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Abstract In multilateral comparisons of environmental
performance over time, energy intensity measures, es-
pecially Breal^ energy intensity computed either by
index decomposition approach or structural decomposi-
tion approach, are the most commonly used measures.
Recently, researchers also resort to production-
theoretical approach, which relies on data envelopment
analysis techniques, to decompose energy intensity
changes over time into their subcomponents.While their
intuitiveness and computational ease make these indices
attractive, their time series properties create consider-
able challenges in performing informative and fair com-
parisons among the energy efficiency levels of units
considered. Furthermore, the resultant measure of ener-
gy intensity in these studies is still the inverse of a partial
factor productivity (PFP) measure, i.e., energy produc-
tivity, that does not take into consideration composition-
al differences between inputs of the units being com-
pared (which are also subject to change over time) and
that ignores the type of substitution among inputs and,
hence, makes it a measure that disguises rather than
illuminates. The theoretical part of this paper shows
how one can overcome the shortcomings of the energy
intensity measure by constructing a new energy index
using directional technology distance functions. The
new index constructed in this study not only overcomes
the shortcomings of the energy intensity measures but

also satisfies the axiomatic properties of index numbers
that are laid down by Fisher. An empirical application
on U.S state-level agricultural sectors further comple-
ments existing studies.
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Introduction

Starting from the mid-1980s, concerns about environ-
mental degradation have prompted many researchers
and agencies to analyze the relation between energy
intensity (energy per unit of output) and pollution inten-
sity (emissions per unit of output) urging them to mea-
sure reduced level of carbon dioxide emissions as a
result of increased energy efficiency. For example,
McKinsey and Company (2009) estimate that through
increased energy efficiency alone, United States (U.S)
can reduce global emissions of carbon dioxide by one-
third and hence meet its 2020 greenhouse gas emission
goals. In the same vein, the International Energy
Agency (2015) (IEA) have recently disclosed improve-
ments in energy efficiency as a primary goal towards
reaching energy-related carbon dioxide emissions by
2020 and 2050. Hence, improvements in energy effi-
ciency (energy intensity) have become a priority area in
sustainable development efforts of the governments,
since this simultaneously confronts climate change and
energy security concerns while sustaining economic
growth and competitiveness. Consequently, since the
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early 1990s, almost all of the national statistics agencies
as well as the environmental departments of the
International Agencies1 have started to disseminate
economy-wide energy efficiency indicators. However,
researchers soon realized that simple ratios such as
energy use per dollar of GDP are far from revealing
the real energy efficiency improvements, since a sub-
stantial part of this improvement may have been occur-
ring due to structural effects where the relative contri-
butions of less energy intensive sectors (such as ser-
vices) to GDP increase over time.

Driven by the prospect of measuring real efficiency
improvements, the energy economics literature
witnessed an influx of studies that decompose changes
in aggregate energy intensity into a structural effect and
a sectoral intensity effect. In the majority of studies,
methodological approach pursued was either an index
decomposition approach (IDA), similar to the one that
decomposes a value change index to price and quantity
indices, or a structural decomposition approach (SDA)
which is based on input-output analysis with more de-
manding data requirements. Ang (1995) in a compre-
hensive review surveys 51 IDA studies conducted be-
tween 1987 and 1994, and Ang and Zhang (2000)
survey an additional 124 studies published between
1995 and 1999 and conclude that the declining sectoral
intensity effect is the main drive behind declining ag-
gregate intensities. Contrary evidence is provided how-
ever by some more recent studies (see for example
Huntington (2010) and Mulder and de Groot (2012)),
where the contribution of structural change to the de-
cline in aggregate energy intensity is substantial. Finally,
Ang et al. (2010) compare accounting frameworks used
for tracking energy efficiency trends and recommend
common adoption of the Logarithmic Mean Divisia
Index (LMDI) with its desirable index number
properties.

On the SDA front, Rose and Casler (1996) provide a
review of earlier studies, compare SDA and IDA, and
offer a critical review. Hoekstra and van den Bergh
(2003) present a more comprehensive comparison of
two methods and show how each technique can be
transferred to one other and suggest a more careful

assessment of the axiomatic properties of the indices
generated. In a more recent study, Su and Ang (2012)
provide a review of the latest methodological develop-
ments along with 43 applied studies conducted between
1999 and 2010.

More recently, researchers inspired by the decompo-
sition ofMalmquist productivity index first proposed by
Färe et al. (1994) have also adopted production-
theoretical approach to decompose energy intensity
changes over time into their subcomponents. These
studies can be viewed as the extensions of Kumar and
Russell (2002) and Zhou and Ang (2008a) who respec-
tively decomposed labor productivity and aggregate
CO2 emissions into their subcomponents. Realizing
the need for multilateral comparisons of energy
intensity levels across different energy consuming
entities, Zhou and Ang (2008b) resort to data envelop-
ment analysis (DEA) techniques to compare average
energy utilization performance of the OECD countries.
The DEA approach, which accounts for possible substi-
tution effects among capital, labor, and energy inputs as
well as for the possible substitution effect among differ-
ent energy inputs, also allows for inclusion of the unde-
sirable outputs as a by-product of desirable outputs.
After comparing different contraction methods (radial
versus non-radial) and existence of slacks (slack based
versus non-lack based), they conclude that slack-based
DEA model has a higher discriminatory power. Their
results indicate that nine countries (Australia, France,
Ireland, Italy, Norway, Portugal, Sweden, Switzerland,
and the USA) are perfectly energy efficient among the
OECD countries and that remaining inefficient countries
have a potential to reduce energy consumption by 86
quadrillion Btu over a five-year period 1997–2001. In a
more recent study, Wang (2013) using Shephard output
distance functions decomposes energy intensity changes
over time into five components: change in technical
efficiency, technological progress, change in capital en-
ergy ratio, change in labor energy ratio, and changes in
output structure.

Although these studies immensely contributed to our
knowledge based on the evolution of energy efficiency
trends over time, there are some considerable challenges
in performing informative and fair comparisons be-
tween the energy efficiency levels of units considered.
Even cross-country studies by Mulder and de Groot
(2012) and Voigt et al. (2014) were limited to the com-
parison of efficiency trends over time where the authors
proceed first by decomposing energy intensity trends

1 United Nations Industrial Development Organization (UNIDO), US
Department of Energy (USA DOE), Canada Office of Energy
Efficiency (OEE), New Zealand Energy Efficiency and Conservation
Authority (EECA), US Office of Energy Efficiency and Renewable
Energy (USA EERE), and Statistical Office of the European
Communities (EUROSTAT) are a few to name.
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within individual countries and only then do
comparisons across countries. The only exceptions are
the work of Duro et al. (2010) and Zhou and Ang
(2008b) where the authors analyze the inequality of
energy intensity between OECD countries.

