb−5:34

� 10−6PgasAb
2 þ 2:246

� 10−8PgasAb
3; ð11Þ

SECelecAb ¼ 0:379−0:00372PelecAb−1:737

� 10−5PelecAb
2 þ 4:509

� 10−7PelecAb
3: ð12Þ

Table 4 Regression results for electricity consumption for each pair of machine and product

Mach A and Prod a Mach A and Prod b Mach B and Prod c Mach B and Prod d

Reciprocal Model
SECelecAa ¼

1

0:99þ 0:078PelecAa

SECelecAb ¼
1

2:46þ 0:045PelecAb

SECelecBc ¼
1

1:819þ 0:019PelecBc

SECelecBd ¼
1

1:54þ 0:048PelecBd

adjR2 0.969 0.974 0.908 0.965

s 0.0157 1.3906E-3 8.6589E-3 4.5074E-3

Power Model
SECelecAa ¼ 2:891P−0:67

elecAa SECelecAb ¼ 1:047P−0:41
elecAb SECelecBc ¼ 0:86P−0:21

elecBc SECelecBd ¼ 1:54P−0:45
elecBd

adjR2 0.986 0.985 0.958 0.986

s 0.0068 7.40173E−3 2.0796E−3 1.86101E−3
Polynomial

cubic
Model

SECelecAa ¼ 0:88 −0:03
7PgasAa þ7:05� 10−4

PgasAa
2 −4:7� 10−6

PgasAa
3

SECelecAb ¼ 0:379 −0:0037
2PelecAb −1:737� 10−5

PelecAb
2 þ4:509� 10−7

PelecAb
3

SECelecBc ¼ 0:698 −0:01
9PelecBc þ3:89� 10−4

PelecBc
2 −2:42� 10−6

PelecBc
3

SECelecBd ¼ 0:867 −0:04
067PelecBd þ0:00104
PelecBd

2 −9:441� 10−6

PelecBd
3

adjR2 0.977 0.994 0.976 0.987

s 0.0095 1.654E−4 3.9815E−4 1.56933E−3
Exponential Model

SECelecAa ¼ 0:174 þ0:7

72� 0:938PelecAa

SECelecAb ¼ 0:162 þ0:3�
0:963PelecAb

SECelecBc ¼ 0:387 þ0:52

6� 0:897PelecBc

SECelecBd ¼ 0:249 þ0:54

5� 0:937PelecBd

adjR2 0.976 0.987 0.994 0.9792

s 0.0111 4.613E-4 2.678E-4 2.99718E-3

Logarithmic Model
SECelecAa ¼ 0:589− 0:1
03ln PelecAa−11:82ð Þ
PelecAa > 11:82ð Þ

SECelecAb ¼ 0:482− 0:073
ln PelecAb−8:792ð Þ
PelecAb > 8:792ð Þ

SECelecBc ¼ 0:518− 0:03
8ln PelecBc−13:01ð Þ
PelecBc > 13:01ð Þ

SECelecBd ¼ 0:569− 0:08
26ln PelecBd−11:46ð Þ
PelecBd > 11:46ð Þ

adjR2 0.995 0.978 0.986 0.993

s 2.186E−3 8.603E−3 5.3645E−3 7.42702E−4
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For the case of machine B producing product c, the
regression models are

SECgasBc ¼ 1:152P−0:35
gasBc; ð13Þ

and

SECelecBc ¼ 0:387þ 0:526� 0:897PelecBc: ð14Þ
For the case of machine B producing product d, the

regression models are

SECgasBd ¼ 0:1þ 0:391� 0:983PgasBd ; ð15Þ
and

SECelecBd ¼ 0:569−0:0826ln PelecBd−11:46ð Þ
when PelecBd > 11:46:

