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Abstract Sub-hourly electricity consumption data is
being routinely collected from non-domestic buildings
in European countries, yet there is little published guid-
ance on how to analyse this data. A new analysis tech-
nique is described that produces electricity load profile
indicators to help identify potential electricity savings
from 81 municipal buildings of six different types: com-
mercial and public offices, libraries and museums, sport
centres, schools, community centres and care homes/
hostels. This approach is different from conventional
energy management analysis techniques since it uses
total electricity consumption data in half-hourly periods
rather than annual or monthly data. The analysis enabled
the detection of buildings with consumption profiles that
differ significantly from the typical profile for that build-
ing type. This provided a systematic and rapid proce-
dure to identify potential energy saving opportunities in
multiple buildings. The new approach introduces a stan-
dard statistical technique, independent of energy man-
ager judgement, to help identify energy saving opportu-
nities in buildings.
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Introduction

Policy

It is estimated that 30 to 40 % of worldwide energy
consumption occurs in buildings and that this figure is
increasing (United Nations Environment Programme
2007). Since buildings often last over 100 years, the
importance of reducing the energy demand of the existing
building stock should play a key part in the strategy to
mitigate the impacts of climate change in the medium and
long term. Buildings account for approximately 36 % of
the EU emissions (Official Journal of the European Union
2012) and therefore represent a significant opportunity for
targeting emission reductions. EU energy policy recog-
nises the importance of smart meters in the reduction of
building energy consumption. In fact, the European Par-
liament in the resolution Towards a new Energy Strategy
for Europe 2011–2020, (European Parliament 2010), sug-
gest a policy goal for Member States to achieving at least
80% of consumers equippedwith smart metering systems
by 2020. The Energy Efficiency Directive (OJEU 2012)
and the recast of the Energy Performance in Building
Directive (Official Journal of the European Union
European Parliament and the European Council 2010)
both address the need to promote the use of energy
metering and monitoring to assess buildings' performance
and induce energy savings. The EU Energy Efficiency
Directive in its article 8 goes even further and clearly
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states the need to roll out smart metering to all energy
users. It says that final customers should have access to
indicators of energy cost and consumption and utilities
should be able to bill individual users in regular intervals,
based on actual consumption.

Energy data

The availability of sub-hourly energy metering, in particu-
lar for electricity consumption, can have a very positive
impact on the promotion of more efficient energy use in
buildings. However, in order to achieve its full potential,
there is a need to improve data management and data
analysis methods. As more energy consumption data be-
comes available, it will be important to have “automatic”
tools to quickly analyse large quantities of data. These
tools need to be able to rapidly identify uncommon char-
acteristics in building energy consumption patterns that
may be indicative of potential savings. The analysis of
energy consumption time series data based on annual and
monthly periods is a well-established procedure (Fels
1986; MacDonald and Wasserman 1989; Haberl et al.
1996; Harris 1999; American Society of Heating, Refrig-
erating and Air-Conditioning Engineers ASHRAE 2001;
Lee 2008); however, techniques to analyse half-hourly
energy data are still in their infancy. Previous research on
the analysis of building energy consumption data in hourly
or smaller intervals has tended to focus on manual and
automatic diagnostic techniques applied to Building Ener-
gy Management Systems (BEMS) data (Liu et al. 1997;
Claridge et al. 1999; Pakanen and Sundquist 2003; Piette
et al. 2001). This has also included the visualisation of time
series data, a relatively well-researched area (Ferreira
2009). These techniques have been applied successfully
to the analysis of sub-hourly data; however, they can
often be compromised by the subjective interpretation of
the analyst. Automated diagnostics tend to be applied to
data generated by BEMS, rather than metered energy
data, because they collect energy, temperature, lighting,
ventilating and air conditioning data. However, the
amount of data is often overwhelming and it is difficult
for the user to know which data are significant. Auto-
mated diagnostics systems using fewer data inputs are
therefore required (Katipamula and Brambley 2005).

