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Abstract Over the past four decades, a substantial body
of literature has explored the impacts of occupant be-
haviour (OB) on building technologies, operation, and
energy consumption. A large number of data-driven
behavioural models have been developed based on field
data. These models lack standardisation and consisten-
cy, leading to difficulties in applications and compari-
son. To address this problem, an ontology was

developed using the drivers-needs-actions-systems
(DNAS) framework. Recent work has been carried out
to implement the theoretical DNAS framework into an
eXtensible Markup Language (XML) schema, titled
‘occupant behaviour XML’ (obXML) which is a practi-
cal implementation of OB models that can be integrated
into building performance simulation (BPS) programs.
This paper presents a newly developed library of OB
models represented in the standardised obXML schema
format. This library provides ready-to-use examples for
BPS users to employ more accurate occupant represen-
tation in their energy models. The library, which con-
tains an initial effort of 52 OB models, was made
publicly available for the BPS community. As part of
the library development process, limitations of the
obXML schema were identified and addressed, and
future improvements were proposed. Authors hope that
by compiling this library building, energy modellers
from all over the world can enhance their BPS models
by integrating more accurate and robust OB patterns.

Keywords Occupant behaviour . Building performance
simulation . XML schema . obXML . Occupant
behaviour model

Introduction

The concept of energy-related occupant behaviour in
buildings can be defined as occupants’ behavioural re-
sponses to discomfort, presence and movement, and
interactions with building systems that have an impact
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on the performance (energy, thermal, visual, and IAQ)
of buildings (D’Oca et al. 2017a). The interactions
under investigation in this paper include adjusting ther-
mostat settings, opening or closing windows, dimming
or turning lights on/off, pulling window blinds up or
down, and switching plug loads on or off (Hong et al.
2015a). Energy-related occupant behaviour in buildings
is one of the six influencing factors of building perfor-
mance (Yoshino et al. 2017; Polinder et al. 2013; Yan
et al. 2017), which also includes climate, building enve-
lope, building equipment, operation and maintenance,
and indoor environmental conditions. Occupants can
influence the indoor thermal and air condition directly
by their mere presence (emitting heat, moisture, and
CO2), or indirectly through their interactions with build-
ing systems.

Overview of building performance simulation

The use of computer simulation for solving complex
engineering problems or modelling complicated sys-
tems has been widespread for many decades now
(Nguyen et al. 2014; Hong et al. 2000). With this meth-
od, scientists or practitioners were able to speed up
calculation processes and handle complex systems such
as buildings through a single interface in a more precise
way than before.

For building analysis, designers frequently use dy-
namic thermal simulation programs to calculate the in-
door thermal and energy behaviour of a building (Garber
2009; Hong et al. 2000). Building performance simula-
tion (BPS) software tools can evaluate a wide range of
thermal or human behavioural response to stimuli (Clark
2001). These simulations make it possible to compare
different design or retrofitting scenarios from the perspec-
tive of annual energy consumption and indoor comfort in
a very time- and resource-efficient way. Using these
analysis techniques, optimal energy savings can be
achieved, and thus greenhouse gas emissions from build-
ings can be reduced. In many cases, the goal of design
and simulations is to optimise indoor comfort levels and
building energy consumption. Practitioners would use
BPS tools for predicting overheating, calculating heating
and cooling loads, sizing equipment, evaluating alterna-
tive technologies (energy efficiency and renewable ener-
gy), regulatory compliance, or more recently, integrated
performance design or rating (Crawley 2008). In several
design methodologies, BPS serves as an integrated, well-
performing support tool for optimising the entire design

process (Anderson et al. 2006; Ferrara et al. 2014; Gabbar
et al. 2014; Griego et al. 2015; Kanagaraj and
Mahalingam 2011; Pacheco et al. 2012; Saari et al.
2012; Tibi et al. 2013).

BPS is widely used in different phases in the life
cycle of a building project. In the early design stage,
energy consumption estimates and comparisons are cru-
cial as feedback to the design team and to support
decision-making. Later on, in the design development
phase, simulation can show code compliance and help
designers determine the cooling and heating capacity of
heating, ventilation and air-conditioning (HVAC) sys-
tems. After a building is completed, BPS models can be
used for performance diagnostics and integration with
real-time building energy system controls. In retrofitting
projects, BPS can evaluate the impact of different inter-
vention options to maximise energy savings and emis-
sions reduction.

In fact, the energy consumption of a building is a
function of a large number of parameters in regard to:

& building characteristics,
& the characteristics, control and maintenance of ener-

gy systems,
& weather conditions,
& occupants’ behaviour,
& other sociological parameters (Fumo 2014).

Therefore, energy consumption predictions always
contain a degree of uncertainty depending on the level
of confidence in each of these input parameters (Hopfe
and Hensen 2011; Lin and Hong 2013).

