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Abstract Improving the energy efficiency of conven-
tional energy services is an essential way to cope with
global CO2 emissions mitigation. To date, energy effi-
ciency improvement (EEI) has been broadly introduced
exogenously in integrated assessment models (IAMs)
by virtue of the autonomous energy efficiency improve-
ment (AEEI) coefficient; however, it is usually good at
capturing the EEI driven by non-price factors, while
weak in describing the EEI induced by policy incen-
tives. In this paper, we introduce an endogenous EEI
(EEEI) mechanism in an IAM, called E3METL, to
explore the impacts of EEEI on the global macro-econ-
omy, CO2 emission paths, and timing of carbon mitiga-
tions. The results reveal that (1) introducing EEEI sig-
nificantly improves gross world product (GWP) gains,
and this positive effect is partly offset when carbon
restriction policies are implemented; (2) R&D invest-
ment dedicated to enhance energy efficiency limits

R&D expenditures for other alternative technologies,
and this effect will impede the development of non-
fossil technologies; (3) EEEI may perform as one of
supporting factors to delay the actions of carbon reduc-
tion; moreover, the introduction of EEEI lowers the
optimal carbon tax level by 7.8 % on average, as com-
pared to the no EEEI case.

Keywords Integrated assessment model . Endogenous
energy efficiency. Crowding-out effect . CO2mitigation

Introduction

Energy efficiency improvement (EEI) is widely
regarded as one of the best ways to achieve the joint
goal of economic development and carbon mitigation,
especially since carbon-based energy will remain the
dominant of energy supply sources. Seeing from the
micro level, EEI helps to reduce energy inputs per unit
of output and leads to energy savings; while from mac-
rocosmic point of view, EEI is conducive to ensuring
energy security by lowering dependency on foreign
energy. As a result, both growth rate of energy consump-
tion and carbon intensity will decrease, which in turn
helps to control CO2 emissions (IEA 2012). Thus, it is of
great importance to improve energy efficiency, especial-
ly considering the seriousness of global warming and
the need to reduce carbon emissions.

The potential of carbon reduction from EEI is sub-
stantial. Globally, EEI may contribute to as high as 40%
of greenhouse gas (GHG) mitigation with the marginal
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abatement cost under the threshold of 60 European
Euros per metric ton of CO2 equivalent (McKinsey
and Company 2010; Worrell et al. 2009). Regionally,
EEI in China has increased since the Tenth Five-Year
Plan, particularly in thermal power, iron and steel, and
cement manufacturing sectors. In the period of the 11th
Five-Year Plan, the energy savings resulting from EEI
for China has added up to 630 million tons of coal
equivalents (Zhang 2011). By 2020, the USA could save
more than US$1 trillion in energy expenditures per
annum by reducing its annual energy consumption by
23 % with respect to the baseline projection, if the
government makes an effort to improve energy efficien-
cy (McKinsey and Company 2010). Moreover, the Eu-
ropean Union (EU) believes that its EEI could be in-
creased by 20 % by 2020, with the implementation of
specific measures (IEA 2012).

Today, abundant literature exists on energy efficien-
cy, but most of these studies are oriented toward empir-
ical analysis, including numerical estimation of regional
energy efficiency, analysis of the driving effect of price-
induced factors, as well as the rebound effect (Popp
2001; Fisher-Vanden et al. 2006; Hasanbeigi et al.
2013; Zhou et al. 2014). Actually, financial-related mea-
sures, enhancement standards, and economic
restructuring play a significant role in improving energy
efficiency (Filippini et al. 2004; Lin and Wang 2014).
Besides, Popp (2001) argues that changes in energy
prices negatively influence energy intensity, and in the
case of the USA, more than two thirds of energy-
consumption changes are induced by price-factor sub-
stitution. Hence, high-energy prices could promote tran-
sitions in energy-consumption behaviors, which in turn
stimulate R&D investments associated with EEI
(Nordhaus 2002; Fisher-Vanden et al. 2006). As for
the relationship between the rebound effect and EEI,
Binswanger (2001) points out that energy savings due
to technological improvement will be overestimated by
neglecting the rebound effect of energy consumption.
Additionally, carbon control measures play a formidable
role in energy efficiency enhancement, which further
affects total amount of energy consumption and carbon
tax level (Brännlund et al. 2007; Barker et al. 2009).

Global warming issues provide new opportunities for
energy efficiency research, and how to consider EEI in a
conventional integrated assessment model (IAM)
framework has become a key factor that influences
economic growth and carbon emission paths (Grubb
et al. 2002). EEI is driven in large part by changes in

energy prices, transitions in consumption behaviors,
energy restructuring, and policy reforms (Popp 2001;
Schumacher and Sands 2007). On this basis, EEI could
be endogenously or exogenously considered in IAMs;
however, the majority of current mainstream IAMs,
such as DICE, ENTICE, WITCH, and DEMETER,
view EEI as an exogenous process by virtue of the AEEI
coefficient (Nordhaus 1994; Manne and Richels 1997;
Bosetti et al. 2006; Kesicki and Yanagisawa 2015). In
general, AEEI only includes EEI induced by all the non-
price factors, while leaving out the EEI driven by price-
induced consumption-behavior transitions and energy-
structure adjustments (Dowlatabadi and Oravetz 2006;
Ürge-Vorsatz and Metz 2009). In addition, the positive
influence of R&D policy on EEI is also left untreated in
these models. This may lead to an underestimation of
the EEI levels and overstating of the carbon intensity
(Popp 2004).

