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Abstract One of the ways to achieve energy efficiency
in various residential electrical appliances is with energy
usage feedback. Research work done showed that with
energy usage feedback, behavioural changes by con-
sumers to reduce electricity consumption contribute sig-
nificantly to energy efficiency in residential energy us-
age. In order to improve on the appliance-level energy
usage feedback, appliance disaggregation or non-
intrusive appliance load monitoring (NIALM) method-
ology is utilized. NIALM is a methodology used to
disaggregate total power consumption into individual
electrical appliance power usage. In this paper, the elec-
trical signature features from the publicly available
REDD data set are extracted by the combination of
identifying the ON or OFF events of appliances and
goodness-of-fit (GOF) event detection algorithm. The
k-nearest neighbours (k-NN) and naive Bayes classifiers
are deployed for appliances’ classification. It is observed
that the size of the training sets effects classification
accuracy of the classifiers. The novelty of this paper is
a systematic approach of NIALM using few training
examples with two generic classifiers (k-NN and naive

Bayes) and one feature (power) with the combination of
ON-OFF based approach and GOF technique for event
detection. In this work, we demonstrated that the two
trained classifiers are able to classify the individual
electrical appliances with satisfactory accuracy level in
order to improve on the feedback for energy efficiency.

Keywords Energy efficiency. Non-intrusive appliance
loadmonitoring . Few training examples . k-nearest
neighbour . Naive Bayes . Goodness-of-fit

Introduction

One of the ways to achieve energy efficiency is with
energy usage feedback (Darby 2006; Fischer 2008;
Froehlich 2009; Faruqui et al. 2010). Research work
done showed that with energy usage feedback, behav-
ioural changes by customers to improve energy efficien-
cy through reducing electricity consumption are from 4
to 12% in the United States of America (Ehrhardt-
Martinez et al. 2010). In Europe, researches showed
that energy feedback can guide consumers in be-
havioural change in reducing energy consumption
(Behavioural Insights Team 2011; European
Environment Agency 2013). In order to improve
on the appliance-level energy usage feedback, non-
intrusive appliance load monitoring (NIALM)
methodology is utilized (Froehlich et al. 2011;
Carrie Armel et al. 2013). NIALM disaggregates
the sum of power consumption of single point into
individual electrical appliance power consumption
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(Hart 1992; Zoha et al. 2012). The energy or
power consumption for individual electrical appli-
ances can be determined from the disaggregated
data (Chang et al. 2014).

The NIALM methodology can be implemented as
follows:

Step 1: acquisition of the electrical signature data.
Step 2: extraction of feature from the signature data

and,
Step 3: classify the appliance either through super-

vised or unsupervised learning (Zoha et al.
2012; Wong et al. 2013).

After the acquisition of the electrical signature data,
the features from these data can be extracted. The elec-
trical appliance features can be categorized into three
main types namely steady-state signatures, transient sig-
natures and other types of signatures (Zoha et al. 2012;
Wong et al. 2013; Zeifman and Roth 2011). In our
proposed work, the steady-state signature data is uti-
lized. The power changemethodology is used to analyze
the steady-state signature data in order to extract useful
features (Hart 1992; Marchiori et al. 2011; Marceau and
Zmeureanu 2000). With the power change methodolo-
gy, the features are the real power and the reactive
power. These features are used to track the switching
of an electrical appliance operation state, that is, ON or
OFF (Hart 1992). George Hart proposed the principle of
BSwitch Continuity Principle^ (Hart 1992) which is
applied in this work. This principle states that Bin any
small enough time interval, the number of appliances
which change state to be usually zero, sometimes one
and very rarelymore than one^. The advantage of power
change methodology is that high power load electrical
appliances can be easily identified. Furthermore, this
methodology requires low sampling rate. However, the
low power appliances cannot be easily identified due to
the overlapping of real and reactive power in the plot of
reactive power versus the real power feature space
(Zoha et al. 2012; Yang et al. 2015).

After the features are extracted from the signature
data, the event detection is performed. In current
NIALM methodology, there are two approaches for
event detection, that is, event based or non-event based.
In the event-based approach, the edge detection algo-
rithm is utilized to detect events in a power utilization
signature. The event detection algorithm tracks the
changes of power usage between the switching ON or

OFF conditions to determine whether an event has
occurred in steady-state signatures (Wong et al. 2013;
Jazizadeh et al. 2014; Anderson et al. 2012; Jin et al.
2011). The non-event-based methodology takes into
consideration every data in the total power consumption
for deduction (Wong et al. 2013). Examples of non-
event based are hidden Markov model (HMM) with
various variation of extension of HMM (Wong et al.
2013; Kim et al. 2011; Kolter and Jaakkola 2012; Li
et al. 2014; Basu et al. 2015a). The event detection
methodology used in this work is the goodness-of-fit
(GOF) technique (Jin et al. 2011; Cochran 1952). Re-
searchers had reported good performance from this
GOF technique for the event detection algorithm
(Yang et al. 2015; Jin et al. 2011; Yang et al. 2014;
Cochran 1952; Baets et al. 2017).

The third step in NIALM methodology is to classify
the individual appliances from the extracted features and
event detection results (Anderson et al. 2012). One of
the classification groups is the supervised learning. This
technique utilizes an offline training platform to build a
data of information for future prediction. Some common
supervised learning techniques are artificial neural net-
works (ANN) (Zoha et al. 2012; Chang et al. 2014;
Chang 2012; Chang et al. 2010; Chang et al. 2008;
Roos et al. 1994; Yoshimoto et al. 2000; Srinivasan
et al. 2006), support vector machines (SVM) (Li et al.
2012; Figueiredo et al. 2011; Lin et al. 2010a; Kato et al.
2009; Patel et al. 2007; Kramer et al. 2012; Zeifman
2012), k-nearest neighbor (k-NN) (Figueiredo et al.
2011; Kramer et al. 2012; Alasalmi et al. 2012;
Rahimi et al. 2012; Berges et al. 2011; Berges et al.
2010; Gupta et al. 2010; Saitoh et al. 2010; Berges et al.
2009; Duda et al. 2000; Cover and Hart 1967; Chahine
et al. 2011; Giri et al. 2013a; Giri et al. 2013b) and naive
Bayes classifier (Marchiori et al. 2011; Chahine et al.
2011; Giri et al. 2013a; Zeifman 2012; Lin et al. 2010b;
Marchiori and Han 2009; Barker et al. 2014; Meehan
et al. 2014). There is also research work done in super-
vised learning by utilizing a disaggregation algorithm
which minimizes the training by performing the initial
model building (Makonin et al. 2015). Another type of
supervised learning is the deep neural network which
utilizes a lot of training data as the algorithm has many
parameters to be trained (Kelly et al. 2015).