There has been a huge effort from the scientific
community, governments, and industry to collect multi-
ple approaches and methods, as well as numerous tools
for estimating building energy performance. The Build-
ing Energy Software Tools Directory (U.S. Department
of Energy. n.d.) is a comprehensive list of tools grouped
in four subjects: whole building analysis; codes and
standards; materials, components, equipment, and sys-
tems; and other applications. These categories show
another dimension of these simulations: scale. Simula-
tions can range from a specific component affecting
energy use, such as equipment (e.g. heat pump condens-
er) to an analysis of the entire building (Nguyen et al.
2014), or even to investigations at the urban level.

The 2009 ASHRAE Handbook (ASHRAE
handbook 2009) has broader categories for building
energy simulation approaches:
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& Forward (classical) approach: in this approach, the
equations describing the physical behaviour of sys-
tems and their inputs are known, and the objective is
to predict the output. The ASHRAE handbook states
that generally accuracy increases as models become
more complex and as more details of the building
are known. However, it should be noted that as
model complexity increases, models typically re-
quire more input variables. These variables all have
associated uncertainties and as a result, the overall
uncertainty of the model may increase (Trčka and
Hensen 2010). This physics-based approach is often
referred to as the white-box approach.

& Data-driven (inverse) approach: in this approach,
input and output variables governing the perfor-
mance of the systems have been measured. The
known data is used to define amathematical descrip-
tion of the system (Nguyen et al. 2014). This ap-
proach is also referred to as the black-box approach.

The models in both approaches can be steady-state or
dynamic. Steady-state modelling does not consider the
transient effect of variables and is good for analysis in
timesteps equal to or greater than 1 day. Dynamic
models are able to track and identify peak loads and
capture thermal inertia effects (Nguyen et al. 2014).

Nguyen et al. (2014) summarised the importance and
true role of BPS in the current construction industry with
three quotes from well-known researchers:

& Simulation is commonly held to be the best practice
approach to performance analysis in the building
industry (Raftery et al. 2011);

& Energy simulation models play a key role in com-
puting potential energy savings from retrofits (Heo
et al. 2012);

& Simulation provides a mechanism to determine
where savings opportunities exist or energy ineffi-
ciency occurs in a building (Ahmad and Culp 2006).

Occupant behaviour modelling approaches

As highlighted above, occupant behaviour (OB) is one
of the most important driving factors of building perfor-
mance and energy savings. At the same time, among
other input variables, they contribute to significant dis-
crepancies between simulated and actual (measured)
energy use in buildings (Hong et al. 2015a).

Traditionally, in BPS programs, OB inputs are sim-
plified, static and less indicative of real world scenarios.
As these inputs represent a non-realistic assumption of
OB, they contribute greatly to the variations in building
simulation results. One of the keys to solving this prob-
lem is a better representation of energy-related OB in
building energy models (Mahdavi and Pröglhöf 2009;
Yan et al. 2015). BPS programs use various methods to
represent OB models. The key drawback is that most
implementations are complicated, difficult to reproduce,
and OB models cannot be reused for other energy
models, other users, or other tools. A recent study
(Hong et al. 2018) provides a thorough overview of
OB implementation approaches in BPS tools.

Direct input or control

The direct input or control approach refers to the case
when occupant-related inputs are defined using the se-
mantics of BPS programs—just as other model inputs
are defined (building geometry, construction, internal
heat gains, and HVAC systems). These OB inputs can
be temporal schedules for thermostat settings (cooling
and heating temperature set points), occupant presence
and lighting, plug load, and HVAC system schedules or
static rules governing the operation of building
components.

Built-in OB models

The second method uses advanced, deterministic, or
stochastic OB models already implemented in the BPS
program. These models are originally data-driven and
use functions and models such as linear or logit regres-
sion functions.

User function or custom code

In the user function or custom code approach, the user
can write functions or custom code to implement new or
overwrite existing or default building operation and
supervisory controls. For example, EnergyPlus has an
energy management system feature, and DOE-2
(LBNL) has a user function feature that implements
such functionality (Yan et al. 2015).
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Co-simulation

Co-simulation is a simulation methodology that allows
distinct components and systems to be simulated by
different simulation tools running simultaneously and
exchanging information in a combined routine (Wetter
2011). During time integration, the simulation is per-
formed independently for all subsystems in each
timestep, restricting the data exchange between subsys-
tems to discrete communication points (Yan et al. 2015).
This approach allows simulations to be carried out in an
integrated manner, running modules developed by dif-
ferent programming languages or in different physical
computers.

For a building energy modeller, it is a tough choice
which implementation approach to select. All of these
approaches have their advantages and disadvantages,
such as precision, calculation time, and input model
development time.