European projects

The EU Intelligent Energy Europe projects have been
testing the use of sub-hourly energy data from primary

meters (i.e. total consumption) of non-domestic buildings
and businesses. The ENERinTOWN (Ferreira et al.
2008) and Intelligent Metering (Webber et al.
2007) projects dealt specifically with municipal
buildings. In the first, different types of meters and
communication systems were used to collect electricity
and gas consumption data from around 77 buildings
from 32 municipalities in Europe. Data was analysed
using visual analysis techniques (such as bar charts,
graphs and contour plots) available in specialised mon-
itoring software and spreadsheets packages. The con-
clusion was that significant savings, up as much as
50 %, could be achieved through the use of sub-hourly
electricity and gas consumption from the municipal
building’s primary meter. The main energy efficiency
measures implemented were related to the reduction of
equipment and lighting being used during non-occupied
periods and from improved time and temperature con-
trol settings. The training of energy managers and infor-
mation campaigns towards building occupants’ using
collected data contributed to the high level of savings
achieved. The Intelligent Metering project looked at
data from 70 municipal buildings in four countries,
and arrived at similar conclusions. Significant savings
were possible using the smart metering, analysing data,
discussing results with the building manager and occu-
pants in order to agree on corrective energy efficiency
measures. A pilot study conducted by the UK Car-
bon Trust on the use of sub-hourly data from smart
metering systems from SMEs concluded that it was
possible to identify about 12 % of carbon savings
through the use of energy metering and monitoring
systems (HMSO 2007). The aIM4SME project,
which conducted a study in about 75 SMEs in
Europe, concluded that the applications of the smart
metering systems were as follows: reduction in over-
night and weekend consumption, reduction in daily
peak consumption, very early identification of faults
that caused excessive consumption and quantification
of savings arising from investment in new plant and
equipment (Webber et al. 2011). All the above results
were attained using sub-hourly energy data from pri-
mary meters analysed using conventional software
packages equipped with simple visualisation tech-
niques. In all the above projects, a relatively small
number of facilities (typically less than 100) were
analysed since it is relatively time consuming to
visual inspect bar charts, graphs and contour plots
of each building’s sub-hourly data.
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New technique

The new technique described in this paper takes at least
1 year’s half-hourly data for different classifications of
buildings and rapidly produces a series of load profile
indicators from which energy managers can then iden-
tify buildings where there are potential energy savings.
The introduction of such an automated approach to
primary meter data analysis could improve the cost-
effectiveness of the smart metering systems, by quickly
providing the information on which energy managers
can compare and benchmark the consumption profiles,
and promptly detect energy saving opportunities. This
would also enable an assessment of the potential for
energy saving that is independent of the analyst’s expe-
rience, using readily available accurate energy con-
sumption data. Data analysed were total electricity con-
sumption collected directly from the primary meter ev-
ery half hour. The data are collected using a proprietary
system, which combines hardware for collecting the
metered data and a software package for processing
data. This system is described in the Energy Efficiency
Best Practice Programme—General Information Leaflet
49 (HMSO 1996). The system is similar to what has
been generalised as Automatic Meter Reading (AMR)
(Vasconcelos 2008). Leicester’s approach is described
in more detail in Ferreira et al. (2007) and a detailed
technical presentation is available in Brown and Wright
(2008).

This paper contributes to the debate on automated
building diagnostic tools by presenting the results of the
analysis of half-hourly electricity data from over 80
municipal buildings in the city of Leicester, UK. It
introduces a standard statistical technique, independent
of energy manager judgement, to help identify energy
saving opportunities in buildings.

Smart metering data analysis

The Leicester City Council half-hourly electricity con-
sumption data covers a wide range of non-domestic
buildings and premises: offices, schools, libraries, lei-
sure centres, administration offices, elderly persons
homes, warden-assisted accommodation, etc. These
are shown in Table 1. A total of 81 municipal buildings
were analysed in detail. Data were supplied in text
format, then converted and stored in a Microsoft® Stan-
dard Query Language (SQL) Server™ 2005 database.

Whilst the SQL Server incorporates basic data analysis
functions, this was not able to carry out the complex
analysis, therefore Matlab® software, from Mathworks,
was used to analyse the data. The building classification
adopted was derived from the Pclass codes presented in
Bruhns et al. (2000). This is a classification based on the
activities conducted in non-domestic buildings. The da-
tabase consisted of commercial and public offices (CO),
hospitality buildings devoted to leisure (HL), schools
(SE) and social community buildings (SQ). HL build-
ings were divided into libraries and museums (HL1) and
sport centres with and without swimming pool (HL3).
Similarly for SQ buildings, a division between commu-
nity centres (SQ10) and hostels and care homes (SQ21)
was introduced. The following table presents the Pclass
codes used to classify selected buildings from Leicester
half-hourly utility metering database.