Based on the important role of EEEI in fighting
climate change, incorporating EEEI in IAMs is impor-
tant, but for now, there remains a scarcity of literature
that focuses on this aspect. Popp (2006) proposes an
innovation possibility frontier approach, and uses it to
endogenize EEI in the ENTICE model, where he ex-
plores the impacts of the crowding-out effect of R&D
investment on climate-economic systems. Gerlagh
(2008) assesses the impact of induced technological
change (ITC) for reaching the given CO2 concentration
ceiling. However, the main focus of this work is not on
EEI, and the essential contribution is that he finds the
possibility of a shift in R&D from producing carbon-
based services to carbon-saving technology. Hübler
et al. (2012) emphasize the importance of R&D-based
innovation and imitat ion in promoting new
technologies, particularly the effect of international
technology transfer for meeting global carbon goals,
but they fail to explore the role of EEEI. Bibas et al.
(2014) investigate the potential relationships between
the timing of EEI policies and carbon abatement costs
based on the hybrid dynamic computable general equi-
librium (CGE) model IMACLIM-R, coming to the con-
clusion that early action will bring high short-term costs,
while late action will lead to high long-term costs.
Overall, EEI policies devote a lot of attention to reduc-
ing carbon reduction costs, especially when combined
with innovation acceleration measures.

In this paper, we employ an integrated assessment
model (E3METL) that was specially developed to inno-
vate the energy efficiency advancement mechanism, to
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avert the possible deviation due to that IAMs fail to
separate endogenous EEI from exogenous energy effi-
ciency enhancement.1 The E3METL model has been
applied in a few papers already, analyzing a variety of
subject matters (Duan et al. 2013; Duan et al. 2014;
2015), but none of them focus on energy efficiency.
Based on the hybrid EEI mechanism, we aim to answer
the following questions: What is the impact of EEEI on
the macro-economy andmacro-carbon abatement costs?
How will EEEI change the carbon emission trajectories
and what about its carbon reduction potential? Will the
R&D related to EEEI crowd out the R&D associated
with the other alternative innovations, and if so, how do
we evaluate this effect? How will EEEI affect the opti-
mal carbon tax and the timing of carbon reduction
actions?

The remainder of this paper is structured as follows. In
Section BModel,^ we briefly introduce the E3METL
model and describe its multi-energy technological evolu-
tion mechanism and exogenous and endogenous EEI
mechanism; data and calibration are also included in this
part. Section BResults^ covers the main results and cor-
responding analysis, as well as a sensitivity discussion of
key EEEI parameters. A result comparison and discus-
sion are presented in Section BConcluding remarks.^
Conclusions and policy recommendations are provided
in Section BConcluding remarks.^

Model

The economy-energy-environmental model with endog-
enous technological change by employing logistic
curves (E3METL) consists of a macro-economy mod-
ule, energy-technology module, and climate-change
module to fulfill the task of this study. E3METL is
written in GAMS and optimized by using the nonlinear
programming (NLP) algorithm of the CONOPT solver
(Duan et al. 2014). In comparison to the pioneering
IAMs, E3METL features its technical process: first,
the revised logistic model is incorporated to substitute
for the conventional constant elasticity substitution

(CES) function approach.2 With respect to the CES
method, the revised logistic model allows us to consider
more energy technologies with fewer parameters, which
provides a feasible bridge for linking bottom-up and
top-down models (Duan et al. 2013). Second, we devel-
op a two-factor learning curve model by combining a
learning-by-doing (LBD) process with a learning-by-
searching (LBS) process to describe endogenous energy
technological change, which greatly helps to overcome
the forgetting-by-not-doing (FBND) effect when con-
sidering endogenous technological advancement by vir-
tue of a one-factor learning model. Third, policy vari-
ables, such as carbon taxes and subsidies, which are
widely regarded as key factors affecting technological
change, are directly embedded in the revised logistic
technical mechanism, and this makes it convenient to
explore the impacts of policy reforms on technological
diffusion (Duan et al. 2013).

E3METL is a perfect foresight inter-temporal opti-
mal model. Hence, solving the model involves maxi-
mizing the aggregated and discounted utility objective,
subject to a combination of policy instruments and
carbon constrains. Generally, the utility objective is
represented by population-weighed per capita consump-
tion:

Utility ¼
X

POPtIn Ct=POPtð ÞRt; ð1Þ

where Ct denotes consumption and POPt represents
population, which is given exogenously in this model.
Rt is called the discount factor, which could be used to
allocate dynamic utility inter-temporally, i.e.,

Rt ¼ Π t
τ¼0 1þ ρ τð Þð Þ−Δt; ð2Þ

where ρ tð Þ ¼ ρ0e
−dρt is the pure time preference rate, ρ0

and dρ represent the initial pure time preference rate and
the corresponding annual decline rate, respectively, and
Δt is the length of period (Nordhaus and Boyer 2000).

The production process is described through a Cobb-
Douglas production function with capital κ, labor POP,
and energy Eas inputs. The output can be used for
consumption C, investment I, energy costs EC, and total
energy R&D expenditure TRD, of which TRD includes

1 According to Fisher-Vanden et al. (2006), around two thirds of
energy-consumption changes can be attributed to price factors,
while the rest (one third) comes from non-price factors. However,
AEEI usually covers the energy efficiency improvement resulting
from non-price factors, while captures few EEI induced by price,
particularly by policy incentives, which could be largely respon-
sible for the possible deviation.

