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Abstract In energy harvesting wireless sensor net-
works, the sensors are able to harvest energy from the
environment to recharge their batteries and thus pro-
long indefinitely their activities. Widely used energy
harvesting systems are based on solar cells, which are
predictable (i.e., their energy production can be pre-
dicted in advance). However, since the energy produc-
tion of solar cells is not constant during the day, and it
is null at night time, these systems require algorithms
able to balance the energy consumption and produc-
tion of the sensors. In this framework, we approach
the design of a scheduling algorithm for the sensors
that selects among a set of available tasks for the sen-
sors (each assigned with a given quality of service),
in order to keeping the sensors energy neutral, i.e.,
the energy produced during a day exceeds the energy
consumed in the same time frame, while improving
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the overall quality of service. The algorithm solves
an optimization problem by using a greedy approach
that can be easily implemented on low-power sensors.
The simulation results demonstrate that our approach
is able to improve the quality of the overall schedul-
ing plan of all networked sensors and that it actually
maintains them energy neutral.

Keywords Energy harvesting systems · Wireless
sensor networks · Energy efficiency · Quality of
service · Solar cells

Introduction

A wireless sensor network (WSN) is composed by a
set of sensor nodes, or simply sensors, with the abil-
ity of monitoring its environment through transducers
and of transmitting data wirelessly, typically towards
a special sensor, or sink, that acts as a bridge between
the WSN and the user.

The most important constraint for sensors is doubt-
less the energy. Generally, they are powered on by
limited-capacity batteries that feed the sensor’s cir-
cuitry and provide the current draw necessary to
sustain their operations along the time. This means
that if the sensor battery level drops below a mini-
mum level, the sensor simply stops working. One of
the approaches for prolonging the sensors’ lifetime is
the use of energy harvesting systems, which extract
the energy found naturally in the environment, for
instance from the sun, wind, or vibrations, to power
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on the sensors. However, since the energy production
from these sources is generally uncontrollable and
intermittent, batteries are still required to maintain an
adequate energy buffer that can be used in conditions
of low production.

In this work, we consider a WSN composed by n

sensors, where exactly one sensor acts as the sink of
the network, and where exists at least one sensor for
monitoring and communication purposes, i.e., n ≥
2. In our scenario, each sensor communicates wire-
lessly with the sink for transmitting and for receiving
data; the sink, in turn, communicates with the n − 1
sensors. Note that this communication pattern corre-
sponds to a star-connected network topology. Note
also that this is just a requirement of the application
and not a constraint of the problem (in fact, there exist
a wide range of applications that follow this communi-
cation pattern, as for instance home/office automation
or Internet of Things applications (Barsocchi et al.
2013; Escolar et al. 2014)). Each sensor is equipped
with an energy harvesting system based on a solar
cell with different opportunities for scavenging. Note
that it does not prevent from the case of a sensor or
the sink have no restrictions of energy. For example,
the solar cells from different manufacturers may have
different efficiencies; also, the geographic position
of the sensors within the network affect, in general,
their energy production. On the other hand, sensors
consume energy by executing applications, which we
model as a set of tasks. A task performs sensing, pro-
cessing, and communicating activities with a given
rate. Each task has an associated cost and a quality
level that expresses the degree in which it fulfills the
user requirements; thus, the same activity could be
accomplished by alternative tasks each one with a dif-
ferent quality level. Additionally, each sensor has a
set of candidate applications for execution with a cer-
tain cost and quality; then, the problem becomes the
selection of the most adequate tasks to be executed
at any time on the sensors, in order to maximize the
overall quality level, while all sensors keep a min-
imum level of battery such that guarantees them to
work uninterruptedly. The fact of having a set of coop-
erating networked sensors complicates the problem,
since the sink is affected by any change in the sensors
scheduling and, correspondingly, a change in the sink
scheduling could imply the adaptation of the schedu-
ling of other sensors, which leads to a continuous
reschedule of the applications.

Under these assumptions, we propose a strategy
devoted at finding a scheduling of applications within
a time frame taken as reference, both for the sensors
and for the sink, that maximizes the global quality
of service (QoS) of the applications executed on the
WSN. In our model, a sensor node executes some
activity with a certain degree of quality, i.e., the
degree of satisfaction with which the requirements of
such activity are fulfilled. For example, a monitoring
application could use in alternative two different trans-
ducers with different resolutions and different energy
costs. If the energy budget is sufficient, the user has
a preference for the transducer with high resolution,
but the use of the low-resolution transducer (which
consumes less energy) is also acceptable. We thus use
QoS to model this preference of the user, which, of
course, is encoded with the application. Thus, maxi-
mizing the global QoS means to get that all sensors
and the sink perform their activities with the highest
degree of satisfaction for the user.

Four are the main contributions of this paper:
(1) the design of an energy harvesting system com-
posed of a real-world sensor node platform and a
solar cell; (2) a solar energy prediction model based
on the distribution of the daily power output among
the hours of a day for each day of the year and
for the specific solar cell that we are using; (3) a
heuristic that finds a (sub-)optimal assignment of
execution plans within the time frame for all sen-
sors in the WSN, that maximizes the quality level
achieved by the sensors and avoids their unavail-
ability; and (4) a simulator that generates test cases,
with different network configurations and solar cell
properties, and applies the optimization algorithms
proposed.

The remainder of this paper is organized as follows.
After reviewing the related work in “Related work”
section, we present in “Solar cells-based sensors”
section the design of a real-world sensor node plat-
form connected to a solar cell-based energy harvesting
system and provide its energy production model as
well as the energy consumption of the applications.
Section “System model” describes the system model
that supports the scheduling of applications on energy
harvesting WSN and formulates the QoS optimiza-
tion problem. In “Energy management optimization”
section, we present the algorithms aimed at finding a
(sub-)optimal scheduling of applications for all sen-
sor nodes of the network on the basis of the solar
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energy prediction model proposed and in “Evaluation”
section we provide the simulation results. Finally,
“Discussion and conclusions” section discusses the
conclusions and further research.

Related work

Wireless sensors are equipped with a radio transceiver,
a set of transducers to sense the surrounding environ-
ment (Baronti et al. 2007), a low-power microcon-
troller for computation purposes as well as a couple of
batteries to support their operations. In order to pro-
long sensors lifetime, applications have to be designed
with the objective of reducing their energy consump-
tion, which involves necessarily to reduce the time of
use of the physical components. This means that the
applications must find a trade-off between a suitable
performance and a minimal consumption. While tech-
nology continues advancing more and more towards
ultra-low components with different states of lower
consumptions, techniques as Dynamic Power Man-
agement (DPM) (Benini et al. 2000) enable switching
off the components when not necessary and waking
them up on demand reducing thus their activity. By
adjusting the sensing rates (Alippi et al. 2010) and the
radio duty cycles (Polastre et al. 2004) of the appli-
cations, the activity periods of the components can be
adapted to the requirements while maintaining a low
energy consumption. Although these strategies pro-
long the sensor lifetimes by slowing the velocity to
which the battery drains, none of them could poten-
tially achieve infinite lifetimes. This is precisely the
objective of energy harvesting systems: scavenging
energy from an external source and converting it into
electricity able to power on constrained embedded
systems indefinitely.

Energy harvesting systems have been classified
according to the next three categories (Sudevalayam
and Kulkarni 2011): (1) the source; (2) the control-
lability; and (3) the predictability. The first category
distinguishes between ambient energy sources (that
extract energy from the surrounding environment, for
example from the sun or the wind) and human source
(in which case the energy is harvested from active
and passive movements of humans, for instance from
the blood pressure, breath or from the steps). The
controllability is the capacity for extracting energy
on-demand: an energy source is controllable if the

energy can be extracted when required while it is non-
controllable if the energy can be extracted only when
it is available. In the latter case, predictability is the
ability to forecast the availability of energy according
to a prediction model. Solar energy can be classified as
ambient , uncontrollable, and predictable in daily
and seasonal cycles (Sudevalayam and Kulkarni 2011;
Bergonzini et al. 2009). Solar energy is also one of
the most easily accessible, as harvesting systems have
been implemented in form of small solar cells, which
fit very well the space restrictions of sensor nodes.
As a matter of a fact, several sensor platforms employ
this type of energy harvesting (e.g., Prometheus (Jiang
et al. 2005) and HelioMote (Lin et al. 2005)).

The ability of combining efficiently solar energy
harvesting systems connected to the sensors with
strategies aimed at balancing the harvested and con-
sumed energy, enables long-lasting applications and
the dynamic adaptation of the service level of the
application to the available energy along the time.
In this sense, QoS refers to the capability to provide
assurance that the service requirements of the appli-
cations can be satisfied (Xia 2008). QoS does not
only concerns the network protocols (e.g., at MAC
(Yigitel et al. 2011) and routing (Felemban et al. 2006;
Akkaya and Younis 2005; Sohrabi et al. 2000)) but
it also concerns the services provided at the applica-
tion layer for which specific QoS metrics are defined.
Examples of such metrics are coverage, exposure,
deployment, or reliability (Iyer and Kleinrock 2003).
In Chen et al. (2011), it is given a classification of
the QoS parameters into two categories: user-specific,
which includes parameters that the user can usually
control (as for instance, priority, periodicity, dead-
line, and availability), and low-level that includes the
features that the user cannot usually modify (as, for
instance, bandwidth, latency, throughput, and packet
loss).

The goal of achieving perpetual operation of a sen-
sor requires exploiting adequately the energy that is
harvested from the sun. Due to the fact that the energy
is cyclically generated, the problem can be formulated
in terms of what application to execute and when. To
this aim, algorithms have to be redesigned for schedul-
ing sensor applications along a reference time based
on solar energy predictions (Piorno et al. 2009), opti-
mizing the energy level stored in the batteries. Kansal
et al. (2007) proposes the use of the harvested energy
at an appropriate rate such that the sensor continues
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operating perpetually. This could be achieved for a
sensor and for a period of reference if the consump-
tion is lower than the production of energy in that
period; they call this mode energy-neutral operation.
They describe an algorithm for dynamically adapting
the duty cycle (quality metric) of the sensor such that
the constraint of energy neutrality is kept. Moser et al.
(2009) proposes to maximize the QoS by adapting the
level of service without wasting the harvested energy.
The authors explain that, differently to other works,
where only continuous parameters for quality maxi-
mization are considered (basically, sampling rates and
duty cycles), they consider a finite set of discrete lev-
els of service and propose an algorithm to dynamically
assign a level of service to a time interval in the future,
for which the energy to be harvested has been pre-
dicted. The condition for operating uninterruptedly is
achieved if, after the assignment, the remaining energy
in the battery is larger or equal than a minimal level.
Moser et al. (2008) proposes adapting multiple quality
parameters to optimize the applications performance
in a long-term perspective (days or even weeks) by
evaluating different kinds of applications of embedded
systems that are modeled as a class of linear programs
and by solving them (total or partially) offline.

