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Abstract Nonintrusive load monitoring (NILM),
sometimes referred to as load disaggregation, is the
process of determining what loads or appliances are
running in a house from analysis of the power signal
of the whole-house power meter. As the popularity of
NILM grows, we find that there is no consistent way
the researchers are measuring and reporting accura-
cies. In this short communication, we present a unified
approach that would allow for consistent accuracy
testing.
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Introduction

Nonintrusive (appliance) load monitoring (NILM or

NIALM) is the process of determining what loads or
appliances are running in a house from analyzing the
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power signal of the whole-house power meter. NILM,
which is sometimes called load disaggregation, can be
used in systems to inform the occupants about how
energy is used within a home without the need of pur-
chasing additional power monitoring sensors. Once
the occupants are informed about what appliances are
running, and how much power these appliances con-
sume, they can then make informed decisions about
conserving power, whether motivated by economic or
ecologic concerns (or both).

A review of NILM algorithms and research has led
us and others (Kim et al. 2010; Zeifman and Roth
2011; Makonin 2014) to the conclusion that there
is no consistent way to measure performance accu-
racy. Although some researchers still use the most
basic forms of accuracy measure, there has been dis-
cussion concerning more sophisticated measurements.
The most basic accuracy measure used by a majority
of NILM researchers (e.g., Chang et al. 2010; Tsai and
Lin 2012; Makonin et al. 2013) is defined as

correct matches correct

correct + incorrect’

)]

c.= -
total possible matches

Kim et al. (2010) point out that accuracy results
are “very skewed because using an appliance is a rel-
atively rare event .... appliances [that] are off will
achieve high accuracy” (Table 1). Better accuracy per-
formance measures must be considered. Expanding
on our previous work (Makonin 2014), we present a
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Table 1 Basic accuracy measures

Load Acc (%) TP Inacc APT ITP TN FP FN

Overall score 97.28 86,398 78.44 82,280 4111 474,850 9108 6610
Basement 96.34 5590 0.00 4710 879 44,942 947 973
Clothes dryer 99.35 647 0.10 647 0 51,461 43 300
Clothes washer 97.88 76 2.50 19 57 51,265 130 980
Dishwasher 98.80 863 4.52 845 17 50,959 335 294
Kitchen fridge 88.23 17,429 12.97 17,388 41 28,847 4587 1588
HVAC/furnace 99.90 52,376 35.67 50,893 1482 25 36 15
Garage 99.93 0 0.00 0 0 52,413 7 31
Heat pump 99.70 4622 22.27 4395 226 47,672 51 107
Home office 94.68 492 0.00 487 4 49,171 1173 1615
Ent/TV/DVD 95.43 4188 0.00 2782 1405 45,866 1762 636
Wall oven 99.79 115 042 114 0 52,229 37 71

unified approach that would allow for consistent accu-
racy testing amongst NILM and load disaggregation
researchers.

The rest of our short communication is organized
as follows. We first define data noise (Section Data
noise), then discuss strategies using ground truth
(Section Ground truth and bias). Next, we focus on
classification accuracy testing (Section Classification
accuracy) and estimation testing (Section Estimation
accuracy). We end the discussion with a look at why
researchers need to report accuracies with respect to
both the overall performance and appliance-specific
performance (Section Overall and appliance-specific
accuracies). Finally, we demonstrate some of the
issues that we discussed previously by examining
the results from an experiment (Section Experiment
example).

