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Abstract There is growing interest among policy
makers and others regarding the role that industrial
energy efficiency can play in mitigation of climate
change. For over 10 years, the US Environmental Pro-
tection Agency (EPA) has supported the development of
sector-specific industrial energy efficiency case studies
using statistical analysis of plant level on energy use,
controlling for a variety of plant production activities
and characteristics. These case studies are the basis for
the ENERGY STAR® Energy Performance Indicators
(EPIs). These case studies fill an important gap by
estimating the distribution of efficiency using detailed,
sector-specific, plant-level data. These estimated distri-
butions allow Energy Star to create “energy-efficient
plant benchmarks™ in a variety of industries using the
upper quartile of the estimated efficiency distribution.
Case studies have been conducted for 14 broad indus-
tries, 2 dozen sectors, and many more detailed product
types. This paper is a meta-analysis of the approach that
has been used in this research and the general findings
regarding the estimated distribution of performance
within and across industries. We find that there are few
sectors that are well represented by a simple “energy per
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widget” benchmark that less energy-intensive sectors
tend to exhibit a wider range of within-industry efficien-
cy than energy-intensive sectors, but changes over time
in the level and range of energy efficiency do not reveal
any single pattern.
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Introduction

ENERGY STAR is a voluntary program launched by
the Environmental Protection Agency (EPA) in 1992 to
identify and promote energy-efficient products, build-
ings, homes, and manufacturing facilities. The program
was established to find cost-effective ways to reduce
greenhouse gas emissions associated with energy use.
Initially focused on consumer products, the program
expanded into the commercial building market in 1995
and released its first energy-efficiency benchmark for
office buildings in 1998. In 2000, the EPA expanded the
program to include manufacturing plants (US
Environmental Protection Agency 2015). ENERGY
STAR focuses on filling critical knowledge gaps regard-
ing industrial energy efficiency by providing tools, in
the form of the 24 industry-specific case studies that are
described in this paper, which encourage better corpo-
rate energy management through the development of
sector-specific energy performance benchmarks. These
24 case studies, which ENERGY STAR calls energy
performance indicator (EPI), are a statistical analysis of
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energy plant level energy use, conducted with input
from energy managers in the respective industries se-
lected by EPA, which result in a tool that energy man-
agers can use to assess energy performance.

One knowledge gap that these case studies fill is to
provide companies within a manufacturing sector an
objective measure of how a plant compares to the rest
of the industry. Most companies lack sufficient informa-
tion on the relative efficiency of their plants within the
broader industry because that information is confiden-
tial. Consequently, many companies did not know if
their plants are operating efficiently or how much they
might be able to improve relative to existing best prac-
tices. These case studies address this by conducting
statistical analysis of confidential data from a variety
of sources and then making it available in an accessible
manner that answers these questions but does not reveal
the underlying confidential information. The second
knowledge gap that these case studies fill of these stud-
ies is to establish criteria for determining which plants
would be considered “efficient” and qualify for recog-
nition by the Energy Star program. In order to provide
recognition for energy-efficient manufacturing plants,
EPA needed an objective and transparent means to
determine which plants are “efficient,” which is defined
by ENERGY STAR as “the upper quartile of perfor-
mance for similar production facilities.” The use of
“upper quartile” as the definition of efficient means that
a distribution of energy performance is required. The
qualifier “similar production facilities” also requires
some way of identifying and controlling for differences
in plant characteristics so that the resulting estimate of
the distribution of efficiency, used to measure the quar-
tiles, is an apples-to-apples comparison.

The statistical approach used in the case studies meet
these requirements by providing (1) industry access to
estimates of efficiency with (2) a high level of confiden-
tiality protection where no individual plant (company)
performance is revealed or can be reidentified while (3)
estimating the quartiles of the distribution of perfor-
mance and (4) controlling for statistically testable, ob-
servable differences between plants’ energy use in the
available data. There are many sources of estimates of
the—average or best practice—energy for a manufactur-
ing plant, a specific process, or an industry. However, it
is not enough to estimate that a plant is, for example,
2 % better than average, since that statistic does not
reveal how many plants in the industry satisfies that
criteria; that level of performance may place the plant
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in the top decile or only slightly more than the 50th
percentile. Similarly, an engineering estimate of best
practice may reveal what represented the 99th percentile
of performance, but not the extent to which those tech-
nologies have been adopted.

To fill these knowledge gaps, these cast studies ad-
dress a variety of issues:

* How to define energy efficiency?

*  How to control for differences between plants and
which ones?

*  What data are available?

*  What statistical approaches can be used to measure
the quartiles?

This paper is a meta-analysis, or overview, of how
these case studies of efficiency in a range of industries
have addressed these questions and knowledge gaps.
This meta-analysis should not be confused with studies
that employ meta-frontier approaches (e.g. Battese and
Rao 2002). The paper first defines the notion of effi-
ciency used in the case studies, followed by a discussion
of what differences should be (ideally) controlled for in
the analysis and how this relates to other energy
benchmarking approaches in the literature. The next
section lays out the basic statistical methodology and
its advantages and disadvantages. Then, data and the
associated confidentiality issues are presented. The last
two sections are an overview of the results from these
case studies.

Defining Energy Efficiency’

Efficiency is a measure of relative performance, but
relative to what? Defining energy efficiency requires a
choice of a reference point against which to compare
energy use. Energy efficiency measures can be devel-
oped through a variety of means, such as engineering
and theoretical estimates of performance or through
observing the range of actual levels of performance.
The choice of method used to define efficiency depends
on the need to define a reference point for energy
efficiency. One of the challenges with using energy
efficiency measures based on engineering or theoretical
estimates is that they may be dismissed by the industry
as being economically infeasible. Consequently, these

! This section draws from Boyd (2012)
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case studies have focused on developing energy effi-
ciency measures based on actual or observed operational
performance rather than theoretical estimates of poten-
tial efficiency levels. Additionally, the EPA needed to
identify a method that would be perceived by users as
providing economically feasible performance targets.

The reference point for economic potential (observed
practice) depends, in part, on the reason for measuring
efficiency as well as the available information to create a
reference. Generally, the ceteris paribus principle (“all
other things being equal or held constant™) is usually
desired in creating the reference point. From a practical
perspective, there is a hierarchy of measures and
methods by which one can “hold constant” things that
influence energy use that are not part of energy efficien-
cy. The first is some measure of production activity,
either production of the final product or, alternatively,
a ubiquitous input into the production process. This is
most commonly done by computing the ratio of energy
use to activity, a measure of energy intensity. Energy
intensity is a common metric that controls for changes in
production and is commonly confused with energy ef-
ficiency, as in the statement “the industry or plant’s
energy efficiency has improved based on the fact that
the corresponding energy intensity has declined over
time.” This type of statement brings us to the second
way that one may approach the ceteris paribus principle
for measuring efficiency, comparing energy intensity of
a particular plant, firm, or industry to itself over time.
This approach is a plant>-specific baseline comparison
or intraplant efficiency measure. The baseline approach
has the advantage of controlling for some plant-specific
conditions that do not change during the comparison
period.

The next level of this ceteris paribus principle is an
interplant comparison that may include a variety of
factors that influence energy use, but may not be viewed
as efficiency. Factors may include difference in the types
of product and materials used, as well as location-
specific conditions. Intraplant comparisons within an
industry also get us closer to the notion of an observed
best-practice measure of economic energy efficiency,
since by definition, there is some group of plants that
are the best performers. This was the notion introduced

2 Throughout the paper, we will refer to the plant level as the unit
of observation, but the concept may also apply to more aggregate
levels such as firms and industries, and sometimes, to less aggre-
gate levels such as process units.

by Farrell (1957) and has been the basis for measuring
production efficiency in economics (Huntington 1995).
A modified approach has been adopted (Boyd 2005a, b)
and its evolution is discussed by Boyd et al. (2008).

Intensity metric selection

Murray (1996) discusses a variety of intensity metrics
for efficiency measurement, including thermodynamic
approaches. Intensity ratios provide a basic metric for
measuring energy efficiency and performance compared
to a baseline. To measure intensity, you need a measure
of energy and something for the denominator. For the
numerator, these case studies use total source energy,
defined as the net Btu total of the fuels (Btu) and
electricity (Kwh) with electricity converted to Btu based
on the level of efficiency of the US grid for delivered
energy, i.e., including generation and transmission
losses. A net measure is needed for when energy is
transferred offsite, most commonly in the form of steam
or electricity.

The choice of the denominator is a major issue for
measuring intensity. Ideally, the denominator should
capture some measure of production. Freeman et al.
(1997) show that industry level trends in energy inten-
sity based on value, both total and value added, can
differ dramatically from those based on physical quan-
tities. As Freeman et al. have observed, there are many
challenges with creating efficiency measures based on
price indexes, cost, and other value measurements.’