The quality optimization in scenarios where more
than one sensor is involved, and where each sen-
sor is equipped with an energy harvesting system,
also called energy harvesting network, has been
approached in several works. Differently to traditional
WSNs where the focus is on maximizing the network
lifetime, the focus in energy harvesting WSNs is on
maximizing some performance metric. Kansal et al.
(2007) describes a harvesting network where n sensors
have a choice for harvesting. The problem becomes
how to distribute in space and time the total amount of
energy that is harvested among the sensors in such a
way that some application-specific performance met-
ric can be maximized while the n sensors remain
energy-neutral. The authors provide two particular
application examples: a field monitoring application,
where data is sampled and routed at constant rate, and
an event monitoring application where only special
events are transmitted. The first problem is written as a
linear program for n = 4 nodes in a random topology,
where the objective is the maximization of the amount
of data to transmit by n−1 nodes subject to keep nodes
energy-neutral. The second problem was previously
described in another work (Kansal et al. 2004) and

consists in minimizing the total route delay instead of
minimizing the number of hops. For this work, the
authors do not provide results but refer to the results
of the mentioned paper, which does not consider
energy-neutrality. The work described in Fafoutis and
Dragoni (2011) aims at maximizing two performance
metrics of energy harvesting WSNs: the end-to-end
delay and the sensing rate. They propose ODMAC,
an on-demand MAC protocol, based on carrier sens-
ing schemes, and that supports multi-hop topologies.
In ODMAC, idle listening is minimized by transmit-
ting on-demand, i.e., each transmitter has to wait the
receiver to wake up and transmit a beacon packet
before the data packet transmission. Note that the fre-
quency of the beacons impacts on the end-to-end delay
and, subsequently, on the energy consumption; sim-
ilarly, the sensing rate impacts on the transmission
frequency and, subsequently, on the energy consump-
tion. ODMAC adjusts individually the duty cycle of
each node, to the level that the energy consumed is at
the same level of the energy harvested, thus maintain-
ing it at state energy neutral. Vithanage et al. (2013)
is a first attempt to approach the energy harvesting
WSNs in the metering industry by using the harvested
thermal energy from radiators to power the nodes of
the network (meters). Several are the contributions
of this work: (1) to measure the energy harvested
from the heat of a radiator, for which they devel-
oped a real prototype; (2) to compare analytically the
default ALOHA-based MAC protocol typically used
in the metering industry (IMR+) against ODMAC, the
MAC scheme specifically designed for energy har-
vesting WSNs. The results of this comparison show
the efficiency of ODMAC and its ability to adapt to
harvested ambient energy. Lattanzi et al. (2007) stud-
ies the problem of optimal routing in energy harvest-
ing WSNs. To this purpose, the authors introduce the
metric Maximum Energetically Sustainable Workload
(MESW), which is the maximum workload that can
be autonomously sustained by the network, where the
term ”energetically sustainable” means that the power
spent by each node due to its workload is lower than
the power that it can harvest from the environment.
The authors select a set of five routing algorithms
for WSNs and compute for each one its MEWS. The
optimal MESW (MESWopt ) is the highest MESW
achieved by any routing algorithm, then, the optimal-
ity of a routing algorithm is computed as the ratio
between its MESW and MESWopt . The results show
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that routing strategies that do not take into account
environmental power provide poor results in terms
of workload sustainability. In a later work (Bogliolo
et al. 2011), the same authors propose self-adapting
maximum flow (SAMF), a routing strategy for energy
harvesting WSNs, to route the maximum sustainable
workload subject to the capacity constraints, auto-
matically adapting it to time-varying operating condi-
tions. More recently, the authors published a survey
(Lattanzi and Bogliolo 2011) that overviews their con-
tributions in this field, where the view of quality is
always expressed as the maximum load supported by
an energy-harvesting WSN. Vullers et al. (2010) is a
tutorial that explores examples of WSNs in different
fields, as health, automotive, or maintenance of struc-
tures, typically battery-operated. The authors then dis-
cuss how the usage of energy harvesting systems may
contribute to their autonomy, providing a description
of real deployments that use commercial harvesters
to achieve unbounded lifetimes. In this article, four
technologies for energy harvesting are analyzed and
compared (vibrational, thermal, photovoltaic, and RF)
in terms of source power and harvested power.

We have addressed the problem of the quality opti-
mization of the applications in several works (Escolar
et al. 2012, 2013, 2014a, b), following an approach
that increases progressively the number of sensors
involved. Our first work (Escolar et al. 2012) proposes
a local scheduler aimed at selecting the applications
that maximize the quality level in one only sensor
(based on sampling rates), adapting its quality level
to the energy production of its solar energy harvest-
ing system. The optimization described in Escolar
et al. (2014a), which still uses only one sensor, intro-
duces the constraint of energy-neutrality, which states
that the sensor’ battery budget cannot drop in the
period of reference (according to Kansal et al. (2007)).
Here, our view of quality refers to any activity of the
sensor that can be performed at different satisfaction
degrees for the user, for which we provide different
scheduling plans, with a cost and a quality associated.
We also solve the re-optimization problem, which con-
sists of adapting the initial assignment of scheduling
plans according to the excess or deficit of energy
production. After that, we approach the problem in
harvesting networks first in Escolar et al. (2013),
where we propose a solution for just two networked
devices, a sensor and a sink, each one using an energy
harvesting system, by means of a low-complexity

algorithm aimed at finding a (sub)optimal assignment
of scheduling plans to the sensor and to the sink, such
that the quality is maximized in both nodes while
keeping them energy neutral. The work presented
in Escolar et al. (2014b) is a further extension of
Escolar et al. (2013) where we theoretically discuss
the generalization of this problem to consider any
number of sensors, i.e., for an energy harvesting net-
work. Differently to Escolar et al. (2013, 2014b), this
paper proposes an algorithm for achieving quality
optimization in energy harvesting WSNs composed of
n ≥ 2 sensors, including the sink. Each sensor has
a different opportunity for scavenging and different
scheduling plans with a consumption and a quality
associated to its service level. Differently to the works
presented by other authors to provide energy-neutral
operation in energy harvesting WSNs (Fafoutis and
Dragoni 2011; Vithanage et al. 2013; Lattanzi et al.
2007; Lattanzi and Bogliolo 2011; Bogliolo et al.
2011), our focus is to maximize the quality of the
applications executed on each node of the network,
where quality is a wider concept than the performance
network, for which we provide a variety of scheduling
plans that can be dynamically selected for execution.

Solar cells-based sensors

We have designed a real energy harvesting system
based on solar cells. The purpose of this system is
to obtain energy from the solar light and convert
it into electricity to recharge the sensor’s batteries,
with the ultimate goal of achieving potentially infi-
nite lifetimes. Every sensor in the scenario that we are
addressing in this paper has attached the energy har-
vesting system proposed, which is described in detail
in this section.

The energy harvesting system consists in a solar
module KL-SUN3W (KL 2014) that is connected to
a Waspmote (Libelium 2014), an open source wire-
less sensor platform manufactured by the Spanish
company Libelium. The module KL-SUN3W is com-
posed of 28 mono-crystalline silicon solar cells with
the property of converting the energy of the photons
into electricity by means of the photovoltaic effect.
The amount of energy that a solar cell is able to
absorb depends on several parameters. First, the irra-
diance (D), which is defined as the density of incident
power on the surface of the solar cell under standard
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Table 1 KL-SUN3W electrical specifications

Parameter Value

Peak power (Pout ) 3 W

Maximum power voltage (Vmp) 5.82 V

Maximum power current (Imp) 0.52 A

Open circuit voltage (Voc) 7.38 V

Short circuit current (Isc) 0.55 V

Dimensions (in mm) 225 × 155 × 17

Operating temperature −40 −85 ◦C

conditions. In turn, it depends on several factors
mainly related to the place where the cell is deployed,
as for instance, the solar time, the location, or the
inclination with respect to the sun rays. Second, the
efficiency of the solar cell (η) that represents the per-
centage of the energy conversion efficiency of the
irradiance absorbed at some specific place and time
into electrical power. The efficiency is computed as
Pout

D×S
, where Pout is the maximum power output pro-

vided by the cell (in W ), D is the irradiance (in
W

m2 ), and S is the surface of the solar cell (in m2).
According to its manufacturer, under standard condi-
tions (irradiance = 1000 W

m2 , temperature = 25 ◦C, air
mass = 1.5 spectrum, angle sun/surface = 41.81◦) the
solar module KL-SUN3W achieves an efficiency of
η =12.8 %. Other electrical specifications are shown
in Table 1.

Waspmote is a low power sensor platform com-
posed of an ATmega1281 microcontroller operating
at 14.7456 MHz, 8 KB SRAM, 4 KB EPPROM,
128 KB flash memory and the possibility to attach
a SD card of 2 GB. Waspmote supports different
types of sensorboards (e.g., smart cities, gases, and
weather station) and up to 10 different network con-
nections including Zigbee, 802.15.4, WiFi, 868 MHz,
900 MHz, and 3G/GPRS. For its correct working the

platform requires a single battery that provides a volt-
age between 3.3 and 4.2 V. Waspmote counts with
four operational modes: On, the normal operation state
requires a current draw of 15mA; Sleep and Deep
Sleep states, where the microcontroller passes to a
latent state (but it still can be waken up by means of
interruptions) requires 55μA; and Hibernate state in
which the microcontroller is turned off that requires
0.07μA. According to its manufacturer, the Waspmote
operation at Hibernate mode reaches up 1 year without
recharging. However, note that the real power demand
depends on the application requirements; in particular
depends on the components used (e.g., communica-
tion module and sensors), on its operational state (e.g.,
in case of microcontroller On, Sleep, Hibernate), and
on its operation time.

The power generated by the module KL-SUN3W is
used to recharge the Waspmote’s battery, since feed-
ing directly the sensor circuitry could lead to long
inactivity periods coinciding with the hours of low or
null solar light intensity. Thus, the Waspmote opera-
tion is maintained still through the battery, whose level
can increase (or decrease) along the time depending
on the energy production and on the application con-
sumption. For this reason, the next two subsections
present the KL-SUN3W energy production model and
the Waspmote energy consumption model. Note, how-
ever, that these models may apply to other solar mod-
ules and sensor platforms. Figure 1 shows our energy
harvesting system composed by the solar module KL-
SUN3W (on the left) and the Waspmote platform (on
the right).

Energy production model

This subsection presents the energy production model
that we propose to estimate the amount of solar energy
that is harvested from the solar module KL-SUN3W.
Our approach is to elaborate a prediction model based
on formulations. However, note that there exist other

Fig. 1 Our solar energy
harvesting system: The solar
module KL-SUN3W (on
the left) and the Waspmote
platform (on the right)
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Fig. 2 Daily power output in Madrid (Spain) and its distribution per hour

methods of forecasting that could have been adopted,
such as regressive models, intelligent artificial techniques,
or numerical weather prediction (Inman et al. 2013).

The maximum power output (ignoring losses)
delivered by a photovoltaic system during a period of
time (e.g., a month, a day, or a year) can be com-
puted as Pout = D × η × S, where D is the value
of the irradiance corresponding to the same period of
time and it is measured in watts. As an example, if we
take the average daily solar irradiance in the city of
Madrid (Spain) in the month of February, whose value
is 2.96 KWh/m2 according to the NASA program
RETScreen (NASA 2013), the average power output
provided by KL-SUN3W in a day of February is 11.22
Wh. We consider that the solar panel KL-SUN3W is
located titled on the surface, with an inclination angle
given by the standard condition of 41.81◦ between
the sun and the surface. Figure 2 shows the aver-
age daily power output from KL-SUN3W generated
from the data of irradiance in Madrid (Spain) for all
months of the year (on the left) and the hourly solar
irradiance computed for 1 day of the months of Febru-
ary, June, September, and December (on the right).
Figure 3 presents the same parameters for the city of
Hamburg (Germany). The comparison of the figures

enables to easily visualize how the geographical loca-
tion where the solar cell is deployed affects to the
energy production. The amount of power output gen-
erated from the sun is larger in regions with latitude
lower, since the angle of incidence of the sun rays
with regard to the Earth’s surface increases from the
Ecuador towards the poles; in the figures, Madrid (lati-
tude: 40.437944; longitude: -3.679536) receives more
amount of sun than Hamburg (latitude: 53.558869;
longitude: 9.927821).

For a given power output Pout , the corresponding
amount of energy that can be produced is computed as
Pout

V mp
, where V mp is the voltage at maximum power.

We are particularly interested in knowing the hourly
curve of the energy production for the solar module
KL-SUN3W. We compute the curve by approaching
the distribution of the daily power output among the
hours of a day. For approaching the distribution func-
tion, we consider the solar light intensity incident on
the surface (irradiance) during a day, which depends
on the climatic conditions at the moment and on the
solar zenith angle �Z , the angle between the Sun and
the vertical axis of the Earth surface. The rotational
movement of the Earth on its own axis and around the
Sun makes �Z varying along the 365 days of the year

Fig. 3 Daily power output in Hamburg (Germany) and its distribution per hour
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and time of the day. Three parameters are required to
compute �Z: (1) the latitude of the point geographic
�; (2) the solar declination angle δ; and (3) the time
of day H . Following the model described in Hart-
mann (1994) and Jacobson (2005), we have computed
the zenith angle as �Z = cos−1(sin(�) sin(δ) +
cos(�) cos(δ) cos(H)), where according to Cooper
(1969) δ is computed as 23.45◦(360◦( 284+d

366 )) (being
d the number of the day of the year to be computed,
e.g., d ∈ [1, 365]) and H is the hour angle or angle
of radiation due to time of day, which is computed as
H = 15◦(t − 12), with t given as solar time, due to
the fact that the Earth shifts approximately 15◦ each
hour. Knowing the zenith angle, the hourly irradiance
can be estimated as a function of �Z and the aver-
age daily irradiance D, as D(t) = D cos(�Z), where
t is any hour of the day (t ∈ [0, 23]) and �Z rep-
resents the zenith angle at time t . Finally, the hourly
energy production is obtained as E(t) = D(t)×η×S

V mp
,

t ∈ [0, 23].
For the city of Madrid and for all days of the year,

we have computed its zenith angle and the estima-
tion of the hourly irradiance. Figure 2 on the right
shows the hourly irradiance D(t) for the days of
February 19th, June 22th (summer solstice), Septem-
ber 7th, and December 21st (winter solstice) assuming
the values of daily irradiance of 2.96, 7.09, 4.87,
and 1.7 KWh/day/m2 for the months of February,
June, September, and December, respectively, (data
provided by RETScreen).

