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Abstract The rollout of smart meters has enabled
the provision of dynamic pricing to residential
customers. However, doubts remain whether
households can respond to time-varying price sig-
nals and that is preventing the full-scale rollout of
dynamic pricing and the attainment of economic
efficiency. Experiments are being conducted to test
price responsiveness. We analyze data from a pilot
in Michigan which featured two dynamic pricing
rates and an enabling technology. Unlike most
other pilots, it also included a group of “informa-
tion only” customers who were provided informa-
tion on time-varying prices but billed on standard
rates. Similarly, unlike most other pilots, it also
included two control groups, one of whom knew
they were in the pilot and one of whom did not.
This was designed to test for the presence of a
Hawthorne effect. Consistent with the large body

of experimental literature, we find that customers,
including low-income participants, do respond to
dynamic pricing. We also find that the response to
critical peak pricing rates is similar to the response
to peak time rebates, consistent with the finding of
one prior experiment but inconsistent with the
finding of two prior experiments. We also find
that the “information only” customers respond to
the provision of pricing information but at a sub-
stantially lower rate than the customers on dynam-
ic pricing. We find that the response to enabling
technology is muted. We do not find any evidence
to suggest that a Hawthorne effect existed in this
experiment.
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Introduction

Electricity cannot be stored economically in large
quantities, and has to be consumed instantly on de-
mand. The load duration curve for most utility systems
is very peaky, with some 8–10 % of annual peak load
being concentrated in the top 1 % of the hours of the
year. These two factors, taken in conjunction with the
time variation in marginal energy and capacity costs
that characterizes different generation technologies,
mean that the optimal way for pricing electricity is to
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institute time-varying rates.1 Not only would this in-
crease economic efficiency, it would also eliminate
inter-customer cross-subsidies that are embedded in
flat rates (Faruqui 2010).

A prerequisite for dynamic pricing is the presence
of advanced metering infrastructure (AMI) or smart
meters. Smart meters are expensive and their costs
cannot typically be covered by savings in operational
benefits alone. Examples of these benefits include
avoided meter reading costs and faster outage detec-
tion and service restoration. Additional benefits can be
derived if the customers are offered dynamic pricing,
and they modify their load profiles by curtailing usage
during expensive hours and shifting some of that
usage to inexpensive off-peak hours. However, despite
a decade of experimentation in North America, Aus-
tralia, and Europe, doubts remain about the price re-
sponsiveness of residential customers (Faruqui and
Sergici 2009; Rowlands and Furst 2011).

The first comprehensive pilot with dynamic pricing
was carried out in California. Known as the Statewide
Pricing Pilot, it ran during the years 2003 through
2005. It tested critical peak pricing (CPP) and time-
of-use (TOU) pricing rates with and without enabling
technologies. It found that customers were price re-
sponsive and that their responsiveness increased with
enabling technology (Faruqui and George 2005). It did
not test peak time rebates (PTR).

Baltimore Gas and Electric (BGE) in Maryland
initiated a pilot in the year 2008 which ran through
2011, becoming the longest-running pilot thus far. It
yielded a number of significant findings. For example,
customers responded to price signals, CPP rates and
PTRs produced a similar response, and enabling tech-
nologies boosted response (Faruqui and Sergici 2011).
Connecticut Light and Power’s experiment in the sum-
mer of 2009 also found evidence of price responsive-
ness and showed that enabling technology boosted
price responsiveness. However, it differed from the
BGE pilot in that it found that CPP rates elicited
higher responsiveness than PTRs (Faruqui et al.
2012). This conclusion was reinforced in the experi-
ment carried out by Pepco in Washington, DC which

found that CPP rates elicited substantially higher re-
sponsiveness than PTRs (Wolak 2011).

This paper investigates these and other hypotheses
by using data from a dynamic pricing pilot that was
carried out in Michigan in the summer of 2010 by
Consumers Energy (CE). It was called the Personal
Power Plan (PPP). Although other dynamic pricing
pilots had published their findings prior to the execu-
tion of the PPP, they had been carried out in different
geographies, and there was a concern that differences
in climatic, economic, and sociodemographic condi-
tions would impair the transferability of findings.

Unlike most other pilots, the PPP recruited a group of
customers that were subject to time-varying rates as well
as a group of customers that were only provided price
information but billed on their standard rates. The price-
information only (PIO) customers enabled CE to test the
effectiveness of information in changing customer be-
havior without actually changing the prices.

The pilot included 921 residential customers and ran
from July 2010 through September 2010. Around 600
customers were placed on various treatments, of which
two involved dynamic pricing rates—CPP and PTR,
both of which were layered atop a TOU rate, and the
PIO treatment. The PTR tested in this pilot differed from
the typical PTR rate tested in other pilots. Under a
typical PTR rate, participants continue to pay the stan-
dard rate on the non-event days, whereas in the PPP, the
PTR customers paid the TOU rates on the non-event
days. The CPP and PIO treatments were also tested with
and without an intelligent communicating thermostat
(ICT) to observe the role of the enabling technology in
boosting customer responsiveness.