2 CES method is first proposed in Arrow et al. (1961), and the
general formula is Y = A(αK−ρ + βL−ρ)−1/ρ, here ρ ≤ 1and ρ ≠ 0.We
could obtain two representative conclusions from this formula:
first, when ρ→ 0, it reduces to the classical Cobb-Douglas pro-
duction function; second, the elasticity of substitution between
capital stock and labor factor is constant and equals to 1/(1 − ρ).
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two parts: R&D for carbon-free technologies, such as
biomass BIO, nuclear NUC, hydropower HYD, and the
other renewable OTHRE, and R&D for EEI, i.e.,

TRDt ¼
X

i∈I
RDi;t þ RDee;t; i∈I

¼ BIO;NUC;HYD;OTHREf g: ð3Þ

Industrial CO2 emission is the only GHG that is
endogenously calculated in E3METL; the other
GHGs, CO2 from land-use changes and sulfate
aerosols, are taken as exogenous (Nordhaus 1994).
Thus, total CO2 emission TotEM is the sum of
endogenous part EMTANT and exogenous part
EMNAT:

TotEMt ¼ EMANT
t þ EMNAT

t ð4Þ

CO2 emissions can be controlled by levying car-
bon tax (ad valorem) on carbon-based energy, and
carbon tax is endogenized in the optimal policy
scenario. The effect of carbon tax implementation
can be summarized as follows: In the short term,
the carbon tax level must be higher when facing
stringent carbon control, which will in turn reduce
the consumption of fossil fuels; in the long term,
the increasing cost of fossil energy will enhance the
market competitiveness of non-fossil technologies,
which may greatly benefit the energy consumption
transition from carbon-based energy to non-carbon
energy; from a consumption perspective, higher
energy costs not only lead to energy savings, but
change people’s energy-consumption behaviors,
which may make green energy became more pref-
erable; from a production perspective, the imple-
mentation of carbon tax policy incentivizes enter-
prises’ R&D activities, especially for developing
carbon-free technologies and improving energy
efficiency.

Exogenous EEI method

To date, AEEI has been broadly used to cope with
the exogenous EEI process in IAMs. A.S. Manne
was regarded as the first researcher to introduce the
AEEI coefficient into energy-economic system
models; in his work, AEEI is defined to describe
EEI that is induced by all the non-price factors, such

as changes in technical standards and autonomous
energy restructuring (Manne and Richels 1991). In
general, AEEI is implied in the energy-adjoint pa-
rameter βt,

Yt ¼ αt Kσ
t POP

1−σ
t

� �n þ βtE
n
t

� �1=n ; ð5Þ
and through the first-order condition of Eq. (5), i.e., ∂Yt/
∂Et = Pt, we can get

βt ¼ Pre f
t Y re f

t

� �η−1
= Ere f

t

� �η−1
; ð6Þ

where η represents the ease of substitution between

capital-labor combination and energy, Pref
t is the refer-

ence marginal energy productivity, and Y ref
t is the initial

reference output. In addition, the reference energy inputs
can be described as

Eref
t ¼ POPtE0AEEI t; ð7Þ

where AEEIt denotes autonomous energy efficiency im-
provement and is determined by the initial level AEEI0
and the corresponding annual decline rate DEEI
(Nordhaus 1994).

Endogenous EEI mechanism

Exogenous EEI is likely to affect the simulation
results, especially for carbon emission trajectories
and economic growth. However, the estimation and
calibration of the AEEI level is often difficult,
while high (or low) AEEI values may lead to un-
derestimation (or overestimation) of future CO2

emissions and carbon-reduction costs (Dowlatabadi
and Azar 1999; Grubb et al. 2002). Thus, the
AEEI-based exogenous energy efficiency has long
been criticized (Löschel 2002).

In this context, the endogenous EEI mechanism
is introduced into E3METL, in order to cope with
the shortcomings of the exogenous EEI method. In
addition, incorporating EEI provides the conven-
tional IAM system a full endogenous growth en-
gine by successfully linking endogenous energy
efficiency, technological change, as well as eco-
nomic growth together in an IAM system (Bibas
et al. 2014). The EEI is largely inspired by a
specific R&D investment that promotes the produc-
tion and accumulation of energy-related knowledge
capital. This knowledge capital could substitute for
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conventional carbon-based energy services and al-
lows output to be produced with fewer CO2 emis-
sions.3 IfFt represents the total fossil energy inputs
and Sf , t denotes the market share of fossil fuels in
total primary energy consumption, then the EEI
mechanism could be described as follows (Popp
2004):

Et ¼ 1
�
S f ;t

αeeKDEκ
t þ Fκ

t

� �1=κ : ð8Þ

Through the introduction of EEI, carbon-based
energy service is divided into two parts: conven-
tional fossil fuels and energy-related knowledge
capital. In this equation, κ denotes the ease of
substitution between fossil fuels Ft and knowledge
stock KDEt, where κ = 1 means perfect substitution,
and generally speaking, κ < 1.αee is a scaling factor
that determines the energy savings resulting from
the new knowledge. Given the decay rate of knowl-
edge δee, the dynamic iteration equation of KDEt

can be given as follows:

KDEt ¼ 1−δeeð ÞKDEt−1 þ IPFt: ð9Þ

IPFt in Eq. (9) is called the innovation possibility
frontier and shows how energy R&D creates new
knowledge, i.e., (Popp 2004)4;

IPFt ¼ aRDφ1
ee;tKDE

φ2
t : ð10Þ

Technology evolutionary mechanism

The conventional logistic technical model is revised
and introduced into E3METL to describe multiple
energy technological diffusions. In contrast to the
classic logistic curve, the improvement involves
two aspects: first, the changes in market shares with
respect to changes in time is revised to the rate of
change in market shares with respect to relative

changes in prices; second, policy effects are directly
reflected in the energy costs, including both fossil
fuels and non-fossil fuels. Hence, this energy evolu-
tionary mechanism can be shown as

dSi;t
dPi;t

¼ ϑiSi;t Si
∼

1−
X

j≠i
S j;i

� �
−Si;t

� �
: ð11Þ

In this formula, Si , t and S∼i∈ 0; 1ð Þ represent the
market share of alternative energy i and the correspond-
ing market potential, respectively. ϑi is the substitution
parameter that determines the ease of substitution be-
tween alternative i and the marker technology (fossil
energy is chosen as the marker technology in this work).
Pi , t is the so-called relative price, i.e.,5

Pi;t ¼ C f ;t
1þctax f ;tð Þ.