Given issues with linking energy use with price in-
dexes, these studies have focused on using metrics
based on physical quantities. For physical production
to be meaningful, it needs to be at a high level of
industry specificity. For example, the “Dairy” industry
produces many products that cannot be aggregated, but
“Fluid Milk” can. Therefore, within industries, it is
necessary to differentiate between specific types for
plants and manufacturing operations.

* As Freeman et al. (1997) note, “For an industry producing a
single, well-defined, homogeneous good, it is relatively easy to
construct an accurate price index. Most industries, however, pro-
duce many poorly defined, heterogeneous goods. For a variety of
reasons, the more diverse the slate of products produced by an
industry, the more difficult it becomes to construct an accurate
price index. ...the accuracy of industrial price indexes is of ex-
treme importance to industrial energy analysts and policy makers
who use value-based indicators of energy intensity.”
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Similarly, measures of building energy use common-
ly use physical size (ft*) as the main denominator for
energy intensity, but for most industrial facilities, this is
not appropriate.* While commonly used for commercial
buildings where energy use is primarily tied to plug
loads, lighting and heating, ventilation and air-
conditioning (HVAC) systems, energy intensity based
on size (sq. ft) does not correspond well with
manufacturing process energy uses.

Multifactor efficiency measures

While energy intensity ratios are commonly used for
intraplant level baseline comparisons in an industrial
energy management setting, their value for developing
interplant comparisons may be limited. For interplant
comparison, there are multiple factors that must be
considered. To make an interplant comparison for ener-
gy management, one wants to know which plant is
performing better, so the company can learn from the
top performers and focus efforts on the bottom per-
formers. The comparison needs to be “fair”; i.e., an
“apples-to-apples” comparison. To do so, we must
“normalize” or “remove” the differences between the
plants that influence energy use, but we do not consider
being part of the “energy efficiency” of the plant. This
raises the question of what should be included, or
“normalized for,” in the efficiency measure and what
should not. Other research has tried to address this
question. May et al. (2015) lays out a proposal to devel-
op multiple energy key performance indicators. Tanaka
(2008) develops a framework to address measures of
energy efficiency performance, ranging from simple
intensity to more inclusive approaches as are proposed
here.

The first basic principle proposed is to normalize for
things “beyond the control of the energy manager.”
There are obvious things, like weather, that meet this
criterion. However, should one also consider long-lived
capital investment in a particular energy using process?
A business is unlikely to relocate to a favorable climate
for energy reasons, but they may also be unlikely to
replace a large piece of capital solely for reasons of
energy efficiency. This first principle is viewed as

4 The one exception is pharmaceutical manufacturing where ener-
gy intensity is expressed as MMBTU/SQ FT. This metric was
chosen largely because of the huge impact of HVAC systems in
pharmaceutical manufacturing.
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necessary, but not sufficient condition to be part of the
normalization.

Consider the example of location and the influence of
weather (climate) on energy. The location of the plant is
an example of the second principle, a “market-driven
business decision.” The location decision may be to best
serve a local market, have access to raw materials at
reasonable prices, etc. It is unlikely to consider the
energy use related to the climate location, unless those
cost are very large. Like the location of the plant, there
are other basic categories of market-driven business
decision that should be included in the normalization if
they have significant impact on energy use. These
should include’the following:

* Materials selection
* Plant capacity and utilization
*  Product mix

Materials selection can influence energy use most
commonly in the “make vs buy decision.” If a plant
manufactures an intermediate input then it is using en-
ergy that would have been used elsewhere. To compare
two plants that make juice, one from concentrate and
one directly from fruit, it is necessary to account for the
material choice. The final product may be virtually
indistinguishable, but the plant-level energy use will
differ. This “make or buy” business decision to be
vertically integrated up the supply chain is market driv-
en, has impacts on energy, and should be in the normal-
ization. This issue is a common problem of defining the
“boundary” for a benchmark, i.e., what plants to include
only fully integrated plants or only one with identical
inputs. The approach in these case studies is to include
input choice in the analysis and allow the statistical
models to normalize for those decisions. There are also
issues of material quality that may imply more or less
energy. Some materials have lower energy intensity but
may impact product quality or be in short supply. In this
case, the normalization should be to the average industry
practices regarding input quality. Sand or cullet in glass
making is an example. In this case, the appropriate
comparison for normalization is to what the industry
average rate of cullet use is.

> All considerations regarding normalization variables require ad-
equate available data, since we are considering an empirical
application.
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Plant size and utilization rates can have impacts on
energy use. Large plants may have advantages in terms
of energy use due to economies of scale. The size of the
plant will also be a market-driven decision regarding
investment, market size/share, etc. A “small” plant can-
not become “big” to reap the energy advantage if the
company does not have the market share to sell higher
product volumes. It is important to conduct the energy
benchmark based on size, to the extent that size is a large
impact on energy use, and there are different-sized
plants in the industry that reflect differing market con-
ditions. During economic downturn, energy intensity
may rise for many reasons, one of which is the inherent
levels of “fixed” vs “variable” energy use. While it is
important for energy management to minimize “fixed”
energy, the efficiency measure needs to account for this.
Not all plants will experience the same market condi-
tions at the same time and the normalization of utiliza-
tion on energy due to fixed energy use should depend on
industry practice. If industry practice on fixed energy
management improves over time, then the efficiency
measure should reflect this and normalize “less” for
utilization.

The most ubiquitous component of normalization is
product mix. Even within an industry like cement, the
product is not entirely homogeneous. Some products
that are in demand in the market may be more energy
intensive. Masonry cement is more energy intensive
than ASTM 1; milk in small cardboard cartons are more
intensive (per gallon) than milk in gallon plastic jugs;
orange juice is more intensive than apple juice; complex
cast steel components are more intensive than simple
cast steel item. In some cases, there is no way to substi-
tute one energy-intensive product for another less-
intensive product. In other cases, market preferences
may change toward “green” or “low carbon” products
over time, but companies have limited influence over
these consumer preferences but react to those market
demands. Milk in smaller containers (typically card-
board) is a different product than milk in gallon jugs
from a consumers’ perspective. A company will not try
to convince the consumer to drink the less energy-
intensive apple juice instead of orange juice, but the
efficiency measure for juice manufacturing can allow
an “apples-to-apples” comparison for juice plants. The
efficiency measure can then be used to inform the ener-
gy efficiency of the product that consumers demand.

Some aspects of manufacturing may appear to satisfy
the two principles above, particularly when one

considers differences in underlying processes. For ex-
ample, a small-scale, wet-process (energy intensive)
cement kiln installed 30 years ago may be (1) “beyond
the control of the energy manager” now and (2) “market
driven,” at least at the time the decision was made.
Similar examples exist for the choice automotive paint-
ing processes and paint booth design. In these cases of
process choice, the 3rd, “same product,” principle needs
to be applied.

Making products to serve the market is the raison de
entre for manufacturing companies. If the product is, for
all practical purposes, identical to another, then the plant
using the more efficient process should be the reference
point. Some examples may appear on the surface to
satisfy this principle. Steel “mini-mill” plants are touted
as being more energy efficient, using scrap and electric-
ity to make steel. The products they produce, re-bar, etc.
are not the same as sheet steel from more energy-inten-
sive, integrated steel mills. In fact, the emergence of the
mini-mill drove traditional steel out of those product
lines to specialize in higher quality steel products
(Boyd and Karlson 1993). The product demanded in
the market and the process to make it became linked in
the competitive markets; the efficiency measure should
treat these two types of mills separately, not because of
process, but product.

When making intraplant comparisons, it necessary to
consider a variety of factors that do not neatly fit under
the denominator of an energy intensity ratio. All plants
may make a common product and other differences can
significantly affect energy intensity. The difficulty with
estimating an industry-level interplant efficiency mea-
sure is controlling for interplant difference other than
production volume. While the things that differ between
plants are numerous, there is a common thread across
the case studies that the primary difference that have the
most impact on energy fall into the following categories.

*  Product mix

*  Process input choices (i.c., “make or buy” upstream
integration)

» Size—physical or productive capacity and utiliza-
tion rates

* Climate (and other location-specific factors)

The choice of factors to include in the analysis de-
pends upon the nature of the production process, the
configuration of the industry (e.g., is upstream integra-
tion common or rare?), the availability of data to

@ Springer
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represent these factors, and the outcome of the statistical
testing. In order to address these types of factors, these
studies use a multivariate approach to normalization
where multiple effects are simultaneously considered
(Boyd and Tunnessen 2007). The next sections
discussed the four basic categories of effects that are
commonly considered. There is further elaboration on
the way this is implemented in the section on the spe-
cific case studies.

Product mix

Not all plants produce exactly the same product. In fact,
many plants produce multiple products. The diversity
between plants gives rise to a mix of derived demands
for specific processes and energy services. To the extent
that the final product is the result of a series of energy
using steps, the energy use of the plant will depend on
the level and mix of products produced. Rather than
specifying each process step individually, the approach
used here is to identify those products that use signifi-
cantly more (or less) energy and then use statistical
analysis to estimate the different energy requirements
of these products.