Data noise

Data noise can be understood as unexpected or unac-
counted for anomalies that can appear in the stream
of data that an algorithm analyzes. Noise can take a
number of forms when looking at disaggregation.
There can be readings that are missing, leaving gaps
in a time series of data. There can be data streams that
have timestamps that are out of sync. There can be cor-
rupted data where data measurements within the read-
ing are missing or measured wrongly due to sensor
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miscalculation or malfunction. Aside from miscalcu-
lation or malfunction, data can contain Gaussian noise
due to small fluctuations in sensor/ADC (analog-to-
digital converter) precision and the consumption of
power by an appliance. Specifically for disaggrega-
tion, noise can be unmetered appliances that create
large unexpected patterns of energy consumption. For
our purpose, we define noise as the amount of power
remaining in the observed aggregate power reading
once the disaggregated appliance power readings (in
ground truth) have been subtracted. Mathematically,
defined as

M
noise = y, — Y _ 3™, @)
m=1

where y; is the total ground truth or observed value at
time 7, M is the number of appliances, and yt('") is the
ground truth power consumed at time ¢ for appliance
m.

Ground truth and bias

NILM researchers need to describe in detail the data
they are using to build models, train, and test their
NILM algorithms. If researchers are using data from
publicly available datasets such as REDD (Kolter and
Johnson 2011) or AMPds (Makonin et al. 2013), they
need to discuss the method used to clean the data. For
instance, discussing how they dealt with incomplete
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or erroneous data and with different meters having
different sample rates.

There also needs to be a clear statement on whether
the testing included noise or was denoised. In denoised
data, the whole-house power reading is equal to the
summation of all appliance power readings—which
we often refer to as the unmetered load or appliance.
Using denoised data for testing will cause higher accu-
racies to be reported. Denoised data does not reflect
a real-world application because there would be a
significant amount of noise due to unmetered loads
running in the home. Furthermore, what needs to be
reported is the percentage of noise in each test. This
percent-noisy measure (%-NM) would be calculated
on the ground truth data as such:

T M
Zt:l |yt B Zm:lyt(m)|
T )
Zt=1})l

where y; is the aggregate observed current/power
amount at time ¢ and y,(m) is the ground truth cur-
rent/power amount for each appliance m to be disag-
gregated. For example, a denoised test would result in
0 %, whereas a %-NM of 0.40 would mean that 40 %
of the aggregate observed current/power for the whole
test was noise.

Finally, researchers should use standard methods to
minimize any effects of bias. Bias occurs when some
data used for training is also used for testing, and when
present, results in the reporting of higher accuracies.
A well-accepted method used by the data mining com-
munity to avoid bias is 10-fold cross-validation (Liu
and Motoda 1998, pp. 109). This simple method splits
the ground truth data into ten subsets of size {5. NILM
algorithms can then be trained on nine of the subsets,
and accuracy testing is performed on the excluded sub-
set. This is repeated ten times (each time a different
subset is used for testing) and the mean accuracy is
then calculated and reported.

% — NM = A3)

Classification accuracy

Researchers need to measure how accurately NILM
algorithms can predict what appliance is running in
each state. Classification accuracy measures, such as
f-score (ak.a. f-measure), are well suited for this
task. F-score, often used in information retrieval and

text/document classification, has also been used by
NILM researchers (Figueiredo et al. 2012; Berges
et al. 2010; Kim et al. 2010). It is the harmonic mean
of precision and recall:

precision-recall

Fr=2 — ,
precision + recall
.. p tp
precision = ————, recall = ———,
tp+ fp tp+ fn

where precision is the positive predictive values and
recall is the true positive rate or sensitivity, tp is
true-positives (correctly predicted that the appliance
was ON), fp is false-positives (predicted appliance
was ON but was OFF), and fn is false-negatives
(appliance was ON but was predicted OFF). Note
these measures (¢p, fp, fn) are accumulations over a
given experimental time period. However, f-score is
generally used for binary classification purposes.

Kim et al. (2010) showed how f-score could be
modified to account for non-binary outcomes, such
as a power signal (we call M-fscore). Their approach
combined appliance state classification and power
estimation accuracies together even though in many
instances classification and estimation are two distinct
functions of NILM algorithms. Combining classifica-
tion and estimation hides important diagnostic infor-
mation as to what parts of NILM algorithms have low
accuracy. Furthermore, functions, such as classifica-
tion and estimation, require a specific type of accuracy
measure that is suited for measuring their perfor-
mance. Matching function with accuracy measure
provides more detailed diagnostic and performance
information.