Ci;t 1−subsi;tð Þ; ð12Þ

where ctaxf , t and subsi , t denote the tax rate for carbon-
based fuels and subsidy rate for non-carbon energy.
From a cost perspective, the closer Pi , t is to 1, the easier
the alternatives will substitute for the marker. Obviously,
Pi , t = 1 means a theoretically perfect substitution. The
change of relative price Pi , t lies in the strength of policy
implementation, the cost evolution of fossil fuels, and
carbon-free technologies (Duan et al. 2015).

In this paper, the price of fossil fuelsCf , t is the sum of
the marginal cost of carbon extraction qf , t and amarkup,
in which the markup is constant and covers transporta-
tion costs, distribution costs, and current taxes
(Nordhaus and Boyer 2000). qf , t is rising over time
due to the scarcity of resources. If CumCt means cumu-
lative carbon-based energy extraction, and CumCMAX

represents the maximum extraction potential, then the
marginal extraction cost qf , t takes the following form
(Nordhaus 1994, 2002):

q f ;t ¼ qf ;0 þ 700 CumCt

.
CumCMAX

� �4
: ð13Þ

After defining the price of carbon-based energy,
the next step is to consider the prices of non-carbon
technologies. In fact, the price of alternative energy
Ci , t is declining as a result of induced energy
technological change. Technological change in

3 Endogenous energy efficiency is enhanced through the substitu-
tion of knowledge capital for carbon services, and this substitution
may be driven by productivity improvement of current production
processes, introduction of more efficient technology, or the adop-
tion of some carbon-control measures (Popp 2004).
4 Empirical studies suggest that returns to energy R&D are
diminishing over time (Popp 2001). On this basis, the function
form of the innovation possibility frontier should be satisfied with
the following two conditions: first, ∂IPFt/∂RDee , t > 0 and second,
∂2IPFt/∂KDEt∂RDee , t < 0 (Popp 2004).

5 In general, Cf , t/Ci , tshow a wide frequency distribution; hence,
the ratio here means the mean value, so does the relative price Pf , t
(Anderson and Winne 2004).
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E3METL takes two forms: LBD-based endogenous
technological change and LBS-based endogenous
technological change. The former provides the orig-
inal knowledge flows for technological advance-
ment, while the latter acts as an extender that
complements the obsolescence of knowledge due
to FBND. On this basis, we develop a two-factor
learning curve model by combining the LBD pro-
cess and the LBS process and use it to examine the
cost evolution of alternative energy. This learning
model is shown as follows (Barreto and Kypreos
2004):

Ci;t ¼ KDi;t

.
KDi;0

� �−bi
KSi;t

.
KSi;0

� �−ci
: ð14Þ

In the above equation, KDi , t and KSi , t represent
knowledge stock resulting from the LBD process and
LBS process, respectively. Like a physical capital stock,
the knowledge capital stock is dynamically accumulated
by adding up the depreciated previous knowledge stock
and new-added knowledge:

KDi;t ¼ 1−δið ÞKDi;t−1 þ Si;tEt; ð15Þ

KSi;t ¼ 1−δið ÞKSi;t−1 þ IPFi;t; ð16Þ
where IPFi , t is the innovation possibility frontier func-
tion, as defined in Eq. (10). bi and ci are learning indexes
of LBD process and LBS process, respectively, and they
can be transformed into learning rates by the following
formulas:

1−lrlbdi ¼ 2−bi ; 1−lrlbsi ¼ 2−ci ; ð17Þ
where lrlbdi and lrlbsi are corresponding learning
rates, defined as the rates at which the costs decline
each time the knowledge stock doubles (Barreto
and Kypreos 2004).

Data and calibration analysis

The optimization of E3METL depends on a series of
initial values of key variables, including energy con-
sumption, market shares, gross world product (GWP),
investment, consumption, and capital stock. The major-
ity of the needed macro-economic data and technical
data are from the World Bank (2012) and IEA (2002,
2004; 2012); the rest is fromGerlagh and van der Zwaan

(2004) and Popp (2006). According to Nordhaus and
Boyer (2000), the initial cost of carbon-based energy is
estimated to be 276.29 $/tC.6 The costs of non-carbon
energy show a wide distribution, since they are affected
by many factors, such as differences in geographical
locations and technical development patterns and
phrases. In general, the cost of hydropower and nuclear
power is much closer to that of fossil energy; the cost of
biomass and offshore wind is more than twice the price
of fossil fuels; while the cost for onshore wind and PV
solar could be even higher (as much as 5–8 times), as
compared to the cost of fossil fuels (Gerlagh and van der
Zwaan 2003; Anderson and Winne 2004). In terms of
this, the initial costs of biomass, nuclear, hydro, and the
other renewables are estimated to equal 830, 470, 550,
and 1032 $/tC, respectively.

At present, the gross data of R&D expenditures re-
mains unavailable, so we use data from OECD coun-
tries. Based on the OECD R&D data, the gross R&D
expenditure is estimated to be 50 billion US dollars, of
which 2 % is related to energy, i.e., 1 billion US dollars
(Popp 2004). According to Anderson (1997), R&D
related to renewables may account for 10 % of the total
energy R&D expenditure, and the remainder could be
assumed to be R&D investment for energy efficiency.
Given this, we can allocate the initial R&D investment
for different technologies in terms of their initial market
shares.