One approach to controlling for product mix is to
segment the industry into cohorts based on product
categories. This works best when there is no overlap
between plants that produce the various basic products
and there are sufficient numbers of plants to conduct the
statistical comparison between those resulting groups.
This means each subgroup is effectively treated as a
separate industry for evaluation purposes. A good ex-
ample is the glass industry where containers and flat
glass are distinct industry segments.

When such natural subsectors do not exist and mul-
tiple products are produced within a plant, additional
approaches are needed. The statistical approach is well
suited to testing if a particular grouping of products is
appropriate for benchmarking differences in energy.
When industries produce a mix of products that differs
across plants, then the product mix (share of activity) of
distinct products is needed. This approach was first used
in wet corn mills (Boyd 2008) and was later applied to
other sectors.

In the absence of meaningful data on discrete product
classes, an alternative is a continuous measure of prod-
uct differentiation. Price is often taken as a measure of
quality difference. To the extent that such quality differ-
ences arise for additional energy using processes, then
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value of shipments may be an appropriate proxy for
product mix. Differences in value may not involve
higher energy use, as in luxury cars or specialty beers,
but may be the case in creating different types of glass
bottles or more complex cast metal products. Given
available data, the link between energy and value
(price) can be treated as largely an empirical issue, but
preferably with some underlying hypothesis about the
industry in the case study. Value of shipments might be
used instead of a physical production variable or in
conjunction with physical outputs. In the latter case,
the ratio of value to physical product is price and be-
comes an implicit variable in the analysis. Other mea-
sures of energy-related product differences are industry
specific; as in the case of vehicle size in automobile
assembly.

Size

Size and associated capacity utilization rates may direct-
ly impact energy use. Size may impact specific engi-
neering and managerial advantages to energy use. If
there is a substantial “fixed” level of energy use in the
short run, the utilization rates may have a non-linear
impact on energy intensity. In order to include size (and
utilization) as a normalizing factor a meaningful mea-
sure of size or capacity is needed. It may be measured on
an input basis, output basis, or physical size. In some
cases, there may be advantages to larger scale of pro-
duction, i.e., economies of scale. If it is the case that a
larger production capacity or larger physical plant size
has less than proportionate requirements for energy
consumption, then there are economies of scale with
respect to energy use. For example, in the cement in-
dustry, the scale is quite important. The larger size of the
kiln (rather than several smaller kilns) has advantages in
terms of energy use.

Process inputs

There are three ways that process inputs are important
for benchmarking. The first is that inputs such as mate-
rials, labor, or production hours may be good proxy
measures of overall production activity when measures
of production output are not available or have specific
shortcomings.® The second is in the identification for
upstream (vertical) integration, i.e., whether a plant

% As discussed in Freeman et al. (1997)
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makes an intermediate product or purchases some
preprocessed input. This is an important “boundary”
issue for the energy footprint of a plant, even when
two plants produce identical outputs. The third way is
a variation of the second, relating to material “quality.”
If there are alternative input choices that differ qualita-
tively and also with respect to energy use, then input
quality measures can be introduced into the benchmark.

The first way process inputs can be helpful in devel-
oping a statistical benchmark of energy use is that inputs
such as materials, labor, or production hours may be
good proxy measures of overall production activity
when measures of production output are not available
or have specific shortcomings. If a physical measure of
output is not readily available and pricing makes the
value of shipments a questionable measure of produc-
tion, then physical inputs can be a useful proxy. For
some industries, the basic material input is so ubiquitous
that it makes sense to view energy use per unit of basic
input rather than (diverse) outputs. Process inputs may
also be useful in measuring utilization, either directly or
indirectly. Corn refining is a good example of this ap-
proach. The industry uses a ubiquitous input, corn. In
some industries, physical production data may not be
available but material flows are and can be used instead.
For example, sand, lime, soda ash, and cullet (scrap
glass) are the primary inputs to glass manufacturing.

The second way that process inputs are important for
interplant benchmarking is when vertical integration is
common in a sector but varies in degree from plant to
plant. Industries are categorized by the products they
produce, but some sectors may face a “make-or-buy”
decision in the way they organize production. A plant
may purchase an intermediate product or produce it at
the plant as part of a vertically integrated plant. For
example, an auto assembly plant may stamp body
panels or ship them in from a separate facility. The
energy use of these two facilities is not directly compa-
rable. The interplant benchmarking approach must ac-
count for those “make-or-buy” decisions in the specific
plant configurations. Examples range from food pro-
cessing, where plant may make juice from concentrate
or fresh fruit or paper mills which may purchase market
pulp or recycled fibers.

The third way that process inputs are important
for interplant benchmarking is when differences in
material quality may also be related to energy use.
For example, if the materials mix to produce a
product directly impacts energy uses, then the

statistical model can apply different weights to
the material mix in the same manner that it does
with product mix. In other words, product/process
level differences in energy use can be inferred
from the volume and types of materials used in
production. To be considered in the statistical nor-
malization, they must be measured on a consistent
plant-level basis across the industry. For cement
plants, the hardness and moisture content of the
limestone is hypothesized to influence energy use,
but no consistent data is available for this, leaving
it the subject of future analysis if data can be
collected.

One ubiquitous input is labor. Labor may be helpful
in capturing the quasi-fixed nature of energy if there are
production slow-downs or non-production periods of
operation, but when both labor and energy are being
used. In this way, labor captures a plant activity level
that is related to energy use, even when product output is
not being generated. As an empirical issue, the statistical
significance, or lack thereof, of labor in the analysis can
capture this potentially industry-specific phenomenon.

Climate

There are many things under the control of a plant or
energy manager, but one they cannot control is “the
weather.” In most manufacturing plants, HVAC contrib-
utes to energy demand and weather determines how
much is required to maintain comfort. Since the ap-
proach used here is annual, seasonal variation does not
enter into the analysis, but differences due to the loca-
tion of a plant and annual variation from the location
norm will play a role. The approach that has been taken
for all sectors under study is to include heating and
cooling degree days (HDD and CDD) into the analysis
to determine how much of these location-driven differ-
ences in “weather” impact energy use.

In principle, all plants have some part of energy
use that is HVAC related, but when the HVAC
component of energy use is small relative to total
plant consumption, the statistical approach may not
be able to measure the effect accurately enough to
meet tests for reliability. For some sectors, weather
is a factor in the process, like auto assembly. It is
a factor because of paint booths and the climate
control technology needed for those systems. Phar-
maceutical manufacturing, where “clean room”
production environment is common, is another
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good example. The climate impact in this sector is
only applicable to the “finish and fill” production
stage. The more energy-intensive chemical prepa-
ration stage is not sensitive to climate. Even in
industries where the HVAC component is not an
obvious or large part of energy use, there may be
production process-related effects that analysis
needs to test for. For example, processes that use
chillers may be sensitive to CDD (summer) load-
ing. Process heat furnaces may be sensitive to cold
outside air so HDD (winter) effects might be in-
cluded in the model.

Relationship to other benchmarking approaches

Every industry is unique and these guiding principles
have to be carefully weighed against the specific indus-
try conditions and available data. These case studies
endeavor to do so. The above discussion specifically
avoids the term “benchmark,” although these case stud-
ies fall within the broad literature on benchmarking. The
problem with the term benchmark is that it is very
context specific, although research on energy (or emis-
sions) benchmarks often identifies some of the same
issues discussed above.

Aarons et al. (2013) introduced the concept of
benchmarking as follows: “The term
“benchmarking” can refer to a wide variety of
concepts (emphasis added). For the purposes of
this paper, “benchmarking” refers to developing
and using metrics to compare the energy or emis-
sions intensity of industrial facilities. Benchmarks
are primarily used to compare facilities within the
same sector, but can also be used to identify best
practices across sectors where common process
units, such as boilers, are used.” They consider
using benchmarks as the basis for GHG allowance
allocations and prefer a “one product, one
benchmark” approach to promote systematic effi-
ciency. They suggest, for this application of
benchmarking, variables such as production tech-
nology, fuel choice, feedstock, climate, resource
availability, or capacity should not be corrected
for when a benchmark is set. The case studies in
this paper control for feedstock, climate, and ca-
pacity when statistically appropriate, but not these
others. The difficultly with a one product, one
benchmark approach is that it requires facilities to
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have single common physical product. This is rare-
ly the case and is an example of how the approach
is used in the case studies can address multiproduct
manufacturing.