Furthermore, regarding the IDA and SDA ap-
proaches, even after accounting for the effect of struc-
tural change, the resultant measure of energy intensity is
still the inverse of a partial factor productivity measure
(PFP), i.e., energy productivity, that does not take into
consideration compositional differences between inputs
of the units being compared (which are also subject to
change over time) and that ignores the type of substitu-
tion among inputs and, hence, makes it a measure that
disguises rather than illuminates.

Hence, the objective of this paper is to address the
issues above by constructing an alternative multifactor
input intensity index (an inverse of Multifactor
Productivity Index (MFP)) that accommodates level
comparisons as well as over-time multilateral compari-
sons and to show that special cases of this measure not
only generate the traditional single input intensity mea-
sure (i.e., aggregate energy intensity as the inverse of
PFP measure) but also lead to an energy intensity index
that overcomes the shortcomings of the traditional mea-
sure. Unlike our predecessors, our productivity measure
(or energy intensity measure) overcomes the shortcom-
ings of the partial productivity measure by not only
controlling for the compositional differences in outputs
(both across the units being observed and over-time) but
also by accounting for the compositional differences in
inputs (both across the units being observed and over-
time). Hence, this study can be viewed as the extension
of the production-theoretical approaches, where DEA
techniques are used to develop Malmquist quantity in-
dices, a novel approach, first introduced in this paper,
into the measurement of factor intensities (factor
productivities).

All our measures will rely on computation of direc-
tional distance functions, which provide a valuable
framework in modeling a technology with multiple out-
puts and inputs. An empirical application on the energy
intensity of U.S state-level agricultural sectors further
complements existing studies. Studying the U.S agricul-
ture sector is particularly important due to its significant
role in the consumption of fossil fuels and generation of
greenhouse gases (GHG). Recent studies indicate that
while agricultural production’s share in national energy
consumption is only 2% (Canning et al. (2010)), it is

responsible of over 9% of total GHG emissions (EPA
(2014)). Hence, even the modest improvements in en-
ergy intensity at the production stage could result in
meaningful societal benefits in terms of reduced cost
to the producers and hence lower prices to the con-
sumers, as well as helping the U.S to reach its environ-
mental goals by 2050.

The paper unfolds as follows. The following section
will introduce the methodology. The BData^ section
describes the data used and the BResults^ and
BDiscussion^ sections are allocated to the results and
discussion, respectively. Finally, the BConclusions and
policy implications^ section concludes the study.

Methodology

Two commonly used productivity measures, PFP and
MFP, are distinguished by their handling of inputs.
While the ratio of output to a single input is called partial
productivity of that particular input, the ratio of output to
all inputs combined is called multifactor productivity.
The inverses of these measures are called single input
intensity measure (i.e., energy intensity, labor intensity)
and multifactor input intensity measure respectively. In
cases where there is more than one output, this of course
requires the construction of a quantity index of outputs
for both measures and a quantity index of inputs for the
MFP measure. In developing PFP and MFP measures, a
modeling technique developed in a series of papers by
Färe et al. (2000, 2004), Zaim et al. (2001), and Zaim
(2004) is adopted. While these papers made extensive
use of output distance functions in constructing various
quantity indices, this paper promotes the use of the
directional technology distance function which allows
for simultaneous expansion of output(s) and contraction
of input(s) as the most appropriate choice in developing
measures which allow for bilateral and multilateral com-
parisons of partial and multifactor productivity levels.
We will also show that the productivity measures that
are presented here can easily be extended to measure
productivity growth over time.

The computation of productivity measures relies on
the construction of quantity index of output(s) and
quantity index of input(s). Intuitively, the quantity index
of output(s) shows the relative success of an observa-
tion, say j, in expanding its output(s) and simultaneously
contracting its input(s) while using the same level of
input(s) as another observation, say i (or using some
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arbitrary level of inputs common to both i and j). One
should note that, in constructing an output index, com-
positional differences in inputs are accounted for. The
quantity index of input(s) on the other hand measures
the relative success of observation, say j, in expanding
its output(s) and simultaneously contracting its input(s)
while producing the same level of output(s) as another
observation, say i (or producing some arbitrary level of
output(s) common to both i and j). Note this time that, in
constructing an input quantity index, compositional dif-
ferences in output(s) are accounted for.

To describe the theoretical underpinnings of the index
used, supposewe observe a sample ofK units each ofwhich
uses inputs x ¼ x1; ::…; xNð Þ∈RN

þ, to produce a vector of

outputs y ¼ y1; :…; yMð Þ∈RM
þ . With this notation at hand,

the technology can be described as all feasible vectors (x, y),
i.e., T= {(x, y) : x can produce y}. This technology satisfies
standard regularity conditions like closedness and
convexity. See Färe and Primont (1995) for details.

Among alternative approaches, directional technol-
ogy distance functions prove to be a particularly useful
tool not only to represent a technology with distinctive
characteristics such as closedness and convexity but
also as a perfect aggregator and a performance mea-
sure. Hence, to develop an MFP index, one may
employ the directional technology distance function,

D
!

T x; y; gx; gy
� �

¼ sup λ : x−λgx; yþ λgy
� �h

∈TÞ�,
where T is the technology defined as T = {(x, y) :
x can produce y }.

To construct the output quantity index, consider the
following two directional distance functions which show
the success of two states j and i respectively in expanding
their outputs and simultaneously contracting an arbitrary
vector of inputs common to both with respect to a constant
returns to scale (CRS) technology:

D
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j
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and

D
!

0T
i
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0
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zkykm≥y
i
m þ λi
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ð2Þ

where zk
's are intensity variables.