Another important issue is how these advanced OB
models can be represented in a specific BPS tool. Cur-
rently, most of the models available for BPS use are
represented in either the native syntax of a given BPS
program or a common semantic data model in the form
of XML (eXtensible Markup Language) (Hong et al.
2018).

Advanced energy-related OB models developed in
recent decades were built onmeasurement and question-
naire data taken from monitored buildings. Researchers
identified predictor variables that drive occupant deci-
sions, and behavioural models were then developed to
predict the probability of an occupant acting in a certain
way or interacting with a building system.

Recently published work (Hong et al. 2015c) con-
tains a review of model types from this field of research.
The authors established three categories of models: im-
plicit, explicit, and data mining-based models.

Implicit models are used to understand the driving
forces behind the behaviour itself or to predict the state
of a building system or the occurrence of an occupant’s
action based on the predictor variable. Models used
include linear regression, logistic regression models
with a single or multivariate variables, simple probabil-
ity equations, sub-hourly occupancy-based and complex
control models (SHOCC), and Bayesian estimations.

Explicit models are used to provide a personalised
description or prediction of the state of a building sys-
tem or the actions of an occupant. In this case, statistical
and data-mining methods can be used to obtain

information on repetitive patterns of occupant behav-
iours and human-building interactions, and provide in-
sights into a building system’s user profiles. These
models provide a probability distribution of a certain
event using Monte Carlo methods, discrete and semi-
hidden Markov chain models, and state transition
analysis.

Data-mining methodologies (cluster analysis, associ-
ation rules mining, decision tree, and rule induction)
have been tested to identify and improve occupant be-
haviour modelling in buildings. The knowledge discov-
ered through data-mining techniques aims to overcome
the shortcomings of more traditional techniques, specif-
ically when dealing with big data streams, by providing
reliable models of energy-related behaviours with fast
legibility and high replication potential (Hong et al.
2015c).

A standardised OB representation

As outlined above, over the past four decades, a sub-
stantial body of literature has explored the impacts of
human behaviour on building technologies, operation,
and energy consumption. A large number of data-driven
behavioural models have been developed based on field
monitoring and surveying the human-building-system
interaction. Often, need-action-event cognitive theoreti-
cal frameworks have been used to represent human
interactions within a building (Yan et al. 2015).

Studies from various parts of the world have emerged,
but lack standardisation and consistency, thus leading to
difficulties when compared to one another. Based on a
thorough review of these models (see the BMethodolo-
gy^ section for review description), the authors can state
that the documentation and description of methods used
to develop such models has not been published consis-
tently, meaning that authors of the papers introducing a
novel model included the crucial aspects that were con-
sidered when developing the models. However, in many
cases, model developers followed different logic when
creating new models thus detailing different aspects of
the process in the papers (e.g. more focus on sample or
solely focus on environmental measurements or statisti-
cal techniques). Moreover, the use of different data pro-
cessing, statistical methods, and model development
techniques makes it challenging to evaluate, employ,
and compare these models. To use these models for
building energy performance evaluation, it is essential
to clearly document and standardise them. In summary,
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the lack of standardisation for OB models leads to (1)
inconsistency in documenting OB models in sufficient
detail to define their applicability (e.g. population, building
type, location); (2) difficulty in reusing the OB models, as
they are represented in the BPS input files with varying
syntaxes or formats; and (3) the inability of the BPS
community to co-develop and share a common resource
of OB models.

To address this problem, an ontology was devel-
oped to represent energy-related OB in buildings.
Different aspects of a given type of human interac-
tion is represented in elements of a standardised
framework. The technical DNAS framework is de-
veloped based on four key components: (i) the
drivers of behaviour, (ii) the needs of the occupants,
(iii) the actions carried out by the occupants, and (iv)
the building systems acted upon by the occupants.
This DNAS framework is intended to support the
international research community in standardising a
semantic representation of energy-related OB in
buildings (Hong et al. 2015c). Separate from other
social behaviour theories, e.g. the Theory of Planned
Behaviour (Ajzen 1991), the DNAS framework pro-
vides quantitative representation of occupant behav-
iour models for use with BPS programs to quantify
their impacts on building performance. The DNAS
framework is robust enough that it can be expanded
to cover new types of occupant behaviour models in
various building types and locations.

Recent work has been carried out to implement the
theoretical DNAS framework into an XML (eXtensible
Markup Language) schema titled ‘occupant behaviour
XML’ (obXML). The obXML schema allows relation-
ships to be formed and defined between different drivers
and the eventual action in a standardised way. obXML is
designed to provide enough flexibility for both existing
and future occupant behaviour, building energy, and
system models to be captured in a consistent way
(Hong et al. 2015c).

The obXML schema is used for the practical imple-
mentation of the DNAS framework into BPS programs
(Hong et al. 2015c). In obXML, drivers, needs, actions,
and systems are implemented, and child elements of a
root element are called behaviour. The schema itself was
chosen because of its easy interoperability with BPS
tools, and also because of the flexibility, it provides for
users. Any additional information can be added to a
model implemented to make it understandable and ap-
plicable for end-users.