Energy consumption model

We present here the energy consumption model for
the platform Waspmote. As described before, the
solar module KL-SUN3W recharges the battery of the
Waspmote; on the other hand, the battery is drained
along the time depending on the consumption of
the application that is executed, which depends on
the hardware components, the energy consumption
state of each one, and the time that is being used in
each state. The Waspmote platform is connected to a
Lithium-ion battery (Li-Ion) with 3.7 V nominal volt-
age and a voltage ranging between 3.3 and 4.2 volts,
which represent the minimum and maximum opera-
tional battery voltage, respectively. This battery can
be recharged through USB at a voltage of 5 V pro-
viding a maximum charging current of 100 mA and,
alternatively, through a solar panel, as KL-SUN3W, at

6–12 V and providing a maximum charging current of
280 mA. To compute the discharge time of the battery
we manage two parameters: C is the capacity of the
battery (in mAh) and I is the current draw required for
the working of the application (in mA). The time (in
hours) to completely discharge the Waspmote assum-
ing that there is no energy production from the solar
cell and a constant current draw I comes given then
by C

I
. As an example, considering the capacity of

the Waspmote battery, C = 6600 mAh, and assum-
ing a simple application that only makes usage of the
microcontroller in state On, I = 15 mA, the time to
discharge would be 6600

15 = 440 h. Note, however,
that the current draw is generally not constant and
vary with the application requirements. In this sense,
the current draw to be applied for this computation is
the sum of the partial consumptions of the hardware
components use.

System model

Let us consider a WSN composed of n sensors
{n1, n2, . . . , nn}, where nn acts as a sink. Each sensor
executes a subset of the available tasks θ . A task T ∈ θ

is represented by a triple T = 〈t, p,w〉, where t is the
time of execution of the task, p is the period of execu-
tion of the task (note that must be p > t , otherwise the
period of execution of the task cannot be met), and w

is the energy consumption of the node per unit of time,
due to the execution of task T . For each task T , its
duty cycle, expressed as the percentage of system time
required, is computed as dc = t

p
× 100. There also

exists a special task T0 (also called Idle task) which is
executed when there is no other task to execute.

In a given period of time, a sensor may be assigned
to execute a scheduling plan, which is defined by a
finite subset of tasks in θ . When a scheduling plan is
selected to be executed, all of its tasks are cyclically
executed in order. Each sensor i, with i ∈ [1, n), has a
set of m scheduling plans to be selected for execution.
For simplicity, we assume that m is the same for all
of the sensors. However, note that it is not a limitation
of the model and its generalization is straightforward.
We define Pi[] as the m elements vector containing all
the available scheduling plans for sensor i. Given two
tasks T1 and T2, T1 is equal to T2 iff t1 = t2, p1 =
p2, and w1 = w2 and it is denoted as T1 = T2. Two
scheduling plans A and B are equal, and it is denoted
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as A = B, iff T A
1 = T B

1 , T A
2 = T B

2 . . . T A
n = T B

n ,
where n is the number of tasks of A and B.

For any given scheduling plan P , we define its
energy consumption per unit of time c(P ) as the sum
of the energy consumptions of the tasks in P , and its
duty cycle dc(P ) as the sum of the duty cycles of
the tasks in P (note that must be dc(P ) ≤ 100%,
otherwise the scheduling plan is not feasible as the
sensor does not have enough processing capacity to
run it). We also define the quality level q(P ) of the
scheduling plan to express the degree in which this
scheduling plan fulfills the application requirements.
Specifically, quality levels enable the representation
of different user-defined metrics for the application,
such as the sampling rate, the duty cycle, or the com-
munication pattern employed. As an example, let us
consider two scheduling plans A and B, intended for
monitoring an area through a video camera. The defi-
nition for A is A = {T A

1 , T A
2 , T A

3 , T A
0 }, where T A

1 is
the task for sampling the camera at a rate of 10 s with
a high resolution, T A

2 is the task for processing the
sample, and T A

3 is the communicating task that uses
a routing protocol with guaranteed-delivery. Alterna-
tively, the definition for B is B = {T B

1 , T B
2 , T B

3 , T B
0 },

where T B
1 is the task for sampling the camera at a rate

of 60 seconds with a low resolution, T B
2 is the task for

processing the sample, and T B
3 is the communicating

task that uses a best-effort routing protocol (T A
0 and

T B
0 are the Idle tasks for scheduling plans A and B,

respectively). Generally speaking, a higher quality in
the performing of a task, for instance the sampling or
the transmission, implies a better quality of such activ-
ity as well as a higher cost. Specifically, q(A) > q(B)

and, subsequently, c(A) > c(B).
The sink also has a set of scheduling plans to

be selected for execution. For any given schedul-
ing plan Pi[j ] of sensor i (j ∈ [1, m]) there exists
one (and only one) scheduling plan Qi[j ] in the
sink that enables the overall execution of the pair
〈Pi[j ], Qi[j ]〉. In other words, Qi[j ] is the only set of
tasks for the sink that is compatible with the execution
of Pi[j ] in sensor i. In the rest of the paper, we use
function p(P ) that returns the only scheduling sub-
plan for the sink compatible with a scheduling plan P

of a sensor, i.e., Qi[j ] = p(Pi[j ]).
The energy consumption per unit of time of Qi[j ]

is denoted by c(Qi[j ]) and the duty cycle of Qi[j ] is
defined similarly to the duty cycles of the scheduling
plans for the sensors, and it is denoted by dc(Qi[j ]).

Note that, given a pair 〈Pi[j ], Qi[j ]〉, the duty cycles
dc(Pi[j ]) and dc(Qi[j ]) can be rather different from
each other because the tasks executed by the sensor
differ from the tasks executed by the sink, and because
the sink and the sensor may have completely different
processing power. Note that we do not need to define
a quality level for the scheduling sub-plans of the sink
as these can be considered as service scheduling plans
for the correspondent scheduling plans executed on
the sensors and therefore, the quality of Qi[j ] is equal
to the quality of Pi[j ].

The efficiency of a scheduling plan P is denoted by
ε(P ) and is defined as q(P )

c(P )+c(p(P ))
, that is, the ratio

between its quality level q(P ) and the costs c(P ) and
c(p(P )) (i.e., the cost of P and the cost of the schedul-
ing sub-plan in the sink compatible with P ). It should
be noted that a scheduling plan P for which q(P ) <

q(P ′) and c(P ) + c(p(P )) ≥ c(P ′) + c(p(P ′)) for
some other scheduling plan P ′ is inefficient, and it can
be excluded a priori. For this reason, we assume that,
without loss of generality, the higher the quality level,
the higher the energy consumption.

Hereafter, we assume that the vector Pi[] is initially
ordered in terms of efficiency in descendant order, i.e.,
ε(Pi[j ]) ≥ ε(Pi[k]) for each j < k.

For the ease of notation, we also denote with P []|q
the vector obtained from vector P [] by removing all
elements that have quality level smaller or equal than
q. Similarly, we denote with P []|c the vector obtained
from P [] by removing all elements that have a cost
larger or equal than c. Note that, if P [] is sorted, the
vectors P []|q and P []|c are also sorted according to
the same order, and both operations can be performed
in a linear time with the size of the vector. The opera-
tions P []|q and P []|c return an empty vector, denoted
with ∅, if no elements in P [] satisfy the requested
property.

Both the sensors and the sink are powered by
means of the solar cell-based energy harvesting sys-
tem described in “Solar cells-based sensors” section.
Since the energy that can be produced from a solar
cell depends on different factors such as, for instance,
the solar time and the geographic location, batteries
are still necessary to feed the circuitry of the sen-
sors and to keep their operations when there is no
energy production. We assume that the energy produc-
tion in the sink is sufficient to attend several sensors
simultaneously (e.g., the sink could use larger solar
cells and have batteries of larger capacity). Thus, the
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energy harvesting system converts the solar energy
into electricity which is used to increase (or decrease)
the battery level in the sensors and the sink. It is also
known that the solar energy production has a nat-
ural cycle of 24 h that, although uncontrollable, is
predictable (Kansal et al. 2007). For this reason, we
consider a time frame taken as reference of � = 24 h
and we discretize the time axis into v slots of duration
�×60×60

v
seconds. For each slot k (k ≤ v) and for each

sensor i (i ≤ n), we devise a strategy aimed at finding
the assignment of scheduling plans to the time slots in
order to optimize the overall quality of service.

Let S be the scheduling matrix of dimension n × v

that represents the assignment of scheduling plans to
the sensors and to the sink in every slot, specifically:

si,k =
{

the scheduling plan assigned to sensor i in slot k if i < n

the scheduling plan assigned to the sink in slot k if i = n
(1)

Note that, for a given slot k ∈ [1, v], the assignment
of scheduling plans to all the sensors is represented by
the kth column of S. Note also that, for a given sen-
sor i ∈ [1, n), its assignment of scheduling plans to
the slots is represented by the ith row of S. In order to
attend the selections done by the n− 1 sensors in each
slot k the sink must select for execution a schedul-
ing plan that is compatible with the scheduling plans
selected for all the sensors in the same slot. For this
reason, the sink has to schedule several of its schedul-
ing plans, one for each sensor with whom it interacts.
Considering that a scheduling plan for a sensor is com-
patible with only one scheduling sub-plan for the sink,
we have that the scheduling plan for the sink at slot k

must always be sn,k = ⋃n−1
i=1 p(si,k). This scheduling

plan has a cost given by
∑n−1

i=1 c(p(si,k)) and a duty

cycle equal to
∑n−1

i=1 dc(p(si,k)). Note that the duty
cycle of the scheduling plan for the sink must clearly
be lower or equal than 100 % to be feasible (otherwise

the sink cannot attend the scheduling plans selected by
the sensors); this means that an assignment of schedul-
ing plans to all the sensors in a slot is feasible only if
the resulting scheduling plan for the sink has a duty
cycle not above 100 %.

Let G = gi,k and E = ei,k be two n × v matri-
ces that represent the amount of energy generated and
estimated, respectively, ∀i ∈ [1, n] and ∀k ∈ [1, v]
(note that the energy that is finally produced may not
match with the expected one). Let also B = bi,k be the
n × v matrix that represents the battery level for each
sensor and for the sink in each slot k. Referring to the
current time slot t , matrix B contains the past battery
levels of the sensors and the sink in all the columns
k < t , the current battery levels in column t , and the
expected battery levels in all columns k > t . Finally,
we denote as Bmax

i and Bmin
i to the maximum and min-

imum admissible levels of the batteries, respectively,
and as B0

i to the initial battery level at the beginning of
slot 1 for any sensor i ∈ [1, n]. We define the rectifier
function [x]+ as:

[x]+ =
{

x x ≥ 0
0 x < 0

(2)

If the duration of the slots is small enough, we can
assume that, if the charge tends to overflow the bat-
tery above its maximum Bmax

i , then the battery charge
will be Bmax

i also at the end of the slot. Similarly, if
the charge tends to underflow the battery below Bmin

i ,
then the battery charge will be Bmin

i also at the end of
the slot. This assumption is motivated by the fact that
the slots are short, the energy production will keep the
same trend while the energy consumption will remain
almost the same. Under these assumptions, disregard-
ing the power leakage of the battery, and assuming
that the actual energy production equals the expected
energy production, we can express the battery level for
each sensor i in slot k as:

bi,k =
{

max{Bmax
i , bi,k–1 + φ[ei,k − c(si,k)]+ − [c(si,k) − ei,k]+} k ∈ [2, v]

B0
i k = 1

(3)

where φ is the efficiency of the battery recharge
process. In order to simplify the formulation of

the optimization problem, we provide the following
definitions.
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Definition 1 A sensor i satisfies the condition of
energy neutrality if bi,v ≥ bi,1, i.e., its battery level
at the last slot v is always greater or equal than the
battery level at slot 1. For evaluating this condition,
we define the boolean function Neutral(i) that
returns true if the sensor i holds this condition.

Definition 2 A sensor i satisfies the condition of min-
imal battery if bi,k ≥ Bmin

i , i.e., the battery level ∀k ∈
[1, v] is always greater or equal than its minimum
battery level Bmin

i . We define the boolean function
Minbat(i) that returns true if the sensor i holds
this condition.

Definition 3 An assignment of scheduling plans to
the sensors in slot x is feasible if

∑n−1
i=1 dc(si,x) ≤

100 %, i.e., the sum of their duty cycles is lower or
equal than the maximum possible (100 %); otherwise,
these scheduling plans cannot run together because the
sink has not enough capacity to run them simultane-
ously in the same slot. We define the boolean function
Sumdc(x) that returns true if the assignment done
in slot x holds this condition.

