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Abstract An effective way to save energy in pumping
systems with low static head is to control the pump’s
rotational speed with a variable-speed drive (VSD),
which allows changing of the rotational speed when
necessary. VSDs can be utilized to control batch transfer
systems, for example, in filling or emptying a tank or a
reservoir. In the literature, such processes have been
optimized only with respect to energy consumption,
but the time limit has been ignored. This means that
pumping time can be very long. Our paper deals with
this optimization problem and considers both pumping
time and energy demand, which are often conflicting
criteria. We derived a general optimal control law for
rotational speed, which can easily be implemented in
existing VSDs in the market. Minimum energy and
minimum time schemes are special cases of this general
new scheme. A constant flow rate scheme, suggested in
the literature, is verified to give an optimum solution if
the efficiency of the pump remains constant during
operation. In addition to energy consumption, rotational
speed control can have a favorable effect on the pump’s
lifetime, as pointed out in the paper.

Keywords Energy efficiency. Pumps . Variable-speed
drives . Process control

Introduction

Pumps are commonly used, for example, for
heating and air conditioning, wastewater treatment,
and the processing of chemicals and food. Pumping
consumes roughly one-fifth of the electricity pro-
duced in the world, and in the industrial sector, this
figure is even greater (Hydraulic Institute,
Europump, and US Department of Energy’s Office
of Industrial Technologies 2001). Though over the
last 20 years, some industries have considerably
improved their energy efficiency (Schächtele and
Schneider 2012), more energy could still be saved.
For example, de Almeida et al. (2005) point out
that considerable energy savings could be gained
by applying variable-speed drives (VSD) in
pumping systems.

To efficiently exploit VSDs in pumping systems, the
operational point, i.e., flow rate and head, must be con-
stantly available for the control system. With modern
VSDs, system flow rate or pressure measurements are
not required, becauseVSDs provide an accurate estimate
of pump power. Flow rate can then be calculated using
the affinity law for power (QP-method), and head from
the affinity law for pump head (Hydraulic Institute,
Europump, and US Department of Energy’s Industrial
Technologies Program 2004, p. 75). Tamminen et al.
(2014) have pointed out that the QP-method is
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inaccurate if the power curve flattens out, and they
showed how accuracy could be improved.

In batch transfer systems, for example in the process
of Fig. 1 or in wastewater pumping (Kallesøe et al.
2011), a given volume of liquid is pumped from one
reservoir or tank into another, and the liquid levels can
change as a result of pumping. VSD control can be
adopted in these kinds of processes to reduce energy
consumption, when the static head Hs is considerably
smaller than the frictional head, see, e.g., Casada (1999)
and Hovstadius et al. (2005). Energy savings are possi-
ble also with a high static head component by using
hybrid control proposed by Budris (2008). In hybrid
control, VSD control is combined with a bypass line,
which moves the pump operation point towards higher
efficiency. This requires additional investment but leads
to lower energy consumption and increased pump reli-
ability even though pump rotational speed must be
somewhat increased.

Recently, the reservoir filling process in Fig. 1 was
studied both analytically and experimentally. Bene and
Hős (2012) derived an analytical expression for an
optimal flow rate as a function of static head tominimize
energy consumption in the process. In the derivation,
they made simplifying assumptions about the shape of
system and pump characteristics. Tamminen et al.
(2013) performed an experimental study of reservoir
filling with a VSD-controlled pump. The pump rotation-
al speed was changed in small steps to constantly pump
with minimum specific energy consumption. When the
process time limit is ignored, as in the above studies, the
pumping time can be excessively long. In practice,
finishing pumping within a given time limit can be a

more important objective than low-energy consumption.
In another experimental study (Ahonen et al. 2014), the
pump rotational speed was not changed during
pumping, but the process energy consumption and time
were determined for different fixed rotational speeds.

The time constraint of the reservoir filling process
could easily be taken into account by maintaining a
constant flow rate (Karassik et al. 2008, p. 11.15), but
energy consumption might not then be minimal. This
scheme obviously works well when surface levels do
not change much, but it must be further evaluated in the
case where static head increases a lot.

This paper introduces pumping of a given volume
of fluid between two reservoirs at minimum energy
consumption in a fixed time. The inverter and motor
efficiencies are omitted from the analysis because
they are nearly constant and much higher than the
efficiency of the pump. They can be easily added to
our model. With the calculus of variations, a simple
equation is derived to determine how pump rotation-
al speed should be controlled throughout the pro-
cess. The equation can be used to calculate optimal
operation with model equations or to control
variable-speed driven pumping systems. To help
make the method more comprehensible, we give
examples that compare energy consumption and
time in different control schemes.