ð16Þ

In order to validate the resulting models (9–16),
validation experiments for the high-energy-efficiency
zones were carried out. The energy consumptions of

the overall processes in real practice, Greal for gas and
Ereal for electricity, were measured and compared to
the calculation results using the corresponding regres-
sion models. For each model, the validation experi-
ments were conducted five times using different pro-
duction rates. The relative errors between the calcula-
tion results (i.e., Gc and Ec) and the real energy
consumption during experiments (i.e., Greal and Ereal)
were calculated by using Eqs. (17) and (18), where
δ
gas

and δelec represent the relative errors of the pre-
diction results of gas and electricity consumptions:

δgas ¼ jGreal−Gcj
Greal

� 100% ð17Þ

δelec ¼ jEreal−Ecj
Ereal

� 100% ð18Þ
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The resulting δgas and δelec are listed in Table 5. All
values of δgas and δelec are lower than 5%, meaning that
the proposed models are rather accurate in predicting
energy consumption of the overall shifts.

The modeling results also show that there is no
clear evidence to imply that a certain form of model
can be used as the optimum one to characterize the
regressive relation between SEC and production rate
P in the high-energy-efficiency zone. However, for
each pair of machine and product and for either gas
or electricity, a specific optimum model can be
established. Managers can use the models to predict
energy consumption under a certain production rate
and further use the relational models to support
production scheduling with the consideration on the
trade-off between energy efficiency and productivity.
In general, the production should be kept within the
high-efficiency zone as much as possible.

Energy efficiency analysis

The case studies carried out in this research were
targeted to meet orders with the certain amount of D
units and a delivery time T. Two production strategies
were further studied. Under the first strategy, the ma-
chines were operated causally without considering en-
ergy consumption, which was the current practice. The
second strategy was to keep the operations within the
high-energy-efficiency zone as much as possible based
on the proposed models. The energy consumptions of
both strategies were measured using the data acquisition
system and were compared to analyze the energy-saving
potentials of the workshops.

The detailed operating information and results of the
three cases are listed in Table 6, where Tca, Gca, and Eca

are defined as the operational time, gas consumption,
and electric energy consumption to meet demand D
under the first strategy. Th, Gh, and Eh are those under

Fig. 5 Regression results for electricity consumption
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the second strategy. Relative energy efficiency evalua-
tion indices Rgas and Relec were calculated using Eqs.
(19) and (20) to compare the energy usage of the two

strategies. Figure 6 shows the energy consumption data
details, and Fig. 7 shows the comparison of energy use
under the two production strategies.