Definition 4 An assignment of scheduling plans
represented by matrix S is feasible if holds that
Neutral(i), Minbat(i), and Sumdc(k) ∀i ∈
[1, n], k ∈ [1, v]. We define the boolean function
Feasible(S) that returns if the assignment is fea-
sible or not. For the sake of simplicity, we also define
the boolean function Feasible(si,k) that returns
true if the assignment to sensor i in slot k is feasible.

Then, we can formulate the optimization problem
as follows:

max
∑

i∈[1,n],k∈[1,v]
q(si,k) (4)

Feasible(S)

The constraint Feasible(S) states that the
assignment of the scheduling plans to slots must be
always feasible, i.e., each sensor i must be energy neu-
tral and hold the condition of minimal battery, and
the sum of the duty cycles of the assigned schedul-
ing plans to slot k must be always less or equal than
100 %.

Energy management optimization

We present in this section the algorithms for energy
management optimization. Firstly, we consider the ini-
tial assignment problem of scheduling plans to slots
for each sensor, assuming that the energy produced in
the sensors coincides with the energy estimated. To
this purpose, we exploit the energy production model
presented in “Initial assignment” section. Note that
the use of this model lets the algorithm to estimate
the ideal energy production for the entire day, and
thus to assign scheduling plans to be executed at night
that are admissible if the actual production meet the
ideal production. On the other hand, the actual produc-
tion could be different from expected. For example,
there can be an excess or defect of energy produc-
tion in the sensors with regard to the estimation done,
or because some sensors may leave or join the net-
work. To deal with these cases, our energy manage-
ment algorithm re-schedules the current assignment.
This section concludes by comparing centralized and
distributed implementations of the algorithm.

Initial assignment

The purpose of the initial assignment algorithm is
to find a feasible assignment of scheduling plans to
slots for each sensor. Such initial assignment may later
be upgraded or downgraded by increasing or reduc-
ing the quality level of the scheduling plans initially
assigned. The pseudo-code for the initial assignment
is presented in Algorithm 1.

The algorithm starts assigning to each sensor i its
most efficient scheduling plan, i.e., the scheduling



342 Energy Efficiency (2017) 10:331–357

plan Pi[1] to all of the slots of sensor i. The schedul-
ing plan to be executed in the sink is computed in
each scheduling plan replacement accordingly. Once
the matrix S has been initialized, three cases may
occur: (1) feasibility of all the assignments (case 1);
(2) non-feasibility of the assignment for a sensor i < n

in some slot (case 2); and (3) non-feasibility of the
assignment in the sink (case 3). The first case occurs
when all the sensors (included the sink) are energy
neutral, their battery levels at every slot are above
Bmin

i and the sum of the duty cycles of the schedul-
ing plans assigned to all the sensors in each slot k is
below 100%. In this case, if the battery level at last slot
v is equal to the battery level at slot 1 for all sensors,
then there is no excess of battery to improve the cur-
rent solution and the algorithm finishes; otherwise, the
solution can be improved and the algorithm invokes
function Upgrade with the purpose of iteratively
finding a better assignment than the current one. In the
second case, the algorithm uses function Downgrade
with the purpose of iteratively finding a cheaper (less
energy demanding) assignment for the sensor that is
not energy neutral. In the last case, the algorithm uses
function DowngradeAll with the purpose of itera-
tively finding a cheaper assignment for all the sensors,
in order to reach a feasible assignment for all the sen-
sors. In any of the three cases, the algorithm iterates
until no improvements are possible to the scheduling
plans assignment.

Algorithm 2 shows the function Upgrade. This
function takes the assignment matrix S and selects the
scheduling plan of the sensor whose replacement pro-
vides the largest increase on the current quality (of
course, the new assignment will also have a larger
cost). To this purpose, the Upgrade function consid-
ers the upgradable scheduling plans, i.e., the assigned
scheduling plans that can be replaced with a schedul-
ing plan with higher quality. Specifically, given an
assigned scheduling plan si,k with a quality level q =
q(si,k), it is said to be upgradable if the list Pi[]|q �= ∅,
i.e., there exists a scheduling plan that improves the
quality level of the current assignment. We define the
function up(si,k) that returns the scheduling plan in
Pi[]|q with minimum cost (and with a larger qual-
ity than q) and that returns the empty set ∅ if such
a scheduling plan does not exists. In practice, the
Upgrade function looks for an assigned schedul-
ing plan that is upgradable with minimum cost and

upgrades it only if this results in an overall admissible
assignment.

Algorithm 3 shows the function Downgrade. This
function takes the assignment matrix S and a sensor
i and attempts to reduce the cost only for the assign-
ment of the sensor i (of course, the new assignment
will also have a lower quality). To this purpose, the
Downgrade function considers the downgradable
scheduling plans, i.e., the assigned scheduling plans
that can be replaced with a scheduling plan with lower
cost. Specifically, given an assigned scheduling plan
si,k with a cost c = c(si,k), it is said to be downgrad-
able ifthe list Pi[]|c �= ∅, i.e., there exists a scheduling
plan that reduces the cost of the current assignment.
We define the function down(si,k) that returns the
scheduling plan of maximum quality in Pi[]|c (and
with a cost lower than c) and that returns the empty
set ∅ if such a scheduling plan does not exists. In prac-
tice, the Downgrade function looks for an assigned
scheduling plan that is downgradable with maximum
quality.

Finally, Algorithm 4 shows the function
DowngradeAll. This function takes the assignment
matrix S and attempts to reduce the overall cost of
the assignment (of course, the new assignment will
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also have a lower quality). This function is similar to
function Downgrade, with the difference that it is
not limited to downgrade only a specific sensor.

Re-optimization

The strategy described computes a (sub-)optimal
scheduling of the scheduling plans to be executed
along a time frame, such that the overall quality level
is maximized both in the sensors and in the sink. This
scheduling is based on estimations of the energy to be
produced by the energy harvesting systems attached
to the sensors and to the sink, as well as the energy
consumption of each specific scheduling plan. How-
ever, the amount of energy that is actually harvested
from the sun could differ from the amount of energy
predicted at some slot along the time frame taken as
reference. This may happen for different reasons, as
for instance the unexpected change of solar conditions
or a wrong prediction. Note that the amount of the
real energy harvested can be obtained by reading the
battery sensor at the instant of time appropriate. If it
is observed a meaningful deviation between the esti-
mated and the harvested energy, i.e., if the amount
of estimated energy at some slot is higher (or lower)
than the amount of energy that is really produced, the
scheduling for the future slots is no longer valid and
the re-optimization is triggered (note that small dif-
ferences between the estimated and produced energy
are still tolerable). If this is the case, re-optimization
makes necessary only for the next slots, i.e., the slots
between the following slot to the slot in which the
energy estimation changed, let say v0 and the last
slot v. The re-optimization algorithm behaves equal to
Algorithm 1 except that it starts the initial assignment

of scheduling plans from slot v0 instead of from slot 1.
Finally, we want to stress that in our task model

we assume a cyclic execution of tasks with a uni-
form consumption in each slot. Under the event of
the battery level is very low and the energy produc-
tion drops dramatically between the beginning and the
end of slot (which would lead the sensor to interrupt
its operation), we consider that there exist a minimum
admissible battery level (Bmin

i ) that enables sustaining
the sensor operation during one slot, after which the
re-optimization will be triggered for the next slots.

Centralized vs. distributed communication

The algorithms presented so far allow for both a cen-
tralized and distributed implementations. However,
the choice of communication (centralized or dis-
tributed) impacts significantly on the efficiency of the
solution. The main difference between the centralized
and distributed model lies in who has the knowledge to
make the decisions. For the sake of simplicity, we con-
sider two extreme cases. One, centralized, in which the
sensors do not have any knowledge (apart the schedul-
ing plan assigned to them by the sink), and one (that
we call distributed), in which the sensors know all
the parameters of their tasks (basically quality and
consumption), and they can perform the optimiza-
tion of their own scheduling, while the sink do not
have specific knowledge of the sensors’ task parame-
ters (energy consumption and quality). The distributed
scenario models the case in which the set of sensors
participating to the network is not defined a priori,
new sensors with new sets of tasks may join the net-
work. In these conditions, when a new sensor joins,
the sink chooses the set of tasks that fit the sensor
ones (e.g., tasks that publish the sensor data at the
appropriate rate), but it does not know the specific
parameters of the tasks of the sensor (consumption,
production, and quality). Note, however, that there are
many different ways to implement distributedly the
algorithms, depending on the assumption made about
the capability of the sensors and on the knowledge
they have. Note also, that, regardless the choice of the
communication and, according to our algorithms, the
sink is always responsible of deciding about its own
scheduling, based on the scheduling of the sensors,
which can be made by the sensors (in the distributed
case) or by the sink itself (in the centralized case).
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Considering these two opposite scenarios, we com-
pute the overhead of these approaches due to com-
munication messages that the sink and the sensors
interchange.

– The centralized approach. Following this
approach, the sink acts as coordinator node by
centralizing the global knowledge, making deci-
sions for upgrading/downgrading each sensor
with a scheduling plan, and driving the commu-
nication with the sensors. The sink knows the
properties of the scheduling plans of the sensors,
their initial battery levels, and their energy esti-
mations, therefore, it may compute in advance
the scheduling plan to be assigned to every slot in
each sensor and, correspondingly, the scheduling
plan to be executed in each slot in the sink. To
communicate their scheduling the sink needs to
send one message to each sensor. If the precision
of the energy solar prediction algorithm is good
enough, it will not be necessary to send more than
(n − 1) messages. Otherwise, if re-optimization
is necessary (for instance due to a non-tolerable
difference between the energy estimated and pro-
duced), the sensor that detects such imprecision
has to communicate to the sink the amount of
energy that is really produced and the slot where
it was detected, in such a way that the sink can
proceed to recompute the assignment for the next
slots (between v0 and v) of that sensor, as well as
to recompute its own scheduling. This involves
two messages more for each slot: one from the
sensor directed to the sink and the other one from
the sink directed to the sensor. Thus, the num-
ber of messages interchanged in the centralized
approach depends on the number of sensors n−1,
the number of slots v but, more importantly, on
the precision of the energy prediction algorithm,
and it goes to range between n − 1 messages (the
best case, it occurs when no re-optimization must
be done) and 3v(n − 1) (the worst case, it occurs
when re-optimization must be done for all slots in
all sensors).

– The distributed approach. In the distributed
approach, the initial assignment is triggered when
the sink sends to each sensor the order to start
assigning its most efficient scheduling plan to
all slots. In turn, each sensor i responses to the
sink if, after the assignment of the most efficient

scheduling plan to the v slots, it is still feasi-
ble or not, e.g., Feasible(si,k) ∀k ∈ [1, v]
as well as the scheduling plan assigned, since
the sink has to adapt its scheduling plan accord-
ingly. Therefore, in this first step, the number of
messages interchanged between the sink and the
sensors sum up to 2(n − 1) messages. After that,
three cases may happen: (1) upgrade all the sen-
sors; (2) downgrade a subset of the sensors; and
(3) downgrade all the sensors. In the first case, if
the sink finds feasible all the assignments of all
sensors, broadcasts a message ordering upgrade
((n − 1) messages). In the second case, if the sink
finds that some assignment in some sensor (dif-
ferent to the sink) is not feasible, sends a message
towards the subset of sensors whose assignment
is not feasible (a number of messages lower than
(n − 1)). In the third case, the sink broadcasts
a message ordering downgrade to all the sensors
((n − 1) messages). The reception of any of these
messages implies that each sensor starts inde-
pendently to upgrade/downgrade its solution and,
after the replacement of one single scheduling
plan in one single slot, each one must send back
a new message to the sink indicating the possibly
new scheduling plan assigned and if it improved
or reduced the cost of its solution (note that if
the solution was not improved or its cost was not
reduced, the sensor undoes the replacement and
leaves the old scheduling plan). This is neces-
sary because the change of one scheduling plan
in one sensor involves a change in the scheduling
plan in the sink. For each message received, the
sink selects its new scheduling plan accordingly
to the new scheduling plan received from a sen-
sor, and checks again if it is still energy neutral.
At this point, the three cases previously mentioned
could happen again. The process repeats until
there are no more scheduling plans that improve
the solution (or that reduce its cost). Therefore,
the maximum number of messages interchanged
between the sink and the sensors by using a dis-
tributed approach in the initial assignment is 2(n−
1)+2(n−1)((m−1)v) = 2(n−1)(1+v(m−1)).
Thus, in this case, the number of messages inter-
changed between the sensors and the sink depends
on the number of sensors n − 1, the number of
scheduling plans m, and the number of slots v.
Note that the re-optimization does not impact on
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Table 2 Maximum number of messages interchanged between the sensors and the sink for different values of n,m, and with v = 300
for centralized (best and worst case) and distributed communication

n 5 5 6 6 7 7 8 8 9 9

m 4 6 4 6 4 6 4 6 4 6

Central-best 4 4 5 5 6 6 7 7 8 8

Central-worst 3600 3600 4500 4500 5400 5400 6300 6300 7200 7200

Distributed 7208 12,008 9010 15,010 10812 18,012 12,614 21,014 14,416 24,016

the number of messages in the distributed commu-
nication, because the sensors always have to send
any change done in their scheduling to the sink.
For this reason, there is no a best and a worst case
since the distributed scenario is always the same.