The implementation of the DNAS framework into
the obXML schema facilitates the development of oc-
cupant information modelling by providing interopera-
bility between OB models and building energy model-
ling programs.

In addition, a new OB modelling tool, obFMU, has
been developed as a functional mock-up unit enabling
co-simulation with BPS programs (e.g. EnergyPlus and
ESP-r) that implement the functional mock-up interface
(Hong et al. 2015b).

Although a whole chain of OB modelling tools has
been created and is now available, based on the authors’
experience, its use is limited to scattered research
groups. This paper presents a newly developed library
of OB models represented in the standardised obXML
schema format. This library provides ready-to-use ex-
amples for BPS users to employ more accurate OB
representation in their energy models.

The remaining part of the paper will present the
methodology used to develop the library of OB models
as well as its potential applications and limitations.

Methodology

As a first step, energy-related OB literature was
reviewed (for further references see Annex 66 literature
database (IEA EBC - Annex66 n.d.)) to identify and
compile a list of commonly used OB models in the field
that cover the following categories:

& Behaviour types:

occupant movement and different types of occupant
interactions with windows, doors, shading, blinds, light-
ing systems, thermostats, fans, HVAC systems, plug-
loads; making hot/cold beverages and adjusting clothing
levels

& Building types:

office, residential and school buildings

& Model publication date:

1970–2015.
This list contained 127 OB models in total.
Secondly, all models were processed and implement-

ed using the DNAS framework by identifying the
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drivers, needs, actions, and systems. The obXML sche-
ma was then used to represent these models in a
standardised way. Elements of DNAS were imple-
mented into their respective obXML schema ele-
ments. Both implementation tasks were followed by
logging the limitations of the framework and schema,
and future improvements were also proposed. During
the encoding of these models, two coders worked
simultaneously to avoid inter-coder bias. One coder
wrote the code while the other double-checked the
implementation.

During the obXML implementation process,
meta-data attribute fields were used to indicate the
basic information of each model for categorisation
and sorting purposes. These fields include informa-
tion on the building, action and system types, refer-
ence information on the paper where the model was
published, the region of data collection, data types,
and the sample size of the database that served as a
basis for the model.

Each OB model is represented in a separate XML
file, but multiple OB models can be combined into a
single XML file if needed.

After implementation, the validity of the XML
files was checked with the most recent version of
the obXML schema through the software tool
XMLSpy. The model implementation was also man-
ually double-checked for each item in the library. In
the future, a script can be written to extract and check
information on OB models in the library to ensure
their integrity. After all the models were checked and
revised, they were included in the final library and
made available for public download at behavior.lbl.
gov. Figure 1 illustrates the process of building the
obXML library.

Results

As a result, an initial library of 52 occupant behaviour
models (Table 1) was compiled and uploaded to the
website behavior.lbl.gov, thus making it publicly
available for the building performance simulation
community. Among the 127 initial OB models to start
with, the first version of the library tried to include at
least one model for each OB category. Only the models
with clear documentation were considered for library
inclusion. Also, only those models that can be
represented in the current version of the obXML
schema were included in the library. Models included
in the library were not reviewed or evaluated from the
quality or accuracy point of view due to lack of data.

Twenty-three window opening/closing, ten blind
lowering/opening, 11 light switch on/off, three heating,
and five air-conditioning (AC) models were included,
mostly for office building types and some for residential.
One model is applicable in both office buildings and
classrooms.

Data collection regions are also included in Table 1 to
indicate the origin of data collected for the OB models.
Most of the OB models are from Europe (36), one is
from the USA, two are from Canada, one is from Paki-
stan, and five are from China. Seven models used data
from multiple countries.

The categorisation of models was challenging as they
used different approaches to represent types of behav-
iours abstracted from one dataset. For example, some
researchers created different models driven by different
indoor environmental parameters, some models were
based on the time of day or occupant movement events,
and some were for different types of spaces, building
orientation, or ventilation features. These were
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Table 1 List of occupant behaviour models included in the initial library

System Action1 Bldg. type Region Other info Ref

Blind Close (ON) Office Switzerland Based on indoor temp. (Haldi and Robinson 2008)

Blind Close (ON) Office Switzerland Based on outdoor temp. (Haldi and Robinson 2008)

Window Open (ON) Office Switzerland Based on indoor temp. (Haldi and Robinson 2008)

Window Open (ON) Office Switzerland Based on outdoor temp. (Haldi and Robinson 2008)

Window Close (OFF) Office Switzerland Arrival (Haldi and Robinson 2009)

Window Close (OFF) Office Switzerland During the day (Haldi and Robinson 2009)

Light ON Office 5 countries2 Arrival (Gunay et al. 2015)