Pump and system hydraulics

The delivered pump head (pressure rise divided by
ρg) and consumed power depend on the rotational
speed and flow rate through the pump. According
to the affinity laws, the pump head H at a flow
rate Q and rotational speed n can be obtained with
the help of the reference head curve Hr(Qr), which
is known at another rotational speed nr:

Q
Qr

¼ n
nr

ð1aÞ

H Q; nð Þ
Hr Qrð Þ ¼ n

nr

� �2

ð1bÞ

where the reference speed nr is usually the maximum
rotational speed. The reference head curve is typically a
quadratic function as in Eq. (17).

Fig. 1 Schematics of a pumping process where the surface level
drops in reservoir 1 and rises in reservoir 2 as a function of time
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Pumping power is linked to the operational
point by the equation

P Q; nð Þ ¼ ρgH Q; nð ÞQ
η Q; nð Þ ð2Þ

where η(Q, n) is the pump efficiency. In actual
pumps, the losses, i.e., 1− η, increase when rota-
tional speed is reduced. This can be taken into
account with the following model:

η Q; nð Þ ¼ 1− 1−ηr Qrð Þð Þ nr
n

� �k
ð3Þ

where the constant k depends on the pump type
and takes values greater than 0.1 (Gülich 2003). In
Eq. (3), ηr(Qr) is the pump efficiency curve at the
reference rotational speed nr. Later on, Eq. (18) is
used as the reference curve.

The total head that the pump must overcome can be
divided into a static head Hs, which does not depend on
flow rate, and a frictional head Hf, which does. The
former is the vertical distance between the free surfaces
in Fig. 1, when the reservoirs have the same pressure.
Because industrial piping systems contain bends and
valves, the frictional head can be assumed quadratic:
Hf=KQ

2. The total head is the sum of static and fric-
tional head:

H ¼ Hs þ KQ2 ð4Þ
The operational point of the pump, i.e., flow rate and

head, is determined by the intersection of Eq. (4) and the
pump head-flow rate characteristics, which is obtained
using Eqs. (1a) and (1b). Thus the possible values of
flow rate and head are dictated by the shape of the
system curve. It is easy to show that with a high static
head component in Eq. (4), a small change in rotational
speed can lead to a large change in flow rate.

Pumping power can also be expressed as work dE
done in a short time interval dt as

P ¼ dE
dt

ð5Þ

The time interval dt is related to a corresponding in-
crease in the static head dHs between the reservoirs in
Fig. 1:

dt ¼ dHs

Q
1

A1
þ 1

A2

� � ð6Þ

where A1 and A2 are the free surface areas of the reser-
voirs at a given time.

Optimal rotational speed control in filling a reservoir

The purpose of the pumping process in Fig. 1 is to
increase the static head of the system from Hs,min to
Hs,max. Pumping should be performed with the mini-
mum energy consumption E, while the process time T is
fixed at T 0. Energy consumption is obtained by com-
bining Eqs. (5) and (6) and by integrating pumping
power:

E ¼
Z Hs;max

Hs;min

P
Q

1

A1
þ 1

A2

� �−1

dHs ð7Þ

The pumping time T is obtained from Eq. (6):

T ¼
Z Hs;max

Hs;min

1

Q
1

A1
þ 1

A2

� �−1

dHs ð8Þ

The free surface areas A1 and A2, i.e., the reservoir
cross sectional areas, may vary with static head. This
means that the reservoirs in Fig. 1 may have arbitrary
shapes and sizes.

To meet the objective of minimum energy consump-
tion and satisfy the time limit, pump rotational speed
must be controlled optimally throughout the process
according to the static head. Pump operation is limited
to within the allowable operating region (AOR) shown
as the shaded region in Figs. 2 and 4. The AOR is
defined by the lower and upper limits of the rotational
s p e ed , nm i n ≤ n ≤ nma x , and t h e f l ow r a t e ,
Qmin(n)≤Q≤Qmax(n). The flow rate limits shown are
50 and 130 % of the best efficiency point (BEP) flow
rate of each rotational speed.