Erickson et al. (2010) consider a range of issues for
benchmarking, also in the context of GHG emissions
and regulations, considering both data availability and
the context of related air regulatory processes in the
USA. Egenhofer (2007) describe the evolution of the
European Union Emissions Trading System (EU-ETS)
and the role that benchmarking has played. The devel-
opment of the EU-ETS benchmarks is described in more
detail by Neelis et al. (2009). In particular, they develop
11 principles to guide the development. The one prod-
uct, one benchmark method was developed to address
the allocation of emission permits under the EU-ETS.
The average of the 10 % most greenhouse gas efficient
installations, in terms of metric tons of CO2 emitted per
ton of product produced at European level in the years
2007-2008, was selected as the guiding concept for
emission allocations to individual companies and facil-
ities. Fifty-two benchmarked sectors cover 75 % of
industrial emissions in EU ETS. As is the case recom-
mended by Aarons, Golding et al. and Neelis, Worrell et
al., these EU-ETS product benchmarks are not differen-
tiated by technology, fuel mix, size, age, climatic cir-
cumstances, or raw material quality of the installations
producing the product. The choice of what products
would receive a separate benchmark is given particular
attention. The purpose of the EU-ETS benchmarks is to
set the level of the allocation of free allowances which
take into account the emissions performance of the most
efficient installations. The allocation then incentivizes
other installations to reduce emissions.

Similar to the applications of benchmarks to GHG
regulations, most studies of energy benchmarks use
specific energy consumption (SEC) which is an energy
intensity usually defined over physical production units
(Saygin et al. 2010) defines a benchmark curve as on
that “plots the efficiency of plants as a function of the
total production volume from all similar plants or as a
function of the total number of plants that operate at that
level of efficiency or worse,” so are concerned with the
cumulative distribution of performance defined by SEC
using data from a variety of sources, including plant,
company, or region-level aggregates to compute aver-
ages. A hypothetical benchmark curve is shown in
Fig. 1. To construct such a “curve,” one needs plant
(company or region)-level data on energy use and
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Hypothetical Benchmark Curve

35

25

Average SEC

15

Specific Energy Consumption
(energy use / unit of production)

EU-ETS BEnchmark

Fig. 1 Hypothetical benchmark curve

production. The y-axis could be plants or represent
cumulative production. A single “benchmark” for an
industry might be set at the mean (as shown), median,
or some percentile of the distribution (as was done for
the ETS, but using GHG in the numerator).

These approaches to energy (or GHG) benchmarking
requires plant (company or region) data on energy
(GHG) and a denominator in terms of physical produc-
tion. These approaches also have all the attendant prob-
lems identified by Freeman et al. regarding the choice of
denominator, as discussed above. These examples
above also do not distinguish between feedstock and
product difference that might influence energy use. The
question about what one does or does not wish to
normalize for depends on the intended applications for
the benchmark. Depending on the goals of the bench-
mark, what is viewed as “efficiency” may have multiple
interpretations. However, empirically identifying the
drivers for energy use, the underlying distribution (quar-
tiles, etc.) is the first step.

An alternative but more data-intensive approach of
benchmarking is exemplified by Phylipsen et al. (2002)
and Worrell and Price (2006). This approach calculates
an Energy Efficiency Index (EEI) for each plant by
determining the difference between actual energy inten-
sity of each process unit and that of a hypothetical state-
of-the-art unit and then aggregating units within an
entire plant. Their approach is comparable to the Solo-
mon’s Energy Intensity Index® (as discussed in
Phylipsen, Blok et al.)

Another energy benchmarking approach which
draws from concepts in the process stage methods but
employs data envelopment analysis (DEA) is Azadeh et
al. (2007). They use DEA to account for the “structural
factors” of energy use, such as input and product mix to
create energy efficiency rankings but apply it to country-
level OECD data rather than plant-level data. Oh and
Hildreth (2014) apply both statistical and DEA methods
to auto industry data.

Data is a driving concern in benchmarking. The one
industry, one benchmark approach for regulatory pur-
poses may have advantages in terms of transparency and
when data provision is compulsory. The one industry,
one benchmark approach also must have very specific
product boundaries to avoid an “apples-to-oranges”
comparison. This specificity may result in very small
numbers of comparable production units, i.e.,
manufacturing establishments or process units. Process
stage models have a strong appeal but are data intensive,
since sub-establishment level information is required.
The approach used in these case studies can be seen as
a compromise between the needs in the one industry,
one benchmark to very narrowly define industry sub-
sector boundaries and the detailed data requirements of
the process stage approach.

These case studies deal with these scope or boundary
issues by selecting an industry segment (group of plants)
with manageable ranges of comparable products and
levels of upstream integration. This is typically based
on a single 6-digit code within the North American
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Industry Classification System (NAICS). However, in-
dustries within even a single 6-digit NAICS may differ
in terms of upstream integration and downstream prod-
uct mix. The approach used here means that the plants
within an industry-level NAICS do not need to be
further segmented by product mix or upstream integra-
tion, which is often impossible given the small number
of facility data available. The next section discusses the
data used in the case studies and also how difficult issues
of confidentiality are managed.

Data

Data is key to the development of these case studies.
The case studies are based on non-public, plant-level
data from the US Census Bureau (hereafter the Bureau)
and other public and non-public sources. Data from the
Manufacturing Energy Consumption Survey (MECS)
and the Census of Manufacturing (CM) form is the
starting point of all the case studies and the core data
for many. The plant-level versions of the data are con-
fidential and protected by Title 13 and 26 of the US
Code. For these case studies, the data are used via
permission from the Center for Economic Studies at
the Bureau and are accessed at the Triangle Research
Data Center, a secure computer lab operated by Duke
University in cooperation with the Bureau as part of the
Federal Statistical Research Data Center program.’

The CM provides a detailed plant-level snapshot of
energy use vis-a-vis other material and labor inputs as
well as the level and mix of a variety of products for
every plant in the USA in the respective CM quinquen-
nial years.® MECS provides even more detail on energy
use (types of fuels etc.) for a subsample of plants in the
MECS sample years. The Bureau collects these data to
publish aggregate economic statistics but also provides
access to researchers on a project-by-project basis.
These data from the Bureau form the basis for the
underlying statistical analysis in the case studies. The
Bureau provides strict oversight of confidentiality of the
data. No results from the cases studies can be used to
reidentify any plant or company. This is a requirement
for permission to use the data and an advantage of these
case studies, ameliorating industry concerns regarding
potentially sensitive information. Similar establishment

7 For more details see http://www.census.gov/fsrdc
§ Conducted in years ending in “2” and “7”

@ Springer

level energy and production data in the UK were used
by Bloom et al. (2010) and in Germany by Falck (2007),
but the latter study is not focused on energy per se.”

In some case studies, in consultation with energy
managers in companies with operations in these case
study industries, data is voluntarily provided to either
supplement or supplant the data from the Bureau. In
those case studies, Duke University provides each com-
pany legal non-disclosure protection for the information
used in the analysis. Statistical protection methods, sim-
ilar to those required by the Bureau, are also used to
prevent reidentification of any plant’s or company’s
data. The fact that these case studies use statistical
methodology is what provides this confidentiality pro-
tection. The next section describes the general statistical
methods that are used.

Methodology

The methodology underlying these case studies can be
motivated by the concept that there is some reduced
form relationship between plant-level energy use and
the various plant input and output characteristics de-
scribed above. We assume that this relationship can be
approximated by a functional form that is amenable to
statistical estimation using data from a cross-section or
panel of plants within some “reasonably defined” in-
dustry group. Depending on the form of the statistical
model, discussed in more detail below, the actual plant
energy use can then be compared to the predicted aver-
age or best practice energy use, given the plant’s char-
acteristics. How far the actual energy use is above or
below the predicted average, or how far the actual
energy use is from predicted best practice, is the plant’s
measure of efficiency. In statistical terms, the difference
between actual and predicted energy use is equal to the
residual of the statistical model for plants that are in the
sample; alternatively, this difference is an out-of-sample
prediction when the statistical model is applied to other
data. It is in this out-of-sample context that we expect
the model to be most often used, i.e., to compute energy
efficiency using data for plant-level operations that were
not in the statistical analysis, possibly from a different
year. If that is the case, then the model is measuring
current performance to a prior “benchmark year.” If we

9 Other countries may have programs similar to the FSRDC pro-
gram in the USA, but the author is not aware of them.
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further assume that the estimated distribution of efficien-
cy from the statistical model, i.e., the error variance, is
static, then the out-of-sample prediction of efficiency
can be converted to a percentile (ranking) of efficiency
based on the estimated distribution. This is similar to
guidance from ISO 50001 regarding the creation of
EnPL'® Other application of this approach includes
estimation of energy savings postretrofit (Kelly
Kissock and Eger 2008) but using time series data for
a single plant.

The interpretation of the comparison of actual and
predicted values as a measure of efficiency is condition-
al on the assumption that the function used in the anal-
ysis is a reasonable approximation of the plant-level
determinants of energy use and that the characteristics
included in the analysis are reasonably appropriate and
complete. These are admittedly strong assumptions. An
alternative interpretation is that the difference between
the actual energy use and the predictions of the statistical
model are an indicator of energy performance that nor-
malizes, 1.e., controls for, multiple plant characteristics
in a more sophisticated manner than a simple SEC, i.e.,
energy per unit of product.