In order to compare the centralized approach
against the distributed one, we provide values for n ∈
[5, 9], m = {4, 6}, and v = 300, and we compute the
number of messages in the three cases: distributed and
centralized, best, and worst case. Table 2 shows the
number of resulting messages; in the case of the dis-
tributed approach, the number of messages increases
when n and m grow. In the case of the centralized
approach, the number of messages increases with n

and not with m, but depends on the accuracy of the
prediction algorithm. As observed, the number of mes-
sages interchanged by using the centralized approach
is much lower than in the distributed approach; this is
especially true when re-optimization is not required,
i.e. when the number of slots with a wrong energy
estimation tends to 0.

Evaluation

We have evaluated the algorithms described in
“Energy management optimization” section by simu-
lation. With the purpose of evaluating a large num-
ber of scenarios the simulator first generates a valid
test case and then proceeds to its optimization. This
section presents the description of the simulator and
the results obtained for a subset of selected test cases.
We stress here that the hardware platform shown in
Fig. 1 was used in this evaluation to define the simula-
tion parameters and to configure the energy harvesting
parameters. We use simulation for the evaluation of
our energy efficiency strategy in order to have the flex-
ibility of simulating the algorithm on a system with an
arbitrary number of sensors.

The cases generator considers n − 1 sensors and
m scheduling plans per sensor to produce n − 1 × m

scheduling plans. For each scheduling plan, it ran-
domly generates a set of tasks θ (i.e., the number of
tasks is not fixed), and for each task T ∈ θ gener-
ates its amount of execution time t , its period p (with
p > t), and its cost per unit of time w. Remember
that the special task T0 is executed when there is no
other task to execute. Knowing the description of each
task T = 〈t, p,w〉, the duty cycle of the scheduling
plan as well as its cost can be computed as described
in “System model” section while its quality is ran-
domly generated by taking into account that a larger
duty cycle and a larger cost involves necessarily higher
quality. Conversely, the cases generator must also gen-
erate n − 1 × m scheduling plans for the sink, where
each one corresponds to one and only one scheduling
plan of the sensor. The cost of a scheduling plan in the
sink is generated (quasi-)randomly by considering that
it should not be less than the cost of its corresponding
scheduling plan in the sensor (to model the additional
data processing and aggregation work performed by
the sink). Since the sink has to simultaneously attend
to n − 1 sensors, its duty cycle comes given by the
sum of the duty cycles of the corresponding schedul-
ing plans executed by the sensors in the same instant
of time.

We have considered a time frame of � = 24 h,
composed of 300 slots (v = 300) with a duration of
�×60×60

v
=288 s each one. The energy produced in an

hour E(t) is equally distributed among all the slots of
an hour.

In our simulations, the n sensors (including the
sink) employ the energy harvesting system described
in “Solar cells-based sensors” section. Our simula-
tor estimates the energy production in the city of
Madrid (latitude = 40.24 North) that provides the
solar module KL-SUN3W, according to the model
described in “Solar cells-based sensors” section.
Specifically, for each day of the year, it first computes
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the hourly irradiance D(t) as the product between
D and cos�Z and then it calculates the energy pro-
duction at time t ∈ [0, 23] as E(t) = D(t)×η×S

V mp
. The

values for the average daily irradiance D in Madrid
that we took were the data provided by RETScreen:
2.03,2.96,4.29,5.11,5.95,7.09,7.2,6.34,4.87,3.13,2.13,
1.7 KWh/m2/day, corresponding to the months of
the year from January to December. Note that, at
implementation time, the programmer must provide
as an input the data of irradiance (D) corresponding
to the specific geographical location where the sen-
sors will be located in order to compute the amount
of solar energy that is harvested from the sun at that
location, according to our energy prediction model.
To enable the sink attend simultaneously several
sensors, we increase the energy production in the
sink by assuming that the energy to be produced in
the sink is f times the energy production in the sen-
sors and, for the sake of simplicity, all the sensors
produce the same amount of energy. The maximum
capacity of the battery attached to the sensors is
Bmax

i = 6600 mAh∀i ∈ [1, n) and for the sink is the

double Bmax
n = 13, 200 mAh; Bmin

i = Bmax
i

2 ∀i ∈ [1, n]
and, in slot 1, the battery levels were configured to be
B0

i = Bmax
i − 500∀i ∈ [1, n].

The strength of our simulator is the diversity of sce-
narios that it can reproduce. Our simulator implements
the optimization algorithms proposed with the capa-
bility of emulating different real-world and heteroge-
neous energy-harvesting platforms (i.e., the combina-
tion of a solar cell and a sensor node) that form the
energy harvesting network. Each sensor node could
be connected to a different solar cell, therefore with
different opportunities of scavenging, and each sensor
node executes a different set of potentially unlimited
of scheduling plans with a variable number of appli-
cations and, therefore, with different consumption
curves. The network size, the deployment place, and
the number of slots (and, consequently, its duration) in
the time frame of 24 h can also be configured.

We have generated and evaluated a set of experi-
ments. From them, we have selected the next three,
that correspond to the three cases distinguished by
the Initial Assignment algorithm: (1) case 1: upgrade;
(2) case 2: downgrade sensors that are not energy-
neutral; and 3) case 3: downgrade all. The day used for
estimating the energy production was December 21st,
winter solstice (d = 358) and the starting hour was

0:00 am. For each case, we configure the cases gen-
erator to create a number of instances different, where
each instance corresponds to a simulation of n sen-
sors with m different scheduling plans each one. First,
the next three subsections analyze separately one only
instance of each case and later, in the last subsection
we provide the global results for the complete set of
instances.

Case 1: upgrade

We study the case of upgrading for n = 5 sensors
(including the sink) and m = 6 scheduling plans.
Table 3 shows the details of the scheduling plans of
a specific instance for this case. For each scheduling
plan, the columns from 2 to 6 present the definition of
the tasks 1 to 5, respectively, (a maximum number of 6
tasks was fixed); the column 7 indicates the execution
time for the Idle task; the next three columns indicate
the cost per unit of time of the scheduling plan, its
quality level, and its duty cycle, respectively. The last
column indicates the number of order of the schedul-
ing plan by efficiency (e.g., the lowest order number
corresponds to the largest efficiency).

After assigning the most efficient scheduling plan
to each sensor, the duty cycle is 41.5 % and all the
sensors including the sink are energy-neutral. There
is, therefore, a choice of improving the solution for
which the Algorithm 1 starts upgrading the sensors.
Figure 4a shows the battery level in the sink, and
Fig. 4c, d depicts the duty cycle and the resulting qual-
ity level after upgrading, respectively. As observed,
the sink keeps energy-neutral after the first schedul-
ing plan is assigned (red line) and also after upgrading
(green line). Since the process of upgrading improves
the solution by increasing necessarily its cost, the bat-
tery level at slot v = 300 is slightly lower than the
battery level when the initial scheduling plan, which
is cheaper, is assigned. The effect of upgrading the
solution increases its duty cycle and, in turn, its qual-
ity: the duty cycle grows from 41.5 % up to 77.0 %
(see Fig. 4c) while the overall quality grows from
58.125 % up to 81.25 % (see Fig. 4d). Note that in
these figures, we are overlapping the results of the
assignments in two situations: after initial assignment
(IA) and after upgrading/downgrading. It is impor-
tant to point out that, in these cases, the axis x,
which is showing the slots of time in a day, does
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Table 3 Scheduling plans for case 1

T1 T2 T3 T4 T5 T0 c q dc O

Sensor 1

P1 〈5, 39, 13〉 〈8, 39, 17〉 〈9, 39, 13〉 〈6, 39, 8〉 〈9, 39, 7〉 T 2
0 1.58 51.0 5.5 2

P2 〈3, 20, 20〉 〈5, 20, 16〉 – – – T 12
0 3.0 74 9 3

P3 〈4, 16, 1〉 〈4, 16, 18〉 〈4, 16, 11〉 〈3, 16, 11〉 – T 1
0 2.68 63 7 5

P4 〈4, 17, 4〉 〈1, 17, 3〉 〈1, 17, 7〉 – – T 11
0 2.11 53 6 4

P5 〈4, 24, 4〉 〈6, 24, 3〉 〈3, 24, 8〉 〈3, 24, 5〉 〈6, 24, 6〉 T 2
0 1.25 50 4.5 1

P6 〈2, 11, 11〉 〈2, 11, 5〉 〈2, 11, 1〉 〈1, 11, 19〉 〈2, 11, 10〉 T 2
0 4.54 87 15 6

Sensor 2

P1 〈6, 38, 6〉 〈6, 38, 20〉 〈9, 38, 15〉 〈5, 38, 2〉 – T 12
0 1.76 48.5 6 1

P2 〈3, 21, 13〉 〈1, 21, 12〉 〈3, 21, 6〉 〈5, 21, 16〉 – T 9
0 3.09 77 16 2

P3 〈3, 17, 11〉 〈1, 17, 12〉 – – – T 13
0 2.88 51 11 5

P4 〈2, 26, 6〉 〈2, 26, 15〉 – – – T 22
0 2.5 50 9 4

P5 〈1, 13, 17〉 〈2, 13, 3〉 – – – T 10
0 3.07 52 14 6

P6 〈1, 31, 14〉 – – – – T 30
0 2.38 49.5 7 3

Sensor 3

P1 〈6, 25, 2〉 〈1, 25, 15〉 〈6, 25, 6〉 〈5, 25, 19〉 〈2, 25, 14〉 T 5
0 2.64 83 23 1

P2 〈2, 32, 14〉 〈6, 32, 12〉 – – – T 24
0 2.31 62 9 3

P3 〈5, 23, 7〉 〈5, 23, 14〉 – – – T 13
0 2.04 54 7 5

P4 〈5, 40, 12〉 〈5, 40, 4〉 – – – T 30
0 1.9 51 5.5 4

P5 〈1, 29, 20〉 〈3, 29, 9〉 〈3, 29, 2〉 〈6, 29, 7〉 〈3, 29, 6〉 T 13
0 2.41 75 12 2

P6 〈4, 23, 1〉 〈4, 23, 15〉 – – – T 15
0 2.0 53 6 6

Sensor 4

P1 〈8, 40, 1〉 〈9, 40, 8〉 〈9, 40, 10〉 – – T 14
0 1.17 51 8 1

P2 〈7, 36, 20〉 〈5, 36, 12〉 – – – T 24
0 2.22 54 11 3

P3 〈1, 13, 3〉 – – – – T 12
0 2.07 53 9 2

P4 〈3, 13, 4〉 〈3, 13, 17〉 〈2, 13, 17〉 – – T 5
0 3.69 68 21 5

P5 〈4, 19, 19〉 〈1, 19, 7〉 〈1, 19, 16〉 〈3, 19, 2〉 – T 10
0 3.36 60 19 6

P6 〈1, 13, 16〉 〈1, 13, 5〉 〈1, 13, 10〉 – – T 10
0 3.92 78 23 4

Legend: P plan, O order, q quality, dc duty cycle given in percentage

not represent absolute time, since clearly the upgrad-
ing/downgrading process occurs later, but the relative
time within the time frame in which the schedul-
ing plan that upgrades/downgrades is assigned, and
its consequent profit with regard to the scheduling
plan assigned by the IA algorithm at the same slot.
Figure 4b demonstrates that all sensors remain energy-
neutral after upgrading. As observed, they experience
a reduction of their battery levels during the hours of
low (or null) energy production and an increase coin-
ciding with the hours of solar light (remember that
slot 1 coincides with the instant of time 0:00 am).
The battery levels vary slightly among sensors, since

each sensor executes a different scheduling plan with
a different consumption (note that, for the sake of sim-
plicity, we assume that the energy production is the
same for all sensors). During the upgrading process,
the sensors 1, 2, and 4 were selected for upgrading
according to the Algorithm 2, i.e., first the schedul-
ing plans that are upgradable are selected, and among
them, it is selected the scheduling plan whose replace-
ment provides the smallest increase in the cost of the
solution. Note that the scheduling plans selected for
replacement could not be the most efficient schedul-
ing plans. For this case, we checked that the sensors
1, 2, and 4 transit progressively to each one of the
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(a) (b)

(d)(c)

Fig. 4 Case 1: Battery levels in the sink and in the sensors after upgrading (above); duty cycle and quality (below) after the initial
assigning (IA) of the most efficient scheduling plan and after upgrading

m = 6 possible scheduling plans, until the solution
cannot be improved, which occurs when the quality
level achieves 81.25 % and the duty cycle achieves
77 %.