The buildings vary in size, most are less than
5,000 m2. The smallest building is 136 m2 (library)
and the largest building is 22,166m2 (school). However,
the school is not just one building, but a collection of
buildings and the metered energy (electricity and gas)
consumption is for the total school premises.

Half-hourly electricity indicators

The metrics used for the analysis of half-hourly electric-
ity consumption consisted of indicators that described
the buildings’ daily and weekly load demand profiles
and can be described as load demand shape indicators.
The indicators were calculated using the average 24-h
electricity demand profiles for weekdays (Monday to
Friday), for weekends (Saturday to Sunday) and for the
full week (Monday to Sunday). For example, the annual
mean weekday load demand profile is calculated as the
mean value of the 48 data points (one for each 30-min
interval) for 1 year of data. These three average profiles
were then used to calculate the indicators, which model
the building occupancy patterns, intensity of energy use
and baseload consumption.

Previous research on electricity grid load demand
forecasting by Nazarko and Styczynski (1999) and
Chicco et al. (2001, 2002 and 2003) identified 12 load
demand shape indicators. Following an extensive liter-
ature review, no evidence was found that these indica-
tors had been applied to building energy management.
These indicators have characteristics that could be rele-
vant to model energy consumption in buildings. They
are ratios, calculated using the weekdays (Monday–
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Friday), weekend (Saturday–Sunday) and week (Mon-
day–Sunday) demand profiles. Average (AV), mini-
mum (MIN) and maximum (MAX) values presented
in Fig. 1 are then calculated for the different periods of
the day (d, o, n):

& Day (d): the 24 h of the day,
& Night period (n): period from 2200 to 0600 hours,
& Office working hours (o) from 0800 to 1800 hours,

The night (n) and office working hours (o) periods
model the times when the buildings are non-occupied
and occupied, respectively.

Table 2 presents the 12 load demand shape indicators
initially calculated in the study (Ferreira 2009). For
example, the first daily indicator, the weekday load

factor, αD1, is the load factor for weekdays (Monday
to Friday). It is calculated by dividing the daily (d)
average (AV) energy use (Ed.AV.weekdays) by the
daily maximum (MAX) demand on weekdays
(Ed.MAX.weekays).

An analysis of the results of the initial set of 12
indicators (Ferreira 2009) found that these could be
reduced to five indicators. In fact, it was concluded
that some indicators reproduced the same informa-
tion, for example αD1 and αW1 were strongly corre-
lated. Similar conclusion was reached for αD2 and
αW2. So αW1 and αW2 could be removed. It was also
found that other indicators presented similar results
for all the buildings, and therefore did not contribute
to differentiating demand profiles and identify op-
portunities to save energy.

Table 1 Number of datasets and building types

Building type Pclass Activity classification No. of
buildings

Commercial/office CO All type of commercial, local and central
government office activities

19

Hospitality/leisure HL1 Museums, art galleries or libraries 9

Hospitality/leisure HL3 Leisure centres, sports halls, swimming pools, etc. 5

Schools SE All type of schools, from kindergartens to universities 11

Social/community SQ10 Community centres, neighbourhood centres or social clubs 8

Social/community SQ21 Social hostels, children homes, elderly people homes, warden-assisted accommodation 29

Fig. 1 Electricity load profile
model with energy variables
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In summary, the five load demand shape indicators
considered were as follows:

& Weekday load factor (αD1) is the average load on
weekdays (Monday–Friday) divided by the peak load
on weekdays. This indicator varies from 0 to 1. A
high load factor means that power usage is relatively
constant over the weekdays average 24-h demand
profile. However, a constant power usage over a
24-h period in an intermittently occupied building
might be indicative of excessive intensity of energy
use (αD1), which could be reduced. Nevertheless, this
conclusion can only be derived after comparing
buildings of the same type and/or similar use, as
presented in “Results per building type” section.