The underlying approach of these case studies is a
regression model of the general form

E=f(Y,X;B)+e (1)

where E is the measure of total source energy (total Btu
of fuels and electricity use converted to Btu based on
average US thermal plant efficiency including line
losses), Y is either production or a vector of
production-related activities, X is a vector of plant char-
acteristics, [ is a parameter vector (the normalization
factors), and ¢ is the measure of relative plant efficiency.
This is similar to studies of total factor productivity
where the left hand side of Eq. (1) is production rather
than energy and the right hand side of Eq. (1) is a
production function, then ¢ is the Solow residual of total
factor productivity. Syverson (2011) provides a review
of this productivity dispersion literature. Boyd (2008)
provides some of the theoretical connections between
the function f(.), the energy factor requirements func-
tion, and the subvector distance function (see Murillo-
Zamorano (2004) for a review of the distance function
approaches). The error term is interpreted as a measure

19 Both Energy Star and ISO 50001 use the term Energy Perfor-
mance Indictor. Since Energy Star began publically using the term
first, ISO adopted the acronym “EnPI” to limit confusion.

of relative energy efficiency, since it is relative to the
data used to estimate the function in (1). The estimates
of the distribution of ¢ are used to summarize the range
of energy performance within a sector.

The case studies can be characterized by whether (i)
the functional form of the analysis is linear (in either
energy use or energy intensity) or log linear and (ii) the
assumption about the distribution of the error term, €.
One variation in the case studies is one imposing the
relationship be homogeneous of degree one in a single
production variable, y.

E=y(f(X;p) +e), (2)
or rearranging to an intensity form
Ely=fX;0)+e€ (3)

This approach ignores many issues about the as-
sumption of the distribution of the error term but simply
posits the regression model in the intensity form. When
the function f{(.) is linear in X, then this represents the
linear functional form. This approach may be appropri-
ate if the activities represented by X are additively
independent, e.g., in corn refining the moisture content
of one of the primary byproducts influences the energy
use but has no impact on the energy use of other
products.

An alternative approach is the log-log functional

form, where E and Y are in natural logarithms.

In(E) = (f(In(Y), X; ) + €) (4)

ln(E)za—l—Z i:[biln(y,-)-i-z i:]Cij+E (5)

In either case of a linear or log-linear functional form,
standard measure of statistical significance provide test
for whether or not to include a particular characteristic.
In other words, one can test if two products have similar
energy intensity or if weather influences energy use and
a statistically identifiable way. In the log-linear form, the
error term is interpreted as a percent efficiency, rather
than absolute levels or intensities as in the linear ap-
proach. Whether this assumption of linearity is one of
convenience or not, there are only two case studies that
use the linear approach; all others use log linear. One
advantage of the log linear approach is that it provides
an easy estimate of energy returns to scale. In other
words, the sum of the coefficients, b, of the activity
vector, Y, is a measure of whether energy use scales
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proportionally to total activity. If the sum of the coeffi-
cient is close to unity, then larger plants do not have an
“advantage” in terms of lower energy use. If the sum is
less than unity, then larger plants use less than a propor-
tional amount of energy. If capacity is included in the ¥
vector, then the case study provides both a short and
long run estimate of returns to scale.

The distributional assumptions for the error term can
reflect whether the efficiency in the industry is approx-
imately (log) normal or follows a skewed behavior. All
the case studies consider the possibility that efficiency is
skewed and test whether a stochastic frontier (SF) ener-
gy model is appropriate (Boyd 2008). The SF approach
assumes that the error term is composed of two parts

e=u-v (6)
where
v~N (0, 07) (7)

and energy (in)efficiency, u, is distributed according to
some one-sided statistical distribution,11 for example,
gamma, exponential, half normal, and truncated normal.
It is then possible to estimate the parameters of Eq. (2),
along with the distribution parameters of # and v using
maximum likelihood methods. The approach that is
used to estimate these parameters depends on the type
of distribution that is used to represent inefficiency.
Exponential and truncated normal frontier models can
be estimated using relatively conventional maximum
likelihood (ML) techniques available in many modern
statistical packages. Gamma is a very flexible distribu-
tion, but also generates a model that is very difficult to
estimate since there is no closed form for the likelihood
function, and a simulated maximum likelihood has been
used. A wide range of additional distributional
assumptions regarding the heteroscedasticity of either
u or v are also possible. In addition, the treatment of
panel data is a significant issue in the application of
stochastic frontier, since the inefficiency term is likely
to be correlated over time within a plant or firm. Greene
(2002) presents an overview of panel treatments.'* If
there is no empirical evidence of skewness of the error
term, which can be tested via a likelihood ratio test, then

'We also assume that the two types of errors are uncorrelated,
ie., 0,y=0.

'2No case studies of these panel treatments here since they only
have, at most, a few years of data for any given plant in an
unbalanced panel.

@ Springer

the ML estimate of o> will be close to zero and the
estimates are equivalent to ordinary least squares
(OLS) regression. The SF approach is also used by
Lundgren et al. (2016) to measure energy efficiency in
the Swedish pulp and paper industry, by Filippini and
Hunt (2012) on US residential energy data and by
Filippini and Hunt (2011) on aggregate OECD country
energy data.

Since the distribution of the error term, composed or
normal, is taken as a measure of efficiency dispersion,
then heteroscedasticity takes on a specific interpretation
beyond the usual concerns for parameter standard errors.
If the heteroscedasticity is related linearly to some var-
iable in the X vector of the form

Oiy = VX ki (8)
or to production, Y

Oiv =7Y; )
or to the inverse of production

1
Tiv :77 (10)

then the efficiency distribution and the associated quar-
tiles depends on the size of X or Y. In the last example,
the distribution of efficiency is wider for low production
plants than for high production plants.

Assuming we are using a model that has been esti-
mated in one of the case studies in the out-of-sample
context described above and we have data for a plant 7 in
year ¢ different from the study data year, we can estimate
the difference between the actual energy use and the
predicted average energy use from Eq. (1).

In(E,;)=f(*8) = & (11)

For the models using OLS,"? we have also estimated
the variance of the error term of Eq. (1) and we can
compute the probability that the difference between
actual energy use and predicted average energy use is
no greater than this computed difference under the as-
sumption that the error, ¢, is normally distributed with
zero mean and variance o°.

13 Similar formulas are used when the model is a frontier, see
Boyd and Delgado (2012)
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Pr (eﬁét,,-) (12)

This probability is the energy performance score
(EPS) and is the same as a percentile ranking of the
energy efficiency of the plant.

Overview of case studies

Drawing from the general approach above, Table |
summarizes the factors that have been included in each
of the industry case studies to explain difference in
interplant energy use. In all case studies, the potential
for differences in product mix, materials use, and weath-
er on energy use was examined. Specific issues that
were raised by industry reviewers (energy managers in
various companies) were also investigated given avail-
able data. Statistical test for significance were used to
include or exclude the specific variables in the case
study models. The types of characteristics that were
included in the analysis are grouped according to prod-
uct mix, production unit measurement, inputs, size or
capacity, external factors, and others.

It is clear from the diversity in Table 1 that each
industry is unique in the characteristics that “matter”
for energy benchmarking. Twenty of the studies use
physical units for activity; of those, 15 have between 2
and 8 different product types that influence energy,
while 3 industries are characterized by mix of produc-
tion activities that is unique to that sector. Four studies
use the product price to characterize product differences,
i.e., higher value products require more energy to pro-
duce. One, motor vehicles, uses product size
(wheelbase) to capture differences in energy use. Five
studies include measure of plant size (and indirectly
utilization), but the small number is due primarily to
data limitations, i.e., available plant level capacity infor-
mation. About half of the sectors include process inputs,
either as a ubiquitous measure of input, e.g., corn in corn
refining or scrap in mini mills, or in the form of raw vs
preprocessed inputs, e.g., fresh fruit vs concentrate in
juice production or virgin vs recycled fiber in paper
production. The selection of inputs is based in part on
data availability, but then only included when the esti-
mated effect is of reasonable size and statistically sig-
nificant. Person or operation hours are included in eight
industries. In some cases, the labor hours may be
playing a similar role to utilization, i.e., capturing non-

production activity that uses energy. Climate, in the
form of heating degree days (HDDs) or cooling degree
days (CDDs), were found to influence energy use in
eight of the studies. Finally, six of the case studies
include industry-specific issues that impact energy use,
such as the use of onsite freezers for storage or produc-
tion; if there is an onsite water treatment plant; the
moisture content of one of the products; and the use of
bleaching chemicals to account for the “whiteness” of
the paper that is produced.

