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Abstract The US manufacturing sector, which consists
of industries that produce durable and nondurable goods,
accounts for about 30 % of all the final energy consumed
in the country. In this study, manufacturing sector data
coming primarily from the Annual Survey of Manufac-
turers are used to estimate the total impact of onemode of
energy efficiency policy, market persuasion programs, on
aggregate electricity consumption and energy expendi-
tures. Using a panel model consisting of data for 184
industries, the findings indicate that the cumulative ef-
fects since 2002 of this policy mode is a reduction in
2010 electricity consumption of 5.4 %, of electricity
expenditures of 2.4 %, and of all other fuel expenditures
of 5.7 %. These estimates are derived after controlling for
changes in output, other production inputs, and economic
conditions. Particular attention in this study is given to
the effects of a permanent shift in demand, and temporary
business cycle shock, on model external validity.

Keywords Manufacturing sector . Energy efficiency
policy . Panel model . Electricity consumption . Energy
expenditures

Introduction

The manufacturing sector of the US economy, consisting
of industries that produce durable and nondurable goods,

North American Industrial Classification System
(NAICS) 31 through 33, accounted for about 30 % of
the final energy consumed in the country in 2010 (EIA
2011). Due to its importance for economic growth and
energy supplies, many econometric studies have exam-
ined the energy consumption of individual manufactur-
ing industries and its relationships to changes in output,
inputs, and economic conditions. However, the national
impact of US manufacturing sector energy efficiency
programs, which have grown in size and scope for the
past decade, has received little attention. This study
addresses this increasingly important policy area.

Electricity consumption is the primary focus of this
study; however, aggregate electricity expenditures and
expenditures on fuels other than electricity are also
analyzed using similar econometric models and similar
data sources. Major energy efficiency programs that
currently target the manufacturing sector include the
US Department of Energy’s Energy Efficiency and Re-
newable Energy Advanced Manufacturing Office
(AMO, formerly the Industrial Technologies Program);
the US Environmental Protection Agency (EPA) Energy
Star program; and demand side management (DSM)
and market transformation (MT) programs administered
by local electricity and natural gas utilities and publical-
ly funded third parties. In addition to targeting electricity
and natural gas use, the two federal programs, AMO and
Energy Star, target the consumption of all major fuels,
including petroleum and coal products.

Seen from the national perspective as a collection of
complementary voluntary programs that share a single
purpose, promoting reductions in energy use, they make
up an ad hoc national energy efficiency policy for the
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USmanufacturing sector. This ad hoc policy can be seen
as having two related modes of operation, one involving
the financing of energy efficiency improvements and the
other involving market persuasion. AMO’s Commercial
Technology program, which funds research, develop-
ment, and commercialization of new industrial technol-
ogies, is an example of the former, and Energy Star,
which focuses on providing industries with technical
information and management support, is an example
of the latter. Unlike a formal national policy, the patch-
work of programs that make up this ad hoc policy has no
single set of goals or timeline.

Although there can be no doubt that financing and
market persuasion programs are synergistic and that
their impacts are not strictly separable in the material
world, no less in econometric models, with the help of a
national, industry-level database, the Annual Survey of
Manufacturers (ASM), this study attempts to isolate the
policy impacts that are mainly due to market persuasion
programs. Program operators and policymakers expect
that, over time, these will be substantial not only be-
cause of the thousands ofmanufacturing firms, large and
small, having direct contact with these programs, but
because the information, technical practices, and corpo-
rate energy efficiency ethic encouraged by these pro-
grams is likely to spread from firm to firm and plant to
plant. This diffusion effect is a positive externality re-
ferred to as policy spillover. Over the long-term, the
success of energy efficiency policy, like most broad
national policies, depends on the extent to which spill-
over benefits exceed the immediate benefits gained by
those few consumers having direct contact with individ-
ual programs.

In this study, measured energy consumption and
energy expenditures are terms that are used interchange-
ably with the broader concept of energy demand. In
addition, following the survey questions used by
ASM, annual energy consumption and expenditures
refer to purchased fuels reported by manufacturers in
the survey year. Purchased energy excludes fuels traded
among plants and electricity generated by combined
heat and power facilities that does not end up being sold.

The following section contains a review of the litera-
ture on econometric models of energy consumption and a
description of the conceptual foundations for this study’s
policy impact models and policy impact estimator. Data
sources, model specification, and model estimation pro-
cedures are described in “Model specification.” “Policy
impact findings” contains the policy impact findings and

“Tests of permanent shift and temporary shock” con-
tains diagnostic tests for assessing the validity of the
policy impact model and the interpretation of its
findings. “Discussion and conclusion” offers a brief
discussion and conclusion.