Light ON Office UK Arrival lunch (Gunay et al. 2015)

Light ON Office 5 countries2 During the day (Gunay et al. 2015)

Window Close (OFF) Office Switzerland Arrival (Gunay et al. 2015)

Window Close (OFF) Office UK Cooling room (Gunay et al. 2015)

Window Close (OFF) Office Switzerland During the day (Gunay et al. 2015)

Window Open (ON) Office Switzerland Based on outdoor temp. (Gunay et al. 2015)

Window Open (ON) Office UK Arrival (Gunay et al. 2015)

Window Open (ON) Office UK During the day (Gunay et al. 2015)

Light ON Office UK Classrooms also (Hunt 1980)

Blind Close (ON) Office USA, CA Private office (Inkarojrit 2008), M2

Light ON Office Canada, AB Private office 1 (Love 1998)

Light ON Office Canada, AB Private office 2 (Love 1998)

Blind Close (ON) Office Austria (Mahdavi et al. 2008)

Blind Close (ON) Office Multiple regions3 Based on solar intensity (Newsham 1994)

Blind Open (OFF) Office Multiple regions3 Morning (Newsham 1994)

Light OFF Office Multiple regions3 Afternoon (Newsham 1994)

Light OFF Office Multiple regions3 Morning (Newsham 1994)

Light ON Office Multiple regions3 Morning (Newsham 1994)

Heating ON Office EU (Nicol 2001)

Heating ON Office Pakistan (Nicol 2001)

Heating ON Office UK (Nicol 2001)

Light ON Office Germany Arrival (Reinhart and Voss 2003)

Light ON Office Germany During the day (Nicol 2001)

AC OFF Res. China Bedroom (Ren et al. 2014)

AC OFF Res. China Living room (Ren et al. 2014)

AC ON Res. China Bedroom (Ren et al. 2014)

AC ON Res. China Living room (Ren et al. 2014)

AC ON Res. China Living room (Ren et al. 2014)

Window Open (ON) Office UK With night ventilation (Yun and Steemers 2008)

Window Open (ON) Office UK With night ventilation (Yun and Steemers 2008)

Window Open (ON) Office UK With night ventilation (Yun and Steemers 2008)

Window Open (ON) Office UK No night ventilation (Yun and Steemers 2008)

Window Open (ON) Office UK No night ventilation (Yun and Steemers 2008)

Window Open (ON) Office UK No night ventilation (Yun and Steemers 2008)

Window Open (ON) Office UK No night ventilation (Yun and Steemers 2008)

Window Open (ON) Office UK No night ventilation (Yun and Steemers 2008)
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addressed using the meta-data of OB models in the
obXML files.

For example, ten blind usage models included in the
library, chosen from well-cited OB literature, are based
on different types of drivers.

Haldi and Robinsons’ models (Haldi and Robinson
2008) have two input variables to inform the logistic
regression model. The probability distribution itself is
given by a logit function. The way it is expressed in the
model, blind closing behaviour is driven by indoor and
outdoor air temperature.

Inkarojrit’s (Inkarojrit 2008) results showed that the
frequency of window blind closing events increased as
the luminance and vertical solar radiation levels (direct
normal radiation) increased. He built multiple models
based on longitudinal logistic regression using one to
four input variables.

Mahdavi et al.’s model (Mahdavi et al. 2008) gives a
normalised relative frequency of window blind closing
events and uses global vertical irradiance (direct normal
radiation) as a driving variable.

Newsham identified overheating, glare, sunlight pen-
etration depth as well as time of arrival and lunch as
determining factors for blind use actions. He built a
model (Newsham 1994), implemented into the obXML
library, in which blinds have an opening probability
based on morning arrival time and a closing action that
is driven by solar intensity.

Zhang and Barrett (2012a) found that solar altitude or
radiation (direct normal radiation) are the determinant
parameters for blind closing probability. They used logit
analysis to investigate curves of measurement data that

follow a similar pattern. Their proposed models are
logistic regression type.

Other types of occupant actions included in the
obXML library include window opening behaviour.
For example, Yun and Steemers (2008) concluded that
window use actions are highly time-dependent (time of
arrival and departure and intermittent periods), and iden-
tified indoor temperature as a driving variable. In this
case, both probit and ordinary linear analyses were used
to construct the models.

Zhang and Barrett introduced window opening
models (Zhang and Barrett 2012b) driven by outdoor
temperature. Different models were built for office
spaces with different orientations. The models were
built using the probit function.

Haldi and Robinson’s window opening and closing
models were included in the library as well (Haldi and
Robinson 2008, 2009). In these models, window use
behaviour is driven by indoor air temperature. Longitu-
dinal survey answers and measured environmental pa-
rameters were collected in this study with a sample size
of 60 office occupants.