Now defining y*j and y
*
i as the maximum attainable

outputs and x*j and x
*
i as the minimum attainable inputs

for the producing units j and i respectively, under CRS

y*j
y*i

¼ y j 1þ λ j
0

� �

yi 1þ λi
0

� � ¼ x j 1−λ j
0

� �

xi 1−λi
0

� � ¼ x*j
x*i

ð3Þ

and restricting xj = xi = x0 as required by the above
linear programming problems, this yields a quantity
index of outputs

Qy ¼
y j
yi

¼ 1þ λi
0

� �
1−λ j

0

� �

1þ λ j
0

� �
1−λi

0

� � ð4Þ

This can be best explained by Fig. 1. Consider
two observations/production units (xj, yj) and (xi,
yi) for which a meaningful output comparison yj/yi
is required. The first linear programming problem
expands jth producing unit’s output (vector) yj and
simultaneously contracts an input vector common
to both, i.e., xj = xi = x0, and the second program
does the same thing for the ith producing unit.
Simple geometry, i.e., similar triangles, allows
one to write Eq. (3) which intuitively says that
meaningful output comparisons can only be made
between producing units which have the same
input composition and amounts.

∗

x

y 

∗

∗

∗

Fig. 1 Illustration of directional technology distance function
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Now the next question is how to choose an
input vector common to both. The trick is to
choose a base production unit, for example pro-
duction unit i in a given year, and then calculate
the rate of difference between each production unit
and the base production unit. By normalizing the
base producing unit’s output to one, one can do all
cross-section multilateral output comparisons.

If on the other hand the objective is to compute an
output index for a panel of observations (i.e., panel of
output index for 48 U.S states over 45 years from 1960
to 2004), one could still use the same approach by
neglecting the fact that different producing units exist
at different points in time. For example, input vectors for
Alabama in 1970 could be chosen as a base, in which
case one will construct an output index where Alabama
in 1970 is equal to one. Moreover, since the output
quantity index satisfies all the desirable properties due
to Fisher (1922)—i.e., homogeneity, time reversal, tran-
sitivity, and dimensionality—and hence naturally passes
the Fisher test, this allows all multilateral comparisons
across space and time.

Now turning to the construction of the input quantity
index, consider the following directional distance func-
tions which show the success of two states j and i
respectively in contracting their inputs while expanding
an arbitrary vector of outputs which are common to
both:

D
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and

D
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Now defining x*j and x*i as the minimum attainable

inputs for states j and i respectively, and again relying on
similar triangles in Fig. 1., yields

x*j
x*i

¼ x j 1−λ j
i

� �

xi 1−λi
i

� � ¼ y j 1þ λ j
i

� �
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i
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ð7Þ

Furthermore, restricting yj = yi = y0 as required by the
above linear programming problems yields a quantity
index of inputs:
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x j
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¼ 1þ λ j
i

� �
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i
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1−λ j

i
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As for the output index, the output vector of Alabama
in 1970 could be chosen as a base, in which case one
will construct an input index where Alabama in 1970 is
equal to one.

Finally, the MFP level index and its reciprocal mul-
tifactor input intensity index (MFII) can be defined as
follows:
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0
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0
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0
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0
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Since both the output and the input quantity index
satisfy all the desirable properties due to Fisher
(1922)—i.e., homogeneity, time reversal, transitivity,
and dimensionality—both MFP and MFII indices natu-
rally pass the Fisher test.

A very nice feature of this model is that, for a single
output (Y) and single input case (i.e., ignoring all other
inputs while in fact they exist), it collapses into a measure
that allows for bilateral (and multilateral) comparisons of
traditional partial factor productivity (energy productivity),
whose reciprocal is aggregate energy intensity (AEI):

PFPE ¼
Y j

E j

Y i

Ei

¼
Y j

Y i
E j

Ei

ð10Þ

AEI ¼
E j

Ei
Y j

Y i

ð11Þ

This requires the computation of four linear program-
ming problems, two of which are for the output index
and the other two for the input index. The following two
programming problems for example will compare out-
puts of j and i provided that their energy inputs are held
constant at an arbitrary level common to both.
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Similarly, the following two linear programming
problems will compare energy inputs of j and i provided
that their outputs are held constant at an arbitrary level
common to both.
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and

D
!
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The level of energy input and output that are held
constant at an arbitrary level in the linear programming
problems above could easily be set to be equal to those of
observation i. In this particular case, observation i is con-
sidered to be the base country (for which the PFP of energy
is equal to unity) with respect to which all bilateral pro-
ductivity comparisons can be made. Furthermore, since

this index is transitive, it allows for all multilateral com-
parisons. Hence, our partial factor productivity measure
and aggregate energy intensity measures are as follows:
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1þ γi0
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1−γ j
0

� �

1þ γ j
0

� �
1−γi0
� �

1þ γ j
i

� �
1−γii
� �

1þ γiið Þ 1−γ j
i

� �
AEI ¼

1þ γ j
i

� �
1−γii
� �

1þ γiið Þ 1−γ j
i

� �

1þ γi0
� �

1−γ j
0

� �

1þ γ j
0

� �
1−γi0
� �

ð16Þ

The most appealing feature of the general model
presented is that its special case leads to a PFP index
that overcomes the shortcomings of the traditional mea-
sure. The reciprocal of this index naturally results in the
energy intensity index, which this study aims to obtain.
The two following linear programming problems which
will lead to the construction of an output quantity index
reveal the success of two states j and i respectively in
expanding their outputs and simultaneously contracting
their energy input common to both while holding all
other inputs at a constant level common to both.
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Similarly, the following two programming problems
compare energy inputs of j and i provided that their
outputs are held constant at an arbitrary level common
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to both, while all other inputs except energy used by j
and i are treated as fixed inputs.
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As is the usual convention, if the levels of energy
input, other inputs, and outputs that are held constant at
an arbitrary level in the linear programming problems
above are set to be equal to those of observation i,
observation i becomes the base economy (for which
the corrected PFP of energy (CPFP) is equal to unity)
with respect to which all bilateral productivity compar-
isons can be made. Furthermore, since this index is
transitive, it allows for all multilateral comparisons.
The resultant indices are expressed as follows:
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It is also worthwhile to state that the technique pro-
posed here is rich enough to accommodate the joint

production of good and bad outputs as demonstrated
by Zaim (2004) in computation of carbon dioxide inten-
sities. However, unavailability of data on bad outputs
precluded us from such an attempt.