Input demand function and policy impact
estimator

Although this is the first econometric studies to specif-
ically focus on the impact of US manufacturing sector
energy efficiency policy on national energy consump-
tion and energy expenditures, there is a long list of
studies dating back to the 1960s that use econometric
models to analyze these subjects in all sectors of the
economy. Bohi (1981) and its update, Bohi and
Zimmerman (1984), along with Dahl (1993), are just
three of many detailed literature surveys of early energy
demand studies. The typical outcome variable in these
studies is energy intensity in some form, such as energy
per capita or energy per unit of output. Estimated price
and income elasticities tended to receive the most atten-
tion as these are useful for resources planning.

Largely as a result of electric utility DSM pro-
grams, in the mid-1990s, econometric studies began
to examine the impacts of voluntary public programs
on aggregate energy demand. One of the first of these,
Parfomak and Lave (1996), investigated the effects of
combined commercial and industrial sector DSM pro-
grams on electricity sales for the years 1970 to 1993
using a panel model consisting of data from 39
investor-owned electric utilities. Later, Loughran and
Kulick (2004), Auffhammer et al. (2008), Rivers and
Jaccard (2011), and Arimura et al. (2012) estimated
panel models employing total DSM program expendi-
tures for the combined residential, commercial, and
industrial sectors as their policy activity variable.

Two recent econometric attempts to estimate the
impacts of energy efficiency programs contain energy
demand models that are specific to the industrial sec-
tor. Bernstein et al. (2003) estimated individual panel
models for each of the four sectors of the economy
(residential, commercial, and transportation in addi-
tion to industrial) for the 48 contiguous states and
the years 1977 through 1999. Using model residuals
as an estimate of energy efficiency, states were ranked
and forecasts were produced out to the year 2020 of
national energy efficiency potential. Horowitz (2007)
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estimated separate sector-level state panel models for
base and treatment periods for the residential, com-
mercial, and industrial sectors for states identified,
largely by reported DSM savings, as having weak
commitments to energy efficiency. Estimates of ener-
gy efficiency policy impacts were derived using the
models to produce counterfactuals for states with
moderate and strong energy efficiency policy
commitments.

Focusing on the industrial sector, of which the
manufacturing industries accounted for about 60 %
of value added and 80 % of electricity consumption
in 2010, it is instructive to differentiate its energy
demand function from those of other sectors. All en-
ergy consumption is motivated by the demand for a
final service or good of some kind. For the residential,
commercial, and transportation sectors, energy de-
mand is driven by desired levels of mobility, comfort,
communication, and other personal services. Howev-
er, in the industrial sector, energy demand is deter-
mined by levels of physical output, the production of
which requires not only capital equipment, but other
fuels, labor, raw materials, purchased services, and so
on. These relationships, be they at the plant or the
industry level, have fixed and variable components
and are driven by engineering possibilities and eco-
nomic choices.

An industrial sector energy input demand function
such as in Eq. (1) is the foundation for the empirical
models used in this study. It shows that levels of
energy consumption are determined by levels of out-
put and inputs, where inputs in the broad sense include
not only material resources but market and public
policy conditions. For an aggregate input demand
function that spans more than one industry i and time
period t:

Eit ¼ f Pit;Git;Mit;Nit;Fi; Tt;Ritð Þ ð1Þ

where any of the variables can be expressed in mon-
etary or physical units, e.g., E is either energy con-
sumption or energy expenditures, P represents energy
prices, G represents levels of output, M represents
economy-wide conditions or macroeconomic forces,
N represents one or more final or intermediate factors
of production, F represents industry-specific fixed ef-
fects, T represents time-specific effects, and R repre-
sents energy-related public policy. This general energy
input demand function does not impose restrictions of

any kind on the relationships among the variables.
However, translating this function into a tractable sta-
tistical model does; few, if any, datasets are large and
detailed enough to solve the difficult statistical prob-
lems that arise from modeling complex relationships.

One model restriction that is commonly applied to
econometric models is to hold output, G, fixed so that
the relationship between E and the independent vari-
ables does not depend on it. This is done by forming a
ratio with E as the numerator and G as the denomina-
tor. This transformation of the dependent variable
from a level to a ratio, which creates a more uniform
scale between cross sections and between time pe-
riods, helps reduce or eliminate violations to intrinsic
regression model assumptions that have worse conse-
quences than the imposed restriction. All the models in
this study, though referred to as electricity and expen-
diture models, use ratios for their dependent variables.
After model estimation, these ratios are converted
back to levels to calculate policy impacts.