Hunt’s light switch algorithm was published in
1980 (Hunt 1980) as a very first reference model that
is widely used in the literature. This model uses a
probit curve with the minimum daylight illuminance
level as an input variable measured in the working
area.

Love’s light use models (Love 1998) are based on
experiments conducted in private offices. Switching
probability functions were determined for two partici-
pants and logit 1D models were constructed using

Table 1 (continued)

System Action1 Bldg. type Region Other info Ref

Window Open (ON) Office UK All orientations (Zhang and Barrett 2012b)

Window Open (ON) Office UK East (Zhang and Barrett 2012b)

Window Open (ON) Office UK North (Zhang and Barrett 2012b)

Window Open (ON) Office UK South (Zhang and Barrett 2012b)

Window Open (ON) Office UK West (Zhang and Barrett 2012b)

Blind Close (ON) Office UK Based on solar altitude (Zhang and Barrett 2012a)

Blind Close (ON) Office UK Based on solar radiation (Zhang and Barrett 2012a)

Blind Open (OFF) Office UK Based on solar altitude (Zhang and Barrett 2012a)

Blind Open (OFF) Office UK Based on solar radiation (Zhang and Barrett 2012a)

1 obXML has control options called ‘on’ and ‘off’ that represent 1 or 0
2 Canada, Japan, Germany, the UK, and the USA
3Newsham used previously developed models from different regions (Japan and the UK), and combined them for simulation purposes
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daylight illuminance levels as an input variable mea-
sured on desks.

Whereas Newsham’s models (Newsham 1994) as-
sumed that the switching on of artificial lighting is
largely predictable based on both the time of day (morn-
ing or afternoon) and work-plane illuminance levels.
Instead of applying probability functions, Newsham
proposed to have a simple two-level decision-tree type
of model in this case.

Reinhart and Voss’s electric lighting use model for
arrival (Reinhart and Voss 2003) used a 1D quadratic
logit function based on minimum workplace illumi-
nance levels. This model was built on data from ten
private and two-person offices.

A light switch model from Nicol (2001) was also
integrated into the library. In this case, Nicol used a
longitudinal survey database, conducted in the UK,
Europe, and Pakistan, to build a 1D logit regression
model. As an input variable, mean outdoor temperature
was used.

As mentioned above, many types of commonly used
occupant behaviour action types were implemented into
the library. Besides lighting, window and blind use
models, heating and cooling (air conditioning—AC)
use behaviour models were processed too.

In the same study introduced above, Nicol published
a heating use model (Nicol 2001), where the proportion
of heating systems that are switched on can be deter-
mined based on mean outdoor air temperature levels.

Air-conditioning models implemented into the li-
brary were published by Ren et al. (2014). These models
assume that the switching of air-conditioning units on or
off in residential buildings can be predicted based on
environmental triggers (sensations of hot or cold). To
describe the relationship, a Weibull distribution function
was used.

Gunay et al. (2015) conducted a study in which
several existing OB models were compared as well as
implemented into the samemodelling framework.Many
models were implemented to the obXML library, in-
cluding a light switch model. In these models,
workplane illuminance is the primary driving factor of
actions, i.e. the darker the workplane gets, the larger the
probability that the lights will be switched on.

The Appendix shows a code snippet of an OB model
included in the obXML library. In the first lines, meta-
data information can be found referring to the specific
model (such as building types, reference to the paper
where the model was published, data collection region,

data collection methods and sample size), and then the
drivers, needs, actions, and systems parts of the schema
can be seen. In case of this model, the environmental
driver of behaviour is outdoor air dry-bulb temperature,
needs are thermal comfort not explicitly defined. The
formula describing the probabilistic relationship is a 1D
(i.e. one predictor parameter) logit formula and the
system is shading. The model represents a certain prob-
ability that blinds/shades will be deployed depending on
the outdoor air temperature.

Application of the library

The initial obXML repository of 52 OB models enables
easier and more robust representation of human behav-
iour in building energy simulation. This section dis-
cusses the practical application of the library. One of
the most powerful tool-chains was recently developed at
LBNL (Hong et al. 2015b) for application purposes. The
core part of this new OB modelling tool chain is an
occupant behaviour functional mock-up unit (obFMU)
that enables co-simulation with BPS programs that im-
plement the functional interface (FMI).

FMI is an independent standard that allows for com-
ponent development and tool coupling using a combi-
nation of XML and compiled C-code. The standard
contains two main parts: (1) an explanation of how a
modelling environment can generate C-code and be
utilised and (2) the interface standard for coupling in a
co-simulation environment. The component or simula-
tion model that implements the FMI framework is called
the functional mock-up unit (FMU).

The obXML schema contains the definition and de-
scription of all variables for the obFMU and provides a
basis for the xml output file. obFMU contains four main
components, including the co-simulation interface, the
interface description file in XML format, the data mod-
el, and solvers (Hong et al. 2015b). In Fig. 2, the entire
tool chain is introduced, where obFMU co-simulates
with commonly used BPS program EnergyPlus as an
example (EnergyPlus (accessed: 01.03.16) n.d.).