Table 2 further describes the statistical and functional
form of the models; the years, number of observations
(plants), and data sources; and results of economies of
scale and the range of performance in the industry.
Seven sectors exhibit a skewed distribution of energy
intensity and are modeled as stochastic frontiers; the rest
are estimated as log normal OLS, i.e., the percentage
difference from average performance are “bell shaped.”
Standard statistical tests (likelihood ratio) are used to
decide if the frontier or ordinary least squares are appro-
priate. Two of the log normal models exhibit
heteroscedastic distributions with variance declining
with respect to production volumes.

The earliest year of data for a study is 2002. This is
largely driven by the data available when the analysis
was conducted. That of the year 2007 is the most re-
cently available data from Economic Census.'* Sectors
that use industry or trade association-provided data tend
to have more recent benchmark years. For the less
energy-intensive industries using CM data, the energy
content of the fuels is imputed using cost data and state-
level energy prices. This is done since the sample sizes
in the MECS are too small to meet disclosure require-
ments to protect confidentiality. For industries with suf-
ficiently large MECS samples, the more detailed energy
information is used directly. Sample sizes vary depend-
ing on the industry; some data is dropped due to missing
variables from incomplete reporting or other data quality
screens such as for extreme outliers., However, the
sample sizes shown should be viewed as a fairly com-
plete count of all the plants in that subsector. Even
though the CM data is a census, i.e., includes all the
plant in an industry, depending on the industry, the
sample size can be quite small. The adequacy of the
sample size needs to be considered against the complex-
ity of the model, i.e., how many variables are included in

14 As of this draft, the 2012 EC was not yet available in the RDC
network
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the analysis. The degrees of freedom, difference be-
tween the number of observation, and the number of
coefficients in the model impact the statistical tests used
to include or exclude variables in the model. The
smallest number of plants is for integrated steel, but
we have multiple years of data and this increases de-
grees of freedom. The next smallest is Frozen Fried
Potatoes (27); that model only includes two simple
variables, both of which meet the statistical significance
criteria for the available degrees of freedom. We feel the
data are adequate of these purposes and typically are for
all plants in the USA that completely report data to the
Bureau.

Estimates of elasticity of returns to scale (RTS) give
insight into whether larger plants have an advantage
over small ones in terms of energy. The elasticity esti-
mate is how much energy would increase given a 1 %
increase in scale of operations. The elasticity is comput-
ed as the sum of the coefficient estimates of the log
activity variables, RTS estimates can be further broken
down into short run (SR), where only production activ-
ities are considered, and long run (LR) when increases
in production and plant capacity are included. In some
cases, no single RTS measure can be computed from the
functional form and is labeled variable. In other cases,
the RTS is not estimate in the analysis but assumed to be
constant. The studies that use linear forms impose con-
stant returns in the long run and allow for variable
returns in the short run. Some studies use a variable
returns specification by including second-order terms
in the activity variables or a measure of capacity utili-
zation, i.e., production/capacity, in the analysis. Values
close to one indicate that no size advantage is found.
This is the case for eight studies. For ten studies, size is
found to be important. For example, the RTS estimate
for Baking—Cookies and Crackers is 0.71 which im-
plies that a 10 % increase in production would result, on
average, in only a 7.1 % increase in energy use.

The last column labeled 75 to 50th represents the
third quartile range, i.e., percent difference of the 75th
percentile, i.e., the ENERGY STAR certified plant level,
and the average or median performance, the 50th per-
centile. This ranges from as low as 4.5 % to nearly 44 %.
Figure 2 compares this third quartile range to the indus-
try average share of energy cost to value added. This
cost share reflects how “important” energy is in the
sector. We see a clear correlation between high cost
shares and the range of performance. This makes sense
since industries with higher relative energy costs would

put more effort into management of those costs. There
are outliers in this relationship, however. They include
pulp mills and ethanol (dry mill) plants. The result for
these may suggest the need for additional scrutiny.
However, the study for pulp mills measures the efficien-
cy of net purchased energy and pulp mills provide a
large amount of internally generated power from black
liquor and CHP. There may actually be a wide range of
practices in terms of net purchased energy in this sector
than for other energy-intensive ones.

Updates for benchmark year for three ES-EPI

As is seen above, the analysis is typically done for a
particular year. When a group of years is used, the
analysis measures the energy efficiency change for the
final year relative to the earlier year. Since the case
studies are typically used in an out-of-sample context,
we call this the benchmark or reference year. In the
2010, three previously completed case studies, auto
assembly, cement, and corn refining (see (Boyd 2005a,
b, Boyd 2006, Boyd 2008) for detailed descriptions of
the earlier models), began to be updated. Comparing the
old benchmark with the new benchmark reveals infor-
mation about how these three, very different industries
have changed over time. Since the analysis reveals both
the general level and range of energy performance, the
comparison focuses on how much the change in the
“best practice” and the change in the range of perfor-
mance contribute to the overall reduction in energy use
in the sector (see Boyd and Zhang (2012), Boyd and
Delgado (2012), and Boyd (2010) for the details of the
updates).

For the cement industry, if one computes the ratio of
total energy costs to total value of shipments (adjusted
for inflation) in 1997 and 2007 from data collected in the
Economic Census, one would conclude that this mea-
sure of energy intensity has fallen ~16 %, from 0.184 to
0.158. Aggregate data may also give the impression that
all plants have made the same steady improvements.
Figure 3 shows the energy use per short ton of clinker
against the energy performance score (EPS) defined
above in Eq. (12). The picture that emerges from our
plant-level statistical analysis is somewhat different and
more subtle; poorer-performing plants from the late
1990s have made efficiency gains, reducing the gap
between themselves and the top performers, whom have
changed only slightly. The results from this study focus
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on energy efficiency and controls for other structural
changes in the industry, e.g., increases in average plant
size, which also tend to lower energy use. Our estimate
of the overall energy efficiency improvement in the 96
plants in our database represents a 13 % change in total
source energy, and the source of these changes is clearly
not uniform. The case study does not have the details
needed to identify the exact sources of this shift but is
consistent with the shift away from wet kilns to dry, the
addition of precalcine and preheater stages, and in some
cases, complete facility retrofits. Dutrow et al. (2009)
describe a retrofit by the Salt River Materials Group
cement plant in Clarksdale, Arizona plant that reduced
various process energy use by 37-67 %. There have not
been any major cement technology ““breakthroughs,” so
the lack of shift at the highest levels of performance
should not be surprising.

Results for the auto assembly industry are similar, but
less dramatic (Fig. 4). There are two sources of improve-
ment, the changes in the industry energy frontier, i.e.,
“Best Practices” and technology, and the changes in
efficiency, i.e., whether plants are catching up or falling
behind. The results suggest that slightly more than half
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of the improvement is changes in efficiency, which have
slightly outpaced changes in the frontier. The combined
effect when evaluated against the over 7 million vehicles
produced in 2005 by the plants in our study implies in a
reduction of 11.6 % or 1462 million 1bs of CO,, attrib-
utable to changes in observed industry energy efficiency
practices. No single technological source of efficiency
improvements can be pointed to in auto assembly, but
the update analysis does imply that reductions in fuel
use dominated the shift.

The change in the distribution of energy efficiency
for a representative corn refining plant is shown in
Fig. 5. If we multiply this plant-specific change in
energy intensity by the level of corn input production
for each plant operating in the industry in 2009, and total
across all plants, we compute a reduction of 6.7 trillion
Btu in annual energy use. Relative to an average annual
total source energy consumption of 155 trillion Btu in
2009 for all the plants in our data set, this represents
about a 4.3 % reduction in overall energy use by this
industry. When energy-related greenhouse gas emis-
sions are considered, this represents an annual reduction
of 470 million kg of energy-related CO, equivalent

y =-0.4331x + 0.2864
R?=0.1756

30%

20% 25% 35%

Ratio of Energy Expenditure to Value Added

Fig. 2 Relationship between industry average energy cost to value added and the estimated 50-75 quartile range
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Fig. 3 Comparison of two 100
benchmark distributions of
energy efficiency in cement 90 -
manufacturing (source: Boyd and
Zhang 2012)
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emissions from improved energy efficiency. The case
study update was not able to point to specific techno-
logical or operational changes that resulted in this shift,
so more work in this sector is needed.

The change in performance from these three indus-
tries is all quite different. Cement reflects the case where

Fig. 4 Comparison of two 100
benchmark distributions of
energy efficiency in auto
assembly (source: Boyd 2010)
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best practice has changed very little, but “catching up”
comprises the main source of improvements. Corn re-
fining is at the opposite end of this spectrum, where
there are substantial changes in the best plants, but
laggards remain or in some sense are even falling behind
by failing to keep pace. The auto assembly plants are a

10 - | 2005 Distributionof U.S. Auto
Assembly Energy Efficiency
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Fig. 5 Comparison of two benchmark distributions of energy efficiency in wet corn refining (source: Boyd and Delgado 2012)

mixture of changes in best practice and some modest
“catching up.” These benchmark updates also reflect
different time periods. When we compute the average
annual change from the total reduction in energy use for
each sector, we see that the auto industry has made the
greatest strides (see Table 3).