For policy impact analysis, the central feature of
this input demand function is the variable, R,
representing public policy activities. This variable is
not available in a form that is usable in the economet-
ric models in this study. In the absence of measures of
R that can be included in the energy demand models,
policy impacts are estimated in a way that is analogous
to the way the future policy impacts are projected with
large energy and environmental forecasting models. In
these, energy consumption is forecast under a hypo-
thetical change in policy regime (such as higher ener-
gy taxes) and under a business-as-usual regime (no
change in energy taxes). Then, policy impacts are
calculated as the difference between the two. In the
same vein, to calculate historical policy impacts, a
model estimated for a specified time period (referred
to as the model estimation or in-sample period) is used
to predict a counterfactual for a specified period out-
side the model estimation period (an out-of-sample
period). The key difference between this approach
and the policy forecasting approach is that the in-
sample and out-of-sample periods must be part of the
same regime. If they are, then with the policy impact
model controlling for all relevant market factors, the
net difference between the counterfactual and actual
values is attributable to systematic, nonmarket factors,
e.g., energy efficiency policy. This policy impact esti-
mator is implemented in this study by withholding a
single year, 2010, from the model estimation period.
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Equation (2) describes the policy impact estimator,
where CF is the policy counterfactual and A is actual
energy consumption for industry i, and t* is the out-of-
sample year, 2010:

Policy impactt� ¼
X

CFit� �
X

Ait� ð2Þ

Using this estimator with a large sample of industries,
the random errors that cause some industry counterfac-
tuals to be higher than actual energy use, and others to be
lower, will cancel each other out. This follows from the
fact that the net residual for the in-sample period is, by
model construction, zero. If the out-of-sample period is
then similar in character to the in-sample period, the net
residual for the out-of-sample period will be close to zero,
too. This should hold for at least a few out-of-sample
years, no less for the year adjacent to the model estima-
tion period, 2010.With random error removed, a sizeable
remaining residual implies that an unmeasured systemat-
ic factor is present. The policy impact estimator in Eq. (2)
assigns this systematic factor to energy efficiency policy.

To be confident that the systematic factor can be
interpreted as the impact of energy efficiency policy,
the policy impact model can be for tested for external
validity. External validity refers to the generalizability
of the model’s estimates to the out-of-sample period,
which will be strong only in so far as the drivers of
energy use in the model estimation period and the out-
of-sample period are not significantly different. This is
not always the case because long-term market and
nonmarket trends, though gradual, can eventually re-
sult in permanent demand shifts that are discernible.
At the other end of the spectrum, temporary shock,
such as caused by a business cycle, can be quickly
manifested in demand behavior and then disappear,
but not before it unduly influences model estimates
or the data used for producing counterfactuals in the
out-of-sample period. If either of these phenomena,
permanent shift or temporary shock, weaken the ex-
ternal validity of the model, then the systematic factor
in the out-of-sample period could contain more than
energy efficiency policy effects. The detailed investi-
gation of these issues follows in a later section.

Model specification

Historical data representing the arguments in the en-
ergy input demand function can be found in ASM for

184 manufacturing industries (five-digit NAICS
31111 through 33999) for the 14 years from 1997 to
2010 (ASM 2011). This survey does not include the
agriculture and forestry and fishing, mining, utilities,
and construction industries (NAICS 11, 21, 22, and
23, respectively) that, together with manufacturers,
make up the full industrial sector. These four catego-
ries of industries accounted for 182,295 GWh of elec-
tricity consumption in 2010 or 23 % more than the
manufacturing sector alone (SEDS 2011).

ASM is an annual national economic survey of
about 50,000 manufacturers. Among other things, the
ASM dataset contains estimates of purchased mega-
watt hours, expenditures on megawatt hours, and ex-
penditures on all other fuels besides electricity.
However, it does not contain estimates of total Btu
purchased from all fuels besides electricity or of ex-
penditures on individual fuels other than electricity.
ASM also contains industry value of shipments and
value added, where the former includes the total value
of all products produced and shipped and the latter is
derived by subtracting the cost of intermediate inputs,
i.e., the cost of materials, supplies, fuel, purchased
electricity, and contract work. Value added consists
of total compensation of employees, taxes on produc-
tion and imports less subsidies, and gross operating
surplus. Gross operating surplus includes consumption
of fixed capital, proprietors’ income, corporate profits,
and net transfer payments.

To estimate gross operating costs, which include
short-term capital equipment costs, depreciation, and
profits, the ASM estimate of industry total labor com-
pensation is subtracted from ASM industry value
added. To disaggregate the value of intermediate in-
puts, total expenditures on energy (electricity plus
other fuels) is subtracted from the total difference
between value of shipments and value added, leaving
a variable that largely represents the industry costs for
purchased materials and services. ASM also provides
data on capital expenditures. These represent longer-
term investments in buildings, machinery, and equip-
ment of all kinds. Finally, the Federal Resource Board
(FRB) database provides indexes of industrial capacity
utilization and production for the manufacturing sector
as a whole, and the Bureau of Economic Analysis
(BEA) and Bureau of Labor Statistics (BLS) provide
various deflators for inputs and output.