Data

The data used for the computation of intensity indices
described above are obtained from the Economic
Research Service (ERS) of the United States
Department of Agriculture and have recently been made
publicly available at http://www.ers.usda.gov/data-
products/agricultural-productivity-in-the-us (2014).
The data set consists of state-level observations of real
quantities of three outputs: crop, livestock, and other
farm-related outputs and real quantities of seven inputs:
capital, land, labor, energy, pesticides, fertilizers, and
materials all expressed in real terms in 1996 Alabama
prices for all the years between 1960 and 2004. It is
important to note that energy input is only the direct
energy use, which is the real quantity of the sum of
petroleum fuels, natural gas, and electricity. It is obtain-
ed as the ratio of total expenditures at each state to the
corresponding price index (where Alabama 1970 = 1).
Capital input is constructed by aggregating over differ-
ent capital assets using as weights asset-specific rental
prices. To obtain a constant-quality land stock, the value
of land is deflated by an intertemporal land price index,
where relative prices of land are obtained from hedonic
regression results to account for quality differences. In
constructing the labor input for each state for each year,
demographically cross-classified hours and compensa-
tion data are used. Differences in marginal productivity
of labor are accounted for by giving higher weights to
labor hours with higher marginal productivity (wages).
To construct the real quantity of pesticides and fertilizer
inputs, first price indices are estimated by hedonic price
functions to account for quality differences both across
states and over the years, and then respective expendi-
tures are deflated by their respective price indices.
Material input consists of goods used in production
during the calendar year, whether withdrawn from be-
ginning inventories or purchased from outside. Open
market purchases of feed, seed, and livestock inputs as
well as a variety of purchased services such as contract
labor services, custom machine services, machine and
building maintenance and repairs, and irrigation from
public seller of water are all included in material inputs.
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The output quantity for each crop and livestock category
consists of quantities of commodities sold off the farm,
additions to inventory and quantities consumed as a part
of final demand in farm households during the calendar
year. For the off-farms sales to farm sector in other states
are also considered as off-farm sales. Full details of data
definitions are available at the above URL.

Results

As is the usual convention in agricultural studies in the
U.S, all the results will be summarized for ten regional
aggregates: Northeast (CT, DE, MA, MD, ME, NH, NJ,
NY, PA, RI, VT); Appalachia (KY, NC, TN, VA, WV);
Southeast (AL, FL, GA, SC); Corn Belt (IA, IL, IN,
MO, OH); Lake States (MI, MN, WI); Delta (AR, LA,
MS); Northern Plains (KS, NE, ND, SD); Southern
Plains (OK, TX); Mountain (AZ, CO, ID, MT, NM,
NV, UT, WY), and Pacific (CA, OR, WA), but more
detailed state-level results will be made available upon
request. Table 1 shows the relative importance of these
regions in U.S agricultural production. Accordingly, it
demonstrates that five regions the Pacific, Corn Belt,
Southern Plains, Lake States, and Northern Plains con-
stitute over 74% of U.S aggregate output and 61% of
U.S agricultural direct energy use over the period 1990–
2004. However, Table 1 also shows that composition of
outputs have undergone substantial changes in some
regions. While in the Pacific, Corn Belt, Northern
Plains, and Lake States, the share of crops was increased
and the share of the livestock was decreased; just the
opposite has occurred for Appalachia. The other states
seem to have a more stable composition over-time.

Figure 2 compares our MFP index as expressed in
Eq. (9) to that reported by the ERS of the USDA, where
both indices are expressed relative to the level ofMFP in
Alabama in 1970. Although the construction of quantity
indices of outputs and inputs is quite different in both
methods, and the ERS relies on Fisher quantity indices
of outputs and inputs (i.e., Theil-Tornqvist index) after
doing a transitivity correction by a method independent-
ly proposed by Eltetö and Köves (1964) and Szulc
(1964), both MFP measures mirror each other perfectly
not only with respect to levels but with respect to trend
growth rates as well (except for the Lake States). This,
once again, demonstrates that directional distance func-
tions are perfect aggregators (without using information
on prices).

Reminding the reader once more time that our vari-
able of concern is energy, now we turn to the compari-
son of AEI, EI, and MFII as computed by Eqs. (16),
(21), and (9) across time and space. In computing AEI,
the single output required is obtained by summing the
real quantities of crop, livestock, and farm-related out-
puts and energy is considered to be the single input,
ignoring the existence of all the other inputs. Figure 3
shows general trends for the five regions which consti-
tute over 75% of agricultural production in the U.S. One
should remember however that the bases for all these
indices are Alabama 1970 (i.e., Alabama 1970 = 1).
Therefore, in the figures, EI compares (geometric) av-
erage energy intensities of states in a particular region to
that of Alabama in 1970 over the years, after accounting
for the differences in outputs while energy use is being
compared and for the differences in inputs while outputs
are being compared. Hence, EI level of 1.93 in the
Pacific region in 1960 indicates that energy use per unit
of output in 1960 in the Pacific region was almost
double that of Alabama in 1970 after accounting for
the differences in output and input combinations of the
Pacific region in1960 and that of Alabama in 1970.
This, when compared with an AEI level of 1.16 implies
that there emerges a substantial bias due to (i) aggrega-
tion of outputs while energy use is being compared and
(ii) failure to hold non-energy inputs constant while
output comparisons are being made. Furthermore, in
the years where EI > AEI (EI < AEI), this indicates a
structure of production where combinations of inputs
and outputs use less (more) energy when compared to
Alabama 1970.

Comparison of figures reveals some further impor-
tant results. First, there exist substantial level differences
between energy intensity levels for both the AEI and EI
which prior studies relying on index decomposition
methods failed to show. For example, our results show
while Southern Plains start off with relatively low levels
of AEI (1.29) and EI (1.42) which are close to each
other, the Pacific region has achieved the lowest EI level
in the 1972–1976 period (0.59 in 1975). Second, im-
provements in energy intensity (energy productivity)
will be underestimated if measured by AEI. Third, for
all the five regions, although EI was higher than MFII
during the initial years, rapid improvements in EI indi-
cate that particular attention was paid to increase the
energy efficiency and that energy efficiency has in-
creased at a faster rate than the average rate of increase
in the efficiency of all the inputs. Fourth, there has been
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a convergence of EI levels to somewhere between 0.26
and 0.55 (i.e., one-fourth to one-half of the levels in
Alabama in 1970) towards the end of the first half of the
2000s.

More comprehensive level and growth comparisons
are provided in Tables 2, 3, and 4. First, the results
reveal that EI and AEI are not necessarily in agreement
in ranking the states according to their energy intensity.
For example in 1960, while the Northeast region is
found to be the worst performer with respect to EI level,
AEI measure ranks it as being the best performer with

the lowest energy intensity. However, at the state-level
comparisons, Florida is the only state which was con-
sistently ranked as one of the best performers for all the
selected years by both the measures. As for the other
states, no consistency is observed with respect to the
rankings of states. Second is the relation between EI and
MFII. While EI has been consistently higher than MFII
in 1960 (except for Florida, North Carolina, and
Oklahoma), just the reverse is true in 2004 for all the
states implying that there has been a special emphasis on
reducing the energy intensity.