& Weekday baseload (αD2) is the minimum load divid-
ed by the average load onweekdays. For the building
under study, this indicator also varies between 0 and
1. A high baseload factor (αD2) means that minimum
power usage, which for the type of buildings in the
study occurs during periods for which buildings are
not occupied, might be excessive, and therefore the
causes for high baseload consumption need to be
investigated and could be potentially reduced.

& Weekday night (αD7) is the night (2200 to
0600 hours) average load on weekdays divided by
the day (full 24 h) average load, also on weekdays.
For the buildings under study, this indicator also
varies between 0 and 1. A high weekday night
(αD7) indicator means that energy consumption, on
weekdays, and during the night period, is similar to
the consumption during the day and therefore might
be excessive.

& Weekend night (αD8) is the night (2200 to
0600 hours) average load on weekends divided by
the day (full 24 h) average load, also on weekends.
This indicator might be above 1 for some building
types (e.g. buildings that are closed during weekends
but have security lighting during the night time). A
high weekday night (αD8) indicator means that ener-
gy consumption, on weekends, and during the night
period, is similar to the consumption during the day.

& Weekend/week (αW3) is the average load on week-
ends divided by the average load of the week (Mon-
day to Sunday). This indicator (αW3) should be be-
low 1 for most of the buildings in the study. It models
the load demand during weekends comparedwith the
overall load demand for the 7 days of the week.

Table 3 provides an overview of the aggregated re-
sults of the calculation of the five indicators for the six
different building types under analysis, including the
standard deviation values.

Results per building type

Different buildings types have distinct consumption pro-
files, due to different occupancy patterns and use. For
example, the load factor for SQ21-type buildings (homes/
hostels) is expected to be consistently higher than for
other buildings since these are usually permanently oc-
cupied. However, this does not necessarily mean that
SQ21 buildings perform “better” or “worse” than other
buildings because of their relatively high load factor.

The five indicators were calculated for the 81 build-
ings and typical electricity indicators for each of the six

Table 2 List of electricity
indicators Indicators Short name Equation

αD1 Weekday load factor αD1=Ed.AV.weekdays/Ed.MAX.weekdays

αD2 Weekday baseload αD2=Ed.MIN.weekdays/Ed.AV.weekdays
αD3 Weekday office hours load factor αD3=Eo.AV.weekdays/Eo.MAX.weekdays

αD4 Weekday office hours baseload αD4=Eo.MIN.weekdays/Eo.AV.weekdays
αD5 Weekday/weekend peak demand αD5=Eo.MAX.weekdays/Ed.MAX.weekdays

αD6 Weekday/weekend baseload αD6=Ed.MIN.weekdays/Eo.MIN.weekdays

αD7 Weekday night αD7=En.AV.weekdays/Ed.AV.weekdays
αD8 Weekend night αD8=En.AV.weekend/Ed.AV.weekend

αD9 Weekday lunchtime αD9=El.AV.weekdays/Eo.AV.weekdays

αW1 Week load factor αW1=Ed.AV.week/Ed.MAX.week

αW2 Week baseload αW2=Ed.MIN.week/Ed.AV.week

αW3 Weekend/week αW3=Ed.AV.weekend/Ed.AV.week
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building types presented in Table 3. The typical electric-
ity indicators were defined as the mean value of each
indicator and were calculated for each building type.
These are the values against which buildings of a similar
type can be compared in order to identify uncommon
profile characteristics and these can be considered the
typical electricity profiles for these building types.

Table 3 shows that commercial and public offices
(CO) buildings average consumption on weekdays is
50 % of the peak load (weekday load factor−αD1=
0.50). For these buildings, the weekday baseload indi-
cator (αD2) is 0.38, i.e. the baseload is about 38 % of the
average demand on those days of the week. The impact
of night-time electricity consumption on weekdays
(when compared to “normal” office hours consumption)
is 41 % (αD7), which is surprisingly high, and might be
indicative that most office buildings under analysis have
excessive night-time electricity demand. On weekends,
the night-time electricity consumption impact is 90 %
(αD8), meaning that night and day have similar power
demands, as expected over the weekend. The average
electricity consumption on weekends (αW3) is about
51 % of the average demand on the 7 days of the week.