Table 1 contains brief definitions of the industry-
specific variables and their sources, and Table 2
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contains descriptive statistics for these variables for
2002 and 2010. The former year is chosen, for reasons
described further on, as the beginning of the model
estimation period and the latter is the year for which
policy impacts are estimated. All monetary values in
this study are expressed in constant 2010 US dollars.

Equation (3) shows the details of the electricity
consumption model, where bi are the estimated co-
efficients for fixed industry effects and bt are the
estimated coefficients for fixed time effects; b1
through b9 are estimated coefficients for the indepen-
dent variables, and eit is the model error term. In
estimating this panel model (and the two companion
models of electricity expenditures, XMWHX, and ex-
penditures on all fuels other than electricity, XBTUX),

all continuous variables are transformed into natural
logarithms. This functional form is chosen not only for
its practicality, but because there is empirical evidence
that constant returns to scale exist with respect to
energy intensity, as measured by energy over value
added, in the manufacturing industries (e.g., Boyd et
al. 2011). The electricity expenditure model specifica-
tion is the same as the electricity consumption model
save for the electricity price variable, and the other
fuels expenditure model is the same save for substitut-
ing the manufacturing sector industrial production in-
dex for the capacity utilization index. To control for
cross-section heteroscedasticity, the model is estimat-
ed using feasible generalized least squares and White
corrections for the standard errors.

MWH=XVALADDð Þit ¼
P184

i¼1
biF þ b1XKWHPRICEit þ b2XTOTCOMPit þ b3XGOCit

þb4XCAPXit þ b5XCAPXit�1 þ b6XCAPXit�2

þb7XIINPUTMSit þ b8XBTUXit þ b9XUTILt þ
P14

t¼1
btT þ "it

ð3Þ

Like for all the models in this study, the fixed cross-
section effects control for missing variables that are
time invariant but industry-specific, and the fixed pe-
riod effects control for missing variables that are in-
dustry invariant but time specific. These model
components are notable because at least two relevant
independent variables are unavailable: industry energy

prices for fuels other than electricity and observed
energy efficiency policy activity. Fixed effects com-
pensate for these omissions and prevent model
misspecification.

Another notable feature of this model is the inclu-
sion of present year, and two prior years, industry
capital expenditures variables. These not only add to

Table 1 Energy consumption/expenditure model variables

Mnemonic Definition Source

MWH Annual (purchased) electricity consumption ASM

XVALADD Industry value-added deflated by 18 individual NAICS 3-digit industry value-added deflators
(Thds. 2010$)

ASM, BEA

XTOTCOMP Total employee compensation deflated by 18 individual NAICS 3-digit industry value-added deflators
(Thds. 2010$)

ASM, BEA

XMWHX MWH expenditures deflated by the national producer price index for industrial electric power
(Thds. 2010$)

ASM, BLS

XKWHPRICE XMWHX divided by MWH ASM, BLS

XBTUX Other fuel expenditures deflated by the national producer price index for industrial natural gas
(Thds. 2010$)

ASM, BLS

XGOC Gross operating cost defined as XVALADD minus XTOTCOMP (Thds. 2010$) ASM

XIINPUTMS Purchased materials and services defined as value of shipments minus VALADD minus MWHX minus
BTUX and deflated by NAICS 3-digit industry value of shipments deflators (Thds. 2010$)

ASM, BEA

XCAPX Capital expenditures on buildings, machinery, and equipment deflated by the producer price index for
industrial capital expenditures (Thds. 2010$)

ASM, BLS

XUTIL/PROD National index of manufacturing sector capacity utilization or production FRB
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the number of production inputs that are controlled for
in the model, and the delayed effects of large invest-
ments, but help isolate the effects of energy efficiency
market persuasion programs from energy efficiency
finance programs. They do so because they represent
both energy efficiency investments and conventional
investments in buildings, plant expansion, and equip-
ment. Unfortunately, because energy efficiency-
related investments cannot be differentiated from all
other investments, nothing about the impacts of ener-
gy efficiency finance programs can be concluded from
these variables’ coefficients. However, having the net
effects of capital investments controlled for allows the
policy impacts that are derived from the model to be
interpreted as primarily due to the market persuasion
mode of energy efficiency policy.