On the other hand, the unsupervised learning does
not require training before classification starts (Wong
et al. 2013; Parson et al. 2014). One of the methods in
unsupervised learning is clustering (Yang et al. 2015;
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Wang and Zheng 2012; Shao et al. 2012; Goncalves
et al. 2011). There is also a research work done by
combining a one-time supervised training process over
available labeled appliance data sets with an unsuper-
vised training method over unlabeled household aggre-
gate data (Parson et al. 2014). Another type of unsuper-
vised learning is the application of the Hierarchical
Dirichlet Process Hidden Semi-Markov Model (HDP-
HSMM) factorial structure which provides Bayesian
inference and modeling of the duration (Johnson and
Willsky 2013).

There is also work done on the semi-supervised
learning with very few labeled training examples which
utilizes two classifiers separately on two attribute data
sets. Each set is independent of the other given the class
label (Zhou et al. 2007). There is also work done by
Basu et al. (2015b) in comparing both the k-NN classi-
fier with HMM methodology. In this work, the results
show that the k-NN classifier with multiple distance-
based metrics frequently perform better than the HMM.
There was also research work by the same researchers
(Basu 2014), done based on one feature which is the
active power which performs with satisfactory accuracy.

In our proposed work, the supervised learning
through k-NN and naive Bayes classifier is utilized.
The k-NN algorithm is chosen as one of the classier in
our work because we only utilize one feature to classify
the appliance. This methodology was also utilized by
Gupta et al. (2010). There was also work done utilizing
k-NN for training with few examples, for classifying
individual electrical appliances through V-I trajectory
based load signature with multi-stage classification al-
gorithm (Yang et al. 2016). The data used in this work
was from the REED data set House#3 (Kolter and
Johnson 2011).

There was also work done utilizing a developed data
set of four types of electrical appliances, and satisfactory
classification accuracy can be achieved using few train-
ing examples with naive Bayes classifier and one feature
(the average power) (Yang et al. 2017).

Furthermore, the work by Spiegel et al. (Spiegel and
Albayrak 2014) utilized the REED data set with four
classifiers. It was shown in their work that Naive Bayes
has the highest classification accuracy and the lowest
classification accuracy was the 1-NN (Spiegel and
Albayrak 2014). Therefore, in our work we utilize the
Naive Bayes and k-NN classifiers to benchmark our
classification results with the work of Spiegel and
Albayrak (2014). Apart from benchmarking purpose,

naive Bayes classifier is chosen because of the classi-
fier’s simplicity and robustness and requires small train-
ing data examples (Wu et al. 2008).

Once the classification algorithm is implemented, the
results of the accuracy of the classification are obtained.
In order to provide a more meaningful comparison
between algorithms, various researchers reported the
use of confusion matrix (CM) (Zoha et al. 2012;
Alasalmi et al. 2012; Barker et al. 2014; Spiegel and
Albayrak 2014). A CM is a matrix that illustrates the
predicted and actual classifications (Kohavi and Provost
1998). In addition, to have consequential comparison
with various NIALM methodologies, the use of a com-
mon data set is crucial (Zoha et al. 2012).

The novelty of this paper is the systematic approach
of energy disaggregation using few training examples
with two generic classifiers (k-NN and naive Bayes) and
one feature (power) with the combination of ON-OFF
based approach and goodness-of-fit (GOF) technique
for event detection. Recent interesting work from re-
searchers also shows that satisfactory classification ac-
curacies can be achieved using few training examples
from the REED data set (Yang et al. 2016) or from the
developed data set (Yang et al. 2017).

In this paper, we investigated one of the problems
associated with event-based load disaggregation, that is,
the lack of training samples to train classification model.
In actual practice, obtaining real appliance signature
data can be a daunting task. In a real-world setting, this
would require users to manually label the samples of
power signatures for individual appliances at homes.
This apparent lack of user friendliness can be intimidat-
ing to users and is a hindrance to commercialization of
the technology.

We proposed that one way to circumvent this prob-
lem is to develop classification models that performwell
with few training examples. Training classifier with few
training examples is an area of interest in the machine
learning community. Salperwyck et al. has reported a
detailed study on the performance of different classifiers
using few training examples (Salperwyck and Lemaire
2011). Their results show that it is possible to obtain
good accuracy using small training sets if classification
models with properly tuned parameters are trained. One
of the classification methods recommended in their pa-
per is the naive Bayes classifier (Salperwyck and
Lemaire 2011). Furthermore, work performed by
Forman and Cohen (2004) shows that one of the classi-
fier used, naive Bayes, also performed well with few
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training examples. Motivated by their results, this paper
aims to investigate the feasibility of energy disaggrega-
tion using few training examples to be used with two
classifiers, kNN and naive Bayes for satisfactory
accuracy.

The paper is organized as follows: in section
BMethodology ,̂ discussion of the methodology used
in our work. In section BResults and discussion^, the
results of the classification algorithm implementation
are discussed. Finally, conclusions are drawn in section
BConclusions^.