Table 5 Relative errors between validation experiments and regression models

Mach A and prod a Mach A and prod b Mach B and prod c Mach B and prod d

Exp shift group no. 1 MAT used[kg] 477.56 478.97 387.65 637.98

Num of pieces 189 156 101 124

Greal [m
3] 116.343 84.343 112.124 130.765

Gc [m
3] 118.997 86.716 114.820 127.352

δgas 2.281% 2.814% 2.404% 2.61%

Ereal [KW∙h] 64.654 48.983 54.456 55.345

Ec [KW∙h] 63.266 47.299 52.555 56.255

δelec 2.147% 3.438% 3.491% 1.644%

Exp shift group no. 2 MAT used[kg] 614.34 662.87 563.65 843.87

Num of pieces 244 221 148 167

Greal [m
3] 132.987 109.345 143.234 137.234

Gc [m
3] 129.655 105.870 146.45 138.459

δgas 2.506% 3.178% 2.245% 0.893%

Ereal [KW∙h] 68.984 62.987 70.567 66.987

Ec [KW∙h] 70.143 60.219 67.697 64.092

δelec 1.680% 4.395% 4.067% 4.322%

Exp shift group no. 3 MAT used[kg] 864.54 1107.87 775.98 1080.34

Num of pieces 345 367 205 215

Greal [m
3] 151.788 129.876 184.346 154.98

Gc [m
3] 146.131 128.961 180.276 149.735

δgas 3.727% 0.705% 2.208% 3.384%

Ereal [KW∙h] 82.908 80.765 90.345 76.987

Ec [KW∙h] 80.830 79.023 85.988 73.758

δelec 2.506% 2.157% 4.823% 4.194%

Exp shift group no. 4 MAT used[kg] 1142.45 1238.98 1013.59 1394.09

Num of pieces 456 412 269 278

Greal [m
3] 163.876 136.435 217.455 170.345

Gc [m
3] 158.997 132.960 214.459 166.877

δgas 2.977% 2.547% 1.378% 2.036%

Ereal [KW∙h] 88.982 82.987 109.543 88.943

Ec [KW∙h] 89.605 83.611 107.762 85.895

δelec 0.695% 0.752% 1.626% 3.427%

Exp shift group no. 5 MAT used[kg] 1330.87 1630.76 1179.09 1638.76

Num of pieces 532 543 314 326

Greal [m
3] 161.897 159.987 230.234 180.456

Gc [m
3] 164.862 161.123 236.613 182.988

δgas 1.831% 0.71% 2.771% 1.403%

Ereal [KW∙h] 96.887 103.345 126.876 93.234

Ec [KW∙h] 94.082 101.801 123.835 94.987

δelec 2.895% 1.494% 2.397% 1.88%
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Table 6 Detailed information and measuring results of the three objective cases

Case Mach and Prod Tca [shift] Gca [m
3] Eca [KW∙h] Th [shift] Gh [m

3] Eh [KW∙h] Rgas Relec

1 Mach A and Prod a 18 3261.65 1827.654 17 2788.35 1562.77 14.51% 14.49%

2 Mach B and Prod c 18 4426.19 2235.105 16 3929.44 1995.37 11.22% 10.73%

3 Mach B and Prod d 18 3580.92 1879.402 17 3123.96 1618.67 12.76% 13.87%

Fig. 6 The energy consumption details of the three cases under both strategies
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Rgas ¼ Gca−Gh

Gca
� 100% ð19Þ

Relec ¼ Eca−Eh

Eca
� 100% ð20Þ

As indicted by Table 6 and Figs. 6 and 7, if the
production was well-scheduled within the high-energy-
efficiency zone, 10 to 15% of the currently used energy
can be saved without sacrificing profits or production
efficiency. There was even a potential to improve both
energy efficiency and productivity.

Conclusions and future work

An improvedmethodwas proposed in this paper for model-
ing gas and electric energy consumption of aluminum die-
casting processes. Themodeling objective is to represent the
mathematical relation between SEC and production rate.
The modeling process can be well-adjusted according to
complex conditions of multi-combinations of machines and
products so that it can be easily extended to other die-casting
situations. Environmental concerns can be well addressed
together with the productivity objective. The detailed pro-
cess was based on the development of an intelligent data-
acquiring system (DAQS) aiming at collecting energy-
related data, transferring and storing data, and conducting
analysis. The metering devices and communication proto-
cols are all standard ones in the industry and support both
discrete and continuous information. Comparison among a

family of nonlinear regression methods was conducted, and
performances of different regressionmethodswere analyzed
using certain regression evaluation indices to obtain the best
one for each engineering situation. Furthermore, the model-
ing results are validated by a comparison against data for
validation experiments. The models were further used to
support production scheduling considering both energy use
and productivity. Final reports of case studies showed that if
the modeling results were reasonably used and production
was accordingly well-scheduled, the production rate would
be kept being within the high-energy-efficiency zone as
much as possible, and 10 to 15% of energy saving can be
realized without losing profits. The possibly broad applica-
tion of the proposed modeling method has the potential of
saving energy and improving profitability of the die-casting
industry. It is estimated that the overall operation costs can
be reduced by 5 to 10%.