When compared to office buildings (CO), libraries
and museums (HL1) have lower weekday load factors
(αD1), lower baseload consumption (αD2), but higher
electricity consumption on weekends (αW3).

Load shape profiles for sports centres (HL3) have
higher indicator values because these are open for lon-
ger hours than offices and libraries. Sports centres’
weekday load factor (αD1) is 0.76, the weekday
baseload indicator (αD2) is 0.53 and weekend/week
indicator (αW3) is 0.89, all higher than offices, libraries
and museums.

Schools (SE) and community centre (SQ10) are sim-
ilar to other intermittently occupied buildings, such as

commercial and public office buildings. However,
SQ21 are permanently occupied buildings, so have
higher load factors, baseload and consumption over
night and on weekends.

Benchmarking using electricity indicators
and standard scores

The results above enable the 12-month average electric-
ity load demand profiles for each building to be calcu-
lated. The next stage of the analysis compared these
profiles against a typical/mean profile for that building
type characterised by the five indicators to identify any
major differences.

The mean and standard deviation values identified
the distance from the mean value of each calculated
indicator (Urdan 2005). The z score−zi associated with
each indicator value xi is given by the following equa-
tion, where xi is subtracted by the mean value (x) and
divided by the standard deviation of all observations in
the group (i.e. buildings of the same type).

zi ¼ x̄i−xð Þ
σ

Eq. 1 Standard score calculation
This standardisation process compared the indicator

results for the different buildings of the same type. A
standard score of 1.00 is a result that is above themean by
exactly 1 standard deviation. If the values follow a nor-
mal distribution, a standard score of 1.00 is equivalent to
84.13 % of the values (84th percentile). Standard scores
above 1.00 were considered “outside the expected” in
terms of a “normal” energy consumption profile, and
therefore were indicative of the potential for energy

Table 3 Indicators per building type and standard deviation

Building type
(Pclass)

Activity classification αD1 αD2 αD7 αD8 αW3

CO All type of commercial, local and central government
office activities

0.50±0.08 0.38±0.12 0.41±0.12 0.90±0.11 0.51±0.14

HL1 Museums, art galleries or libraries 0.46±0.10 0.22±0.14 0.26±0.13 0.43±0.16 0.65±0.10

HL3 Leisure centres, sports halls, swimming pools, etc. 0.76±0.12 0.53±0.23 0.61±0.24 0.67±0.22 0.89±0.13

SE All type of schools, from kindergartens to universities 0.47±0.07 0.40±0.11 0.45±0.12 1.03±0.08 0.47±0.10

SQ10 Community and neighbourhood centres or social clubs 0.51±0.07 0.34±0.12 0.48±0.22 0.82±0.20 0.62±0.21

SQ21 Social hostels, children/elderly people homes, warden-
assisted accommodation

0.78±0.09 0.78±0.12 0.87±0.09 0.90±0.09 0.98±0.02
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savings. Standard scores below −1.00 are also considered
“outside the expected”, but, conversely, these mean that
the consumption profile is better than the average.

This therefore introduces a standard statistical ap-
proach to energy management, which is independent
from the traditional manual visual interpretation of
graphs. Whilst the standard score method was selected
in preference to percentiles due to the (small) number of
buildings of each type, when data is available for a
larger number of buildings the use of percentiles for
benchmarking would be more appropriate.

The results of the standardised scores for all the
buildings are presented in the tables below for each
building type. The bold emphases indicate standardised
values that are outside what is considered to be the range
of common consumption profile, i.e. above 1 standard
deviation from the mean value of the building type. The
calculation of the electricity load demand indicators for
the 81 buildings and the application of standard scores
resulted in the identification of 26 buildings with poten-
tial energy saving opportunities. The following tables
present the results of the analysis for each of the six
building types. The results were discussed with the
municipal energy management team to identify the
causes of the “atypical” consumption.