Table 1 Average % share of outputs in U.S agriculture

Average % share in U.S agriculture Average % share in state’s aggregate output

Crops Live stock Farm related Aggregate output Crops Live stock Farm related

Northeast 1960–1974 2.31 3.24 1.93 2.72 38.91 56.63 4.46

1975–1989 1.93 3.20 1.85 2.43 40.90 55.66 3.44

1990–2004 1.66 3.03 1.56 2.18 39.09 56.51 4.40

Appalachia 1960–1974 6.92 5.35 5.05 6.13 52.61 42.14 5.25

1975–1989 5.56 6.02 4.41 5.72 51.07 45.38 3.56

1990–2004 5.00 7.27 5.49 5.93 43.72 50.50 5.78

Southeast 1960–1974 7.12 6.34 11.37 7.06 46.70 43.10 10.20

1975–1989 7.05 7.27 9.28 7.30 50.98 43.13 5.89

1990–2004 6.74 7.89 8.78 7.35 47.92 44.58 7.51

Corn Belt 1960–1974 18.11 19.25 8.11 17.68 46.23 50.94 2.83

1975–1989 18.18 14.49 7.20 15.92 59.21 38.73 2.06

1990–2004 17.40 11.73 6.31 14.42 63.31 33.92 2.76

Lake States 1960–1974 12.35 17.72 7.64 14.30 38.88 57.83 3.29

1975–1989 12.95 16.44 8.38 14.04 47.64 49.65 2.71

1990–2004 12.74 14.15 7.69 12.94 51.15 45.13 3.72

Delta 1960–1974 6.18 6.03 6.96 6.14 46.21 46.68 7.10

1975–1989 5.85 6.58 7.31 6.25 49.19 45.41 5.40

1990–2004 5.79 8.00 8.50 6.82 43.99 48.25 7.77

Northern Plains 1960–1974 11.40 11.35 7.99 11.34 47.01 48.49 4.50

1975–1989 11.95 12.08 11.74 12.08 52.20 43.29 4.50

1990–2004 12.81 11.47 12.48 12.24 54.70 38.89 6.41

Southern Plains 1960–1974 13.21 16.42 26.09 15.34 39.10 50.35 10.55

1975–1989 11.80 18.73 23.26 15.08 40.39 52.62 6.99

1990–2004 10.49 19.49 23.43 14.73 36.44 53.76 9.79

Mountain 1960–1974 3.32 3.83 3.87 3.62 42.50 50.73 6.77

1975–1989 3.21 3.96 4.29 3.58 46.90 47.58 5.51

1990–2004 3.10 4.21 4.32 3.61 44.55 47.98 7.47

Pacific 1960–1974 19.08 10.48 21.00 15.67 58.14 33.11 8.75

1975–1989 21.51 11.22 22.28 17.60 65.83 28.18 5.99

1990–2004 24.26 12.77 21.46 19.78 65.59 27.43 6.98
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Now turning to the growth rates of the indices comput-
ed, for all the regions, EI outperforms both MFII and AEI
for the 1990–2004 and for the full 1960–2014 period
implying that AEI is a measure that underscores the real
achievement in reducing energy intensity and that reduc-
tion in energy intensity has been larger than the average
rate of decline in the intensity of all inputs. Pacific, Corn
Belt, and Northeastern regions have been the most

successful states in reducing energy intensity (EI) with
dramatic decline rates of − 4.46, − 4.25, and − 3.85% per
annum respectively over the period 1960–2004.

Next we proceed to analyze the effect of relative energy
price (energy price/output price index), capital intensity
index, and labor intensity index (both computed with the
models proposed in this study) on energy intensity using
Arellano-Bond (1991) dynamic panel model in Table 5.
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The calculation of MFP (ERS) is based on Theil-Tornqvist Index which is reported at http://ers.usda.gov/data-
products/agricultural-productivity-in-the-us/findings,-documentation,-methods.aspx#intinput for indices of
total factor productivity relative to Alabama 1996=1

Fig. 2 Comparison of MFP index and Theil-Tornqvist index of
ERS. The calculation of MFP (ERS) is based on Theil-Tornqvist
index which is reported at http:/ /ers.usda.gov/data-
products/agricultural-productivity-in-the-us/findings,-
documentation,-and-methods.aspx#intinput for indices of total
factor productivity relative to Alabama 1996=1. a Comparison

of MFP index and MFP (ERS) in Pacific. b Comparison of MFP
index and MFP (ERS) in Southern Plains. c Comparison of MFP
index and MFP (ERS) in Corn Belt. d Comparison of MFP index
and MFP (ERS) in Lake States. e Comparison of MFP index and
MFP (ERS) in Northern Plains
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We assumed relative price being exogenous to the pro-
ducers. The panel estimates indicate that while the short
run response of energy intensity to the increase in relative
energy prices is positive (immediate response is insignifi-
cant), the intermediate response is negative (second and
third lags). In fact, the long run relative energy price
coefficient2 estimate is − 0.30, indicating that farmers take
energy conserving measure in response to relative energy
price increase which induces a decline in energy intensity.
The positive and significant coefficient of both capital
intensity and labor intensity is an indication of comple-
mentary relation between energy and these two other
inputs. That is, a fall in capital and labor intensities induces
a fall in energy intensity. This actually is quite consistent
with Fig. 3 where MFII is positively related to EI.

Discussion

At this point, it is important to discuss the precision at
which the Breal energy intensity^ is measured. But before
we go into the details, still it is useful to reconsider how
much we diverge from the traditional well-known ap-
proaches. It is important to reiterate that the approach
pursued here is to provide an alternative to the preceding
methods which either rely on IDA or SDAwhich decom-
pose aggregate energy intensity into structural and intensity
effects. The method proposed diverges from the traditional
approach in a number of ways. First, unlike the preceding
methods, which account for structural change only at the
output side for a correct measurement of intensity, the
method proposed here accounts for structural change both
at the output and the input side. Second, while the tradi-
tional decomposition approaches do not allow for the level
comparisons of intensity at a point in time and only allow2 See notes in Table 5.
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Fig. 3 Comparison of intensities. a Comparison of intensities in Corn Belt. b Comparison of intensities in Pacific. c Comparison of
intensities in Southern Plains. d Comparison of intensities in Lake States. e Comparison of intensities in Northern Plains
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for the growth comparisons, the approach pursued here
allows for both the level and the growth comparisons.
Third, unlike the previous methods, the structural effect
can be obtained as a residual, i.e., AEI/EI.