In the future, we will investigate other die-casting pro-
cesses and situations to further verify the proposed proce-
dure. Rather than monitoring production rate, we will also
explore other optimization techniques, such as optimiza-
tion of process parameters and engineering conditions, to
obtain balanced solutions for equilibrium of energy saving
and economic objectives based on the proposed modeling
procedure. The data acquisition, related information col-
lection, and model validation may also be applied to other
complex engineering situations beyond casting processes.
Since scheduling is just one aspect of the overall die-
casting process optimization, we will study how to incor-
porate the proposed energy modeling method to improve
the overall die-casting processes, such as job sequencing,
choice of die tools, and others.
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Nomenclature
AP, BP, CP,
DP

Coefficients of polynomial cubic

adjR2 Adjusted coefficient of determination

aE, bE, cE Coefficients of exponential functions

aL, bL, cL Coefficients of logarithmic functions

aR, bR Coefficients of reciprocal functions

aP, bP Coefficients of power functions

D Demanding amount of products of orders

Ec
Calculation result of energy consumption of
the overall processes for using electric energy
[KW∙h]

Ereal, The energy consumptions of the overall
processes in real practice for using electric
energy [KW∙h]

F Coefficient of F test

F(θ) The function to get the aggregation of least
relative error

fSEC-P The alternative mathematical form to be used
during the modeling process

Gc
Calculation result of energy consumption of
the overall processes for using gas [m3]

Greal
The energy consumptions of the overall
processes in real practice for using gas [m3]

N The sample group number of observed SEC
and P used for the modeling

n The number of unknown coefficients of the
regression model

P Production rate

Pelec
Production rate of die-casting machine pro-
ducing finished products [piece/h]

Pgas
Production rate of furnaces using gas [kg/h]

R2 Coefficient of determination

Rgas, Relec Relative energy efficiency evaluation indexes

SEC Specific energy consumption. The amount of
energy required for processing a certain
amount of one kind of product

SECelec
SEC of producing finished products from the
machine using electric energy [KW∙h/piece]

SECgas
SEC of melting raw materials using gas in
furnace [m3/kg]

SSE Sum of residual squares

SST Sum of the total square

s Residual standard deviation

T Delivery time

Tc Cycle of time of process

Tca,Gca, Eca The real-time, gas consumption, and electric
energy consumption of meeting the demand D
operating casually

Th ,Gh ,Eh
The real-time, gas consumption, and electric
energy consumption of meeting the demand D
using high energy efficiency strategy

tidle Stand-by idling time

tp Production time

xi One of the observed values of production rate
P

yi One of the observed values of SEC

ŷi One of the values of the model output

δelec, δgas Relative error indexes to measure the accuracy
of the prediction results

θ The unknown coefficient vector of the
regression model

θ1, θ2,…, θn The unknown coefficients of the regression
model

θ̂ Optimum solution vector of the unknown
coefficients
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θ̂1; θ̂2;…; θ̂n Optimum solution group of the unknown
coefficients

ε The relative error between the calculation
result by regression model and real value

AP,BP,CP,DP
Coefficients of polynomial cubic

aE, bE, cE Coefficients of exponential functions

aL, bL, cL Coefficients of logarithmic functions

aR, bR Coefficients of reciprocal functions

aP, bP Coefficients of power functions

D Demanding amount of products of orders

Ec
Calculation result of energy consumption of
the overall processes for using electric energy
[KW∙h]

Ereal
The energy consumptions of the overall
processes in real practice for using electric
energy [KW∙h]

F Coefficient of F test

F(θ) The function to get the aggregation of least
relative error

fSEC-P The alternative mathematical form to be used
during the modeling process

Gc
Calculation result of energy consumption of
the overall processes for using gas [m3]

Greal
The energy consumptions of the overall
processes in real practice for using gas [m3]

N The sample group number of observed SEC
and P used for the modeling

n The number of unknown coefficients of the
regression model

P Production rate

Pelec
Production rate of die-casting machine pro-
ducing finished products [piece/h]

Pgas
Production rate of furnaces using gas [kg/h]

R2 Coefficient of determination

Rgas , Relec
Relative energy efficiency evaluation indexes

SEC Specific energy consumption. The amount of
energy required for processing a certain
amount of one kind of product

SECelec
SEC of producing finished products from the
machine using electric energy [KW∙h/piece]