Office buildings

Table 4 shows that the CO_4, CO_12 and CO_18 build-
ings have high weekday load factor (αD1), high energy
use intensity (αD2) and high night-time energy use on
weekdays (αD7), when compared with similar buildings.
These buildings have different consumption profiles
from the “typical” office building for different reasons.
The CO_4 demand profile is different because in this
building there is also a snooker bar in the ground floor,
which is open until midnight. CO_12 demand profile is
an office air-conditioned building, which was not being
controlled properly. CO_18 is an old office building
with inefficient lighting systems.

In addition, it was detected that CO_2 had high week-
end consumption, which was caused by lights and equip-
ment left on by occupants. CO_8 building night-time
consumptionwas also found to be uncommonly high. This
was caused by the building night security lighting, which
could be reduced with the installation of motion sensors.

The indicators were able to identify several uncom-
mon characteristics of load demand profiles; some were
related to untypical uses of office buildings, others were

related with opportunities to save energy. Similarly re-
sults were found for other building types, as presented in
the following tables.

Conversely, CO_6 present a “normal” demand profile,
with indicators close to the mean values of CO-type build-
ings. The differences between the profiles are clear, partic-
ularly in terms of the occupancy hours, differences be-
tween baseload and peak demand, night-time and daytime
consumption, and weekday and weekend consumption.

Libraries and museums

The indicators identified HL1_1 building as having high
weekend consumption (αW3), which was caused by the
poor programming of lighting controls that resulted in
lights being turned on weekends when the library was
closed. HL1_7 indicated high night-time consumption
during weekends (αD8) that was caused by security
lighting. HL1_5 was found to have a rather different
profile. This building is the only museum in the group;
an air-conditioned building with very precise control of
temperature and humidity for artefacts, resulting in a
relatively high electricity use (Table 5).

Table 4 Standardised load shape indicators for office buildings

Building name Standard scores

αD1 αD2 αD7 αD8 αW3

CO_1 0.25 −0.85 −0.95 0.71 −1.15
CO_2 0.08 0.24 0.35 −1.73 1.20

CO_3 −1.04 −0.96 −1.08 0.97 −1.44
CO_4 2.60 2.24 2.30 −0.32 2.46

CO_5 −1.48 −0.40 −0.56 0.21 −0.66
CO_6 0.00 0.19 0.35 −0.15 0.11

CO_7 −1.13 −1.38 −1.49 −2.16 −0.93
CO_8 −0.63 −0.13 −0.26 1.22 −0.53
CO_9 −0.50 −0.63 −0.66 −1.07 −0.05
CO_10 −0.24 −1.18 −1.29 0.55 −1.49
CO_11 0.29 0.65 0.67 0.92 0.36

CO_12 1.80 1.83 1.66 0.37 1.29

CO_13 0.22 −1.00 −0.72 −0.81 −0.58
CO_14 −0.51 0.67 0.47 0.71 0.22

CO_15 −0.36 −0.71 −0.44 0.06 −0.32
CO_16 −0.56 0.03 −0.16 −1.41 0.42

CO_17 −0.30 −0.32 0.10 0.91 −0.15
CO_18 1.30 1.07 1.05 0.14 0.78

CO_19 0.20 0.63 0.66 0.89 0.47
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Sports halls

The electricity indicators did not identify any excessive
consumption in the sports halls. This sample had a small
size of only five buildings and the buildings were quite
different. Some sports halls had swimming pools and
others did not (Table 6). A narrower breakdown of
buildings classification and a large sample size is there-
fore necessary to complete the analysis, which was not
possible with available data.

Schools

From the analysis of schools, SE_1 identified potential
savings from reduction of intensity of energy use (αD1),
baseload consumption (αD2), energy use when building
unoccupied on night-time on weekdays (αD7) and reduc-
tion of energy use when building unoccupied on night-
time on weekends (αD8). However, this is a special
school for students with physical difficulties, and there-
fore there are more energy consumption for wheelchair

charging, motors for opening and closing doors. This
caused high baseload and overnight consumption. SE_6
is also a special school, but it was found that equipment
was left running during weekend when the school was
not occupied. SE_3 and SE_9 were found to have un-
usually high night-time consumption during weekends
(αD8) caused by night security lighting (Table 7).

Community centres

Table 8 shows that community centre SQ10_6 had high
base-load consumption. It also suggests that there is the
potential to reduce night-time and weekend consumption
in SQ10_7, since this building presents higher energy use
on those periods when compared with similar buildings.