Methodology

Asmentioned in section BIntroduction^, the objective of
this paper is to investigate the feasibility of using few
training examples to develop classification model for
NIALM.We utilize the k-NN and naive Bayes classifier
to perform classification of appliances. Figure 1 flow
chart shows an overview of our classification method-
ology implementation.

Preparation of data set

In this paper, the REDD data set for house #1 and house
#3 is utilized (Kolter and Johnson 2011). Our approach
is based on the event-based methodology for NIALM
(Yang et al. 2015; Jazizadeh et al. 2014; Anderson et al.
2012; Jin et al. 2011). From the REDD data set data, the
power measurement is obtained (Yang et al. 2015;
Kolter and Johnson 2011). The REDD data set is uti-
lized and the data used are labeled as house 1 which
have 20 monitoring points that consist of whole home
monitoring (two mains) and various other electrical
appliances. The electrical appliances consist of electron-
ics, lighting, refrigerator, disposal, dishwasher, furnace,
washer dryer, smoke alarms, bathroom, kitchen outlets
and microwave, as shown in Table 1. In house #3, there
are 22 electrical outlets that were measured and this
includes two main outlets. Eleven appliances are chosen
based on the availability of sufficient data as shown in
Table 2. The data set consists of total average power
consumption (watts). In our work, all the data sets are
manually labeled.

Next, the median filtering is performed to remove
noise from the data (Yang et al. 2015; Arias-Castro and
Donoho 2009). The median filtering is used to reduce
the noise and to smoothen the signal for processing in

the subsequent stages. After median filtering, the event
detection algorithm (Yang et al. 2015; Yang et al. 2014)
is performed to identify the changes in the appliances’
power levels from the power consumption profile. The
combination of ON-OFF based approach and goodness-
of-fit (GOF) techniques are adopted to detect events in
the total power consumption data. As the data set used is
from the continuous power data, the data is separated
into n-samples of frames. The frames can be identified
as pre- and post-event frames. The event detection al-
gorithm is to detect the switching ON or OFF of elec-
trical appliances. The GOFmethod aims to establish that
for some available probability distribution, a set of data
could be derived from it. The GOF test utilizes the Chi-
square test (Jin et al. 2011). Equation (1) is implemented
using MATLAB.

ℓGOF ¼ ∑
n

i¼1

yi−xið Þ2
xi

ð1Þ

For our calculation, we equate lGOF = χ2. The data
sample xi is the sample from the pre-event window and
yi is the data sample from the post-event window. A total
number of n data samples in the pre-event window are
compared with a total number of n data samples in post-
event window to determine the amount of deviation of
both population of data sample. Equation (1) quantified
this deviation. If an event takes place, the value of lGOF
is expected to be high.

Partition data set from event detection data and training
algorithm

The data set obtained from the event detection algorithm
is manually labeled for each appliance. Next, the parti-
tion algorithm organizes the data according to the type
of appliance and allocated 40% of the data set as test
samples and the remaining 60 to 10% as the training
samples. In our proposed method, the remaining 60 to
10% training sample data set is selected sequentially.
This is because the ON/OFF event of an appliance must
happen in succession. The minimum, maximum, medi-
an, and mean power consumption for each type of
appliances are also listed in Tables 1 and 2 for House
#1 and House #3, respectively.

Since we are interested in investigating the influence
of training set size on the classification accuracy of the
models, we design six different data sets assigned as
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data sets A, B, C, D, E and F for each of the appliances.
The numbers of training samples for each of the appli-
ances are as follows:

– Oven 1 (no. of training samples from 29 to 3)
– Oven 2 (no. of training samples from 25 to 4)
– Refrigerator (no. of training samples from 408 to

68)
– Dishwasher (no. of training samples from 110 to

18)
– Lighting 1 (no. of training samples from 41 to 7)
– Washer dryer 1 (no. of training samples from 28 to

5)
– Microwave (no. of training samples from 181 to 30)
– Bathroom gfi (no. of training samples from 34 to 6)
– Kitchen outlet 1 (no. of training samples from

24 to 4)

– Kitchen outlet 2 (no. of training samples from 16 to
3)

– Lighting 2 (no. of training samples from 18 to 3)
– Washer dryer 2 (no. of training samples from 136 to

23)

The test set contains the same test samples for all
Data Set A through to F as shown in Table 1 (no. of test
samples). This is to ensure that comparisons between the
accuracy of different data sets can be made in a consis-
tent manner using the same test samples for all training
sets A through to F. Hence, there are a total of 705 test
samples used for Data Set A, B, C, D, E and F.

In order to compare the effect of few training exam-
ples, a second set of test samples is used with the
number of samples reduced approximately by half at
n/2 = 350. The training samples will also be reduced

Median Filtering

Appliance Signature Data

Event Detection – Goodness of Fit 

(GOF) Methodology

Partition Data Set from Event Detection 

Data

Training Data Set Test Data Set

Training Algorithm

Prediction from the Classifier

Prediction Results

Compare Prediction Results with Test 

Data Set

Accuracy Metrics and Results 

Benchmarking

REDD Public Data Set
Fig. 1 Flow chart of the
methodology implementation
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approximately by half. The n/2 = 350 sample size is
used for the naive Bayes classifier.

Figures 2 and 3 show the distribution of power
values for different types of appliances used in
House #1 and House #3, respectively, of the REDD
data set. These two figures also illustrate the extent
of which the distribution of power values of appli-
ances overlap with each other in a graphical manner.
The overlapped power value distributions pose

difficulty in discriminating the appliances especially
in cases where the power values fall in the ranges of
two or more appliance categories.

Since we are interested in investigating the influence
of training set size on the classification accuracy of the
models between House #1 and House #3, similar treat-
ment of allocation of data set in House#1 is being applied
to House#3. Hence, there are a total of 1306 test samples
used for House #3 as shown in Table 2.