Now, when we turn to the question of how precise
our real energy estimates (and hence structural effects)
are, the answer depends on how precisely could we
account for the differences in combinations of outputs
and inputs across the units being compared. This of
course depends on the level of aggregation in the data
with which the analysis is conducted. On the output
side, the data provides the breakdown as crop, livestock,

and other farm-related outputs (mostly vegetables and
fruits) and the raw data highlight the fact that over time,
there has been amajor shift of production from livestock to
crop production in some important agricultural regions
such as Pacific, Corn Belt, Northern Plains, and Lake
States (see Table 1). Given the priori information that the
energy share of cost of production for crop activities is
almost five times as much of that of livestock activities
(Schnepf 2014), one would expect to see the structural
effect reflecting over-time movement from less energy-
consuming activities towards more energy-consuming ac-
tivities. This is in fact the case for the regions portrayed in
Fig. 2. Note that a large distance between EI and AEI
during the initial years (where EI > AEI) is an indication of
structure of production where combinations of inputs and
outputs use less energy when compared to Alabama 1970,
and that closure of this gap over the years reflects the fact
that combination of outputs and inputs are moving in the
direction towards using more energy input. It is evident
that during the early 1960s, for all the regions, considerably
higher energy intensities (than that of Alabama 1970) are
offset by low energy using combination of inputs and
outputs (again than that of Alabama 1970). On the other
hand, the years where EI < AEI (which is most evident in
the Pacific region after 1968) should be interpreted as those
years that combination of inputs and outputs are more
energy using than that of Alabama 1970. Pacific region
in this case has shown a remarkable success in reducing its
energy intensity by 4.46% per annum, offsetting the struc-
tural effect.

Could we have more precise estimates of energy
intensity (and hence structural change)? The an-
swer is yes, if the data were to allow a further
breakdown of crop varieties since there exists a
large variation in energy cost in the total cost of
production across crop varieties which ranges from
13.9% for soybeans to 30.5% for rice (Schnepf
2014). Given the high sensitivity of American
farmers to energy price fluctuations, a more disag-
gregated data would certainly be an improvement
over an aggregate crop quantity, leaving aside the
introduction and increasingly adopted less energy
using genetically modified varieties.

A similar argument can be carried out for the
input side. Direct energy use is mostly petroleum-
based fuels to operate farm transportation vehicles
and machinery as well as natural gas, liquid pro-
pane, and electricity that are used to operate crop
dryers and irrigation equipment. Furthermore,

Table 2 Intensity level comparison

Intensity levels (Alabama 1970 = 1)

1960 1975 1990 2004

Northeast EI 2.102 0.899 0.736 0.373

MFII 1.390 0.967 0.836 0.574

AEI 0.776 0.800 0.629 0.659

Appalachia EI 1.566 1.067 0.876 0.550

MFII 1.236 1.085 0.937 0.769

AEI 0.967 1.052 0.684 0.690

Southeast EI 1.037 0.623 0.628 0.367

MFII 0.932 0.705 0.745 0.546

AEI 0.948 0.786 0.642 0.566

Corn Belt EI 2.063 1.203 0.964 0.306

MFII 1.335 1.036 0.838 0.460

AEI 0.933 1.028 0.719 0.505

Lake States EI 1.950 1.172 1.054 0.474

MFII 1.437 1.132 0.967 0.658

AEI 0.884 0.978 0.775 0.685

Delta EI 1.929 1.020 0.757 0.472

MFII 1.384 0.979 0.817 0.618

AEI 1.468 1.194 0.773 0.731

Northern Plains EI 2.001 1.488 0.836 0.465

MFII 1.315 1.109 0.854 0.598

AEI 1.298 1.289 0.836 0.757

Southern Plains EI 1.416 1.458 1.083 0.387

MFII 0.904 1.083 0.865 0.635

AEI 1.285 1.164 0.977 0.768

Mountain EI 1.983 0.910 0.668 0.474

MFII 1.235 0.968 0.783 0.633

AEI 1.155 1.132 1.022 0.904

Pacific EI 1.932 0.588 0.497 0.259

MFII 1.117 0.616 0.544 0.406

AEI 1.160 1.023 0.761 0.593
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petroleum-based fuels can be disaggregated into
gasoline and diesel. Unfortunately, aggregated
form of direct energy input precludes us from
accounting for inter-substitution effects in energy.
From the secondary sources (Schnepf 2014), we
understand that there had been a substantial sub-
stitution of diesel for gasoline since diesel fuel is
substantially cheaper especially when one con-
siders that diesel-powered machinery outperforms
its gasoline-powered peer in terms of miles per

gallon. Inability to identify these inter-fuel substi-
tution effects with the aggregated data will result
in over-estimated decline in energy intensity over
time, since what is/should be considered as struc-
tural effect is now measured as energy intensity.

As for the land input, perfectionism requires taking
different tillage practices both across time and space into
account, since different practices will inevitably affect
energy consumption. Similar arguments may be devel-
oped for capital input and materials.

Table 3 Average annual growth rates of intensity measures

Average annual growth rates of intensity measures (%)

1960–
1974

1975–
1989

1990–
2004

1960–
2004

Northeast EI − 7.08 − 2.06 − 4.73 − 3.85
MFII − 2.81 − 1.23 − 2.65 − 1.99
AEI − 0.06 − 1.06 − 0.03 − 0.37

Appalachia EI − 4.32 − 2.07 − 3.27 − 2.35
MFII − 1.64 − 1.45 − 1.40 − 1.07
AEI 0.98 − 3.33 0.00 − 0.76

Southeast EI − 4.16 − 0.95 − 3.76 − 2.33
MFII − 2.09 − 0.37 − 2.20 − 1.21
AEI − 0.90 − 2.57 − 0.18 − 1.17

Corn Belt EI − 4.11 − 2.38 − 7.88 − 4.25
MFII − 1.62 − 2.11 − 4.20 − 2.39
AEI 0.64 − 2.16 − 2.81 − 1.39