Policy impact findings

Table 3 contains the findings for the three policy
impact models, each of which is estimated for the
2002–2009 period (by convention, to save space fixed

effects are not listed). Since the main focus of energy
efficiency policy is electricity use, the central model
for this study is the electricity consumption model on
the left. The coefficients of this model indicate, hold-
ing output fixed, that electricity consumption declines
with increases in electricity prices, labor expenditures,
and gross operating costs. On the other hand, energy
consumption increases with increases in expenditures
on materials and services, expenditures on fuels other
than electricity, and expenditures on investments.
Electricity consumption also increases with increasing
capacity utilization. All of the estimated coefficients
are statistically significant save for the present year
capital expenditure coefficient. Regarding this vari-
able and the two lags, it is important to reiterate that
positive capital investment coefficients do not neces-
sarily mean that investments in energy efficient build-
ings, machinery, and equipment do not produce
energy savings. This is because the coefficients repre-
sent the combined effects of all capital investments.
Lastly, the adjusted R2 for all three models are rela-
tively high; for these and all of the other panel models
in this study, the R2 are estimated using mean-

Table 2 Descriptive statistics for model variables

Mnemonic Mean Median Maximum Minimum SD Obs.

2002

MWH 4,420,694 1,850,307 56,078,807 94,812 7,860,815 184

XVALADD $11,188,098 $6,519,177 $138,000,000 $280,594 $14,977,458 184

XTOTCOMP $4,207,404 $2,497,864 $30,444,073 $100,926 $4,818,315 184

XMWHX $291,535 $138,641 $2,568,037 $8,018 $416,956 184

XKWHPRICE $0.0792 $0.0810 $0.1325 $0.0405 $0.0144 184

XBTUX $255,435 $74,885 $6,565,178 $2,079 $670,341 184

XGOC $6,980,694 $3,712,256 $115,000,000 $179,668 $11,195,631 184

XIINPUTMS $14,485,584 $7,827,179 $436,000,000 $281,691 $35,899,610 184

XCAPX $771,102 $398,255 $8,361,619 $10,478 $1,172,637 184

2010

MWH 4,285,754 1,691,101 55,674,712 52,319 7,712,422 184

XVALADD $11,876,774 $6,063,561 $132,000,000 $198,321 $17,742,222 184

XTOTCOMP $3,856,514 $1,985,682 $41,598,898 $81,039 $5,628,104 184

XMWHX $268,261 $126,904 $2,708,608 $4,538 $406,619 184

XKWHPRICE $0.0740 $0.0743 $0.1121 $0.0416 $0.0130 184

XBTUX $230,822 $60,393 $6,504,049 $1,019 $650,617 184

XGOC $8,020,259 $3,897,615 $107,000,000 $94,712 $13,148,816 184

XIINPUTMS $14,345,051 $6,440,484 $498,000,000 $227,439 $39,608,130 184

XCAPX $695,393 $326,462 $11,699,053 $4,000 $1,304,997 184
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normalized variables and are adjusted for losses in
degrees of freedom.

Table 4 contains the estimated energy efficiency
policy impacts for 2010 derived from the difference
between the summed counterfactuals and the actual
values. Based on the electricity consumption model,
the cumulative impact of the market persuasion mode
of manufacturing sector energy efficiency programs is
a reduction in electricity use in 2010 of 43,946 GWh.
Using 2002 total manufacturing sector electricity con-
sumption as the baseline (813,408 GWh), the relative
electricity consumption savings in 2010 due to the
9 years of policy is 5.4 %. Consistent with the high
R2 of the model, the mean absolute forecast error
(MAPE) for the in-sample period is 7.6 %, indicating
a high level of model forecast accuracy. [Unlike the
calculation in Eq. (2) which defines policy impact as

the total net residual, MAPE is calculated as the sum
of the absolute values of the residuals]. As expected,
forecast accuracy is lost when systematic, nonmarket
effects are embedded in the 2010 forecasts; MAPE
increases to 11.6 %.

Tables 3 and 4 contain similar information for the
energy expenditures models. The electricity expendi-
ture model appears to produce coefficient estimates
that are similar to those of the electricity consumption
model; however, this is not the case for the other fuels
expenditures model, which includes expenditures for
natural gas, coal, oil, wood, and so on. The estimated
energy efficiency policy impact for the electricity ex-
penditure model is savings of 2.6 % relative to 2002
expenditures. This impact is less than half the electric-
ity consumption impact and likely reflects the effects
of rising electricity prices from 2007 to 2010. For

Table 3 Policy impact models

Model estimation (in-sample)
period: 2002–2009

Dependent variables

MWH/XVALADD XMWHX/XVALADD XBTUX/XVALADD

Independent variables Coefficient SE Probability Coefficient SE Probability Coefficient SE Probability