When the rotational speed is changed, the operational
point moves along the system curve and the flow rate
changes. We assume that a time delay from the change
of rotational speed to the corresponding change of flow
rate is very short compared to the time of the whole
process. Because of this one-to-one correspondence be-
tween flow rate and rotational speed, we can treat flow
rate rather than rotational speed as the unknown func-
tion, and the problem is reduced to finding the flow rate
as a function of the static head, Q(Hs):

Energy Efficiency (2016) 9:1461–1474 1463



find Q Hsð Þ;Hs;min≤Hs≤Hs;max

to minimize E
subject to T−T 0 ¼ 0;

nmin≤n≤nmax

Qmin nð Þ≤Q≤Qmax nð Þ

ð9Þ

Before solving problem (9), let us look at Fig. 2,
which shows pump head curves at different rotational
speeds and the contours of efficiency. Typical system
characteristics from Eq. (4) with two different static
heads are also shown. At the beginning of pumping,
the static head isHs,min, and the pumping ends at a static
head ofHs,max. The desired fluid volume can be pumped
in various ways by changing the rotational speed within
the AOR. For instance, by following path (a), a small
energy consumption is obviously obtained. In fact, the
pump is initially at rest and is then accelerated smoothly
to point 1 while gradually opening the system valve.
When the process is completed at point 2, the pump is
shut down in a similar manner. We ignore the pump
startup and shutdown phases since they do not greatly
affect the total performance. According to an alternative
path, (b), the flow rate is kept constant. Also here 1 and 2
designate the process start and end. On the other hand, if
the pumping time is minimized, the rotational speed
should be as high as possible, e.g., equal to nmax. In that
case, the process follows the pump QH-characteristic
along path (c). Figure 2 does not show paths in the case
where energy consumption is minimized and the

process time is fixed. This problem will be tackled in
the following.

Solution of minimum energy with fixed time

The energy consumption in Eq. (7) is a functional of the
flow rate; i.e., it depends on flow rate values at every
time instance during the process. Optimization problems
involving functionals can be dealt with the Calculus of
variations, which is an alternative method to Dynamic
programming used by da Costa Bortoni et al. (2008) for
optimal control of parallel pumps. Whereas in Dynamic
programming the solution is broken down into a number
of sub problems, which are solved recursively, the
Calculus of variations may give an analytical solution.
The basic theory of the Calculus of variations, presented
by Smith (1998), is given in Appendix.

Rotational speed and flow rate limits may be active
only over a part of the process and are thus difficult
pointwise constraints of the variational problem. We do
not treat them in the derivation of the control law,
because the control law can be simply ignored if it
attempts to steer the operation outside the limits. The
solution of problem (9) is straightforward without these
limits. The energy consumption E in Eq. (7) corre-
sponds to F in Eq. (25), and the time constraint T � T 0

¼ 0 from Eq. (8) corresponds toG in Eq. (28). Thus the
minimum energy-fixed time operation occurs when (see
Eq. (30)):

d

dQ
P
Q
þ C

Q

� �
1

A1
þ 1

A2

� �−1

−CT0

 !
¼ 0 ð10Þ

Because A1, A2, C, or T 0 do not depend on the flow
rate, Eq. (10) is reduced to the following optimal control
law:

d

dQ
P
Q

� �
Hs¼const:

¼ C
Q2 ð11Þ

where P=Q ¼ dE=dV is the instantaneous specific en-
ergy consumption.

The unknown Euler-Lagrange multiplier C in
Eq. (11) represents the sensitivity of the process energy
consumption to the process time. With C=0, Eq. (11)
gives d(P/Q)/dQ=0, which is the special case of mini-
mum specific energy consumption without a time con-
straint. When the pumping time is fixed to the value T 0,
the Euler-Lagrange multiplier C is unknown and must

Fig. 2 Minimum energy (a), constant flow rate (b), and minimum
time (c) control schemes on a QH-plane
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be found iteratively by running the process several times
both in actual VSD control and in numerical calcula-
tions. The iteration can be performed by minimizing the
difference between realized and desired process times T
�T0 using some optimization algorithm. Care should be
taken not to select too long a time, which might give
C < 0. A good initial guess for C to start optimization
can be obtained from Eq. (16) derived below.

Equation (11) can be applied to VSD control using a
similar algorithm, as did Tamminen et al. (2013), who
had C ¼ 0. The rotational speed is increased or de-
creased in small steps Δn, which are sufficiently large
to change the value of the power given by VSD.
Equations (1), (2) and (3) combined with a known
reference head and efficiency curves give the flow rate,
and the derivative on the left of Eq. (11) can be estimat-
ed as ((P/Q)n +Δn− (P/Q)n)/(Qn +Δn−Qn). If this value
is greater than C/Qn+Δn

2 , the flow rate is too large, and
the rotational speed must be decreased by Δn. In the
opposite case, the flow rate is too small, and the rota-
tional speed should be increased by Δn. However, the
rotational speed limits must be obeyed. Another way to
apply the algorithm is to calculate the optimal rotational
speed as a function of time as shown in BComparison of
control schemes^ and use that in VSD control without
using the QP-method.