Table 5 Standardised load shape indicators for libraries and
museums

Building name Standard scores

αD1 αD2 αD7 αD8 αW3

HL1_1 −2.19 0.15 −0.07 −1.01 1.90

HL1_2 0.13 −0.63 −0.49 −0.38 −0.50
HL1_3 0.86 −0.38 −0.01 −0.02 −0.51
HL1_4 −0.28 −0.61 −0.75 −1.06 0.07

HL1_5 1.07 2.55 2.45 1.88 1.33

HL1_6 0.88 −0.22 0.36 0.54 −0.43
HL1_7 0.07 0.13 −0.06 1.04 −1.05
HL1_8 −0.66 −0.48 −0.70 −0.88 0.10

HL1_9 0.12 −0.51 −0.74 −0.11 −0.91

Table 6 Standardised load shape indicators for sports halls

Building name Standard scores

αD1 αD2 αD7 αD8 αW3

HL3_1 0.42 0.40 0.52 0.42 0.70

HL3_2 0.63 0.56 0.57 0.66 0.33

HL3_3 0.14 0.59 0.48 0.43 0.43

HL3_4 −1.76 −1.77 −1.77 −1.77 −1.77
HL3_5 0.56 0.22 0.20 0.26 0.31

Table 7 Standardised load shape indicators for schools

Building name Standard scores

αD1 αD2 αD7 αD8 αW3

SE_1 2.15 1.78 2.17 1.38 0.21

SE_2 −0.46 0.55 0.08 −0.03 0.63

SE_3 −0.84 −0.52 −0.36 1.00 0.00

SE_4 −0.01 −1.06 −1.02 −1.47 −0.85
SE_5 −0.58 −0.75 −1.06 −0.57 −0.86
SE_6 1.33 1.24 0.71 −0.75 1.10

SE_7 0.26 0.74 0.82 −0.87 1.75

SE_8 0.45 0.51 0.24 −1.01 0.85

SE_9 −0.53 −0.72 0.27 1.32 −0.41
SE_10 −1.19 −1.16 −1.01 0.50 −1.30
SE_11 −0.61 −0.60 −0.84 0.50 −1.12

Table 8 Standardised load shape indicators for community centres

Building name Standard scores

αD1 αD2 αD7 αD8 αW3

SQ10_1 1.05 −0.05 0.08 −1.11 0.89

SQ10_2 0.67 0.14 −0.55 0.18 −0.64
SQ10_3 0.65 0.58 −0.25 −0.48 0.07

SQ10_4 −1.69 −1.30 −1.17 0.79 −1.83
SQ10_5 −1.28 0.00 −0.51 −1.29 0.08

SQ10_6 −0.28 1.81 0.68 0.05 0.92

SQ10_7 0.27 −1.29 2.10 1.80 1.10

SQ10_8 0.61 0.11 −0.38 0.05 −0.60
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Elderly persons homes and hostels

SQ21 buildings are all warden-assisted accommodation
(sheltered housing for older people). The lighting sys-
tems for some of these buildings were upgraded with
more energy efficiency lighting. However, whist more
energy efficient lights were installed, the lighting levels
are now higher than the previously, resulting in addi-
tional electricity consumption. This was the case for
SQ21_8, SQ21_12, SQ21_13, SQ21_17 and
SQ21_27. It was also found that SQ21_12 building
had a large car park that was lit overnight (Table 9).

The development of the electricity load profiles have
identified buildings with load demand profiles that differ
significantly (i.e. 1 standard deviation from the mean)
from “typical” electricity load profile for that building
type. This “benchmarking” analysis identified of build-
ings that by their intrinsic or/and operational character-
istics differ from similar buildings. Not all the features
were related to energy efficiency measures, rather to
different uses of the building. The indicators offer a
systematic and automated procedure to analyse sub-
hourly time series data from a primary electricity meter.

These indicators could be easily integrated in energy
analysis and billing software packages to help identify
those buildings to investigate further and to provide
tailored advice for building managers and users on
profile characteristics that are not “typical” and that
therefore might be related to potential savings.