Lake States EI − 4.72 − 1.69 − 5.55 − 3.16
MFII − 2.26 − 1.92 − 2.71 − 1.76
AEI − 0.03 − 0.80 − 0.98 − 0.58

Delta EI − 4.31 − 3.14 − 3.31 − 3.15
MFII − 2.09 − 2.05 − 1.97 − 1.81
AEI − 0.93 − 3.20 − 0.79 − 1.57

Northern Plains EI − 3.74 − 4.39 − 4.10 − 3.26
MFII − 1.31 − 1.88 − 2.51 − 1.77
AEI − 1.16 − 0.92 − 1.74 − 1.22

Southern Plains EI − 0.94 − 3.12 − 7.08 − 2.90
MFII 1.00 − 1.90 − 2.18 − 0.80
AEI − 0.60 − 1.69 − 1.36 − 1.16

Mountain EI − 6.57 − 2.56 − 2.42 − 3.20
MFII − 2.08 − 1.74 − 1.50 − 1.51
AEI − 1.29 0.05 − 0.50 − 0.55

Pacific EI − 8.89 − 0.59 − 4.54 − 4.46
MFII − 4.16 − 0.14 − 2.07 − 2.28
AEI − 1.44 − 1.87 − 1.44 − 1.51
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Table 4 Intensity rankings (measured with respect to Alabama 1970 = 1)

1960 1990 2004

AEI Rank EI Rank MFII Rank AEI Rank EI Rank MFII Rank AEI Rank EI Rank MFII Rank

Alabama 0.91 33 1.53 37 1.22 37 0.58 44 0.80 29 0.89 24 0.63 33 0.47 21 0.69 16

Arkansas 1.63 4 1.50 38 1.24 34 0.72 26 1.02 14 0.90 21 0.64 32 0.49 15 0.57 29

Arizona 0.97 30 1.14 45 0.78 46 0.71 29 0.47 41 0.65 39 0.64 30 0.35 36 0.51 36

California 0.87 35 1.94 25 0.79 45 0.57 46 0.66 35 0.44 48 0.41 48 0.23 45 0.39 45

Colorado 1.04 22 1.74 33 1.36 19 0.77 20 0.81 25 0.80 31 0.71 19 0.54 7 0.69 15

Connecticut 0.77 40 1.98 23 1.46 11 0.63 42 0.63 36 0.83 29 0.60 36 0.36 34 0.54 31

Delaware 0.64 46 1.87 28 1.27 31 0.37 48 1.13 6 0.92 17 0.49 43 0.47 22 0.70 14

Florida 0.60 48 0.37 48 0.51 48 0.53 47 0.31 48 0.44 47 0.41 47 0.22 47 0.35 47

Georgia 1.14 14 1.40 40 1.22 36 0.68 31 0.77 31 0.85 27 0.53 42 0.35 35 0.55 30

Iowa 0.68 44 1.37 42 1.20 38 0.67 33 0.91 19 0.96 12 0.46 45 0.27 42 0.48 37

Idaho 1.23 9 2.12 19 1.33 22 1.16 4 0.58 38 0.76 34 1.00 4 0.57 5 0.52 35

Illinois 1.00 25 2.02 21 1.25 33 0.66 34 0.82 23 0.63 41 0.48 44 0.24 44 0.32 48

Indiana 1.06 20 2.49 10 1.53 6 0.76 22 1.07 9 0.85 28 0.44 46 0.28 41 0.41 42

Kansas 1.21 12 2.68 5 1.31 26 0.79 18 1.05 11 0.98 11 0.81 11 0.54 8 0.73 9

Kentucky 0.83 38 1.61 36 1.32 24 0.65 39 0.81 26 0.91 20 0.66 26 0.47 20 0.71 11

Louisiana 1.66 2 2.84 3 1.61 2 0.89 9 0.68 34 0.82 30 0.91 7 0.50 12 0.67 22

Massachusetts 0.70 43 1.79 30 1.31 27 0.72 25 0.50 40 0.69 38 0.73 16 0.23 46 0.40 43

Maryland 0.87 36 2.48 11 1.49 10 0.57 45 1.19 5 1.03 6 0.58 39 0.48 18 0.69 17

Maine 0.82 39 2.22 18 1.56 4 0.75 23 0.82 24 1.03 7 0.83 9 0.39 32 0.65 23

Michigan 1.06 21 3.07 2 1.67 1 0.74 24 0.88 21 0.89 23 0.62 35 0.46 23 0.61 25

Minnesota 0.97 29 2.02 22 1.39 18 0.82 15 1.20 4 0.98 10 0.78 13 0.48 17 0.61 27

Missouri 1.03 23 2.37 14 1.32 25 0.85 13 1.50 1 1.13 2 0.57 40 0.38 33 0.62 24

Mississippi 1.17 13 1.68 34 1.33 21 0.72 28 0.62 37 0.74 35 0.67 25 0.43 24 0.61 26

Montana 1.66 3 2.63 7 1.49 9 1.28 2 0.36 46 0.58 42 1.13 2 0.30 39 0.46 39

North Carolina 1.13 15 0.78 46 0.81 44 0.65 38 0.81 27 0.78 32 0.56 41 0.39 31 0.73 8

North Dakota 1.71 1 1.91 26 1.46 12 1.00 6 0.34 47 0.51 46 0.86 8 0.43 26 0.44 40

Nebraska 1.22 10 2.66 6 1.42 14 0.72 27 1.07 10 1.07 4 0.66 28 0.42 27 0.68 18

New
Hampshire

0.73 42 2.54 9 1.58 3 0.79 19 0.72 32 0.92 19 0.82 10 0.29 40 0.53 33

New Jersey 0.75 41 1.78 31 1.19 39 0.65 36 0.39 44 0.58 44 0.60 37 0.31 37 0.43 41

New Mexico 1.11 17 1.88 27 1.09 42 0.87 10 0.92 18 0.87 26 0.68 24 0.59 4 0.72 10

Nevada 1.07 18 1.94 24 1.27 30 1.39 1 0.55 39 0.76 33 1.34 1 0.43 25 0.68 20

New York 0.84 37 2.07 20 1.33 20 0.64 41 0.87 22 0.95 15 0.63 34 0.56 6 0.71 12

Ohio 0.95 31 2.29 16 1.40 17 0.68 32 0.70 33 0.72 36 0.59 38 0.40 29 0.54 32

Oklahoma 1.02 24 0.54 47 0.62 47 0.86 11 1.24 3 1.08 3 0.81 12 0.51 11 0.77 5

Oregon 1.28 8 2.70 4 1.53 5 0.92 8 0.43 42 0.65 40 0.75 14 0.19 48 0.36 46

Pennsylvania 0.98 26 2.48 12 1.50 8 0.64 40 1.01 15 0.96 13 0.64 31 0.54 9 0.73 7