Constant flow rate control

Pumping at a constant flow rate is a simple scheme,
which is applicable to the pumping process in Fig. 1, but
its performance has not been proven theoretically. For
example, Karassik et al. (2008), p. 11.15, stated that this
process Bcan have a constant flow .̂ We will show that
this is good advice, and that the constant flow rate
scheme is optimal with respect to energy and time if
efficiency remains constant during the process.

Let us assume again that the pump is operating inside
the AOR, as, e.g., curve (b) in Fig. 2. When the head H
in Eq. (2) is expressed using the system curve in Eq. (4),
the criterion for optimality in Eq. (11) becomes

d

dQ
ρg Hs þ KQ2
� �

η

� �
Hs¼const:

¼ C
Q2 ð12Þ

Assuming that the pump efficiency remains constant
during the process, we can perform differentiation in
Eq. (12) and get

ρg
η
2KQ ¼ C

Q2 ð13Þ

and finally

Q ¼ ηC
2ρgK

� �1=3

ð14Þ

Equation (14) shows that if pump efficiency is constant
and pumping time is fixed (C is fixed), the constant flow
rate scheme yields minimum energy consumption. This
result is valid regardless of the shape of the system curve.
For example, the exponent ofQ in Eq. (4) affects only the
numerical constants in Eq. (14). In practice, Eq. (14) is not
necessary, but a suitable flow rate is obtained from the
volume of fluid V and the time limit T 0 as follows:

Q ¼ V
T0

ð15Þ

A good initial guess for the unknown C in Eq. (11) is
obtained by combining Eqs. (14) and (15):

C ¼ 2ρgK
ηBEP

V
T0

� �3

ð16Þ

where the pump efficiency has been approximated with
ηBEP. The system friction constant K can be estimated
using friction factor formulae when the piping layout
and fluid properties are known. In the numerical calcu-
lations below, we assume that K is known.

Comparison of control schemes

This section presents calculation examples of the
pumping system in Fig. 3, where water (ρ=1000kg/
m3) is pumped from a very large reservoir (A1≈∞) into
a cylindrical tank (A2 ¼ 20m2). Table 1 gives in detail
the system characteristics in four different system
setups, in which the volume of pumped water is the
same V=A2(Hs,max−Hs,min) =240 m3. The constant K
takes into account pipe friction in Eq. (4). The pump’s
rotational speed is controlled according to

1. Minimum energy-fixed time scheme, Eq. (11)
2. Constant flow rate scheme, Eq. (15)
3. Constant rotational speed scheme.

To illustrate the performance of the control schemes,
we present results for different time limits for each
control scheme and system.
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According to Mackay (2004), p. 79, a pump to fill a
reservoir should be selected such that the pump’s BEP is
halfway between the system curves. This minimizes the
departure from the BEP during the process and increases
the pump’s lifetime. Of course, the pump must also be
able to deliver the maximum static head and flow rates
high enough to reach the time limit. In two pumping
systems in Table 1, the pump has been properly selected,
and the static head is relatively small (System 1) or large
(System 2) compared to the frictional head. In Systems 3
and 4, the pump’s BEP does not lie between the system
curves but at smaller and larger flow rates, respectively.

The characteristic head and efficiency curves of a
Sulzer AHLSTAR A32-100 pump used in the examples
are shown in Fig. 4 together with the AOR. The mini-
mum allowed rotational speed is nmin=800 rpm and the
maximum nmax=1400 rpm, which is also used as the
reference speed, nr= nmax. The reference curves are
quadratic fits of the values at the reference speed:

Hr Qrð Þ ¼ a0 þ a1Qr þ a2Q2
r ð17Þ

ηr Qrð Þ ¼ b0 þ b1Qr þ b2Q2
r ð18Þ

where a0=36.26 m, a1=126.7 sm
− 2, a2=−3450 s2m− 5,

b0=0.2010, b1=22.00 sm− 3, and b2=−201.65 s2m− 6.
The pump power as a function of rotational speed and
flow rate is obtained by combining Eqs. (1a), (1b), (2),
(3), (17) and (18):

P ¼ ρg
a0Q n

nr

� �2
þ a1Q2 n

nr

� �
þ a2Q3

1− 1−b0−b1Q
nr
n
−b2 Q

nr
n

� �2� �
nr
n

� �0:154 ð19Þ

Where k=0.154 in Eq. (2) for this pump. In actual speed
control, Eq. (19) should be further divided by the VSD
and motor efficiencies, which can depend on power and
rotational speed. However, in our examples, we assume
that these efficiencies are constant and can be ignored.
Because the pump power is calculated using Eqs. (17)
and (18), which are valid only inside the AOR, Eq. (19)
gives false results outside the AOR (see also (Ulanicki
et al. 2008)).