To calculate the accuracies of non-binary classifi-
cations, we now define finite-state f-score (FS-fscore).
We introduce a partial penalization measure called
inaccurate portion of true-positives (inacc) which
converts the binary nature of ¢p into a discrete mea-
sure. The inacc of a given experimental test is
. T |)2[(m) _ xz(M)|
inacc = ; —xm 4@

where £ is the estimated state from appliance m at
(m)

time ¢, x,"" is the ground truth state, and K is the
number of states for appliance m. In other words, we
penalize based on the distance (or difference) of the
estimated state and the ground truth state. Precision
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and recall can now be redefined to account for these
partial penalizations:

o tp —inacc
precision = ——— and recall =
p+fp

tp —inacc

tp+ fn ®

The definition of f-score remains the same. A sum-
mation over all appliances M for each tp, inacc, fp,
and fn (including a recalculation of precision, recall,
and f-score) would allow for the overall classification
accuracy of the experimental test to be reported.

Estimation accuracy

Accuracies based on power estimation also need to be
reported to show how accurately the NILM algorithm
can estimate how much power is being consumed
compared to actual consumption. This is important
because systems that use NILM need to report to
the occupants what portion of the power bill can be
attributed to each appliance. Additionally, when deal-
ing with time-of-use billing (charging more per kWh
at peak times), occupants need to know how much
might have been saved if certain appliances (e.g., a
clothes dryer) were not used during the peak period.
There are different accuracy measures that have
been used to compare consumption estimation.
Parson et al. (2012) has used root mean square error
(RMSE) for reporting estimation accuracy. However,
these measures are not normalized, and it is hard to
compare how the disaggregation of one appliance per-
formed over another. This becomes a bigger problem
when you try to compare an appliance that consumes
a large amount of power (e.g., heating) versus an
appliance that consumes very little power (fridge).
Normalized disaggregation error (NDE) (Kolter
and Jaakkola 2012; Parson et al. 2012; Dong et al.
2013) has also been used to measure the estima-
tion accuracy of an appliance. With this measure, we
would subtract the summation of all 7 estimations by
the summation of all 7' ground truths. However, sub-
tracting the summations would tend to report inflated
accuracies because it is possible for errors to cancel
each other out. For example, suppose we had an esti-
mation of 2A and a ground truth of OA at time #; and
an estimation of OA and a ground truth of 2A at time
t>, the NDE would be 0 % when in fact 100 % would
be the correct error score. Kolter and Johnson (2011)

@ Springer

and Johnson and Willsky (2013) estimation accuracy
measure calculates the correct value of 0 % accu-
rate (or 100 % error). We have chosen this estimation
accuracy method to use and is defined as

T M a(m) (m)
> =1 Zm:l'%m _ytm |

Est. Acc.=1—
T M (m)
2. Zt:l Zm:l ytm

(6)

where T is the time sequence or number of disaggre-
gated readings, M as the number of appliances, "
is the estimated power consumed at time ¢ for appli-
ance m, and y™ is th d truth

, v, is the ground truth power consumed
at time ¢ for appliance m. This method allows for over-
all estimation accuracy reporting. By eliminating the
summations over M, we can then report estimation

accuracy for each appliance

T |~
XL =™

Est. Acc."™ =1
T
2.2 "

)

Overall and appliance-specific accuracies

Both classification accuracy and estimation accuracy
need to be reported in overall scores and appliance
specific scores. Reporting how each appliance scores
is important for identifying strengths and weaknesses
of different NILM algorithms. With this more detailed
accuracy information, one could imagine a system that
would select different algorithms depending on the
context (including specific history) of the disaggrega-
tion task. It is important also to keep in mind when
reporting accuracies the result needs to be normalized.
Normalized results allow the readers to understand the
relative standings from one appliance to another and
from each appliance to the overall accuracy. Finally,
although more detailed information has its advantages,
reporting specific scores for appliance states is not
necessary because different makes/models of appli-
ances will have a different number of states at different
power levels.