XKWHPRICE −1.093 0.034 0.000

XTOTCOMP −0.472 0.018 0.000 −0.463 0.018 0.000 −0.319 0.023 0.000

XGOC −0.410 0.014 0.000 −0.408 0.014 0.000 −0.397 0.020 0.000

XIINPUTMS 0.257 0.021 0.000 0.255 0.021 0.000 −0.005 0.035 0.894

XBTUX 0.332 0.018 0.000

XGWX 0.331 0.018 0.000 0.769 0.034 0.000

XUTIL/PROD 2.673 0.514 0.000 2.868 0.500 0.000 −10.450 0.629 0.000

XCAPX 0.012 0.009 0.178 0.012 0.009 0.173 −0.011 0.012 0.325

XCAPX(−1) 0.034 0.010 0.000 0.035 0.009 0.000 −0.017 0.014 0.230

XCAPX(−2) 0.033 0.009 0.000 0.030 0.009 0.001 −0.001 0.012 0.953

Adjusted R2 0.81 0.85 0.77

Panel n 1,472 1,472 1,472

Table 4 Estimated energy effi-
ciency policy impacts Estimate GWh

Consumption
Electricity
expenditures

Other BTU
expenditures

(Thds. 2010$) (Thds. 2010$)

2010 forecast 832,525 $50,737,014 $45,127,428

2010 actual 788,579 $49,359,937 $42,471,197

Abs. difference 43,946 $1,377,077 $2,656,231

MAPE (in-sample) 7.6 % 7.6 % 11.4 %

MAPE (2010) 11.6 % 11.5 % 16.7 %

Percent savings (2002 base) 5.4 % 2.6 % 5.7 %
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other fuel expenditures, the policy-related savings is
estimated to be 5.7 % relative to 2002 expenditures.
The full in-sample and 2010 MAPE forecast statistics
for the electricity expenditure model are almost iden-
tical to those of the electricity consumption model.
The MAPE statistics for the other fuel expenditures
model are higher than for the other models, but still
indicate a high degree of accuracy.

While for conventional forecasting applications it is
useful to construct confidence intervals using the fore-
cast standard errors, this approach cannot be success-
fully applied in the current context. For the GWh
consumption model, the total counterfactual standard
error for 2010 is 12.1 % of the total counterfactual.
This means that for the estimated policy impacts to be
statistically significant at the 90 % confidence level,
the total counterfactual would have to be 20 % higher
than total actual consumption. Not only is an energy
efficiency policy impact of this size unrealistic over
the study time period, but such a statistical relationship
would suggest poor model specification in general, not
just the growing cumulative impact of nine years of
energy efficiency policy.

An alternative way of assessing the accuracy of the
estimated policy impacts is to generate new forecasts
for 2010 using different in-sample periods, and then to
compare results. As such, the GWh consumption mod-
el is rerun for the 2002–2008 period and again for the
2002–2010 period. These two models, referred to as
the short model and the long model, are found in
Table 6. The findings indicate that the policy impacts
estimated from the former model are 4.8 % of
2002 GWh consumption. From the latter model,
which included a fixed time effects for 2010 (whose
value was −0.015 and not statistically significant), the
policy impacts are 3.3 % of 2002 gigawatt hours
consumption. These alternative estimates are within
the range of the findings of the preferred policy impact
model and thus lend them support.

Tests of permanent shift and temporary shock

Another element of uncertainty in the policy impact
estimates arises from the question of model external
validity, that is, the degree to which the in-sample and
out-of-sample periods are similar. As noted above, in the
context of this study, threats to strong external validity
arise from two factors. The first is the likelihood that,

over a long period of time, major changes in technology,
politics, or economic factors gradually, but permanently,
shifted how energy is purchased and consumed. The
second arises from the possibility that a temporary
shock, such as the recent business cycle, influenced
either the in-sample or out-of-sample data values in
ways that would cause the estimated counterfactuals
and, thus, the estimated policy impacts, to be confound-
ed. Both of these issues were investigated prior to the
final selection of the models’ in-sample period.

Due to the economic events occurring before and
after 2002, for the final models, the period of 2002–
2009 was chosen as the one in which model external
validity would be best. The 1997–2001 period was
one in which there was a relatively brief recession in
2001 and in which, beginning earlier in the decade of
the 1990s, there were major efforts at the state level to
deregulate and restructure the electric utility industry.
Utility restructuring had a particularly strong effect on
large consumers and manufacturers, whose relation-
ships with power generators and distributors were
renegotiated. This period also lacked large-scale, na-
tional manufacturing sector programs such as AMO
and Energy Star, not to mention smaller local energy
efficiency programs. DSM programs were declining in
this period, and MT programs were just beginning.

The 9-year period of 2002–2010 saw changes in
economic and energy supply conditions and an expan-
sion of manufacturing sector energy efficiency pro-
grams both at the state and national levels. For most
of this period, manufacturing sector real value added
grew more rapidly than in the earlier period. As seen
in Fig. 1, robust growth took place between 2002 and
2007, with real value added averaging almost 5 % per
year and plunging in 2009. In Fig. 2, it can be seen that
the trend in manufacturing sector electricity consump-
tion followed steadier, if similar, trends to that of value
added in the 1997–2001 and 2002–2010 periods.