Case 2: downgrade sensors different to the sink

This case uses n = 8 sensors (including the sink)
and m = 5 scheduling plans (see Table 4 for details).
The assignment of the most efficient scheduling plan
to each sensor may make some sensor (different than
the sink) not energy-neutral; specifically, as shown
in Fig. 5 on the left, these sensors are the sensor
1, 2, 3, and 7. Thus, the Algorithm 1 proceeds to
downgrade all of them until finding a feasible solu-
tion. The Downgrade function (Algorithm 3) pro-
ceeds by selecting for each sensor to downgrade,
a cheaper scheduling plan than the current one but
whose replacement involves the lowest reduction on
the quality of the solution. The transitions required for
sensors 1, 2, 3, and 7 become energy-neutral can be
viewed in Fig. 6, where we have used the red color to
show the initially assigned scheduling plan, the green
color to show the final scheduling plan assigned, and
yellow color to show the intermediate transitions.

Note that downgrading the sensors involves also
downgrading the sink as shown in Fig. 7a, where the
battery level that is obtained after assigning the first
scheduling plan and after the downgrading process is
compared. As observed, the battery level after down-
grading (green line) is slightly larger than the battery
level after assigning the first scheduling plan; the rea-
son for that is that also in the sink a cheaper scheduling
plan has to be selected. The downgrading process
impacts also on the duty cycle and the quality of the
solution such as shown in Fig. 7b and c, respectively:
the lower cost of the scheduling plan, the lower duty
cycle and, in turn, the lower quality. Specifically, the
duty cycle drops from 76 % to 39–52 %, depending
on the set of scheduling plans selected for the sen-
sors in each specific slot. Similarly, the quality drops
from 67.14 % to 50.85–54.5 %, again depending of
the scheduling plans selected for the sensors.

Case 3: downgrade all

The third case uses a number of n = 10 sensors
(including the sink) and m = 5 scheduling plans.
Table 5 shows the details of the scheduling plans
generated.
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Table 4 Scheduling plans for case 2

T1 T2 T3 T4 T5 T0 c q dc O

Sensor 1

P1 〈4, 27, 20〉 – – – – T 23
0 2.44 49.5 7 3

P2 〈7, 34, 12〉 〈8, 34, 18〉 〈4, 34, 14〉 〈5, 34, 5〉 〈7, 34, 3〉 T 3
0 1.70 48.5 6 2

P3 〈1, 13, 11〉 – – – – T 12
0 2.69 51 20 5

P4 〈2, 35, 20〉 〈3, 35, 16〉 〈1, 35, 9〉 〈8, 35, 18〉 〈3, 35, 8〉 T 18
0 3.05 91 24 1

P5 〈1, 24, 11〉 〈1, 24, 5〉 – – – T 22
0 2.5 50 10 4

Sensor 2

P1 〈2, 36, 15〉 〈2, 36, 12〉 〈2, 36, 3〉 – – T 30
0 2.5 60 5.5 1

P2 〈7, 35, 16〉 – – – – T 28
0 2.05 51 3.5 2

P3 〈3, 21, 14〉 〈2, 21, 4〉 〈1, 21, 16〉 〈1, 21, 6〉 – T 14
0 3.23 61 6 4

P4 〈1, 22, 14〉 〈4, 22, 7〉 〈4, 22, 5〉 〈1, 22, 16〉 〈4, 22, 19〉 T 8
0 3.5 64 8 5

P5 〈2, 18, 10〉 〈3, 18, 5〉 – – – T 13
0 2.27 53 4.5 3

Sensor 3

P1 〈3, 28, 18〉 〈7, 28, 19〉 〈6, 28, 15〉 – – T 12
0 2.71 70 17 2

P2 〈3, 33, 12〉 〈1, 33, 7〉 〈7, 33, 12〉 〈6, 33, 17〉 – T 16
0 2.42 69 15 1

P3 〈1, 15, 15〉 〈2, 15, 15〉 〈2, 15, 9〉 〈1, 15, 3〉 〈3, 15, 1〉 T 6
0 3.66 72 23 5

P4 〈6, 28, 9〉 〈5, 28, 14〉 – – – T 17
0 2.03 52 6 4

P5 〈7, 37, 12〉 〈1, 37, 3〉 – – – T 29
0 1.97 51 5.5 3

Sensor 4

P1 〈2, 26, 2〉 – – – – T 24
0 1.92 50 3.5 2

P2 〈5, 27, 15〉 〈1, 27, 19〉 〈5, 27, 19〉 – – T 16
0 3.14 73 6 3

P3 〈1, 20, 3〉 〈5, 20, 13〉 – – – T 14
0 2.2 57 5.5 1

P4 〈4, 16, 17〉 〈4, 16, 20〉 〈1, 16, 5〉 〈3, 16, 15〉 〈3, 16, 6〉 T 1
0 4.06 80 14 5

P5 〈6, 27, 2〉 〈2, 27, 20〉 〈4, 27, 2〉 〈6, 27, 16〉 – T 9
0 2.14 52 4.5 4

Sensor 5

P1 〈1, 17, 6〉 〈1, 17, 13〉 〈2, 17, 16〉 – – T 13
0 3.58 50 9 5

P2 〈6, 31, 4〉 〈6, 31, 4〉 〈5, 31, 2〉 〈2, 31, 16〉 〈4, 31, 2〉 T 8
0 1.41 47.5 4.5 1

P3 〈7, 35, 9〉 〈2, 35, 7〉 〈6, 35, 19〉 – – T 20
0 2.14 49.5 6 3

P4 〈3, 15, 15〉 〈3, 15, 18〉 〈3, 15, 12〉 〈1, 15, 13〉 〈3, 15, 3〉 T 2
0 4.33 79 24 4

P5 〈3, 24, 2〉 – – – – T 21
0 1.83 48.5 5.5 2

Sensor 6

P1 〈3, 12, 1〉 – – – – T 9
0 1.58 48.5 5.5 1

P2 〈6, 37, 20〉 〈3, 37, 8〉 – – – T 28
0 2.27 50 7 3

P3 〈6, 37, 16〉 〈5, 37, 10〉 – – – T 26
0 2.10 49.5 6 2

P4 〈3, 16, 20〉 〈1, 16, 14〉 – – – T 12
0 3.62 71 14 5

P5 〈4, 21, 15〉 〈5, 21, 15〉 – – – T 12
0 2.57 53 13 4

Sensor 7

P1 〈2, 17, 13〉 〈4, 17, 5〉 〈2, 17, 19〉 〈1, 17, 1〉 – T 8
0 3.17 50 9 5

P2 〈2, 25, 17〉 〈3, 25, 19〉 〈5, 25, 10〉 〈4, 25, 18〉 〈3, 25, 18〉 T 8
0 3.92 97 16 1

P3 〈1, 29, 19〉 〈5, 29, 3〉 – – – T 23
0 2.34 49.5 7 4

P4 〈3, 38, 4〉 – – – – T 35
0 1.94 48.5 6 3

P5 〈4, 20, 3〉 – – – – T 16
0 1.75 47.5 5.5 2

Legend: P plan, O order, q quality, dc duty cycle given in percentage.



350 Energy Efficiency (2017) 10:331–357

Fig. 5 Case 2: Battery levels in the sensors after the initial assignment (on the left) and after downgrading the sensors not energy-
neutral (on the right)

The initial assignment of the most efficient
scheduling plan of each sensor to the v slots results in
a non-feasible assignment in which the sink does not
hold the Sumdc(k) condition, ∀k ∈ [1, v]; this leads
to downgrade all the sensors to find a feasible solution
where the sum of the duty cycles be lower or equal
than 100 %. Figure 8 shows the results obtained after
downgrading the sensors. The initial assignment algo-
rithm finds a feasible solution where the duty cycle
is reduced from 119.5 % (which is the sum of the
original duty cycles after assigning the most efficient
scheduling plan) to 97.5 % (the sum of the duty cycles
after downgrading the sensors) as shown in Fig. 8c.
Observe that reducing the duty cycle reduces also the
overall quality achieved (see Fig. 8d), which decreases
from 53.55 to 44.33 %; a larger duty cycle involves a
higher quality level since the sensor consumes more

resources to perform better its tasks. We also observe
in Fig. 8a that the battery level of the sink increases
very slightly with regard to the battery level after
assigning the most efficient scheduling plan; the rea-
son for that is that the scheduling plans selected for the
sensors during the downgrade must necessarily have a
lower cost and, therefore, the corresponding schedul-
ing plan selected in the sink, in turn, have a lower
cost.

Figure 8b demonstrates that all the sensors keep
energy-neutral after downgrading, following the same
trend than in case 1 and 2: the battery level decreases
when the solar production is low (or null) and
increases during the hours of solar light. Note that sen-
sors 6 and 2 present the lowest battery levels. Given
that the assignment of the most efficient scheduling
plan in each sensor (the first scheduling plan that is

Fig. 6 Case 2: Transitions of the sensors 1, 2, 3, and 7 to achieve energy-neutrality
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(a)

(b) (c)

Fig. 7 Case 2: Battery level in the sink (above) and duty cycle and quality (below) after the initial assigning (IA) and after
downgrading

assigned) would make the solution not feasible since
the sum of the duty cycles would be larger than 100 %,
the Algorithm 1 invokes DowngradeAll, which
proceeds selecting first the scheduling plans of all sen-
sors that are downgradable and, among them, selects
the first scheduling plan whose replacement involves
the lowest reduction on the quality. Among all the sen-
sors, the scheduling plans assigned to sensors 2 and
6 were selected several times for downgrading until
the solution became feasible. The transitions among
scheduling plans in sensor 2 and sensor 6 can be
viewed in Fig. 9, where the resulting duty cycle (after
replacing the scheduling plan) is also displayed. As
observed, the first sensor that downgrades is the sensor
2, where the scheduling plan 4 replaces the origi-
nal scheduling plan 3; next, the sensor 6 downgrades
two successive times: in the first one, all the slots are
replaced by scheduling plan 4 and in the second one,
this scheduling plan is replaced by scheduling plan 1;
finally, the sensor 2 is selected again and downgrades
other two times: the first one, in which the scheduling
plan 4 is replaced by the scheduling plan 1; and the
second one, in which the scheduling plan 1 is replaced
by the scheduling plan 2; after these transitions, the
value of duty cycle gets lower than 100 %, which stops
downgrading.