Table 1 REDD House #1—the power consumption values and number of samples for each type of appliances

Appliance type at house #1
(REDD data set)

No. of samples No. of test samples Power

Min Max Mean Median

Oven 1 49 24 1446.30 4159.50 1673.50 1635.10

Oven 2 42 17 312.20 4595.80 2380.50 2439.00

Refrigerator (REF) 680 272 19.82 424.38 169.34 170.52

Dishwasher (DSW) 183 73 123.48 1140.90 383.07 214.58

Lighting 1 (LGT 1) 69 28 3.70 284.55 111.92 83.96

Washer dryer 1 (WSD 1) 47 19 436.92 1680.10 641.40 631.30

Microwave (MCW) 301 120 387.87 4038.70 1504.60 1497.20

Bathroom gfi (BTR) 57 23 1379.00 1728.10 1581.90 1580.60

Kitchen outlet 1 (KCO 1) 40 16 446.79 1141.70 1042.90 1061.10

Kitchen outlet 2 (KCO 2) 26 10 1310.20 1951.80 1512.00 1513.50

Lighting 2 (LGT 2) 30 12 0.19 153.30 68.47 67.12

Washer dryer 2 (WSD 2) 227 91 184.72 3135.70 2405.00 2419.90

Total samples 1751 705

Table 2 REDD House #3—the power consumption values and number of samples for each type of appliances

Appliance type at House #3
(REDD data set)

No. of samples No. of test samples Power

Min Max Mean Median

Electronics (ELC) 67 27 2.18 1177.3 890.67 1098.2

Furnace (FUR) 190 76 62.8 743.88 367.64 393.60

Washer dryer 2 (WSD 2) 537 215 389.33 2687.5 2082.2 2110.4

Microwave (MCW) 80 32 48.8 2810.6 1503.4 1760.6

Bathroom gfi (BTR) 77 31 779.57 3410.1 1478.9 1684.6

Refrigerator (REF) 1382 553 2.34 1953.3 111.23 107.48

Dishwasher (DSW) 90 36 52 746 175.97 127

Lighting 1 (LGT 1) 74 30 34.17 358.56 172.28 172.27

Washer dryer 1 (WSD 1) 519 208 1567.3 2479.5 2277.0 2285.8

Lighting 2 (LGT 2) 173 69 30.43 383.73 142.59 140.99

Lighting 3 (LGT 3) 73 29 50.75 313.45 147.55 147.27

Total samples 3262 1306
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In order to compare the effect of few training exam-
ples, a second set of test samples is used with the number
of samples reduced approximately by half at n/2 = 650.
The training samples will also be reduced approximately
by half. The n/2 = 650 sample size is used for the naive
Bayes classifier.

Classifier’s algorithm

K-nearest neighbour (k-NN) classifier

The k-NN classifier finds the data’s nearest neighbours
in training data in the determined feature space by

Fig. 2 House #1—power ranges of appliances

Fig. 3 House #3—power ranges of appliances
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utilizing Euclidean distance as a distance metric. The
majority choice of the nearest neighbours classes will be
the class chosen for the data evaluated. The Bk^ value is
the number of closest data points to the nearest neigh-
bours. The kNN algorithm is chosen as one of the classi-
fier in our work because we only utilize one feature to
classify the appliance. This methodology was also utilized
by Gupta et al. (2010).

In the k-NN classifier, the number of nearest neighbour,
k, is varied, and the prediction accuracy for different k
values is recorded. The highest percentage prediction ac-
curacy with the corresponding training data set size, k
value, is analyzed.

K-nearest-neighbour (k-NN) algorithm measures the
distance between a query situation and a set of situation
in the data set. For any new query situation, the attri-
butes of the new query are compared with all the previ-
ously seen situation in the training data set, based on a
distance measurement. The classification process is to
assign the new query to the class of the majority of
neighbouring query situation. For any instance xi in a
data set of size m, the distance d is based on the follow-
ing Eq. (2):

d xið Þ ¼ min d xi; x1ð Þ; d xi; x2ð Þ;…; d xi; xmð Þ
n o

ð2Þ

In our work, Euclidean distance is used. This dis-
tance, where m is the total number of points, is calculat-
ed by the following Eq. (3)

dE x1; x2;…; xm
n o

; y1; y2;…; ym
n o� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i¼1
xi−yið Þ2

s
ð3Þ

Naive Bayes classifier

In our proposed work, the naive Bayes classifier is also
utilized. In our method, an individual appliance is the
class and the feature is the power. This classifier is based
on the Bayes’ theorem and assumes independence be-
tween each of the appliances’ state, as shown in Eq. (4).

p c djð Þ ¼ p d cjð Þ p cð Þ
p dð Þ ð4Þ

where
p(c | d) is the probability of instance d being in class

c,
p (d | c) is the probability of producing instance d

given class c,
p(c) is the probability of occurrence of class c,
p(d) is the probability of instance d occurring.
The advantage of using naive Bayes is that it only

requires a small amount of training data to predict the
appliances class. This fits into our method as we
required training with few examples. It is because of
this reason, we choose naive Bayes classifier. There
are various researchers who carried out work using

Table 3 State of the confusion matrix

Actual ON Actual OFF

Prediction ON TP FP

Prediction OFF FN TN

Fig. 4 House #1—k-NN result
from training set size
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naive Bayes classifier and obtained good results
(Marchiori and Han 2009; Meehan et al. 2014;
Ashari et al. 2013).

With naive Bayes algorithm, the training data set is used
to train the classifier, and the prediction accuracy is obtain-
ed by testing the classifier on unseen test set as per Eq. (5).
In naive Bayes classifier algorithm, there is no parameter to
vary unlike in the case of k-NN classifier.

Classifier’s performance

Confusion matrix is also constructed to help to iden-
tify the number of examples that are correctly classi-
fied as well as misclassified (Zoha et al. 2012;
Alasalmi et al. 2012; Barker et al. 2014; Spiegel and
Albayrak 2014; Ashari et al. 2013). In the analysis of

confusion matrix, the predicted appliances are
mapped to the actual appliances. The classification
accuracy of the model is calculated from the confu-
sion matrix table based on the following Eq. (5).

Accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ½ � ð5Þ
where TP = number of true positive samples in test set,

TN = number of true negative samples in the test set,
FP = number of false positive samples in the test,
FN = number of false negative sample in the test set.
Table 3 shows how the TP, TN, FP and FN pa-

rameters correspond to the entries of the confusion
matrix (Powers 2011). From the confusion matrix,
the individual appliance classification accuracy can
be calculated. There are four types of conditions in

Table 4 House #1—appliance confusion matrix for k-NN classifier, k = 5

Actual
Oven 1 Oven 2 REF DSW LGT 1 WSD 1 MCW BTR KCO 1 KCO 2 LGT 2 WSD 2

Predicted Oven 1 10 1 0 0 0 0 2 6 0 0 0 0
Oven 2 0 0 0 0 0 0 0 0 0 0 0 0

REF 0 0 261 42 18 0 0 0 0 0 2 0
DSW 0 1 6 26 0 2 0 0 0 0 0 0
LGT 1 0 0 5 0 10 0 0 0 0 0 10 0

WSD 1 0 0 0 1 0 17 0 0 0 0 0 0
MCW 6 0 0 0 0 0 105 3 0 9 0 0
BTR 7 1 0 0 0 0 10 14 0 0 0 0

KCO 1 0 0 0 4 0 0 0 0 16 0 0 0
KCO 2 0 0 0 0 0 0 1 0 0 0 0 0
LGT 2 0 0 0 0 0 0 0 0 0 0 0 0

WSD 2 1 14 0 0 0 0 2 0 0 1 0 91
Test samples of which the developed classifier algorithm has difficulty to discriminate between appliances

Fig. 5 House #1—% accuracy of
k-NN classifier for each individ-
ual appliance
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the confusion matrix. The first type, true positives
(TP), is examples correctly labeled as ON state. The
second type, false positives (FP), corresponds to
OFF state examples incorrectly labeled as ON state.
The third type, true negatives (TN), refers to exam-
ples correctly labeled as OFF state. The fourth type,
false negatives (FN), refers to ON state examples
incorrectly labeled as OFF state. The confusion ma-
trix constructed is for a two class classifier. The
diagonal values represent the identification accuracy
of the respective class. This means that the predicted
ON/OFF corresponds to the actual ON/OFF. The
row values in parallel illustrate that a particular class
is wrongly predicted with other class.

Apart from the accuracy performance measurement
discussed above, other researchers (Kolter and
Jaakkola 2012; Li et al. 2014) have reported the preci-
sion and recall parameters as performance metrics. We
also computed the precision and recall values to eval-
uate our classification task. Precision measures the
segment of an estimated power of an appliance and

the higher the precision reflects the higher percentage
of correct estimation (fewer false positive). Recall
measures the segment of a given appliance power
correctly classified and the higher recall indicates
higher power level correctly estimated (fewer false
negative) (Kim et al. 2011; Li et al. 2014; Davis and
Goadrich 2006; Powers 2011). The equations for pre-
cision and recall are provided in the following eqs. (6)
and (7), respectively.

Precision ¼ True Positive= True Positiveþ False Positive½ � ð6Þ
Recall ¼ True Positive= True Positiveþ False Negative½ � ð7Þ

Results and discussion

K-NN classifier

For House #1 of REDD data set, from the training set
size of 60 to 10%, it is observed that the training set size
of 10%, at the number of nearest neighbours, k = 5

Fig. 6 House #3—k-NN result
from training set size

Table 5 House #3—appliance confusion matrix for k-NN classifier, k = 6

Actual
ELC REF DSW FUR LGT 1 WSD 1 WSD2 MCW LGT 2 LGT 3 BTR

Predicted ELC 17 0 0 0 0 0 0 0 0 0 2
REF 9 514 18 29 18 0 1 3 42 13 0

DSW 0 3 10 2 1 0 0 0 0 3 0
FUR 0 10 4 39 0 0 3 0 0 0 2

LGT 1 0 5 0 1 2 0 0 0 4 4 0
WSD 1 0 0 0 0 0 188 11 0 0 0 0
WSD 2 0 0 0 0 0 18 198 0 0 0 1
MCW 0 0 0 0 0 2 1 14 0 0 2
LGT 2 0 21 4 3 9 0 0 0 21 9 0
LGT 3 0 0 0 2 0 0 0 0 2 0 0
BTR 1 0 0 0 0 0 1 15 0 0 24

Test samples of which the developed classifier algorithm has difficulty to discriminate between appliances

248 Energy Efficiency (2018) 11:239–259



produces the highest accuracy at 78.01%. Figure 4
shows the results. The accuracy is calculated using the
following eq. (8).

Accuracy ¼ Total correct prediction=Total Test Sampleð Þ*100% ð8Þ
As the House #1 of REDD data set has the highest

accuracy at 78.01% from the training set size of 10%
and k = 5, an appliance confusion matrix table is built as
shown in Table 4. The matrix table summarizes the
number of samples that are correctly classified or
misclassified. Each column of the confusion matrix
represents the instances in an actual class, while each
row represents the instances in a predicted class. The
diagonal values represent the identification accuracy of
the respective class. This means that the predicted ON/
OFF corresponds to the actual ON/OFF. The row values
in parallel illustrate that a particular class is wrongly
predicted with other class.

From the confusion matrix in Table 4, it is observed
that the k-NN classifier has difficulty in discriminating
between refrigerator (REF) and dishwasher (DSW).