When the QP-method is applied to an actual pumping
system, the power and rotational speed are obtained
from VSD, and the flow rate is solved from Eq. (19).
On the other hand, in numerical calculations where the
system curve is known, the rotational speed can be
calculated by equating the pump and system heads,
i.e., solving Eqs. (1a), (1b) and (4):

Fig. 3 Process layout in the examples

Table 1 System characteristics of examples

System
Hs;min mð Þ Hs;max mð Þ K s2m�5ð Þ

1 2 14 9000

2 13 25 5000

3 2 14 5000

4 13 25 9000 Fig. 4 Characteristics of the Sulzer AHLSTAR A32-100 centrif-
ugal pump
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nr
n
¼ 1

2

a1Q
Hs− a2−Kð ÞQ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1Qð Þ2

Q2 a2−Kð Þ−Hs
� �2 − 4a0

Q2 a2−Kð Þ−Hs

vuut
0
@

1
A

ð20Þ
The rotational speed can now be eliminated from
Eq. (19).

Minimum energy-fixed time scheme

The problem in applying the minimum energy-fixed
time scheme, i.e., Eq. (11), is that the constant C corre-
sponding to the desired process time is unknown. It can
be found iteratively, as explained below Eq. (11).
During a pumping process with a given C, Eq. (11) is
solved as follows: First, Eq. (20) is inserted in Eq. (19)
so that the pump power becomes a function of the flow
rate only. Then the derivative in Eq. (11) can be
expressed, e.g., by using a central difference scheme:

P=Qð ÞQþΔQ− P=Qð ÞQ−ΔQ

2ΔQ
−
C
Q2 ¼ 0 ð21Þ

whereΔQ is a small increment of the volume flow rate.
We used the value ΔQ=10− 5 m3/s. Optimal flow rates
are solved from Eq. (21) with many different static
heads spaced evenly between Hs,min and Hs,max. The
operation is limited to within the AOR. At the end, the
process time and energy consumption are calculated by
numerically integrating Eqs. (7) and (8) using the cal-
culated flow rates and pump powers. If the process time
is not sufficiently close to the desired value, the process
is repeated using a different value of C, obtained from
the selected optimization algorithm.

To show how the above theory is utilized, we calcu-
lated optimal pump operation with three time limits in
each system. The time limits in these example processes,
labeled P11 to P43, are given in Table 2. The calculation
results are commented on below.

Let us first look at process P11, where we have set C
¼ 0 to obtain the minimum energy process without a
time limit. Because C is given, no iteration is needed,
and the process time is not known in advance. Equation
(21) is solved with sufficiently many static heads to get a
good resolution of how the operation point (Q, H)
changes during the process. In Fig. 5, this process starts
from the lower system curve and follows the lower
rotational speed limit (nmin =800 rpm) until the static
head is equal toHs=H−KQ2 =9.68 m and the flow rate
Q=0.0167m3/s (see also Fig. 2). After that, both the

rotational speed and flow rate start to increase. Figure 6
shows the corresponding rotational speed as a function
of static head. The minimum energy consumption is
42.9 MJ, and the pumping time is equal to 11,168 s.
Without a time limit, the minimum energy process re-
quires a very long time. When the process time is fixed
at 9000 and 6000 s, the corresponding minimum
pumping energy is obtained by following paths P12
and P13 in Figs. 5 and 6.

The minimum energy consumption as a function of
the time limit is shown in Fig. 7. The results in Table 2
were selected for illustration and are found in the curves
of Fig. 7. Figure 7 also shows the results of the other
control schemes, which are explained below. Energy
consumption and time are obviously conflicting criteria,
since the minimum attainable energy consumption in-
creases when the time limit is shortened. In short, min-
imum time corresponds to maximum energy consump-
tion and vice versa.