Rhode Island 0.89 34 1.78 32 1.41 15 0.62 43 0.38 45 0.58 43 0.72 18 0.24 43 0.40 44

South Carolina 1.29 7 1.45 39 1.00 43 0.80 16 0.81 28 0.94 16 0.75 15 0.50 13 0.68 21

South Dakota 1.13 16 1.18 44 1.10 41 0.86 12 1.30 2 1.01 9 0.70 20 0.49 16 0.59 28

Tennessee 0.95 32 1.83 29 1.40 16 0.69 30 0.89 20 0.95 14 0.69 22 0.72 1 0.83 2

Texas 1.62 5 3.68 1 1.33 23 1.11 5 0.94 17 0.69 37 0.73 17 0.30 38 0.53 34

Utah 1.07 19 2.26 17 1.29 28 0.98 7 0.95 16 0.92 18 0.91 6 0.49 14 0.70 13
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Conclusions and policy implications

This paper revisits an exhaustively studied area, mea-
surement of energy intensity, and proposes an alterna-
tive method which overcomes the shortcomings of the
index decomposition approach. In this paper, we regard
energy intensity measure as the inverse of a partial factor
productivity measure and consider index decomposition
trials as an attempt to partially alleviate some but not all
the weakness of the measure. First, while index decom-
position method accounts for compositional differences

in outputs among units being compared, it fails to take
into consideration compositional differences between
inputs. Second, while energy intensity measures provide
a valuable information on the evolution of energy effi-
ciency trends over time, there are some considerable
challenges in using energy intensity measure to perform
informative and fair comparisons between the energy
efficiency levels of units (states) being considered.

In this paper, by relying on the computation of direc-
tional distance functions, which provide a valuable
framework for modeling a technology with multiple

Table 5 Determinants of energy intensity—Arellano-Bond dynamic panel estimates with robust S.E’s

EI variable Coef. Robust std. error z P > |z|

EIt-1 0.4404 0.0275 16.03 0.000

EIt-2 0.0678 0.0244 2.78 0.005

(PE/POUT) 0.0173 0.0350 0.49 0.621

(PE/POUT)t-1 0.1397 0.0451 3.09 0.002

(PE/POUT)t-2 − 0.0958 0.0446 − 2.15 0.032

(PE/POUT)t-3 − 0.2066 0.0234 − 8.83 0.000

CI 0.2962 0.0349 8.49 0.000

LI 0.2931 0.0278 10.56 0.000

Wald chi-sq(8) 8502.58 0.000

Number of obs. 2016 Groups 48

Arellano-Bond test for zero autocorrelation in first-differenced error (H0: No autocorrelation)

Test order z Prob > z

AR(1) − 5.6393 0.0000

AR(2) 1.0622 0.2881

Wald chi-square statistic tests the overall significance of the model. The Arellano-Bond test for autocorrelation has a null hypothesis of no
autocorrelation and is applied to the first difference residuals. The AR(1) test in first differences is expected to reject the null hypothesis. The
AR(2) test in first differences is more important since it fails to reject the null hypothesis of no autocorrelation in levels, as expected. Given

that the dependent variable follows an ARDL(2,3) specification: yit ¼ ∑
2

l¼1
φilyi; t−l þ ∑

3

l¼0
βilxi;t−l þ uit the long run response is then

computed as θ ¼ ∑3
l¼0βil

1− ∑2
1φil

EI energy intensity, (PE/POUT) relative price of energy with respect to output price, CI capital intensity, LI labor intensity

Table 4 (continued)

1960 1990 2004

AEI Rank EI Rank MFII Rank AEI Rank EI Rank MFII Rank AEI Rank EI Rank MFII Rank
Virginia 0.97 28 1.68 35 1.27 32 0.65 35 0.79 30 0.87 25 0.65 29 0.70 2 0.80 3

Vermont 0.63 47 2.34 15 1.23 35 0.65 37 1.04 12 0.89 22 0.70 21 0.42 28 0.68 19

Washington 1.39 6 1.38 41 1.15 40 0.85 14 0.43 43 0.57 45 0.68 23 0.40 30 0.48 38

Wisconsin 0.67 45 1.20 43 1.28 29 0.77 21 1.11 8 1.04 5 0.66 27 0.48 19 0.76 6

West Virginia 0.98 27 2.45 13 1.51 7 0.79 17 1.12 7 1.23 1 0.93 5 0.53 10 0.78 4

Wyoming 1.21 11 2.63 8 1.43 13 1.24 3 1.03 13 1.01 8 1.05 3 0.64 3 0.90 1
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outputs and inputs, we propose an alternative technique
that expresses the energy intensity index as a ratio of
input (energy) quantity index to output quantity index,
both of which satisfy all the desirable properties due to
Fisher (1922)—i.e., homogeneity, time reversal, transi-
tivity, and dimensionality. Unlike our predecessors, our
productivity measure (or energy intensity measure)
overcomes the shortcomings of the partial productivity
measure by not only controlling for the compositional
differences in outputs (both across the units being
observed and over-time) but also by accounting for the
compositional differences in inputs (both across the
units being observed and over-time).

Application of the proposed methodology to the U.S
agricultural sector, an unexplored area with respect to
energy intensity, reveals that there exist substantial dif-
ferences between energy intensity levels for both the
AEI and EI which prior studies relying on index decom-
position methods failed to show and that improvements
in energy intensity (energy productivity) will be
underestimated if measured by AEI. The study also
shows that, for all the regions, the level of EI was higher
than the level of MFII during the initial years. EI im-
proved faster indicating that particular attention is paid
to increase energy efficiency and that energy efficiency
has increased at a faster rate than the average rate of
increase in the efficiency of all the inputs.

On the energy policy front, the indices developed in
this study will provide a quick assessment tool for policy
makers, based on meaningful analysis. This study’s
research on energy intensity level differences across
states can serve as the starting point in identifying good
practices and developing region- or state-based policies.
Furthermore, identification of the impact of energy pol-
icies requires a correct measurement of the outcomes of
these policies. The methodology proposed in this study,
through more accurate measurements, will help the pol-
icy makers do more sound judgments.
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