There are 42 power events that belong to the DSW but
they are misclassified as REF by the k-NN classifier
algorithm. There are also 6 power events that belong to
REF but erroneously classified as DSW by the k-NN
classifier algorithm. On top of that, from the confusion
matrix in Table 4, it is observed that the k-NN classifier
has difficulty in discriminating between refrigerator
(REF) and lighting 1 (LGT 1). There are 18 power
events that belong to the LGT 1, but they are
misclassified as REF by the k-NN classifier algorithm.
There are also 5 power events that belong to REF
but erroneously classified as LGT 1 by the k-NN
classifier algorithm. There is also 14 power events
that belong to oven 2 but are misclassified as washer
dryer 2 (WSD 2). In oven 2 and WSD 2, based on
Table 1 and Fig. 2, it is observed that both appli-
ances have similar power ranges. Overlapping of
power value distributions from the two appliances
creates difficulty in classifying power events. This
difficulty has been reported in many studies (Hart
1992; Zeifman and Roth 2011; Zeifman 2012;

Fig. 7 House #3—% accuracy of
k-NN classifier for each individ-
ual appliance

Fig. 8 House #1—naïve Bayes
classifier result from training set
size
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Goncalves et al. 2011; Zeifman et al. 2013).On top
of that, refrigerator, dishwasher and lighting 1 are
also having similar power range, which creates the
difficulty in classifying these power events.

Figure 5 shows the accuracy of each individual ap-
pliance. The accuracy level is calculated using eq. (5)
from the data obtained from Table 4 confusion matrix
table. From Fig. 5, the appliances have classification
accuracy of between 88 and 99%, which achieve very
good performance.

Similar analysis is done for House #3 of REDD data
set, from the training set size of 60 to 10%. Figure 6
illustrates the results for the training set size of 20%, at
the number of nearest neighbours, k = 6 produces the
highest accuracy at 78.64%.

The results in both Figs. 4 and 6 are compared,
and it is observed that the percentage accuracy does
not vary much in between 20 and 60% training set
size. Despite big changes in the size of training set
from 20 to 60%, the percentage accuracy is confined
within the range of 68 up to 78%. The main differ-
ence is the performance of the k-NN classifier at
training set size of 10%. As the House #3 of REDD
data set has the highest accuracy at 78.64% from the
training set size of 20% and k = 6, an appliance
confusion matrix table is built as shown in Table 5.

From the confusion matrix in Table 5, it is observed
that the k-NN classifier has difficulty in discriminating
between refrigerator (REF) and lighting 2 (LGT 2).
There are 21 power events that belong to the refrigerator

Table 6 House#1—appliance confusion matrix for naive Bayes classifier

Actual
Oven 1 Oven 2 REF DSW LGT 1 WSD 1 MCW BTR KCO 1 KCO 2 LGT 2 WSD 2

Predicted Oven 1 7 0 0 0 0 0 1 1 0 0 0 0
Oven 2 0 1 0 0 0 0 0 0 0 0 0 30

REF 0 0 131 18 9 0 0 0 0 0 4 0
DSW 0 1 3 16 0 4 0 0 0 0 0 0
LGT 1 0 0 0 0 0 0 0 0 0 0 0 0
WSD 1 0 0 0 0 0 5 0 0 0 0 0 0
MCW 4 0 0 0 0 0 53 2 0 3 0 0
BTR 1 0 0 0 0 0 3 8 0 0 0 0

KCO 1 0 0 0 2 0 0 0 0 8 0 0 0
KCO 2 0 0 0 0 0 0 1 0 0 1 0 0
LGT 2 0 0 2 0 5 0 0 0 0 0 2 0
WSD 2 0 6 0 0 0 0 2 0 0 1 0 15

Test samples of which the developed classifier algorithm has difficulty to discriminate between appliances

Fig. 9 House #1—% accuracy of
naïve Bayes classifier for each
individual appliance
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(REF), but they are misclassified as LGT 2 by the k-NN
classifier algorithm. There are also 42 power events that
belong to LGT 2 but erroneously classified as REF by
the k-NN classifier algorithm. On top of that, from the
confusion matrix in Table 5, it is observed that the k-NN
classifier has difficulty in discriminating between wash-
er dryer 1 (WSD1) and washer dryer 2 (WSD 2). There
are 18 power events that belong to the WSD 1 but they
are misclassified as WSD 2 by the k-NN classifier
algorithm. There are also 11 power events that belong
to WSD 2 but erroneously classified as WSD by the k-
NN classifier algorithm. Figure 7 shows the accuracy of
each individual appliance. The accuracy level is calcu-
lated using Eq. (5) from the data obtained from Table 5
confusion matrix table. From Fig. 7, the appliances have
classification accuracy of between 85 and 98%, which
achieve very good performance.

In summary, comparing both the Figs. 4 and 6,
the k-NN classifier can achieve satisfactory accu-
racy for both House #1 and House #3 at 20%
training data set size. At individual appliance lev-
el, the k-NN classifier is able to classify at satis-
factory accuracy level ranging from 85 to 99% for
both House #1 and House #3. Both house results
also show that the performance of k-NN classifier
not necessarily improves with more training exam-
ples. Even with 20% training data set size, the k-
NN classifier achieves good accuracy performance.
This is in line with the results obtained by Ashari
et al. (Davis and Goadrich 2006). In their work
(Davis and Goadrich 2006), the best performance
of k-NN classifier is their set 1 (2827 data) and
set 2 (4340 data) compared with their largest set 5
with 8630 data.