In addition to initial input values, the reliability of
model results lies in some key parameter assumptions
and calibrations. As for the general parameters, such as
capital-value share, elasticity between capital-labor in-
put and energy, scaling factors, and substitution param-
eter and learning rates, we keep the same estimations
and assumptions as the previous studies, so here, our
emphasis is put on discussing the new-induced param-
eters (Duan et al. 2013, 2015). Popp (2001) empirically
investigates the returns to R&D in 13 high energy-
intensive sectors, and suggests that 1 US dollar of
R&D investment may lead to 4 US dollars of energy
savings, and the return to R&D is declining over time.
This result fits largely with previous research (Mansfield
1977; Pakes 1985; Jaffe 1986). According to this rate of
return, we set the scaling factor of knowledge capital to

6 In this work, non-carbon energy is measured by carbon ton
equivalent (CTE), which can be converted in terms of the equiv-
alent calorific value between fossil and non-fossil energy; there-
fore, $/tC is also employed to measure the cost of non-fossil
energy (Gerlagh et al. 2003; Popp 2004).
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be 0.336. Meanwhile, the initial knowledge stock could
be well obtained by calibrating the initial total energy
inputs. The ease of substitution between knowledge
capital associated with EEI and fossil fuels has a close
relationship with the substitution elasticity between en-
ergy prices and energy R&D expenditures (McKinsey
and Company 2010). Popp (2002) indicates that the
long-term elasticity between energy prices and R&D
investments is around 0.35. Starting from this value,
we get a projection of energy R&D investment from
2000 to 2010; we then compare this projection with the
real historical R&D data, and the ease of substitution
parameter κ is finally valued when the differences be-
tween these two series of data are minimized (here, we
get κ = 0.38). Additionally, parameters for innovation
possibility frontiers are from Popp (2004, 2006).

Results

The intention of this work is to simulate the impacts of
EEEI on the carbon trajectory and the global economy
under the given carbon-control target. Additionally, ex-
ploring the crowding-out effect of R&D related to EEI
to R&D associated with renewables is also a focus. To
fulfill these tasks, we have to consider two types of
scenarios: the business-as-usual (BAU) case and the
optimal policy case, and in each, we need to compare
the results with EEEI to the results without EEEI. In the
so-called optimal policy case, a carbon tax will be
endogenously considered as the policy instrument to
reduce CO2 emissions; while the target is to achieve
the 450 ppmv (parts per million by volume) stabilization
of atmospheric carbon-dioxide concentrations target by
the end of the twenty-first century. Based on this, we
design four detailed scenarios, as follows:

a. BAUcase: This is a case without EEEI and includes
no policy constraints.

b. NPcase: EEEI is introduced in this case, but without
implementing carbon control.

c. BAUPcase: Optimal carbon control policy is imple-
mented, without induced EEEI.

d. OPcase: This is a case combined with optimal pol-
icy and EEEI.

Note that AEEI is exogenously considered in all
the scenarios, we assume the initial AEEI level is
0.7 %, and it decreases gradually at a rate of 0.2 %

per annum. These value assumptions are a little lower
than those given in the DEMETER model, while consis-
tent with the DICEmodel (Nordhaus 1994; Nordhaus and
Boyer 2000; Gerlagh and van der Zwaan 2003, 2004).

Effect of EEEI on GWP and mitigation costs

The introduction of EEEI significantly improves the
gross world product (GWP) gains, and this positive
effect will be weakened when the carbon constrain
is incorporated (see Fig. 1). For example, in the no
policy case, the GWP gains could be as high as
0.39 %, versus 0.41 % in the optimal policy case.
Additionally, the positive effect of EEEI on GWP
gains in the optimal policy case starts to crowd out
those in the no policy case from 2040; and by
2100, the corresponding GWP gains in these two
cases will have decreased to 0.16 and 0.26 %,
respectively. EEEI is driven by R&D investment,
and the considerable return to R&D makes produc-
tion more effective, which is why introducing EEEI
positively affects GWP gains. Similarly, the declin-
ing pattern of GWP gains actually reflects the law
of diminishing R&D returns.

As we observed, the highest economic loss under
the given carbon-control target will be 3 %, occurring
in 2060; when moving to the EEEI case, the relative
GWP loss will reduce to 2.1 % (Fig. 2). Does this
mean that incorporating EEEI contributes to the re-
duction of the macro-economic cost of carbon abate-
ment? The answer is yes. To support this finding, we
calculate the cumulative costs over a 100-year time
span (from 2000 to 2100) for the EEEI case and no
EEEI case, respectively. The results show that the
accumulative GWP loss will decrease by around
6.32 % when EEEI is introduced.
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Fig. 1 Changes of GWP gains in the presence of EEEI
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Evolution of energy structure by introducing EEEI

Not surprisingly, carbon controls restrain the gross ener-
gy demand to some extent, and this restraining effect
could be effectively counteracted by the introduction of
EEEI (see Fig. 3). In the no EEEI case, by 2100, energy
demandwill decrease by 10.5%; while in the presence of
EEEI, the decrease shrinks to 8.7 %. As the EEEI mech-
anism defined, knowledge capital inspired by R&D in-
vestment can substitute for conventional energy services,
which may reduce the dependence of economy on
carbon-based energy, which in turn eases the negative
effect of carbon controls on gross energy demand. Be-
sides, from Fig. 3, we could observe a significant transi-
tion from conventional fossil fuels to non-fossil energy,
particularly after 2050 when non-fossil energy starts to
dominate the energy market; by the end of this century,
non-fossil energy will have accounted for 82.4 % of total
energy consumption in the present of carbon controls.