Conclusions

The objective of these case studies is for developing
sector-specific energy performance benchmarks and to
create a tool that would motivate companies to take
actions to improve the energy efficiency of their plants
and ultimately help reduce greenhouse gas emissions in
the industrial sectors benchmarked. These case studies
accomplish this goal in three major ways. This first is by
developing a statistical approach that effectively ac-
counts, or normalizes, for differences in product mix,
upstream integration, and external factors such as

Table 3 ES-EPI benchmarks updates: rate of change by industry

Sector  New Old Time Total Average
benchmark Benchmark period reduction annual
Year Year change
Auto 2005 2000 5 120% 23 %
Cement 2008 1997 11 130% 12%
Com 2009 1997 12 43 % 0.4 %

climate, effectively expanding the concept for efficiency
beyond a single measure of intensity. The side effect of
the statistical approach also that it is highly effective in
handling complex boundary issues. The third is to pro-
vide this information to the public, including industry, in
a form that utilizes the most detailed data possible, while
maintaining strict confidentiality. These case studies
address each industry-specific energy issues within a
common framework, recognizing that the variance of
simple energy intensity would overstate the range of
efficiency. Meta-analysis of these case studies reveal
some additional insights, in particular that all industries
exhibit unique drivers to the energy underlying the
range of energy use, but that the range of performance
is inversely correlated to the industry level of energy
use. In other words, industries that must use more ener-
gy to make their product appear to “pay more attention”
to energy use; competitive pressures likely push them
closer together in terms of energy use. Boyd and Curtis
(2014) find similar results when examining how man-
agement practices influence energy use. In the future,
these tools can be used to explore more deeply how
efficiency changes over time.

The approach used in the studies is not the only
method to measure energy efficiency; other uses have
taken different approaches to meet different objectives.
The approach used here focused on providing useful
information to energy managers and policy makers
about the potential for improvement and a tool to moti-
vate that change. One way Energy Star uses to motivate

@ Springer



236

Energy Efficiency (2017) 10:217-238

change is to recognize top performance. As of Decem-
ber 2015, EPA had published 12 EPIs, awarded 141
ENERGY STAR plant certifications, and engaged an
additional 12 industrial sectors and subsectors in the EPI
development process (see Table 4). Compared to aver-
age plants (EPS score of 50) EPA estimated in 2015 that
plants earning the ENERGY STAR have saved an esti-
mated 544 trillion Btus (US Environmental Protection
Agency 2015). Companies using these tools report that
they find them valuable and beneficial for evaluating
current performance and setting efficiency goals. Many
companies report they have incorporated these tools into
their energy management programs and have made
achieving ENERGY STAR certification as an objective.

The case studies are not done in an academic vacu-
um; all are conducted with consultation from industry
energy managers and sometimes industry-provided da-
ta. Initially, there was industry skepticism that a whole-

Table 4 Status of case studies (published or under review)

Focus industries

Status

Cement

Corn refining

Dairy—fluid Milk

Dairy—ice cream

Ethyl alcohol

Food—juice ( canned)
Food—frozen fried potatoes
Food—tomato products
Baking—cookies and crackers
Baking—bread and rolls
Glass—flat

Glass—container

Iron and Steel—integrated
Iron and Steel—mini mills
Metal casting—iron

Metal casting—investment steel
Metal casting—“other” steel
Metal casting—aluminum
Motor Vehicle—assembly
Pharmaceuticals
Printing—Ilithograph

Pulp mills

Paper and board integrated mills
Ready mix concrete

Boyd and Zhang (2012)
Boyd and Delgado (2012)
Under industry review
Under industry review
Under industry review
Boyd (2011)

Boyd (2011)

Under industry review
Boyd (2011)

Under EPA final review
Boyd (2009a, b)

Boyd (2009a, b)

Under industry review
Under industry review
Under EPA final review
Under industry review
Under industry review
Under EPA final review
Boyd (2014)

Boyd (2009a, b)

Under industry review
Boyd and Guo (2012)
Boyd and Guo (2014)
Under industry review

@ Springer

plant benchmark could be developed using statistical
case studies. Skeptics largely believed that each plant
is too “unique” for whole plant comparisons to be made.
However, both the process and method used to develop
the case studies has helped change skeptics participating
in the industrial focus process into supporters. The process
of engaging the industry in the development of the case
studies has been critical. By developing the case studies in
a transparent, objective, and collaborative process, indus-
try participants were directly involved in the design and
review from the beginning. This process enabled the
identification of potential factors for inclusion in the re-
gression analysis, receive timely feedback on draft results,
quickly address concerns, and ultimately ensure a high
degree of support and “buy-in” for the tool. By using a
benchmarking method based on actual operational data
and that allowed for controls to address industry-specific
differences between plants, concerns were overcome that
industrial plants are too heterogeneous, even within a
specific subsector, to be able to benchmark.

The availability of sector-wide energy and production
data through the US Census Bureau was critical for the
analysis. One of the greatest barriers to any benchmarking
exercise is inadequate or unrepresentative data. The case
studies has benefited from the robust industrial energy and
production data collected by the US Census through the
Census of Manufacturing (CM) and the Manufacturing
Energy Consumption Survey (MECS). The availability of
this data for use in developing the statistical models has
been critical to ensuring the early success of the ENERGY
STAR industrial benchmarking program. First, it provided
EPA with the ability to develop the benchmarks without
having to undertake a data collection. Second, by working
with Census data, which has strict confidentially require-
ments, the ENERGY STAR team was able to build trust
among industry participants that the company-specific
data used for benchmarking would be kept confidential
and would not be shared with either focus participants and
the EPA. While some of the more recent case studies have
drawn on data provided by the industry, the availability
and quality of the CM and MECS data enabled ENERGY
STAR to successfully develop the first case studies and
demonstrate that whole-plant energy performance
benchmarking is possible.

The process of developing EPIs has uncovered new
insights into energy use and the drivers of efficiency
within the sectors benchmarked. Additionally, the estab-
lishment of industry baselines has enabled EPA to visu-
alize the range of performance within a sector.
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Visualizing the distribution of performance offers im-
portant information for policy makers and others inter-
ested in promoting efficiency or reducing GHG emis-
sions from specific industrial sectors. The slope of the
baseline curve generated by the EPI can help policy
makers and others evaluate what action is needed to
improve the performance of the industry. For example,
sectors with steep baseline curves and distributions in-
dicate that the opportunities for improving energy effi-
ciency through existing measures may be limited. These
sectors should be considered for R&D investments to
develop new technology that can create a step change in
the level of performance. Additionally, these sectors
may face greater difficulties reducing their GHG emis-
sions through existing energy management measures.
On the other hand, sectors with flatter curves indicate
that more opportunities are available through existing
technologies and practices. In these sectors, there is a
greater distribution of performance, which usually sug-
gests that existing energy management measures and
investments can improve performance.

The process of benchmarking and rebenchmarking a
sector provides further insights into the improvement
potential of the industry over time. Understanding how
the distribution of energy performance in a sector is
changing or not changing can provide valuable infor-
mation for policy makers as well as business leaders in
developing strategies to drive future performance gains.

The approach and method used by ENERGY STAR
to benchmark whole-plant energy performance has po-
tential applicability to other sustainability metrics, such
as water and waste, as well as subsystems within plants.
While developing such benchmarks is beyond the scope
of the ENERGY STAR program, several companies
participating in the Industrial Focus process have recent-
ly initiated an independent effort that applies the EN-
ERGY STAR benchmarking approach to process lines
within the plant and to non-energy measures such as
water. If successful, the results of this effort will break
new ground in advancing the field of energy perfor-
mance and sustainability benchmarking.

Acknowledgments This paper was developed at Duke Univer-
sity with funding from the US Environmental Protection Agency’s
Office of Atmospheric Programs, ENERGY STAR for Industry.
The paper and associated analysis would not have been possible
without the input of all the industry participants in the ENERGY
STAR Focuses on Energy Efficiency. Their willingness to provide
data, guidance on important issues affecting manufacturing energy
use, and time and energy in reviewing the case studies was

invaluable. I would also like to thank Walt Tunnessen, Betsy
Dutrow, Josh Smith, and the reviewers and participants of the
ACEEE Summer Study on Energy Efficiency in Industry, July
2013, Niagara Falls, NY for their comments on an earlier version
of this paper “Plant Energy Benchmarking: A 10-Year Retrospec-
tive of the ENERGY STAR Energy Performance Indicators (ES-
EPI)”. Some results in this paper were prepared while the author
was a special sworn status research associate at the Triangle
Census Research Data Center. Any opinions and conclusions
expressed herein are those of the author and do not necessarily
represent the views of the US Census Bureau. All results have
been reviewed to ensure that no confidential information is
disclosed. Any errors are the sole responsibility of the author.
Many research assistants have been involved in the preparation
of these case studies. While some are cited as coauthors in the
reference section, other contributors not so cited including Jeremy
Chiu, Matt Doolin, Chris Geissler, Songman Kang, Tatyana
Kuzmenko, Béla Személy, Shouyue Yu, and Su Zhang.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license, and
indicate if changes were made.