Fig. 10 House #3—result from
naive Bayes classifier algorithm

Table 7 Appliance confusion matrix for naive Bayes classifier

Actual
Predicted ELC REF DSW FUR LGT 1 WSD 1 WSD2 MCW LGT 2 LGT 3 BTR

ELC 10 0 0 0 0 0 0 0 0 0 1
REF 3 272 16 18 15 0 0 2 34 14 0

DSW 0 0 0 0 0 0 0 0 0 0 0
FUR 0 4 2 20 0 0 3 0 0 0 0

LGT 1 0 0 0 0 0 0 0 0 0 0 0
WSD 1 0 0 0 0 0 97 32 0 0 0 0
WSD 2 0 0 0 0 0 7 72 14 0 0 13
MCW 0 0 0 0 0 0 0 0 0 0 0
LGT 2 0 0 0 0 0 0 0 0 0 0 0
LGT 3 0 0 0 0 0 0 0 0 0 0 0
BTR 0 0 0 0 0 0 0 0 0 0 1

Test samples of which the developed classifier algorithm has difficulty to discriminate between appliances
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Naive Bayes classifier

From the training set size of 60 to 10%, the naive Bayes
classification algorithm is used. For House #1, two
sample sizes are used. The first sample size is at
n = 705 and the second sample size is at n/2 = 350. It
is observed that at sample size of n = 705 and training set
size of 10%, the classifier produces the highest accuracy
at 68.65%. The accuracy is calculated using eq. (8). It is
observed that at sample size of n/2 = 350 and training set
size of 30%, the classifier produces the highest accuracy
at 70.57%. Figure 8 shows the results.

From Fig. 8, it is shown that with the reduced number
of total training sample size from n = 705 to n/2 = 350,
the naïve Bayes classifier produces slight increase in
accuracy level from 20 to 60% training set size. The
exception is at 10% training which decrease in accuracy
level. This might be because of the minimum number of
training samples to be effective in producing satisfactory
accuracy level. From the sample size of n/2 = 350 and
training set size of 30%, a confusionmatrix table is built.
The training set size of 30% is chosen because in the
naive Bayes classifier algorithm, it produces the highest

accuracy at 70.57% as shown in Fig. 8. Table 6 shows
the construction of an appliance labeled confusion ma-
trix for the training set size of 30% and n/2 = 350.

From the confusion matrix in Table 6, it is observed
that the naive Bayes classifier has difficulty in discrim-
inating between oven 2 and washer dryer 2 (WSD 2).
There are 6 power events that belonged to oven 2, but
they are misclassified as washer dryer 2 (WSD 2) by the
naive Bayes classifier algorithm. There are also 30
power events that belonged to washer dryer 2 (WSD
2) but erroneously classified as oven 2 by the naive
Bayes classifier algorithm. As shown in Fig. 8, even
with the reduced number of sample size by half, from
n = 705 to n/2 = 350, the accuracy of the classier is still
within the 68 to 70% accuracy range. Figure 9 shows the
accuracy of each individual appliance. The accuracy
level is calculated using eq. (5) from the data obtained
from Table 6 confusion matrix. From Fig. 9, the appli-
ances have classification accuracy of between 86 and
98%, which achieve very good performance.

In order to compare the validity of the algorithm,
REDD House #3 data set is also utilized in the naive
Bayes algorithm. As shown in Tables 1 and 2, there are

Fig. 11 House #3—% accuracy
of naïve Bayes classifier for each
individual appliance

Table 8 % Accuracy of the proposed naive Bayes (NB) classifier and k-NN classifier

House
number

%Accuracy of
kNN classifier,
k = 5, training set
size = 10%

%Accuracy of
kNN classifier,
k = 6, training set
size = 20%

%Accuracy of NB
classifier at n sample
size, training set
size of 10%

%Accuracy of NB
classifier at n sample
size, training set
size of 60%

%Accuracy of NB
classifier at n/2
sample size,
training set
size of 30%

%Accuracy of
NB classifier at
n/2 sample size,
training set
size of 50%

House
#1

78.01 76.45 68.65 62.84 70.57 68.86

House
#3

68.22 78.64 63.02 75.19 68.00 72.62
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differences in the composition of electrical appliances
between House #1 and House #3. In House # 3, two
sample sizes are used. The first sample size is at
n = 1306 and the second sample size is at n/2 = 650. It
is observed that at sample size of n = 1306 and training
set size of 60%, the classifier produces the highest
accuracy at 75.19%. The accuracy is calculated using
eq. (5). It is observed that at sample size of n/2 = 650 and
training set size of 50%, the classifier produces the
highest accuracy at 72.62%. Figure 10 shows the results.
It can be noted that with the reduced sample size for
training, the percentage accuracy reduces from 72 to
75%.

From the sample size of n/2 = 650 and training
set size of 50%, a confusion matrix table is built.
The training set size of 50% and sample size of
n/2 = 650 was chosen because in the naive Bayes
classifier algorithm, it produces the highest accuracy
at 72.61% at that sample size value. This is to
analyze that even if at fewer training samples and
sample size, naive Bayes classifier produces com-
parative accuracy levels. Table 7 shows the con-
struction of an appliance labeled confusion matrix
for the training set size of 50% and n/2 = 650.

From the confusion matrix in Table 7, it is
observed that the naive Bayes classifier has

difficulty in discriminating between washer dryer
1 (WSD 1) and washer dryer 2 (WSD 2). There
are 7 power events that belonged to WSD 1 but
they are misclassified as WSD 2 by the naive
Bayes classifier algorithm. There are also 32 power
events that belonged to WSD 2 but erroneously
classified as WSD 1 by the naive Bayes classifier
algorithm. As shown in Fig. 10, even with the
reduced number of sample size by half, from
n = 1306 to n/2 = 650, the highest accuracy level
of the classier dropped slightly, from 75.19 to
72.62%. Figure 11 shows the accuracy of each
individual appliance. The accuracy level is calcu-
lated using eq. (5) from the data obtained from
Table 7 confusion matrix. Similarly, for House #3,
the appliances have classification accuracy of be-
tween 81 and 98% which achieve very good per-
formance as shown in Fig. 11.

Classifiers’ performance

Table 8 shows the percentage accuracy of our pro-
posed naive Bayes and k-NN classifier. In the naive
Bayes classifier, a small number of training set sizes
do not affect the prediction accuracy of appliances as
shown in Table 8. Even at n/2 sample size level, the

Fig. 12 Comparison of accuracy
between the proposedmethod and
the work of Spiegel and Albayrak
(2014)

Fig. 13 Percentage classification
accuracy of bathroom gfi,
dishwasher and lighting
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result shows comparable accuracy level with n sample
size level. Both house results also show that the per-
formance of naive Bayes and k-NN classifier not
necessarily improves with more training examples.
This result also agrees to the result done by Ashari
et al. (Davis and Goadrich 2006). In their work (Davis
and Goadrich 2006), the best performance of naive
Bayes classifier is their set 2 with 4340 data compared
to their largest set 5 with 8630 data.