On the whole, the proportion of knowledge capital
related to EEEI in the total energy demand takes a
hump-shaped pattern, particularly when the carbon miti-
gation target is given, which is illustrated by Fig. 4. The
highest proportion occurs in 2060, with the value of
5.27 % for the no EEEI case; however, for the EEEI case,
this value increases to 6.24%. After introducing EEEI, the
energy input becomes a mix of three parts: carbon-based
fossil fuels, carbon-free alternatives, and knowledge cap-
ital associated with energy efficiency. In general, the de-
mand for fossil fuels is relatively stable; thus, the contri-
bution of knowledge capital to the total energy consump-
tion is mainly determined by the development of non-
carbon technologies. On the one hand, it is highly unlikely
that carbon-free alternative energy could be extensively

used in the foreseeable future, due to the higher cost and
the inherent law of technical diffusion; on the other hand,
continuous R&D investments accelerate the accumulation
of knowledge capital stock of energy efficiency. That is
why the share of knowledge capital in the energy supply
market keeps increasing during the early stage of carbon
control. In the late period of policy implementation, the
costs of non-carbon technologies become competitive
compared to that of fossil energy, because of the learning
effect, and then the market proportion of knowledge cap-
ital will be partly crowded out by non-fossil energy.

Crowding-out effect of EEI R&D

Figure 5 presents the growth paths of R&D investment
and the shares of R&D expenditure to GWP under all the
considered cases. Overall, the R&D investment keeps
growing for all the cases, although to different extents,
and emission restrictions may induce more R&D. For
example, in 2100, the R&D expenditure is 14.39 billion
US dollars when no EEEI is considered, versus 47.74
billion US dollars in the EEEI case; if carbon emissions
are constrained, the R&D investment will further expand
to 166.95 and 239.81 billion US dollars, respectively, for
the two scenarios. When looking at the proportion of
R&D to GWP, we find that it does not increase as the
R&D expenditure grows for the no policy case
(BAUcase and NPcase). This may be largely attributed
to the fact that the growth rate of R&D is lower than that
of the GWP. However, this situation will change if carbon
emissions are controlled. As shown in Fig. 5, the propor-
tion of R&D to GWP appears to grow in the optimal
policy case (BAUPcase and OPcase), and in 2100, this
proportion will reach 0.019 and 0.094 %, respectively,
for the no EEEI case and EEEI case. The carbon reduc-
tion target is achieved by imposing a carbon tax on fossil
energy; the implementation of carbon tax raises the price
of fossil fuels, which in turn directly drives the R&D
activities, especially for improving energy efficiency and
developing alternative technologies.7

The R&D investment dedicated to enhancing energy
efficiency significantly crowds out the R&D investment

7 We can observe from Fig. 5 that R&D investment on energy
efficiency is several fold higher than that on non-fossil technolo-
gies. This is consistent with the reality, actually, the amount of
R&D investment on new energy technologies only accounts for
about 10 % of total energy R&D expenditures, which implies that
nearly 90 % of energy R&D investment relates to energy efficien-
cy improvement of conventional fuels (REN21 2015).
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i.e., BAUcase and NPcase

466 Energy Efficiency (2017) 10:459–473



for the other alternative technologies, which can be seen
in Fig. 6. To be specific, the crowding-out effect keeps
growing under the no carbon control policy case, and it
reaches 22.5 % in 2100; if we introduce the carbon-
constraint target, the path of the crowding-out effect
takes a bell-shaped pattern, and the turning point ap-
pears in 2060, with a specific value of 18 %. After that,
the crowding-out effect begins to decrease, and by 2100,
it will have been shrunk to 5.7 %. This suggests that
introducing a carbon control policy could effectively
ease the crowding-out effect of EEI R&D to R&D of
other alternatives. In the early stages of policy imple-
mentation, the energy supply market is still dominated
by fossil fuels; hence, the majority of R&D flows to the
EEI sector. With the enhancement of the learning effect,
the costs of alternatives keep declining, and gradually
they become competitive with respect to the cost of
fossil energy. In this context, R&D investment associat-
ed with non-carbon technologies starts to taper off,
which should be responsible for the weakening
crowding-out effect of EEI.

The development of alternative technologies is sig-
nificantly influenced by the crowding-out effect of R&D
related to EEEI. As depicted in Table 1, whether or not
the carbon control policy is considered, the market share
of non-fossil energy in the EEEI case is lower than that
in the no EEEI case. For instance, if no carbon control is
introduced, then the market share of non-fossil energy
under the EEEI case will decrease by 0.13 % in 2100, as
compared to the no EEEI case; moving to the carbon-
restraining case, the share of alternatives in the OPcase
is 2.68 % lower than that in the BAUPcase. Besides, as
shown in Table 1, non-fossil energy only accounts for
30.71% of the total energy supply in the BAUcase at the
end of the twenty-first century; if carbon restriction is
incorporated, the contribution of non-carbon energy will
increase to over 82 %, corresponding to the BAUPcase.
Thus, introducing a carbon control policy plays an im-
portant role in accelerating the diffusion of carbon-free
technologies indeed.

Timing of CO2 reduction

Carbon emissions are reduced mainly by implementing
carbon tax policy, and we could obtain endogenous
carbon tax levels by introducing emission cap, i.e., the
atmospheric CO2 stabilization goal. Figure 7 shows how
the trajectories of carbon tax evolve when carbon emis-
sions are restrained. It is easy to observe that the carbon
taxes perform as an S-shaped curve for both the
BAUPcase and OPcase. By 2100, the level of carbon
tax will have been expended to 138 and 149.4 $/tC,
respectively, with and without EEEI taken into account.
On average, the carbon tax level will be around 7.8 %
lower in the EEEI case than that in the no EEEI case. In
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addition, the carbon tax tapers off later rather than
sooner after introducing EEEI. The reason behind this
is that the introduction of EEEI cuts down the carbon
intensity, and makes production proceed with fewer
CO2 emissions, which reduces the urgency of early
action for carbon abatement.