SECgas
SEC of melting raw materials using gas in
furnace [m3/kg]

s Residual standard deviation

T Delivery time

Tc Cycle of time of process

Tca, Gca, Eca
The real time, gas consumption, and electric
energy consumption of meeting the demand D
operating casually

Th, Gh, Eh
The real time, gas consumption, and electric
energy consumption of meeting the demand D
using high-energy-efficiency strategy

tidle Stand-by idling time

tp Production time

xi One of the observed value of production rate P

yi One of the observed value of SEC

δelec, δgas Relative error indexes to measure the accuracy
of the prediction results

θ The unknown coefficient vector of the
regression model

θ1, θ2,…, θn The unknown coefficients of the regression
model

θ̂ Optimum solution vector of the unknown
coefficients

θ̂1; θ̂2;…; θ̂n Optimum solution group of the unknown
coefficients

ε The relative error between the calculation
result by regression model and real value

Energy Efficiency (2019) 12:1167–1182 1181



References

Anderberg, S. E., Kara, S., & Beno, T. (2010). Impact of energy
efficiency on computer numerically controlled machining.
Proceedings of the Institution of Mechanical Engineers Part B
Journal of Engineering Manufacture, 224(4), 531–541.

Bettoni, L., & Zanoni, S. (2011). Energy implications of produc-
tion planning decisions. Berlin: Springer.

Børset, M. T., Wilhelmsen, Ø., Kjelstrup, S., & Burheim, O. S.
(2016). Exploring the potential for waste heat recovery dur-
ing metal casting with thermoelectric generators: on-site ex-
periments and mathematical modeling. Energy, 118.

Brevick, J., Mountcampbell, C., & Mobley, C. (2004). Energy
consumption of die casting operations. Office of Scientific &
Technical Information Technical Reports.

Cao, H., Li, H., Cheng, H., Luo, Y., Yin, R., & Chen, Y. (2012). A
carbon efficiency approach for life-cycle carbon emission
characteristics of machine tools. Journal of Cleaner
Production, 37(4), 19–28.

Das, S. K., & Yin,W. (2007). The worldwide aluminum economy:
the current state of the industry. JOM, 59(11), 57–63.

Department Ofenvironment, T. (1997). Non-ferrous foundries.
Dunham, S. (2015). Inventory of U.S. Greenhouse Gas Emissions

and Sinks: 1990–2013.
Eglins, F., & Röders, J. (2005). Method of measuring a tool of a

machine tool. EP.
Gutowski, T., Dahmus, J., & Thiriez, A. (2006). Electrical energy

requirements for manufacturing processes. Energy, 2.
He, K., Tang, R., & Jin, M. (2017). Pareto fronts of machining

parameters for trade-off among energy consumption, cutting
force and processing time. International Journal of
Production Economics, 185, 113–127.

Heinemann, T. (2016). Energy and resource efficiency in alumin-
ium die casting. Springer International Publishing.

Henninger, M., Schlüter, W., Jeckle, D., & Schmidt, J. (2016).
Simulation based studies of energy saving measures in the
aluminum tool and die casting industry. Applied Mechanics
& Materials, 856.

Krause, M., Thiede, S., Herrmann, C., & Butz, F. F. (2012). A
material and energy flow oriented method for enhancing
energy and resource efficiency in aluminium foundries.
Berlin: Springer.

Lazzarin, R. M., & Noro, M. (2015). Energy efficiency opportunities
in the production process of cast Iron foundries: an experience in
Italy. Applied Thermal Engineering, 90, 509–520.

Lazzarin, R. M., & Noro, M. (2016). Energy efficiency oppor-
tunities in the service plants of cast iron foundries in Italy.
International Journal of Low-Carbon Technologies,
12(2).

Mishra, R. R., & Sharma, A. K. (2017). On melting characteristics
of bulk Al-7039 alloy during in-situ microwave casting.
Applied Thermal Engineering, 111, 660–675.

Mitterpach, J., Hroncová, E., Ladomerský, J., & Balco, K. (2017).
Environmental evaluation of grey cast iron via life cycle
assessment. Journal of Cleaner Production, 148, 324–335.