Differences between the earlier period and the later
period are also found in average electricity prices and
average electricity intensity. As seen in Fig. 3, average
real electricity prices stayed above 7.5 cents/kWh
through 2003. Similarly, as shown in Fig. 4, from
2002, forward electricity intensity (electricity con-
sumption divided by value added) appears to have
been on lower path than in the earlier period.

To provide quantitative evidence that model exter-
nal validity was strengthened by excluding the early
years from the model estimation period, the F test of
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the equality of the coefficients (Chow test) was
performed for the electricity consumption model.
Table 5 contains the unconstrained model estimates,
meaning the model for the entire span of years and the
model for the early period, 1997–2001 (the third mod-
el needed for the F test, the policy impact models, is in
Table 3). Of immediate note is that the R2 of the
unconstrained model and the policy impact model
differs considerably from the early period model. Mo-
re importantly, the F test indicates that there is a
statistically significant difference in the coefficients
of the early period model and the policy impact model.
Similar results are obtained when the capital expendi-
ture lagged terms are removed from the model and
when fixed time effects are excluded. These findings
confirm that model external validity was improved by
removing 1997 through 2001 from the model estima-
tion period.

The second major threat to model external validity
is the recent business cycle shock; manufacturing sec-
tor value added and electricity consumption declined
dramatically in 2009 and rebounded in 2010. In 2009,
real value added plunged from its 2007 high by 25.6 %
and then, with the economic recovery underway, real
value added increased in 2010 by 12.5 %. Likewise, in
2009, electricity consumption was 16.8 % below its
2007 level, and in 2010, it rebounded by 6.6 %.

To investigate how this temporary shock affected
the policy impact model and could have affected the
counterfactuals, the model was re-estimated for the
shorter 2002–2008 period and the longer 2002–2010
period. The findings for these two models are
displayed in Table 6. Alongside each model are t tests
comparing the values of their coefficients with those
of the policy impact model (in Table 3). These tests are
performed to determine whether or not the temporary
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shock of the business cycle influenced the policy
impact model coefficients and weakened the model’s
external validity.

In Table 6, the columns marked “t score” contain
pairwise values calculated as the difference of the co-
efficients of the two models divided by the square root
of the sum of the squared standard errors of the co-
efficients, and the values in the columns marked
“Prob.” show the probability, based on the t distribu-
tion, that there is a statistically significant difference
between the coefficients of the models. Each one of
these tests indicates that there is no major difference
between the short model and the policy impact model
coefficients, and the long model and the policy impact
model coefficients. This evidence indicates that the
business cycle shock did not alter any of the policy
impact model coefficients in any significant way nor
influence the values of the counterfactuals in 2010.

In summary, tests of the model estimation period
and the effects of the business cycle shock suggest that
the electricity consumption policy impact model has
strong external validity. These findings imply that
there are no obvious systematic factors that could also
be present in the energy efficiency policy impacts
estimated for 2010.

Discussion and conclusion

According to the policy impact estimates, due to the
combined effects of energy efficiency market persua-
sion programs, electricity consumption in 2010 was
reduced by 43,946 GWh and electricity and other fuel
expenditures were reduced by 2.6 and 5.7 %, respec-
tively, relative to 2002 expenditures. An important
caveat to these findings is that they are based on the
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premise that energy efficiency policy impacts cumu-
lated over a nine year period. As such, model
misspecification due to an omitted policy variable
was expected to be minimal in the early years of the
in-sample period, but to grow over time to the point
where its effect could be detected in the 2010 fore-
casts. However, the possibility that the model exclud-
ed other important variables that led to these findings,
such as nonpolicy induced technical change and shifts

in managerial practice, cannot be ruled out. Care has
been taken to construct detailed, externally valid
econometric models that leave as little room as possi-
ble for alternative interpretations. Yet, models are rep-
resentations of reality, not reality itself, and thus their
findings incorporate known, and unknown, sources of
uncertainty.

Given the magnitude of the policy findings, it
would seem that some fraction of the impacts, perhaps

Table 5 Analysis of electricity consumption model period shift

Unconstrained model Early period model
1997–2009 1997–2001

Independent varianle Coefficient SE Probability Coefficient SE Probability

XKWHPRICE −1.048 0.031 0.000 −0.701 0.031 0.000

XTOTCOMP −0.457 0.017 0.000 −0.400 0.017 0.000

XGOC −0.446 0.015 0.000 −0.474 0.011 0.000

XIINPUTMS 0.248 0.019 0.000 0.076 0.020 0.000

XBTUX 0.340 0.015 0.000 0.219 0.013 0.000

XUTIL −5.074 0.840 0.000 −4.966 0.283 0.000

XCAPX 0.027 0.009 0.002 0.046 0.007 0.000

XCAPX (t−1) 0.062 0.010 0.000 0.034 0.007 0.000

XCAPX (t−2) 0.059 0.009 0.000 0.054 0.009 0.000

Adjusted R2 0.75 0.99

Panel n 2,024 552

F test of the equality of the coefficients: F(202,1620)=6.38; Probability<0.000

Table 6 Analysis of electricity consumption model business cycle shock

Short model Short model Long model Long model
2002–2008 t test of coefficients 2002–2010 t test of coefficients