The minimum energy scheme without a time limit
(C ¼ 0) may not be the best in practice, because the
time to complete the pumping may be long. The Euler-
Lagrange multiplier C=0 of this scheme indicates that
when the time available is somewhat shortened, energy
consumption does not increase significantly. For exam-
ple, in System 1 it is possible to select process P12
instead of P11 and shorten the process time by 15 %
with only a 6 % increase in energy consumption. This
effect is pronounced in systems 2 and 4, where the static
head is large.

Table 2 Minimum energy consumption of processes in Fig. 5
with fixed time T0

System Process T0 (s) E (MJ) C (W)

1 P11 11,168 42.9 0

P12 9000 45.7 2973

P13 6000 67.0 13,495

2 P21 8000 75.6 931

P22 6000 81.6 5988

P23 5000 90.5 12,919

3 P31 8000 39.1 1721

P32 5000 58.7 14,163

P33 4000 78.8 28,085

4 P41 9000 86.6 1716

P42 6000 103.4 13,422

P43 5000 (5694) 108.4 26,913
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Fig. 5 Process paths for
minimum energy consumption
with fixed time

Fig. 6 Rotational speed as a
function of static head for the
processes in Fig. 5
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It can be seen in Fig. 6 that in some cases the pump is
operated most of the time at either the lower or the upper
rotational speed limit. In process P43 of System 4, the
fixed process time limit equal to 5000 s is too short and
cannot be reached even though the pump operates at its
maximum speed throughout the process. The actual
pumping time is given in parentheses in Table 2.

The constants for System 1 and System 2 in Table 1
were selected so that the minimum time processes have
the same energy consumption. Figure 7 shows that in
System 1, where the frictional head predominates, rota-
tional speed control can even halve energy consumption
compared to a pump running at maximum speed.
However, in System 2, where the static head is larger
than the frictional head, energy consumption is less
reduced. The same applies to systems 3 and 4. In
System 3, energy consumption can be considerably
reduced by using speed control but not in System 4.

Constant flow rate and constant rotational speed
schemes

The constant flow rate scheme suggested by Karassik
et al. 2008, p. 11.15 is attractive because the required
flow rate is given by Eq. (15). We show here that this
scheme is also energy efficient. Because the flow rate
must be constant and operation must remain within the
AOR, the choice of flow rates may be limited. For

example, in System 4 the admissible flow rates are
within a narrow band, as shown in Fig. 8.

The energy consumption and time were calculated
from Eqs. (7) and (8) for the processes in Fig. 8. These
processes are controlled as curve (b) is controlled in
Fig. 2. The circles in Fig. 7 give the energy consumption
and time of the processes such that the leftmost circle
corresponds to the rightmost line in Fig. 8. The constant
flow rate control gives practically the same energy con-
sumption as the minimum energy-fixed time scheme.
The reason is that the pump efficiency changes only
slightly in the example processes, which, according to
Eqs. (12)–(14) makes the process paths of the minimum
energy-fixed time scheme almost vertical on the QH-
plane.

Tamminen et al. (2014) studied pumping experimen-
tally at a constant rotational speed in a reservoir
pumping process. As with the above constant flow rate
scheme, the AOR limits the choice of rotational speeds,
as is shown in Fig. 9. Especially System 4 has only a
small range of feasible rotational speeds. This is the
simplest type of Bcontrol^, but it is not efficient; the
energy consumption shown in Fig. 7 is higher than in
the two other schemes. The crosses in Fig. 7 are obtain-
ed using the constant rotational speeds in Fig. 9. Each of
these processes is controlled as curve (c) is controlled in
Fig. 2. At the maximum rotational speed, this scheme
gives the same result as the minimum energy-fixed time
scheme. The difference in energy consumption grows
when the time limit becomes less strict and the rotational
speed slower.

Effect of speed control on pump reliability

Figure 7 shows that the way in which the pump’s
rotational speed is controlled has only a moderate effect
on its energy consumption. For this reason we consid-
ered also pump reliability, which is often a more impor-
tant objective than low energy consumption. Sudden
pump failures can cause shut-downs of large facilities
with costs exceeding those of pump operation. Pump
reliability depends on several operating conditions, the
most important being rotational speed, flow rate, and
suction conditions. Because the selected pump has a low
suction energy, we ignore the effect of suction condi-
tions in this analysis.

To increase the pump’s lifetime, operating far from
the BEP or at a high rotational speed is to be avoided. To
quantify these effects, Bloch and Budris (2010), Ch. 5,

Fig. 7 Energy consumption as a function of process time in
different control schemes
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Fig. 8 Process paths on QH-
plane with constant flow rate
scheme

Fig. 9 Processes with different
rotational speeds on QH-plane in
constant rotational speed scheme
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analyzed the data from 119 actual pumps and deter-
mined how deviations from the maximum allowed
speed and BEP flow rate affect pump reliability.
Reliability calculations based on their data are only
approximate, because pump types and other conditions
may not correspond to those in the Bloch and Budris
data set. However, we think that their data allows for at
least a qualitative comparison of the reliability of the
control schemes of this paper.