The percentage accuracy of proposed k-NN clas-
sifier and naive Bayes classifier are also shown for
comparison with the work done by Spiegel and
Albayrak (2014). Figure 12 shows the comparison
of accuracy. Based on comparison, it was noted that
our proposed k-NN classifier has higher accuracy
level compared to Spiegel and Albayrak (2014) re-
sults. For naive Bayes classifier, Spiegel and
Albayrak (2014) work performed much better results
compared to our results.

The percentage classification average accuracy of
selected electrical appliances for the proposed k-NN
classifier and naive Bayes classifier as compared to
the work by Spiegel and Albayrak (2014) are shown

in Figs. 13 and 14. Based on comparison, both the
proposed methods achieved comparable accuracy
level for 4 types of appliances, namely bathroom
gfi, dishwasher, microwave and washer dryer. For
the appliance of lighting and refrigerator, both the
proposed methods achieved a slightly higher average
accuracy level. However, it should be noted that for
our developed algorithm, average accuracy levels are
the results of six appliances for House #1 and House
#3. The average classification accuracy for the six
selected appliances reported by Spiegel and Albayrak
(2014) takes into the consideration the mean of an
appliance from House #1 through House #6. The
purpose of this bench marking is to gauge the differ-
ence in accuracy level from different methodology in
the application of the naive Bayes classifier and k-
NN classifier.

Figures 15 and 16 show precision and recall results
for the proposed methods of k-NN and naive Bayes,
respectively, for House #1. From the results shown in
Fig. 15, it shows that four appliances performed very
well in k-NN classifier, namely, washer dryer 2, refrig-
erator, washer dryer 1 and microwave. All these four

Fig. 14 Percentage classification
accuracy of microwave,
refrigerator and washer dryer
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Fig. 15 Precision and recall
results on the proposed methods
with k-NN on. House #1 selected
appliances
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appliances in House #1 have precision and recall values
above 0.7 for the performance measure of k-NN.

From the results shown in Fig. 16, it shows that two
appliances performed very well in naive Bayes classifi-
er, namely, refrigerator and microwave. These two ap-
pliances in House #1 have precision and recall values
above 0.7 for the performance measure of naive Bayes.
For the appliance, washer dryer 1, it scores perfect result
for precision (1.00) indicating all correct estimation.
However, washer dryer 1 scores lower in recall indicat-
ing that lower power level is correctly estimated (more
false negative).

Figures 17 and 18 show precision and recall results
for the proposed methods of k-NN and Naive Bayes,
respectively, for House #3. From the results shown in
Fig. 17, it shows that three appliances performed very
well in k-NN classifier, namely, washer dryer 2, refrig-
erator and washer dryer 1. All these three appliances in
house #3 have precision and recall values above 0.7 for

the performance measure of k-NN. From the results
shown in Fig. 18, it shows that two appliances per-
formed very well in naive Bayes classifier, namely,
refrigerator and washer dryer 1. For the appliance, dish-
washer andmicrowave, both have all instances that were
predicted as negative, therefore TP + FP = 0. The
precision level is not applicable. For these two appli-
ances, the recall value is zero meaning no power level is
correctly estimated (all false negative). Overall, the pre-
cision and recall performance measurement produced
better results from the k-NN classifier.

Conclusions

Our work in this paper only looked at approximately a
month of data utilizing the REDD data sets. In future
work, research could be done on other publicly available
data sets. In the present work, classification accuracy

Fig. 16 Precision and recall
results on the proposed methods
with naive Bayes on House #1
selected appliances

Fig. 17 Precision and recall
results on the proposed methods
with k-NN on House #3 selected
appliances

Energy Efficiency (2018) 11:239–259 255



metrics have been discussed. In the future work, as more
data sets are considered, the estimation accuracy could
be done (Makonin and Popowich 2015).

This paper reports a study carried out to classify the
individual electrical appliances from a publicly available
data set, REDD, utilizing NIALM with few training
examples. There are two classification accuracy metrics
obtained from the developed classifiers. This paper
shows that despite the use of few training examples,
the k-NN and naive Bayes classifiers can produce satis-
factory level of accuracy. Increasing the size of training
set does not seem to produce significant increase in the
classification accuracy. In our classification of appliance
feature presented in this paper, the classification perfor-
mances of the k-NN and naive Bayes classifiers have
saturated with the increase of the size of the training set
and therefore unable to yield significant improvement in
accuracy.

The result presented in this paper also shows that k-NN
classifier performed better in the calculated accuracy per-
formance measurement. This paper also shows that satis-
factory accuracy can be achieved using few training ex-
amples with generic classifiers (k-NN and naive Bayes)
and one feature (power), with the combination of ON-OFF
based approach and goodness-of-fit (GOF) technique for
event detection, to improve on appliance-level energy
usage feedback for energy efficiency.

With the encouraging results obtained from k-NN
for training with few examples, the proposed method
is being applied in classifying individual electrical
appliances through V-I trajectory-based load signa-
ture. The novelty of this accepted work (Yang et al.
2016) is to establish a systematic approach of load
disaggregation through V-I trajectory-based load sig-
nature images for training with few examples by

utilizing a multi-stage classification algorithm meth-
odology. Our contribution is in utilizing the Bk-
value^, the number of closest data points to the
nearest neighbour, in the k-NN algorithm to be effec-
tive in classification of electrical appliances.

It is proposed that more studies need to be carried out
to investigate the classification performances of both
classifiers with more than one feature such as real pow-
er, reactive power and power factor and so on to further
improve the feedback for energy efficiency.
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