Conclusions

A new approach to identifying more specific informa-
tion about the building’s performance by comparing it
with similar buildings of the same type has been devel-
oped. It can readily identify:

& High intensity of energy use,
& High baseload consumption,
& Energy use when building unoccupied on night-time

on weekdays,
& Energy use when building unoccupied on night-time

on weekends, and
& Energy use when building unoccupied on

weekends.

The five indicators, based on half-hourly electricity
consumption, provide a more detailed understanding of
the typical electricity consumption patterns in different
building types. They identify uncommon profile char-
acteristics that can then lead to action to implement
energy savings. The technique can be used for a large
number of buildings and so allows building occupiers to
identify potential energy saving opportunities for differ-
ent building types. That is, peak, daytime, night-time
and out of hours electricity consumption compared with
typical consumption for that type of building. Overall,
the new approach provides a level of detail not available
through traditional monthly or annual analysis or
through conventional visualisation techniques.

Table 9 Standardised load shape indicators for homes/hostels

Building name Standard scores

αD1 αD2 αD7 αD8 αW3

SQ21_1 0.15 −1.56 −0.47 −0.84 1.47

SQ21_2 −0.23 −0.53 −0.27 −0.30 −0.01
SQ21_3 0.26 −0.20 0.43 0.35 0.14

SQ21_4 −0.52 −0.24 −0.28 −0.26 −0.48
SQ21_5 −0.35 −0.37 −0.57 −0.64 −0.01
SQ21_6 0.95 0.33 1.63 1.46 1.47

SQ21_7 0.19 0.58 −0.13 −0.30 0.77

SQ21_8 1.84 1.71 1.23 1.11 0.18

SQ21_9 −1.51 −2.50 −2.68 −2.67 −0.65
SQ21_10 −0.23 1.10 0.68 0.82 −0.49
SQ21_11 −0.67 −0.73 −0.93 −1.18 0.80

SQ21_12 1.16 0.55 1.64 1.41 0.95

SQ21_13 1.73 1.60 1.16 1.03 1.81

SQ21_14 0.10 −0.19 −0.60 −0.74 0.40

SQ21_15 −0.25 0.24 −0.09 −0.20 0.39

SQ21_16 0.61 −0.50 0.01 −0.14 0.47

SQ21_17 1.69 1.33 0.86 0.71 0.50

SQ21_18 −1.81 0.23 −0.60 −0.05 −2.06
SQ21_19 −0.62 −0.55 −1.21 −0.77 −2.10
SQ21_20 0.50 0.09 −0.46 −0.59 0.25

SQ21_21 0.27 −0.16 0.68 0.67 −0.43
SQ21_22 −1.81 −0.71 −0.45 −0.53 0.47

SQ21_23 0.80 1.36 0.99 0.82 0.77

SQ21_24 −1.02 −1.37 −1.08 −0.98 −0.57
SQ21_25 −0.31 −0.29 −1.24 −1.33 0.10

SQ21_26 −0.98 −1.13 −0.78 −0.53 −0.37
SQ21_27 1.05 1.32 1.07 1.21 −0.46
SQ21_28 0.25 0.91 0.89 1.31 −2.22
SQ21_29 −1.24 −0.34 0.60 1.14 −1.08
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The analysis is relatively quick and straightforward
to carry out on large numbers of buildings. It can be
automated and it helps to eliminate the subjectivity of
the conventional data analysis using visualisation of
plots and graphs. However, local knowledge is vital to
identifying whether they are real savings or untypical
buildings. Discussions with the building’s energy man-
agement team are essential to then lead to on-site inves-
tigations that result in the detection and correction of
electricity wastages.

There is great potential to use this approach to
achieve improved building operational energy efficien-
cy and contribution to EU targets. With Member States
investing in the rollout of smart meters to all electricity
users, the availability of sub-hourly data will no longer
be a barrier to energy management. The analysis tech-
niques described in this paper have the ability to analyse
a large volume of data and provide useful tailored advice
and feedback to electricity consumers in non-domestic
buildings, and can also be applied to the analysis of
other utilities measured in sub-hourly periods for exam-
ple gas and water consumption.

Future work

The approach has been successfully used for electricity
consumption on over 80 municipal buildings. The next
steps are to expand the number and types of buildings
and to use the approach for gas consumption.
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