We have correlated the data of Bloch and Budris
(2010) for the reliability factors of speed Rn and flow
rate RQ as

Rn ¼ 1:16−0:75
n

nmax
ð22aÞ

RQ ¼ 1−4:53
Q

QBEP;n
−0:89

 !2

ð22bÞ

where QBEP,n=QBEPn/nmax is the BEP flow rate at a
rotational speed n, and where QBEP=0.0545m

3/s is the
BEP flow rate at nmax. A mean speed reliability factor is
calculated as a time average of Eq. (22a) over the
process

Rn;mean ¼ 1

T

Z T

0
Rndt ð23Þ

where dt is obtained from Eq. (6) and T from Eq. (8).
RQ,mean is defined with RQ in a similar way as Rn,mean in
Eq. (23). The total reliability factor is the product of the
mean reliability factors:

Rtot ¼ Rn;meanRQ;mean ð24Þ
The total reliability factor can be used to compare the

relative lifetime of a given pump under different control
schemes, but not to make any conclusions about the
actual pump’s lifetime. A large value of Rtot corresponds
to good reliability. For example, if Rtot with control
scheme 1 is 5 % higher than with control scheme 2,
the mean time to the next failure is expected to be 5 %
longer in scheme 1.

Figure 10 presents total reliability factors for all the
studied processes. The constant rotational speed scheme
has the lowest possible rotational speed that can be used
to achieve a given time limit, and thus the speed reli-
ability factors are high. However, the operational point
is on average far fromQBEP,n as shown in Fig. 9, and the
flow rate reliability factors are low. As a result, the total

reliability factor is the lowest of the three schemes. The
pump operates near its minimum and maximum flow
rates, especially when the fixed time is long. The energy
consumption of this scheme in System 3 was up to 8 %
higher than in the minimum energy-fixed time scheme,
and the reliability was worse as much as 15 %. Since
both energy consumption and reliability affect the life-
time costs, this scheme should be avoided.

The constant flow rate scheme has as low energy
consumption and good reliability as the minimum
energy-fixed time scheme. This scheme should be used
whenever it is possible to have a constant flow rate
throughout the process without operating outside the
AOR. Unfortunately, the AOR considerably limits the
range of feasible flow rates, especially when the system
curve is very steep, see Fig. 8.

When a very short process time or very low energy
consumption is required or the rise in static head is large,
operation along some edges of the AOR might be nec-
essary. For example, optimal operation might first fol-
low the lower rotational speed limit and then go inside
the AOR, or operation might start inside the AOR and
reach the maximum allowed rotational speed before the
end of pumping. Iteration is certainly necessary to find
the optimal path for the operational point. Since the
constant flow rate scheme cannot be used in this case,
the minimum energy-fixed time scheme should be used
instead.

Every control scheme has its reliability maximum at
a certain process time. In systems 2 and 4, where the
static head is large, the best reliability occurs near the
minimum time solution, where the rotational speed is
the highest and the flow rate is near the BEP flow. This
shows that flow rate has a much greater impact on
reliability than rotational speed. In systems 1 and 3,
the best reliability is obtained with a low rotational
speed and long process time, since reduced rotational
speed does not lead to operation far from BEP flow
rates. Thus when static head is small, VSD control can
decrease energy consumption and at the same time
increase the pump’s reliability.

Conclusions

Filling or emptying a reservoir or tank is a typical
pumping process in various industries. Pump head in-
creases during the process and also changes flow rate.
Using the calculus of variations, we derived an optimal
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control law (Eq. (11)) for pump rotational speed or flow
rate when a given amount of fluid must be pumped at
minimum energy consumption while the process time is
fixed. This result is new because earlier papers in the
literature have discussed only cases with no time limit
for pumping. The new minimum energy-fixed time
scheme can be easily implemented in a VSD control
system, and it can be extended to optimize the operation
of unequal parallel pumps when combined pump-group
characteristics are used (Lindstedt and Karvinen 2015).

If pump efficiency remains almost unchanged during
the pumping process, constant flow rate control gives
minimum energy consumption with a fixed process time
and guarantees high pump reliability. Such a control
scheme has been suggested in the literature, but now it
has been verified. However, the range of permissible
constant flow rates may be narrow because the pump
must operate within the minimum and maximum flow
rates and the rotational speeds recommended by the
pump manufacturer.