Average optimization for each case

To compute the average optimization provided by our
simulator, we first generate a set of instances for each
specific case of upgrading, downgrading, and down-
grading all, and run the Algorithm 1 for each one.
Each instance of a case keeps the same values n,m,
where m scheduling plans are generated randomly
and have therefore different values. Table 6 shows the
average optimization values obtained for 50 occur-
rences of the three cases, in terms of average battery
level in the n − 1 sensors and in the sink at the last
slot (v = 300), the average init/end duty cycle (%),
and the average init/end quality (%). Remember that
the sensors and the sink start with an initial battery
level of 6100 and 12,700 mAh, respectively. Note that
to compute the values corresponding to duty cycle and
quality, we had into account the average of the values
in the v = 300 slots of each instance, since these val-
ues could differ from one slot to another. We observe
that in the three cases both the sensors and the sink
hold the feasibility condition. In the case of upgrade,
as it is expected, the duty cycle and the quality grow an
average of 42.6 and 14.5 %, respectively. The results
for downgrading show that all sensors get set slightly
above the minimum battery level (6100 mAh) which,
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Table 5 Scheduling plans for case 3

T1 T2 T3 T4 T5 T0 c q dc O

Sensor 1

P1 〈3, 40, 4〉 〈10, 40, 18〉 〈2, 40, 17〉 〈10, 40, 6〉 〈1, 40, 3〉 T 14
0 1.90 19.5 6 1

P2 〈2, 27, 3〉 〈4, 27, 15〉 〈1, 27, 7〉 〈3, 27, 13〉 – T 17
0 2.66 22 10 3

P3 〈7, 39, 18〉 〈3, 39, 13〉 〈9, 39, 6〉 〈6, 39, 20〉 – T 14
0 2.17 20 7 5

P4 〈5, 40, 14〉 〈1, 40, 16〉 〈1, 40, 10〉 – – T 33
0 2.65 21 8 2

P5 〈2, 10, 20〉 〈2, 10, 9〉 – – – T 6
0 4.1 33 12 4

Sensor 2

P1 〈3, 29, 2〉 〈3, 29, 19〉 〈4, 29, 4〉 〈3, 29, 8〉 〈5, 29, 7〉 T 11
0 2.13 38 15 3

P2 〈2, 23, 9〉 〈5, 23, 9〉 〈4, 23, 6〉 – – T 12
0 2.08 30 11 4

P3 〈1, 26, 10〉 – – – – T 25
0 2.30 77 24 1

P4 〈7, 32, 17〉 〈8, 32, 18〉 – – – T 17
0 2.15 56 19 2

P5 〈10, 40, 11〉 〈2, 40, 15〉 〈9, 40, 6〉 – – T 19
0 1.75 21 10 5

Sensor 3

P1 〈8, 35, 6〉 〈3, 35, 2〉 〈3, 35, 17〉 〈5, 35, 9〉 – T 16
0 1.88 20 5.5 2

P2 〈2, 28, 3〉 〈6, 28, 19〉 〈4, 28, 13〉 〈1, 28, 13〉 〈2, 28, 3〉 T 13
0 2.75 50 8 3

P3 〈2, 10, 4〉 〈1, 10, 18〉 〈2, 10, 10〉 〈2, 10, 13〉 〈1, 10, 13〉 T 2
0 5.2 82 11 1

P4 〈1, 20, 12〉 〈4, 20, 8〉 〈2, 20, 3〉 – – T 13
0 2.45 22 6 4

P5 〈2, 29, 18〉 〈2, 29, 9〉 – – – T 25
0 2.65 23 7 5

Sensor 4

P1 〈3, 12, 7〉 〈1, 12, 15〉 〈1, 12, 17〉 〈1, 12, 17〉 〈2, 12, 16〉 T 4
0 6.66 35 12 3

P2 〈6, 31, 17〉 〈4, 31, 20〉 〈3, 31, 8〉 〈2, 31, 14〉 〈3, 31, 2〉 T 13
0 2.80 20 5.5 4

P3 〈4, 34, 8〉 〈1, 34, 10〉 – – – T 29
0 2.23 18.5 3.5 2

P4 〈1, 31, 13〉 〈3, 31, 16〉 – – – T 27
0 2.67 19.5 4.5 5

P5 〈1, 16, 3〉 〈1, 16, 17〉 〈2, 16, 19〉 〈4, 16, 8〉 – T 8
0 3.93 23 6 1

Sensor 5

P1 〈3, 24, 11〉 〈4, 24, 13〉 – – – T 17
0 2.41 22 12 2

P2 〈5, 23, 19〉 〈5, 23, 1〉 〈5, 23, 15〉 – – T 11
0 2.47 57 15 4

P3 〈3, 39, 4〉 〈9, 39, 15〉 〈4, 39, 20〉 〈5, 39, 19〉 – T 18
0 2.41 20 10 1

P4 〈2, 14, 17〉 〈3, 14, 6〉 〈3, 14, 11〉 〈1, 14, 16〉 – T 5
0 4.28 81 19 5

P5 〈4, 19, 10〉 – – – – T 15
0 2.1 19.5 8 3

Sensor 6

P1 〈3, 12, 4〉 〈3, 12, 1〉 〈2, 12, 2〉 〈1, 12, 15〉 – T 2
0 2.75 42 18 3

P2 〈5, 31, 10〉 〈2, 31, 20〉 〈5, 31, 6〉 – – T 19
0 2.38 22 12 1

P3 〈2, 22, 3〉 〈1, 22, 10〉 〈4, 22, 14〉 〈1, 22, 10〉 – T 14
0 2.95 93 24 4

P4 〈6, 30, 17〉 〈4, 30, 7〉 〈3, 30, 20〉 〈1, 30, 19〉 – T 16
0 2.56 39 15 2

P5 〈4, 30, 15〉 – – – – T 26
0 2.23 20 6 5

Sensor 7

P1 〈2, 19, 3〉 〈4, 19, 20〉 〈4, 19, 19〉 〈2, 19, 15〉 〈3, 19, 16〉 T 4
0 4.26 59 18 3

P2 〈4, 31, 12〉 〈1, 31, 4〉 〈7, 31, 10〉 – – T 19
0 2.06 18.5 4.5 1

P3 〈3, 33, 15〉 – – – – T 30
0 2.27 51 9 5

P4 〈8, 32, 10〉 〈8, 32, 20〉 〈2, 32, 8〉 〈2, 32, 8〉 – T 12
0 2.18 20 6 4

P5 〈3, 13, 15〉 〈1, 13, 4〉 – – – T 9
0 2.07 19.5 5.5 2
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Table 5 (continued)

T1 T2 T3 T4 T5 T0 c q dc O

Sensor 8

P1 〈3, 15, 9〉 〈2, 15, 6〉 〈3, 15, 3〉 T 7
0 2.13 19.5 6 4

P2 〈3, 14, 3〉 〈1, 14, 8〉 – – – T 10
0 2.21 20 7 3

P3 〈7, 36, 4〉 〈8, 36, 17〉 〈3, 36, 2〉 – – T 18
0 1.63 18.5 5.5 5

P4 〈3, 12, 3〉 〈2, 12, 8〉 – – – T 7
0 2.91 79 24 1

P5 〈3, 23, 15〉 〈5, 23, 3〉 〈5, 23, 18〉 – – T 10
0 2.43 25 12 2

Sensor 9

P1 〈1, 27, 18〉 〈1, 27, 11〉 – – – T 25
0 2.92 37 6 1

P2 〈3, 39, 14〉 – – – – T 36
0 2.20 22 4.5 5

P3 〈5, 20, 16〉 〈4, 20, 18〉 – – – T 11
0 2.8 26.0 5.5 2

P4 〈1, 16, 18〉 〈2, 16, 19〉 〈1, 16, 11〉 〈2, 16, 14〉 – T 10
0 5.12 39 8 3

P5 〈4, 24, 6〉 – – – – T 20
0 1.91 20 3.5 4

Legend: P plan, O order, q quality, dc duty cycle given in percentage

(a)

(c) (d)

(b)

Fig. 8 Case 3: Battery levels in the sink and in the sensors after downgrading (above); duty cycle and quality (below) after the initial
assigning (IA) of the most efficient scheduling plan and after downgrading

Fig. 9 Case 3: Transitions of the sensors 2 and 6 to achieve a feasible solution
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Table 6 Average optimization for 50 instances of upgrade, downgrade, and downgrade all

Upgrade Downgrade DowngradeAll

(n = 5,m=6) (n = 8,m = 5) (n = 10,m = 5)

Avg. End Sensor Battery (mAh) Sensor 1 6192.9 6100.03 6166.45

Sensor 2 6212.5 6100.04 6161.05

Sensor 3 6201.9 6100.02 6164.37

Sensor 4 6194.3 6100.02 6165.46

Sensor 5 – 6100.03 6167.72

Sensor 6 – 6100.02 6163.07

Sensor 7 – 6100.03 6162.81

Sensor 8 – – 6157.95

Sensor 9 – – 6166.35

Avg. End Sink Battery (mAh) 12,968.6 12,938.4 12,701.17

Avg. Init DC (%) 28.1 54.56 73.24

Avg. End DC (%) 60.7 44.07 55.71

Avg. Init q(%) 60.1 61.61 62.32

Avg. End q (%) 74.6 54.46 53.91

in turn, involves reducing both its duty cycle and its
quality level, an average of 10.5 and 7 %, respec-
tively. Finally, the last column depicts the results for
the case downgrading all sensors, where the algorithm
gets adjusting the average battery level in the sink
slightly above its minimum level, 12,700 mAh. As a
consequence of having a sink not energy-neutral (e.g.,
the sink is not able to attend simultaneously all the
sensors), the algorithm downgrades all the sensors up
to the system becomes feasible, which results in a
reduction of the duty cycle and the subsequent loss of
quality, an average of 18.53 and 8.4 %, respectively.

Discussion and conclusions

Energy harvesting systems have become a very
appealing strategy to prolong the lifetime of sensor
nodes. Generally, the energy sources employed by
these systems are uncontrollable, which makes nec-
essary the use of algorithms aimed at balancing the
amount of energy that is produced and consumed by
the node, in order to find a high overall quality level
while conserving an energy level sufficient to main-
tain the sensors operations. The problem becomes
more complicated in energy harvesting sensor net-

Table 7 Values for the test scenarios (on the left) and the results of the optimal assignments and of our algorithms (on the right)

Scheduling plans

Plan 1 Plan 2 Plan 3 Slots

DC Q C DC Q C DC Q C 1 . . . 10

Test 1 Sensor 1 43 51 1.58 67 74 3.0 59 63 2.7 1

Sensor 2 36 49 1.76 55 77 3.09 49 51 2.9 2

Test 2 Sensor 1 42 50 2.44 37 49 1.7 59 51 2.7 3

Sensor 2 35 60 2.5 25 51 2.05 37 61 3.23 3

Test 3 Sensor 1 42 42 2.75 37 22 2.38 65 93 3 3

Sensor 2 46 59 4.26 25 19 2.06 37 51 2.3 2

Legend: DC: Duty Cycle (%); Q: Quality Level; C: Cost.
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works, where all (or a subset) sensor nodes employ
an energy harvesting system, possibly with different
harvesting properties and different candidate applica-
tions to be elected, because a minimal change in the
scheduling of a node may affect to the rest of the nodes
leading to recompute their scheduling.

In this paper, we consider a scenario composed by n

sensor nodes, one of them acting as the sink, and all of
them equipped with a solar cell-based energy harvest-
ing system. We address an optimization problem that
consists in finding a (sub-)optimal assignment of exe-
cution plans at different instants of time (slots) within
a reference period, both for the nodes and for the sink,
such that it maximizes the overall quality level keep-
ing their scheduling feasible (i.e., energy neutral, min-
imal battery, and sum of duty cycles below 100 %). To
solve this problem, we propose an heuristic that pro-
ceeds assigning initially the most efficient scheduling
plan of each sensor to all their time slots and, from
here, upgrades/downgrades the solution according to
the energy production and the energy consumption of
the candidate scheduling plans, to compute scheduling
that maximize the quality for the n sensors. We have
evaluated our approach by simulation. Our simulator
may generate test cases with different configurations
and properties, and then it applies the algorithms pro-
posed to find the optimal schedulings. Our algorithms
find always a feasible solution even when the space of
searching could be very large; we show how the nodes
adapt dynamically their initial assignments to the
actual solar conditions and improve/reduce the global
quality level while respect the given constraints.

There are still two open issues that we discuss
next: scalability and optimality. For the first issue,
we stress that our model considers a star-connected
WSN, where the sensors communicate wirelessly only
with the sink and vice versa. The star topology is the
typical one used in some scenarios of WSNs, as in
Internet of Things applications and in Wireless Body
Area Networks (WBAN), where the sensors transmit
their data to some controller device through a wire-
less communication protocol, for instance, Bluetooth
or Zigbee. The stronger constraint to scalability in a
star-connected network is due to the technology of the
radio communications that cannot support a scalable
number of devices; for example, bluetooth supports up
to seven slave devices communicating to a master. For
this reason, the scalability issue is relatively marginal
in star connected networks, which is the subject of this

work. As a future work, we plan to address the prob-
lem of multi-hop energy harvesting sensor networks,
connected by using different network topologies as,
for instance, meshes and trees, where the issue of
scalability becomes a primary concern.

The second open issue is the assessment of the
sub-optimality of our approach. We propose low-
complexity algorithms that use an heuristic to greedily
achieve (sub-)optimal assignments for all sensors in
the face of high cost computational algorithms that
clearly cannot be embedded into resources constrained
sensors. We do not guarantee the optimality of the
solutions achieved since ensuring optimality involves
traversing a search space composed by all possible
combinations of assignments to find the optimum.
However, as a first approach to evaluate the distance
of our greedy approach from the optimal solution, we
have implemented an algorithm based on brute force
that computes all the possible assignments, on a small
scale network, and selects the assignment feasible that
maximizes the overall quality. For each sensor, the
size of its search space are variations with repetition
of a elements (scheduling plans) chosen of b different
ways (slots), i.e., V Ra,b = ab. Specifically, we con-
sider 2 sensors, a = 3 scheduling plans, b = 10 slots
with equal constant production for both sensors.