In Fig. 2, the orange-coloured branch shows how OB
is described in the framework (using DNAS and
obXML). This information is then fed to the obFMU
that connects to the simulation engine, for example
EnergyPlus. In this scenario, EnergyPlus acts as the
co-simulation manager and transmits the calculated
physical parameters of the building simulated in a given
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timestep. obFMU then decides on occupant actions
based on the input, calculated physical parameters, and
OBmodels from obXML. The impact of these decisions
(in the format of window opening or shading schedules)
are then fed back to EnergyPlus, which moves to the
next timestep, and so on.

Other software developers, e.g. ESP-r and IDA ICE,
are working on the implementation of obXML and
obFMU for co-simulation as well. There are other ways
to use obXML files. The goal would be to allow the use
of generic XML format in building energy simulation.
For example, BSim (BSim n.d.) is implementing an
interface to import obXML files that represent occupant
behaviour in buildings.

Furthermore, there is a tendency in design procedures
to use a common platform for representing a building
under design which is readable and editable by all
subcontractors and disciplines of a project. The most
popular platform appears to be building information
modelling (BIM).

BIM tools currently offer representation of key build-
ing systems to help the design process (NIBS 2009).
Available products can currently analyze structural
needs, wind loading and microclimate impacts,
massing, shading and shadows, lighting needs, HVAC
needs, energy use, acoustics, quantity take-offs, and
costing, among others (Institution of Structural
Engineers 2013). Emerging tools are capable of con-
struction phasing, emergency evacuation, and a few
other simulations of dynamic phenomena (Liu et al.
2015). Andrews et al. states that a meaningful represen-
tation of human agency is missing from most models.

Richer representations of the human side of human–
technology interactions in buildings are needed for us-
ability analysis (Andrews et al. 2011).

More and more file formats using the XML language
have been made compatible with BIM, such as gbXML
or CityGML. Therefore, the authors hope that in the
future, obXML can be linked to BIM to integrate and
represent occupant behaviour on this common platform
as well, which is an effort pursued by the ASHRAE
Multidisciplinary Task Group on occupant behaviour in
buildings.

Discussion

As another result of the project, the limitations of the
DNAS framework and the obXML schema were iden-
tified and addressed. Future improvements were also
proposed to make the schema more flexible for broader
use (Table 2).

Meta-data representation should be refined and more
information tags should be added. To be able to repre-
sent more OB models in the schema, more drivers and
systems should be added, and the definition of needs
should be broader to accept more types of models. Some
researchers used mathematical formulas that have not
yet been implemented in obXML, such as the logit
function with four independent variables used by the
M1 model of Inkarojrit (2008). Therefore, an equation
editor should be developed to provide freedom for users.
Furthermore, definable logical connections would be
needed in the actions section in order to include models
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using different logical structure such as decision-tree
(Hailemariam et al. 2011) or fuzzy logic (Guillemin
and Molteni 2002) types of models for example.

The authors would like to note that special attention
should be paid to the usability of different models from
different locations and sources. Readers are advised to
use with caution when implementing an OB model into
their BPS model as authors’ intention with this work
was not to evaluate the validity or quality of the models
included in the obXML library, but rather to improve the
tool chain and modelling resources. Usage of an OB
model in simulation that was developed for a different
building type, OB type or climate might lead to inaccu-
rate or unrealistic results.

The energy-related OB research field presently lacks
data on differences in OB between different countries,
cultures, and climates. Therefore, the authors would
advise caution in generalising these models for different
locations or scenarios. Further research is ongoing on
this topic within the framework of the ANNEX 66
project (Yan et al. 2017). The quantification of differ-
ences in OB between different countries is expected to

be published in the upcoming year based on results from
an international OB survey project.

These models not only differ in terms of geographical
location applicability, but also in terms of their practical
applicability. At the same time, the level of details and
applicable design project phases should be considered.
Designers might not need the same accuracy level of OB
representation for the early, schematic phase of a small,
new-construction residential building project or for the
construction design phase of a major retrofitting project.
A research project is currently ongoing regarding fit-for-
purpose modelling where OBmodels are categorised by
use cases to support BPS users in model selection
(Gaetani et al. 2016).

Another topic to be addressed here is the prediction
capability of these models in different thermal and vi-
sual comfort requirement scenarios. Most of the models
use an environmental parameter (e.g. indoor or outdoor
temperature or solar radiation level) as a driver of be-
haviour. For example, Haldi and Robinson’s blind clos-
ing model from 2008 (see also the Appendix) provides a
probability of closing the blind based on outdoor

Table 2 Future improvements proposed for the obXML schema

Topic obXML v1.2 Proposed improvements

Possible meta-data categories of models Name, IfcGuid, BuildingTypeComment,
PaperAuthors, PaperYear, PaperTitle,
PaperDOI, DataCollectionRegion,
TypesDataCollectedOther, SampleSize

Add modelling approach, applicable
season/time of day.