Experiment example
We investigated how basic accuracy can be mislead-

ing by reporting high confidence numbers that do
not accurately reflect inaccuracies in predicting rare
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Table 2 Classification and estimation accuracy results

Load F-Score (%) M-fscore (%) FS-fscore (%) RMSE NDE (%) Est Acc (%)
Overall Score 91.66 87.30 91.58 4.9293 1.18 91.87
Basement 85.34 71.92 85.34 0.4134 6.86 83.06
Clothes Dryer 79.05 79.05 79.03 0.5750 5.79 96.17
Clothes Washer 12.05 3.01 11.65 0.4041 79.60 46.89
Dishwasher 73.29 71.82 7291 0.5459 22.68 76.06
Kitchen Fridge 84.95 84.75 84.89 0.4480 12.75 82.57
HVAC/Furnace 99.95 97.12 99.88 0.2127 243 98.40
Garage 0.00 0.00 0.00 0.1102 92.14 46.17
Heat Pump 98.32 93.51 97.85 0.9178 0.50 97.05
Home Office 26.09 25.83 26.09 0.2501 24.32 34.53
Ent/TV/DVD 77.75 51.65 77.75 0.3018 9.02 68.55
Wall Oven 68.05 67.86 67.80 0.7503 6.03 75.67

events (Supplementary data). This would be the case
for most loads that are sporadically used. We also
show why modified f-score, which combines clas-
sification and estimation, is not a detailed enough
measure. We used the more detailed AMPds (Makonin
et al. 2013) rather than REDD (Kolter and Johnson
2011) to illustrate the issues with these different mea-
surements, using our own NILM algorithm (Makonin
et al. 2014). Current draw (I) values were rounded up
to the nearest whole-Ampere and tenfold cross vali-
dation was used on the entire one year of data. The
whole-house current draw measurement was denoised
so that it equalled the summation of the current draw
from the 11 loads chosen for disaggregation (a %-
NM of 0.00). The classification and estimation results
are listed in Table 2. We have also provided other
basic measures in Table 1. Additionally, we include
true-negatives tn counts, and the accurate/inaccurate
true-positives (atp and itp) using in M-fscore, where
atp + itp = 1 and can be seen as assigning par-
tial accuracy and avoiding the binary nature of the
true-positive #p score.

In all cases, basic accuracy scores far better than
FS-fscore. This is most noted for the garage results.
The inacc results show partial penalization, and this
is apparent when comparing f-score with FS-fscore.
When we examine M-fscore, we see that it scores less
than either f-score and FS-fscore, but it is hard to
understand why. When examining the RMSE scores,
it is hard to compare how appliances performed to
each other or to the overall results as this score is not
normalized. When comparing NDE with estimation

accuracy, we see in most instances NDE scores better.
This is most apparent in the ent/tv/dvd load. Overall,
the FS-fscore and estimation of our test scores high,
but this masks the fact some loads (clothes washer,
garage, and home office) did not score well. Further-
more, the home office and garage results shows there
can be a higher score for estimation but a lower clas-
sification score, and the ent/tv/dvd results show there
can be a higher score for classification and a lower
score for estimation.

Conclusion

We presented a unified approach that allows for con-
sistent accuracy testing amongst NILM researchers.
Our approach takes into account the classifica-
tion performance and estimation performance—not
one or the other. Additionally, we include perfor-
mance reporting at both the overall level and an
appliance level. This evaluation strategy has been
incorporated into our research, and we look for-
ward to continue the discussion and refinement of
this framework as other NILM researchers con-
tinue to address the issue of inconsistent accuracy
reporting.
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