Sensitivity analysis for key EEEI parameters

The E3METL model with EEI has made several neces-
sary assumptions to accomplish the optimization; it is
thus of great necessity to perform a sensitivity analysis
for these key variables closely related to R&D to see
how modeling results are affected by such assumptions
of parameter values. These key parameters cover returns
to R&D αee, ease of substitution between knowledge
capital and conventional energy κ, and knowledge de-
cay rate δee. The detailed setting of parameter values is
presented in Table 2. For each parameter, we set three

cases: base value case, low-value case, and high-value
case (note that the base values are extracted from the
basic model). To be specific, for the decay rate δee, we
obtain the high-value case by doubling the base value;
while for the low-value case, we assume that there is no
knowledge depreciation. When coming toαee and κ, the
high value and the low value are set by adding 50% and
netting 50 % of the base value, respectively.

Not surprisingly, accelerating obsolescence of
knowledge capital decreases the GWP gains from in-
duced EEI; on the contrary, slow decay of knowledge
contributes to improved GWP gains. As shown in
Fig. 8-I, for the no policy case, the percentage change
of GWP gains is 39.66 % as the decay rate doubles to
10%, versus −8.5 % as the decay rate falls to 0%.When
moving to the carbon control case, the percentage
change of GWP gains from induced EEEI is 45.3
and −12.7 %, respectively, for the high- and low-decay
rate cases. It follows that GWP gains a relatively better
robustness to the decay rate of knowledge.

As would be expected, the decrease in substitution
elasticity between the knowledge capital resulting from
EEEI and fossil fuels leads to a substantial increase of
GWP gains by introducing EEEI under both cases with
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Table 1 Share of non-fossil energy technologies in energy mix
across various scenarios (%)

2000 2020 2040 2060 2080 2100

BAUcase 20.65 24.72 26.55 27.94 29.23 30.71

NPcase 20.65 24.71 26.54 27.92 29.18 30.58

BAUPcase 20.65 23.64 25.44 68.72 77.39 82.45

OPcase 20.65 23.65 25.44 43.04 74.25 79.77
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and without carbon control. For example, a 50 % de-
crease of the substitution parameter will reduce the
GWP gains by −89.8 % in the no policy case,
versus −139.7 % for the optimal policy case (Fig. 8-
II). Furthermore, the percentage changes of GWP gains
for both the high-value case and the low-value case are
larger when we consider the carbon restriction policy.
The sensitivity test tells us that the results are more
sensitive to the ease of substitution between the knowl-
edge capital and conventional energy, which implies
that the reliable estimation of this parameter is mean-
ingful and of great importance.

In addition to the decay rate and substitution elastic-
ity, the rate of return to R&D is also a key parameter that
might affect the GWP gains from induced EEEI (Popp
2006). Under the base value case, the parameter value of
return is set by assuming each dollar of EEEI R&D leads
to 4 US dollars of energy saving according to Popp
(2004). Here, we intend to explore the effects of changes
of return to R&D on GWP gains with and without
carbon control policy. Figure 8-III reveals that a 50 %
decrease of R&D return reduces the GWP gains by
59.49 % under the no policy case, versus 73.23 % under
the optimal policy case. In contrast, adding the rate of
R&D return in half leads to a 68.41 % increment of
GWP gains under the no policy case, and it further rises

up to 76.07 % while turning to the carbon control case.
Obviously, the GWP gains effect resulting from changes
in half for the parameter of R&D return performs more
than a half, which suggests that uncertainty of the po-
tential returns to R&D of EEEI is worthy of focus,
although it seems challenging (Popp 2006).

Concluding remarks

Enhancing energy efficiency is an important way to curb
CO2 emissions, especially since carbon-based energy
will dominate the energy supply market for the foresee-
able future. Currently, mainstream IAMs treat EEI as an
exogenous process by virtue of the AEEI coefficient.
This approach does not support the endogenous EEI
separated from the conventional energy-efficiency sec-
tor, and thus fails to incorporate the impact of R&D
incentives on the EEI. This could affect the long-term
substitution relationship between fossil fuels and non-
fossil energy and lead to a deviation of evaluation for
carbon abatement costs (Popp 2004; Bibas et al. 2014).
In this context, we developed an EEEI mechanism and
differentiated the EEI from exogenous EEI in E3METL
to explore the role of EEEI that is depicted by a series of
key indicators, such as GWP gains, macro-climatic loss,
energy consumption, R&D investment, as well as opti-
mal carbon tax in a carbon-constrained world.

Actually, Popp (2006) first endogenizes EEI in the
ENTICE model through an innovation possibility fron-
tier approach, while research on EEI is not its focus.
Specifically, this study differs from Popp (2006) in which
the energy-efficiency issue is not discussed directly, and
its main intention is to explore the effects of introducing
of backstop technology on an integrated energy econom-
ic system (ENTICE). We separate endogenous energy-
efficiency advancements from the conventional exoge-
nous EEI mechanism, and try to explore the role of EEI.
When considering conclusions, Popp (2006) emphasizes
the welfare-gaining potential of adding backstop technol-
ogy to the modeling system even without climate policy,
but this potential will be limited by the crowding-out
effects of other productive R&D. Thus, Popp (2006)
highlights the importance of the opportunity costs related
to R&D when backstop technologies are considered;
rather than cover backstop technology, energy efficiency
innovation is the center of our focus here. After that,
Bibas et al. (2014) put great emphasis on studying the
impact of EEI, particularly the timing of EEI efforts, on
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Table 2 Detailed setting of parameter values for robustness
analysis

Decay rate,
δee (%)

Substitution
parameter, κ

Returns to
R&D, αee

Low-value case 0 0.19 0.168

Base value case 5 0.38 0.336

High-value case 10 0.57 0.504
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carbon abatement costs; their focus is to study the impact
of EEI technology transfers between industrialized re-
gions and industrializing regions on climate actions,
while our objective is to examine the integrated effects
of R&D-based endogenous EEI, such as the crowding-
out effect on the diffusion of non-carbon energy technol-
ogies. Seeing from the results, Bibas et al. (2014) believe
that EEI policies play an effective role in reducing policy
costs and promoting economic growth with the condition
that technology transfer from industrialized regions to
industrializing regions is accelerated. Additionally, the
timing of technology transfer action determines the
trade-off between short- and long-term policy costs.
Through our study, we obtain some new findings indeed.