Add to TypesDataCollected list:
EnergyConsumption, FieldVisit, Interview,

Occupancy, SubjectObservation,
WindowStateLog, BlindStateLog

Drivers of a certain action Time—TimeofDay, DayofWeek, SeasonType
Environment—RoomAirTemperature,

RoomCO2Concentration,
RoomWorkPlaneDaylightIlluminance,
RoomLightsPowerDensity,
OutdoorDryBulbTemperature,

OutdoorRainIndicator

Add attitude towards actions, brightness
sensitivity, duration of absence,
unshaded window fraction, rain,

indoor solar intensity (W/m2)

Needs Comfort envelope definition (min-max values
of comfort parameters)

Add free text to describe needs if applicable.

Actions—default functions Mathematical formulas implemented as a default:
ConstantValue
Linear1D, 2D, 3D
Quadratic1D
Logit1D, 2D, 3D
Weibull1D
Logit1DQuadratic

Add logit 4D.
Add equation editor to enable free style

representation on mathematical equations.

Actions—logic No editable logic. Definable logical connections, e.g.
if-then-else-endif

Building systems HVAC, lights, windows, plug loads, thermostats,
shades, and blinds

Add fan, door, cold drink, and clothing
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temperature. The warmer it gets outside, the higher the
possibility that an occupant will close the blind (de-
scribed with a 1D logit function). Therefore, the predic-
tion capability does not depend on the comfort envelope
of the indoor environment. This is equally true for
models where the driver is an indoor parameter, as the
driving variable in most cases does not have a limitation
for the comfort envelope, defined in standards. If there is
a limitation on the driving variable, it is described in the
needs section of the obXML.

While more OBmodels still to be added to the library
are being worked on, we would like to encourage BPS
users to extend the library as well. In addition to the
model library, a template file was created for OB model
developers that enables them to implement new models
into the library. The authors would suggest using an
XML schema editing tool for implementation such as
XMLSpy (XML Spy n.d.). Additionally, proposed
changes, improvements, or any kind of feedback on
new model implementations are welcome.

It must be mentioned at this point that many aspects
of a person’s behaviour cannot be represented through
the DNAS framework or used in building performance
simulation at present. These aspects are the non-physical
variables of a building occupant setting and would re-
quire knowledge of separate disciplines such as social
science and psychology. Currently, the obXML schema
is adopted by certain energy modelers that use
EnergyPlus ESP-r and IDA ICE. With its expected
broader use, more limitations would need to be identi-
fied and addressed. An ongoing challenge is to balance
the complexity, robustness, extensibility, and ease of
use.

It was shown in recent studies that it is beneficial for
energy-related occupant behaviour research to apply an
interdisciplinary approach (Pellegrino and Musy 2017;
Hong et al. 2016; D’Oca et al. 2017b). At present,
specialists with behavioural and social science back-
grounds are underrepresented in the field, which is
partly due to the lack of specialised graduate programs,
common interests, and collaboration by research insti-
tutes, as summarised by Lutzenhiser (1993). In addition,
a panel discussion concluded that education and the
employment of interdisciplinary environmental social
scientists should be promoted (Stem et al. 1991). This
can be extrapolated to the field of energy-related build-
ing occupant behaviour research as well (Deme Belafi et
al. A review on energy-related occupant behaviour
questionnaire surveys: under publication).

Conclusions

Data-driven occupant behaviour models lack
standardisation and consistency, leading to difficulties
in applications and inter-model comparisons. To address
this problem, a DNAS framework was recently devel-
oped. Recent work has been carried out to implement
the theoretical DNAS framework into an XML schema,
the ‘occupant behaviour XML’ (obXML), which is a
practical implementation of occupant behaviour models
that can be integrated into building performance simu-
lation programs.

This paper presents a newly developed library of 52
occupant behaviour models represented in the
standardised obXML schema format. This library pro-
vides ready-to-use examples for BPS users to employ a
more robust occupant representation in their models.

The library is made available at the web sites
annex66.org and behavior.lbl.gov. This is an initial
library; additional models are being worked on by the
IEA EBC Annex 66 project as an ongoing activity.
Contributions and further library extensions are
welcome.

The authors hope that by compiling this library
and making it publicly available, building energy
modellers from all over the world can enhance
their building simulation models by integrating
more robust occupant behaviour models in order
to capture their complexity and impact on building
performance.
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Appendix

Example code-snippet about Haldi and Robinson’s
2008 blind closing model driven by outdoor air temper-
ature (Haldi and Robinson 2008).
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