Our example calculations show that process time can
be very long if energy consumption is minimized with-
out a time limit. In this case, the pump operates at low
flow rates and its efficiency is low. By setting a

reasonable time limit, the process time can be shortened
significantly with only a small increase in energy con-
sumption. This also improves the pump’s reliability
because its flow rate is then closer to that at its highest
efficiency.

The highest pump reliability occurs at low rotational
speeds and at high pump efficiencies. When the static
head component in the system is small, VSD control can
help retain high pump efficiency during the process. Our
calculations show that in this case also the pump’s
reliability remains high. However, with a large amount
of static head in the system, maximum pump reliability
occurs when the pump is operated near its maximum
allowed speed, where energy consumption is at its max-
imum. In this case, application of VSD control is not
justified.

a, Nomenclatureb, Coefficients in Eqs. (17)–(18); A1,
A2, Free surface areas, m2; AOR, Allowable operating
region, see Figs. 2 and 4; VSD, Variable-speed drive;
BEP, Best efficiency point; C, Euler-Lagrange multipli-
er; E, Energy consumption of pumping process, Eq. (7),
J; g, Gravitational acceleration, 9:81m2=s; H , Total
head, Eqs. (1b) and (4), m; Hf, Frictional head, m; Hs,
Static head, m; Hs,min, Static head at the beginning of

Fig. 10 Total reliability factors
for minimum energy-fixed time
(−), constant flow rate (o) and
constant rotational speed (+)
schemes
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process, m;Hs,max Static head at the end of process, m; k
Constant in Eq. (3), here k= 0.154; K Constant in
Eq. (4), s2=m5; n, Rotational speed, rpm; P, Pump
power, Eqs. (2) and (5), W; Q, Flow rate, m3=s;
QBEP,n, BEP flow rate at rotational speed n, m3=s; Rtot,
Total reliability factor, Eq. (24); t, Time, s; T, Time of
pumping process, Eq. (8), s; T0, Target time for pumping
process, s; V Volume of fluid pumped, m3; Greek
Letters; ρ, Density of fluid, kg=m3; η Pump efficiency,
Eq. (3); Subscripts; r Values at reference curve

Acknowledgments This work was carried out in the Efficient
Energy Use (EFEU) research program coordinated by CLEEN
Ltd. with funding from the Finnish Funding Agency for Technol-
ogy and Innovation, Tekes.

Appendix

Calculus of variations

The following theory can be found, e.g., in chapters 1–3
in (Smith 1998).

Consider a functional F yð Þ defined as a definite
integral:

F yð Þ ¼
Z b

a
f y xð Þð Þdx ð25Þ

where f is some known function. We seek to find the
unknown function y(x) in the interval a≤ x≤b to mini-
mize F(y). Henceforth, we denote y(x) by y.

The variation of the functional F yð Þ is defined as

δF y;Δyð Þ ¼ lim
ϵ→0

F yþ ϵΔyð Þ−F yð Þ
ϵ

ð26Þ

whereΔy is an arbitrary function in the interval a≤ x≤b.
The minimum of F(y) occurs when the variation is
δF(y;Δy) = 0 for every function Δy. By inserting
Eq. (25) into Eq. (26) and changing the order of limit
and integral, we get

δF y;Δyð Þ ¼
Z b

a
lim
ϵ→0

f yþ ϵΔyð Þ− f yð Þ
ϵ

dx ¼
Z b

a

d f
dy

Δydx ð27Þ

Since Eq. (27) must be zero for every Δy, we
specifically choose Δy=df/dy, and the integrand be-
comes (df/dy)2. The integral of this non-negative func-
tion is zero only if df/dy=0, which is the condition for
a minimum of F(y).

Now consider the minimization of F(y) subject to the
constraint

G yð Þ ¼
Z b

a
g y xð Þð Þdx−G0 ¼ 0 ð28Þ

where G0 is some constant. The necessary condition for
y to be a minimum is that there is a Euler-Lagrange
multiplier C such that

δF y;Δyð Þ þ CδG y;Δyð Þ ¼ 0 ð29Þ
for everyΔy. We insert Eqs. (25) and (28) into Eq. (29)
and continue as with Eq. (27) above, which finally gives

d f
dy

þ C
dg
dy

¼ 0 ð30Þ

The constrained problem is solved by finding a func-
tion y and constant C such that Eqs. (28) and (30) hold.
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