One of our main conclusions is that the introduction
of EEEI significantly improves GWP gains for both
cases with and without carbon restriction policies. This
is partly because of the reduced direct expenditure
resulting from energy savings, and partly due to the fact
that induced EEI will reduce investments in energy
infrastructure. Additionally, macro-carbon abatement
costs will decrease when the EEEI is considered, which
means that failing to consider EEEI will potentially
overestimate the mitigation costs for reaching the 450-

ppmv carbon-concentration ceiling. The second inter-
esting finding is that the specific R&D investments for
EEEI crowds out other technical investments, and intro-
ducing a carbon restriction policy would ease this
crowding-out effect to a large extent. This finding may
largely adhere to what Popp (2004) concludes, while
refute the argument in Buonanno et al. (2003) that the
relationship between R&D related to energy and other
R&Dwill complement rather than crowd out each other.
Another particularly interesting fact reveals that the
introduction of EEEI tends to delay adoption of carbon
mitigation action and reduce the carbon tax level. This
implies that the additional potential of carbon mitigation
resulting from EEEI eases the urgency of reducing CO2

emissions, making more carbon emitters hold the wait-
and-see attitude. Therefore, the introduction of EEEI
could be one of the supporting factors for delaying the
action of carbon reduction (Wigley et al. 1996).

The conclusions provide several valuable sugges-
tions for policymakers. First, R&D for EEI is profitable.
GWP gains will be significantly improved in the ab-
sence of carbon control; when carbon restriction policy
is considered, the R&D related to EEI will reduce the
macro-carbon abatement cost. Thus, it is meaningful for
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governments to encourage and support R&D activities
related to EEI, nomatter whether carbon space is strictly
restrained or not. It should be followed by two mea-
sures: the first is to make more public funds available to
support R&D EEI innovation and the second is to in-
spire enterprises’ motivation in EEI R&D activities and
make policies attract more private funds to the energy-
efficiency sector. This is very important, especially con-
sidering the scarcity of public funds in the energy R&D
field (Popp 2004). Second, R&D for EEI could relieve
the urgency of carbon reduction and allow time to wait
for new cost-effective carbon reduction technologies to
appear. This allows enterprises flexibility in determining
how and when to cut down their CO2 emissions and
effectively prevents production capital from phasing out
too early. Third, R&D-based EEI could lower the opti-
mal carbon tax level, which in turn eases enterprises’
carbon tax burden for achieving the given carbon-
control goal. This means that dedicating the R&D ac-
tivities of EEI innovation is a muchmore positive option
as compared to an imposed carbon tax in response to
carbon mitigation. Finally, the existence of the
crowding-out effect of EEI R&D implies that when
authorities create EEI policies, they should weigh the
possible impacts of these policies on the development of
alternative technologies. Creating effective policies that
balance energy efficiency improvement and non-carbon
technological diffusion warrants deeper concern.

Sensitivity analysis of key parameters is necessary to
test the robustness of the model results and helps to
convince our conclusions. In this work, GWP is chosen
as the representative key indicator to examine the pa-
rameter sensitivity. We find that doubling or halving the
decay rate of knowledge trigger a relatively limited
change of GWP, which sufficiently confirms the robust-
ness of model results to the knowledge decay rate. With
respect to the decay rate of knowledge capital, GWP is
more sensitive to the other key parameters, i.e., the ease
of substitution between the knowledge capital and con-
ventional energy and returns to R&D, which implies
that the reliable estimation of this parameter is worth
paying great attention despite it might be very challeng-
ing due to data unavailability.

Several limitations should be discussed. First, seeing
from the model, some input data, particularly for energy
initial costs and some technology parameters has not
been updating due to data unavailability, which should
affect our simulation results to some extent. Second,
E3METL is a single-sector model, and we have not

taken inter-sectoral links into account; hence, extending
the current model framework to a multi-sectoral version
is a promising direction. From research problem per-
spective, in addition to the crowding-out effect, the
spillover effect is also a significant aspect of R&D
market failure. As discussed in Schnelder and Goulder
(1997), if the spillover effect of R&D is considered,
carbon tax may not be a cost effective option anymore,
with the mix policy of carbon taxes and R&D subsidies
instead. Additionally, the climate change issue is full of
uncertainties, including climate sensitivities, energy
prices, economic growth, as well as technological inno-
vation. In fact, all these uncertainties greatly affect the
timing of carbon reduction and the evaluation of carbon
abatement costs (Babonneau et al. 2012). Thus, extend-
ing the model to allow it to consider multiple uncertain
climate effects is an important future step.
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Appendix

Summary of abbreviations.

IAMs Integrated assessment models
AEEI Autonomous energy efficiency

improvement
EEI Energy efficiency improvement
EEEI Endogenous energy efficiency

improvement
GWP Gross world product
R&D Research and development
GHGs Greenhouse gases
EU European Union
NLP Nonlinear programming algorithm
CES Constant elasticity substitution
LBD Learning-by-doing
LBS Learning-by-searching
FBND Forgetting-by-not-doing
CTE Carbon ton equivalent
$/tC US dollar per ton of carbon
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BAU Business-as-usual
CGE Computable general equilibrium
DICE Dynamic integrated climate economy

model
ENTICE Model for endogenous technological

change
DEMETER De-carbonization model with endogenous

technologies for emissions reductions
WITCH World-induced technical change hybrid

model
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