Table 7 shows the parameters used in the evaluation
(on the left) and the optimal solutions provided by the
brute force algorithm for each case (on the right), and
that coincide with the solutions achieved by our algo-
rithms, in the three cases. However, although these
results are encouraging, we are far from ensuring sub-
optimality since we are using a very small scale and
a very limited set of cases. Clearly, it is not possible
with exhaustive search to enlarge much the scale or to
consider a significant number of cases, hence, we can
present it just as a first step towards the future work,
which is to assess analytically the sub-optimality of
our approach.

Another future work is the implementation of our
heuristic directly on the platform Waspmote con-
nected to the solar module KL-SUN3W. This enables
us to evaluate our heuristic on a real sensor in terms of
feasibility and performance.

Acknowledgment This work has been funded by the Pro-
gramme for Research and Innovation of University of Castilla-
La Mancha, co-financed by the European Social Fund (Resolu-
tion of 25 August 2014).



356 Energy Efficiency (2017) 10:331–357

References

Akkaya, K., & Younis, M. (2005). Energy and qos aware routing
in wireless sensor networks. Cluster Computing, 8(2–3),
179–188.

Alippi, C., Anastasi, G., Francesco, M.D., & Roveri, M.
(2010). An adaptive sampling algorithm for effec-
tive energy management in wireless sensor networks
with energy-hungry sensors. IEEE Transactions on
Instrumentation and Measurement, 59(2), 335–344.
doi:10.1109/TIM.2009.2023818.

Baronti, P., Pillai, P., Chook, V.W., Chessa, S., Gotta, A., &
Hu, Y.F. (2007). Wireless sensor networks: a survey on the
state of the art and the 802.15.4 and zigbee standards. Com-
puter Communications, 30(7), 1655–1695. Wired/Wireless
Internet Communications.

Barsocchi, P., Chessa, S., Furfari, F., & Potorti, F. (2013).
Evaluating ambient assisted living solutions: the localiza-
tion competition. IEEE Pervasive Computing, 12(4), 72–79.
doi:10.1109/MPRV.2013.23.

Benini, L., Bogliolo, A., & De Micheli, G. (2000). A survey of
design techniques for system-level dynamic power manage-
ment. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 8(3), 299–316. doi:10.1109/92.845896.

Bergonzini, C., Brunelli, D., & Benini, L. (2009). Algo-
rithms for harvested energy prediction in batteryless wire-
less sensor networks. In 3rd international workshop on
advances in sensors and interfaces, 2009. IWASI 2009.
doi:10.1109/IWASI.2009.5184785 (pp. 144–149).

Bogliolo, A., Delpriori, S., Lattanzi, E., & Seraghiti, A. (2011).
Self-adapting maximum flow routing for autonomous wire-
less sensor networks. Cluster Computing, 14(1), 1–14.
doi:10.1007/s10586-009-0115-x.

Chen, J., Dı́az, M., Llopis, L., Rubio, B., & Troya, J.M. (2011).
A survey on quality of service support in wireless sensor
and actor networks: requirements and challenges in the con-
text of critical infrastructure protection. Journal of Network
and Computer Applications, 34(4), 1225–1239. Advanced
Topics in Cloud Computing.

Cooper, P. (1969). The absorption of solar radiation in solar
stills. Solar Energy, 12.

Escolar, S., Carretero, J., Marinescu, M.C., & Chessa, S. (2014).
Estimating energy savings in smart street lighting by using
an adaptive control system. International Journal of Dis-
tributed Sensor Networks, 2014, 17.

Escolar, S., Chessa, S., & Carretero, J. (2012). Optimization
of quality of service in wireless sensor networks pow-
ered by solar cells. In 10th ieee international symposium
on parallel and distributed processing with applications
(p. 8). Madrid.

Escolar, S., Chessa, S., & Carretero, J. (2013). Energy manage-
ment of networked, solar cells powered, wireless sensors.
In Proceedings of the 16th ACM international conference
on modeling, analysis & simulation of wireless and mobile
systems, MSWiM ’13 (pp. 263–266). New York: ACM.

Escolar, S., Chessa, S., & Carretero, J. (2014). Energy
management in solar cells powered wireless sensor
networks for quality of service optimization. Per-
sonal and Ubiquitous Computing, 18(2), 449–464.
doi:10.1007/s00779-013-0663-1.

Escolar, S., Chessa, S., & Carretero, J. (2014). Energy-neutral
networked wireless sensors. Simulation Modelling Practice
and Theory, 43, 1–15. doi:10.1016/j.simpat.2014.01.002.
http://www.sciencedirect.com/science/article/pii/
S1569190X14000033.

Fafoutis, X., & Dragoni, N. (2011). Odmac: an on-demand mac
protocol for energy harvesting - wireless sensor networks.
In Proceedings of the 8th ACM symposium on perfor-
mance evaluation of wireless ad hoc, sensor, and ubiquitous
networks, PE-WASUN ’11. doi:10.1145/2069063.2069072
(pp. 49–56). New York: ACM.

Felemban, E., Lee, C.G., & Ekici, E. (2006). Mmspeed:
multipath multi-speed protocol for qos guarantee of
reliability and. timeliness in wireless sensor networks.
IEEE Transactions on Mobile Computing, 5(6), 738–754.
doi:10.1109/TMC.2006.79.

Hartmann, D.L. (1994). Global physical climatology, inter-
national geophysics, 1st edn. Vol. 56. Boston: Academic
Press.

Inman, R.H., Pedro, H.T., & Coimbra, C.F. (2013). Solar fore-
casting methods for renewable energy integration. Progress
in Energy and Combustion Science, 39(6), 535–576.
doi:10.1016/j.pecs.2013.06.002. http://www.sciencedirect.
com/science/article/pii/S0360128513000294.

Iyer, R., & Kleinrock, L. (2003). Qos control for sensor
networks. In IEEE international conference on commu-
nications, 2003. ICC ’03. doi:10.1109/ICC.2003.1204230,
(Vol. 1 pp. 517–521).

Jacobson, M.Z. (2005). Fundamentals of atmospheric model-
ing, 2nd edn. Cambridge University Press.

Jiang, X., Polastre, J., & Culler, D. (2005). Perpetual environ-
mentally powered sensor networks. In Proceedings of the
4th international symposium on information processing in
sensor networks, IPSN ’05. Piscataway: IEEE Press.

Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M.B. (2007).
Power management in energy harvesting sensor networks.
ACM Transactions on Embedded Computing Systems, 6(4).

Kansal, A., Potter, D., & Srivastava, M.B. (2004). Performance
aware tasking for environmentally powered sensor net-
works. SIGMETRICS Perform Evaluation Review, 32(1),
223–234.

KL (2014). KL Solar company pvt ltd., http://www.klsolar.
com/. India.

Lattanzi, E., & Bogliolo, A. (2011). WSN design for unlimited
lifetime, chap. Sustainable energy harvesting technologies -
past, present and future. 978-953-307-438-2. InTech.

Lattanzi, E., Regini, E., Acquaviva, A., & Bogliolo,
A. (2007). Energetic sustainability of routing algo-
rithms for energy-harvesting wireless sensor networks.
Computer Communications, 30(14–15), 2976–2986.
doi:10.1016/j.comcom.2007.05.035. http://www.
sciencedirect.com/science/article/pii/S0140366407002228.
Network Coverage and Routing Schemes for Wireless
Sensor Networks.

Libelium (2014). Waspmote. http://www.libelium.com/
downloads/documentation/waspmote datasheet.pdf
(Document version: v4.7).

Lin, K., Yu, J., Hsu, J., Zahedi, S., Lee, D., Friedman, J., Kansal,
A., Raghunathan, V., & Srivastava, M. (2005). Heliomote:
enabling long-lived sensor networks through solar energy
harvesting, (pp. 309–309). New York: ACM.

http://dx.doi.org/10.1109/TIM.2009.2023818
http://dx.doi.org/10.1109/MPRV.2013.23
http://dx.doi.org/10.1109/92.845896
http://dx.doi.org/10.1109/IWASI.2009.5184785
http://dx.doi.org/10.1007/s10586-009-0115-x
http://dx.doi.org/10.1007/s00779-013-0663-1
http://dx.doi.org/10.1016/j.simpat.2014.01.002
http://www.sciencedirect.com/science/article/pii/S1569190X14000033
http://www.sciencedirect.com/science/article/pii/S1569190X14000033
http://doi.acm.org/10.1145/2069063.2069072
http://dx.doi.org/10.1109/TMC.2006.79
http://dx.doi.org/10.1016/j.pecs.2013.06.002
http://www.sciencedirect.com/science/article/pii/S0360128513000294
http://www.sciencedirect.com/science/article/pii/S0360128513000294
http://dx.doi.org/10.1109/ICC.2003.1204230
http://www.klsolar.com/
http://www.klsolar.com/
http://dx.doi.org/10.1016/j.comcom.2007.05.035
http://www.sciencedirect.com/science/article/pii/S01403664070 02228
http://www.sciencedirect.com/science/article/pii/S01403664070 02228
http://www.libelium.com/downloads/documentation/waspmote_datasheet.pdf
http://www.libelium.com/downloads/documentation/waspmote_datasheet.pdf


Energy Efficiency (2017) 10:331–357 357

Moser, C., Chen, J.J., & Thiele, L. (2008). An energy manage-
ment framework for energy harvesting embedded systems.
Journal on Emerging Technologies in Computing Systems,
6(2), 7:1–7:21.

Moser, C., Chen, J.J., & Thiele, L. (2009). Power man-
agement in energy harvesting embedded systems
with discrete service levels. International Symposium
on Low Power Electronics and Design, 0, 413–418.
doi:10.1145/1594233.1594338.

NASA (2013). Surface meteorology and solar energy
(retscreen). https://eosweb.larc.nasa.gov/sse/RETScreen/.

Piorno, J., Bergonzini, C., Atienza, D., & Rosing, T. (2009).
Prediction and management in energy harvested wireless
sensor nodes. In 1st international conference on wireless
communication, vehicular technology, information theory
and aerospace electronic systems technology, 2009. Wire-
less VITAE 2009. doi:10.1109/WIRELESSVITAE.2009.
5172412 (pp. 6–10).

Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power
media access for wireless sensor networks. In Proceedings
of the 2nd international conference on embedded networked
sensor systems, SenSys ’04 (pp. 95–107). New York: ACM.

Sohrabi, K., Gao, J., Ailawadhi, V., & Pottie, G. (2000).
Protocols for self-organization of a wireless sensor net-
work. IEEE Personal Communications, 7(5), 16–27.
doi:10.1109/98.878532.

Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sen-
sor nodes: survey and implications. IEEE Communications
Surveys and Tutorials, 13(3), 443–461.

Vithanage, M., Fafoutis, X., Andersen, C., & Dragoni, N.
(2013). Medium access control for thermal energy harvest-
ing in advanced metering infrastructures. In EUROCON,
2013. doi:10.1109/EUROCON.2013.6624999 (pp. 291–
299): IEEE.

Vullers, R., Schaijk, R., Visser, H., Penders, J., & Hoof, C.
(2010). Energy harvesting for autonomous wireless sensor
networks. IEEE Solid-State Circuits Magazine, 2(2), 29–38.
doi:10.1109/MSSC.2010.936667.

Xia, F. (2008). Qos challenges and opportunities in wire-
less sensor/actuator networks. Sensors, 8(2), 1099–1110.
doi:10.3390/s8021099.

Yigitel, M.A., Incel, O.D., & Ersoy, C. (2011). Qos-aware MAC
protocols for wireless sensor networks: a survey. Computer
Networks, 55(8), 1982–2004.

http://doi.ieeecomputersociety.org/10.1145/1594233.1594338
https://eosweb.larc.nasa.gov/sse/RETScreen/
http://doi.dx.org/10.1109/WIRELESSVITAE.2009.5172412
http://doi.dx.org/10.1109/WIRELESSVITAE.2009.5172412
http://dx.doi.org/10.1109/98.878532
http://dx.doi.org/10.1109/EUROCON.2013.6624999
http://dx.doi.org/10.1109/MSSC.2010.936667
http://dx.doi.org/10.3390/s8021099

	Quality of service optimization in solar cells-based energy harvesting wireless sensor networks
	Abstract
	Introduction
	Related work
	Solar cells-based sensors
	Energy production model
	Energy consumption model

	System model
	Energy management optimization
	Initial assignment
	Re-optimization
	Centralized vs. distributed communication

	Evaluation
	Case 1: upgrade
	Case 2: downgrade sensors different to the sink
	Case 3: downgrade all
	Average optimization for each case

	Discussion and conclusions
	Acknowledgment
	References