References

Aarons, K., Golding, C., & Clark S. (2013). Key considerations
for industrial benchmarking in theory and practice

Azadeh, A., Amalnick, M. S., Ghaderi, S. F., & Asadzadeh, S. M.
(2007). An integrated DEA PCA numerical taxonomy ap-
proach for energy efficiency assessment and consumption
optimization in energy intensive manufacturing sectors.
Energy Policy, 35(7), 3792-3806.

Battese, G. E., & Rao, D. S. P. (2002). Technology gap, efficiency,
and a stochastic metafrontier function. International Journal
of Business and Economics, 1(2), 87-93.

Bloom, N., Genakos, C., Martin, R., & Sadun, R. (2010). Modem
management: good for the environment or just hot air?*. The
Economic Journal, 120(544), 551-572.

Boyd, G. A. (2005a). Development of a performance-based in-
dustrial energy efficiency indicator for automobile assembly
plants. Argonne: Argonne National Laboratory.

Boyd, G. A. (2005b). A method for measuring the efficiency gap
between average and best practice energy use: the ENERGY
STAR industrial energy performance indicator. Journal of
Industrial Ecology, 9(3), 51-65.

Boyd, G. A. (2006). Development of a performance-based indus-
trial energy efficiency indicator for cement manufacturing
plants. Argonne: Argonne National Laboratory.

Boyd, G. A. (2008). Estimating plant level manufacturing energy
efficiency with stochastic frontier regression. The Energy
Journal, 29(2), 23-44.

Boyd, G. (2009a). Development of a performance-based industri-
al energy efficiency indicator for glass manufacturing plants
(p. 26). Washington: US EPA.

@ Springer



238

Energy Efficiency (2017) 10:217-238

Boyd, G. A. (2009b). Development of a performance-based in-
dustrial energy efficiency indicator for pharmaceutical
manufacturing plants. Durham: Duke University. report to
the Environmental Protection Agency.

Boyd, G.A. (2010). Assessing Improvement in the energy efficien-
cy of U.S. auto assembly plants. Duke Environmental
Economics Working Paper Series, Nicholas Institute for
Environmental Policy Solutions.

Boyd, G. (2011). Development of performance-based industrial
energy efficiency indicators for food processing plants.
Washington: US EPA.

Boyd, G. (2012). A statistical approach to plant-level energy
benchmarks and baselines: the energy star manufacturing-
plant energy performance indicator. Orlando: Carbon
Management Technology Conference.

Boyd, G. A. (2014). Estimating the changes in the distribution of
energy efficiency in the U.S. automobile assembly industry.
Energy Economics, 42, 81-87.

Boyd, G. A., & Curtis, E. M. (2014). Evidence of an “Energy-
Management Gap” in U.S. manufacturing: spillovers from
firm management practices to energy efficiency. Journal of
Environmental Economics and Management, 68(3), 463—
479.

Boyd, G. A., & Delgado, C. (2012). Measuring improvement in
the energy performance of the U.S. corn refining industry.
Duke Environmental Economics Working Paper Series (pp.
1-18). Durham: Nicholas Institute For Environmental Policy
Solutions.

Boyd, G., & Guo, Y. (2012). Development of energy star® energy
performance indicators for pulp, paper, and paperboard
mills (p. 30). Washington: US EPA.

Boyd, G.A., & Guo, Y. (2014). An energy performance Indicator
Jfor integrated paper and paperboard mills: a new statistical
model helps mills set energy efficiency targets. Paper360.

Boyd, G. A., & Karlson, S. H. (1993). The impact of energy prices
on technology choice in the United States steel industry.
Energy Journal, 14(2), 47-56.

Boyd, G. A., & Tunnessen, W. (2007). Motivating industrial
energy efficiency through performance-based indicators.
White Plains: ACEEE Summer Study on Energy Efficiency
in Industry Improving Industrial Competitiveness: Adapting
To Volatile Energy Markets, Globalization, And
Environmental Constraints.

Boyd, G., & Zhang, G. (2012). Measuring improvement in energy
efficiency of the US cement industry with the ENERGY
STAR Energy Performance Indicator. Energy Efficiency:1—
12.

Boyd, G., Dutrow, E., & Tunnessen, W. (2008). The evolution of
the ENERGY STAR® energy performance indicator for
benchmarking industrial plant manufacturing energy use.
Journal of Cleaner Production, 16(6), 709-715.

Dutrow, E., Boyd, G., Worrell, E., & Dodendorf, L. (2009).
Engaging the U.S. cement industry to improve energy per-
formance. Cement World.

Egenhofer, C. (2007). The making of the EU emissions trading
scheme: status, prospects and implications for business.
European Management Journal, 25(6), 453—463.

Erickson, P., Lazarus, M., Adair, J., Brant, J., Levitt, E., Hermann,
H., Larson, T., Ross, B., & Wheeless, A. (2010). Issues and
options for benchmarking industrial GHG emissions.
Stockholm Environment Institute.

@ Springer

Falck, O. (2007). Emergence and survival of new businesses.
Berlin and Heidelberg: Springer.

Farrell, M. J. (1957). The measurement of productive efficiency.
Journal of the Royal Statistical Society. Series A (General),
120(3), 253-290.

Filippini, M., & Hunt, L. C. (2011). Energy demand and energy
efficiency in the OECD countries: a stochastic demand fron-
tier approach. The Energy Journal, 32(2), 59-80.

Filippini, M., & Hunt, L. C. (2012). US residential energy demand
and energy efficiency: a stochastic demand frontier approach.
Energy Economics, 34(5), 1484-1491.

Freeman, S. L., Niefer, M. J., & Roop, J. M. (1997). Measuring
industrial energy intensity: practical issues and problems.
Energy Policy, 25(7-9), 703-714.

Greene, W.H. (2002). Fixed and random effects in stochastic
frontier models. New York University Economics
Department Working Paper.

Huntington, H. (1995). Been top down so long it looks like bottom
up. Energy,

Kelly Kissock, J., & Eger, C. (2008). Measuring industrial energy
savings. Applied Energy, 85(5), 347-361.

Lundgren, T., Marklund, P.-O., & Zhang, S. (2016). Industrial
energy demand and energy efficiency—evidence from
Sweden. Resource and Energy Economics, 43, 130-152.

May, G., Barletta, 1., Stahl, B., & Taisch, M. (2015). Energy
management in production: a novel method to develop key
performance indicators for improving energy efficiency.
Applied Energy, 149, 46-61.

Murillo-Zamorano, L. (2004). Economic efficiency and frontier
techniques. Journal of Economic Surveys, 18(1), 33-77.
Murray, G. P. (1996). What is energy efficiency? Concepts, indi-
cators and methodological issues. Energy Policy, 24(5), 377—

390.

Neelis, M., Worrell, E., Mueller, N., Angelini, T., Cremer, C.,
Schleich, J., & Eichhammer, W. (2009). Developing bench-
mark criteria for CO2 emissions. Netherlands: Ecofys
Netherlands and The Fraunhofer Institute for Systems and
Innovation research.

Oh, S.-C., & Hildreth, A. (2014). Estimating the technical im-
provement of energy efficiency in the automotive industry—
stochastic and deterministic frontier benchmarking ap-
proaches. Energies, 7(9), 6196-6222.

Phylipsen, D., Blok, K., Worrell, E., & Beer, J. d. (2002).
Benchmarking the energy efficiency of Dutch industry: an
assessment of the expected effect on energy consumption and
CO2 emissions. Energy Policy, 30(8), 663—679.

Saygin, D., Patel, M.K., & Gielen, D.J. (2010). Global industrial
energy efficiency benchmarking: an energy policy tool. E. a.
C. C. a. Research and Branches.

Syverson, C. (2011). What determines productivity? Journal of
Economic Literature, 49(2), 326-365.

Tanaka, K. (2008). Assessment of energy efficiency performance
measures in industry and their application for policy. Energy
Policy, 36(8), 2887-2902.

U.S. Environmental Protection Agency. (2015). Reducing green-
house gas emissions by advancing industrial energy efficien-
¢y 2000—2015. Washington: O. A. P. C. P. Division.

Worrell, E., & Price, L. (2006). An integrated benchmarking and
energy savings tool for the iron and steel industry.
International Journal of Green Energy, 3(2), 117-126.



	Comparing...
	Abstract
	Introduction
	Defining Energy Efficiency
	Intensity metric selection
	Multifactor efficiency measures
	Product mix
	Size
	Process inputs
	Climate


	Relationship to other benchmarking approaches
	Data
	Methodology
	Overview of case studies
	Updates for benchmark year for three ES-EPI
	Conclusions
	References