Independent variable Coefficient SE t score Probability Coefficient SE t score Probability

XKWHPRICE −1.079 0.036 0.28 0.78 −1.063 0.032 0.65 0.52

XTOTCOMP −0.465 0.019 0.27 0.79 −0.462 0.017 0.42 0.68

XGOC −0.401 0.018 0.36 0.72 −0.427 0.014 0.86 0.40

XIINPUTMS 0.215 0.025 1.30 0.20 0.279 0.020 0.77 0.45

XBTUX 0.339 0.019 0.30 0.76 0.323 0.016 0.30 0.77

XUTIL 2.850 0.488 0.25 0.80 2.416 0.519 0.35 0.73

XCAPX 0.022 0.009 0.88 0.39 0.010 0.008 0.11 0.91

XCAPX (t-1) 0.044 0.010 0.75 0.46 0.023 0.009 0.82 0.42

XCAPX (t-2) 0.025 0.009 0.64 0.53 0.029 0.009 0.34 0.73

Adj. R-sqd. 0.81 0.81

Panel n 1,288 1,656
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even a large fraction, could be due to policy spillover.
This is because a critical element of market persuasion
programs is promoting market growth through word of
mouth, trade information outlets, advertising, and pub-
licity. As part of their outreach mission, programs like
EPA’s Energy Star, along with its program partners,
encourage corporate management to add energy effi-
ciency to their goals and priorities. They also offer free
tools and resources that help benchmark energy per-
formance and convey best practices for savings ener-
gy. Furthermore, in return for voluntarily becoming
more energy efficient, companies are often given offi-
cial local and national recognition and certification.
This creates positive, socially responsible corporate
images for participating companies. More importantly,
it sets an example for the entire industry to follow. It
remains for future studies to investigate the phenome-
non of national spillover further. As time goes on and
additional data becomes available, this subject may
become more amenable to econometric analysis than
it is at present.

Due to the nature of energy efficiency programs in
general, and manufacturing sector programs in particu-
lar, it is not possible to directly compare the policy
findings of this study to the recorded impact estimates
of individual programs that are based on more widely
known bottom–up evaluations. An obvious example of
the difficulty this entails is provided by the electricity
efficiency program impacts that are reported at the na-
tional level from the Consortium for Energy Efficiency
(CEE 2011). CEE has 352 utility and nonutility mem-
bers operating efficiency programs that were collective-
ly responsible for about 86% of expenditures on electric
and natural gas DSM and MT programs in North Amer-
ica. In its annual report, cumulative annual energy sav-
ings estimates from bottom–up studies are reported not
only for these two kinds of programs combined, but for
both commercial and industrial sector programs com-
bined. Separating the impacts of the manufacturing sec-
tor, market persuasion from the CEE’s aggregate
estimates demands, in and of itself, analyses that are
beyond the scope of the current effort.

This being said, comparison of bottom–up esti-
mates of program savings with econometric estimates
of the kind produced in this study seems like a subject
worth pursuing in future studies. In addition to the
obvious difficulties in sorting individual programs by
type and sector and history, this pursuit would require
careful attention to the conceptual differences between

energy consumption and expenditure analyses using
aggregate time series data and econometric models,
and studies using cross-section microdata collected
from program participants and nonparticipants. Thus
far, little has been done in this area. Instead, in recog-
nition of some of the information gaps in bottom–up
studies, it is common practice to adjust program sav-
ings estimates using net-to-gross (NTG) factors. A
prominent example of this practice is in the State of
California, in which the Database for Energy Efficien-
cy Resources (DEER 2011) is used by regulator to
adjust the savings estimates of investor-owned utility
programs. However, the potentially large degree of
policy spillover due to energy efficiency programs
has yet to be incorporated into the DEER NTG factors.

The findings of this study suggest that energy effi-
ciency market persuasion programs as a whole have
produced sizeable benefits in the manufacturing sector
since 2002 in the form of reduced electricity consump-
tion and reduced energy expenditures on electricity
and other fuels. In turn, this study also raises important
questions, such as what fraction of the estimated im-
pacts are due to policy spillover, and what the nature
of the synergy is between programs that focus on
financing energy efficiency investments and those that
focus on energy efficiency market persuasion. Future
econometric studies that have a narrower scope and
that can incorporate the data from bottom–up studies
may be able to address these deeper issues. Such
empirical studies are essential to fully appreciate the
comprehensive, long-term social benefits of energy
efficiency programs and policies.
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