Mohr, S., Somers, K., Swartz, S., & Vanthournout, H. (2012).
Manufacturing resource productivity. McKinsey Quarterly,
June, 2012, 20–25.

Pagone, E., Jolly, M., & Salonitis, K. (2016). The development of
a tool to promote sustainability in casting processes ☆.
Procedia CIRP, 55, 53–58.

Rosen, M. A., & Lee, D. L. (2009). Exergy-based analysis and
efficiency evaluation for an aluminum melting furnace in a
die-casting plant. In Iasme/wseas international conference on
energy & environment (pp. 160–165).

Salonitis, K., Jolly, M. R., Zeng, B., & Mehrabi, H. (2016a).
Improvements in energy consumption and environmental
impact by novel single shot melting process for casting.
Journal of Cleaner Production, 137, 1532–1542.

Salonitis, K., Zeng, B., Mehrabi, H. A., & Jolly, M. (2016b). The
challenges for energy efficient casting processes☆. Procedia
CIRP, 40, 24–29.

Salonitis, K., Jolly, M., & Zeng, B. (2017). Simulation based
energy and resource efficient casting process chain selection:
a case study☆. Procedia Manufacturing, 8, 67–74.

Schwam, D. (2012). Energy saving melting and revert reduction
technology: melting efficiency in die casting operations.
Office of Scientific & Technical Information Technical
Reports.

Selvaraj, J., Marimuthu, P., Devanathan, S., Ramachandran, K. I.,
Selvaraj, J., Marimuthu, P., et al. (2017). Mathematical
modelling of raw material preheating by energy recycling
method in metal casting process. In Intelligent systems tech-
nologies and applications (pp. 766–769).

Shao, Y. (2017). Analysis of energy savings potential of China’s
nonferrous metals industry. Resources Conservation &
Recycling, 117, 25–33.

Sharma, M., Singh, R., & Singh, R. (2017). Sustainable modeling
of die-casting processes through Matlab.

Sieminski, A. (2016). International energy outlook 2016.
Singh, P., Madan, J., Singh, A., & Mani, M. (2012). Computer-

aided system for sustainability analysis for the die-casting
process. In ASME Manufacturing Science and Engineering
ConferenceASME Manufacturing Science and Engineering
Conference (pp. MSEC2012–7303).

Thiriez, A., & Gutowski, T. (2006). An environmental analysis of
injection molding. In IEEE international symposium on elec-
tronics and the environment (pp. 195–200).

Trianni, A., & Cagno, E. (2012). Dealing with barriers to energy
efficiency and SMEs: Some empirical evidences. Energy,
37(1), 494–504.

Trianni, A., Cagno, E., Thollander, P., & Backlund, S. (2013).
Barriers to industrial energy efficiency in foundries: a
European comparison. Journal of Cleaner Production,
40(3), 161–176.

Watkins, M. F., Mani, M., Lyons, K. W., & Gupta, S. K. (2013).
Sustainability characterization for die casting process. In
ASME 2013 International Design Engineering Technical
Conferences and Computers and Information in
Engineering Conference (pp. V02AT02A006).

Yilmaz, O., Anctil, A., & Karanfil, T. (2015). LCA as a decision
support tool for evaluation of best available techniques
(BATs) for cleaner production of iron casting. Journal of
Cleaner Production, 105, 337–347.

Zhong, Q., Tang, R., Lv, J., Jia, S., & Jin,M. (2016). Evaluation on
models of calculating energy consumption in metal cutting
processes: a case of external turning process. International
Journal of Advanced Manufacturing Technology, 82(9–12),
2087–2099.

1182 Energy Efficiency (2019) 12:1167–1182


	Energy modeling and efficiency analysis of aluminum die-casting processes
	Abstract
	Introduction
	Literature review
	Energy data acquisition and analysis system of aluminum die-casting processes
	Energy modeling of aluminum die-casting processes
	Energy efficiency analysis
	Conclusions and future work
	References