The pilot also involved two control groups. The
first group, consisting of 228 customers, was random-
ly selected from the same AMI population. These
customers were unaware of the pilot program and
represented what the treatment customers would be-
have like absent the pilot treatments. The second
group, composed of 92 customers, was also randomly
selected and told that the utility would observe their
everyday usage patterns this summer beginning in
June until the end of September. These customers were
included in the design to determine whether there was
a “Hawthorne bias” in effect, which refers to human
objects of an experiment changing their behaviors
because of the knowledge that they are being studied.

The other difference of the PPP pilot from many of
the other pilots is that the pilot participants had an

1 For a survey, see Crew et al. (1995). A case for dynamic (as
opposed to static) time-varying rates was provided by Vickrey
(1971). Chao (1983) introduced uncertainty into the analysis.
Littlechild (2003) made a case for passing through wholesale
costs to retail customers. Borenstein (2005) compared the effi-
ciency gains of dynamic and static time-varying rates.
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inclining block rate (IBR) structure in the pretreatment
period. The rates of the CPP and PTR participants
were replaced with the dynamic rates after the initia-
tion of the pilot. The PIO customers stayed with their
IBRs throughout the pilot period.

CE called six critical event days during the course of
the pilot period. Hourly usage was used for customers in
both groups during the pilot to determine if the treatment
group used less during the more expensive periods. In
addition, to assess for any preexisting difference in the
groups, hourly usage was also recorded during a pre-
pilot phase. Econometrically, a difference-in-differences
estimation procedure was applied to an unbalanced pan-
el for estimating the treatment effects.

The PPP was designed to test six major hypotheses:
(1) Do customers respond to dynamic pricing? (2) Do
customers exhibit similar price responsiveness to the
PTR tariff as they do to the CPP tariff? (3) Do PIO
customers respond to price information? (4) Does
enabling technology boost price responsiveness? (5)
Are low-income customers price responsive? (6) Is
there an observable Hawthorne effect?

Section “PPP experimental design” of this paper
describes the experimental design of the PPP.
Section “Data and methodology” summarizes the ana-
lytical methods and data used in the estimation of the
load impacts. Section “Results” reports on the empirical
findings and Section “Conclusions” concludes the paper.

PPP experimental design

Rate design

CE’s standard residential rates had an IBR structure in
the summer months (between June and September)
that amounts to $0.11/kWh for the first 600 kWh and
$0.17/kWh thereafter. In the winter months (between
October and May), the residential customers paid a
standard flat rate of $0.11/kWh. These rates are com-
puted on an all-in basis, which reflect the sum total of
transmission, distribution, generation, and other cus-
tomer charges. During the PPP period, the control
group customers faced the IBR structure as the pilot
ran in the summer months. The treatment customers
faced one of the three following rate designs:

Critical peak pricing The hours between 2 pm and
6 pm on non-holiday weekdays were designated as the

peak period and were priced at $0.18/kWh. On the six
critical peak days that were called on a day-ahead
basis, the peak hours would become the critical peak
hours and be priced at $0.69/kWh. The hours between
7 am and 2 pm and between 6 pm and 11 pm on non-
holiday weekdays were designated as the mid-peak
period and were priced at $0.11/kWh. On non-
critical weekdays and weekends, the treatment cus-
tomers faced an off-peak price of $0.09/kWh. In order
to maintain revenue neutrality, the off-peak price was
lower than the standard tariff.

Peak time rebate The participants had the opportunity
to receive a $0.50 rebate for every kilowatt hour of
load reduction if they reduce their consumption below
their baseline usage during the peak hours of the
critical peak event days. On non-event days, the par-
ticipants faced a TOU rate. The hours between 2 pm
and 6 pm were priced at $0.26/kWh. The hours be-
tween 7 am and 2 pm and between 6 pm and 11 pm
were priced at $0.11/kWh. The treatment customers
faced an off-peak price of $0.09/kWh.

Price information only Similar to the control group
customers, the PIO participants faced an IBR structure
in the summer months and a flat rate in the winter
months. However, these customers were notified of
the critical peak events and were encouraged to reduce
their energy consumption during event windows. They
were also given access to personalized web portals
that contain information on their consumption patterns
as well as energy-savings tips and actions.

Technology

The PPP also tested the effectiveness of an ICT in
facilitating the demand response when offered in con-
junction with dynamic rates and standard rates. In
order to distinguish the impacts of the enabling tech-
nology from that of the prices and information alone,
CPP and PIO treatments were tested with and without
the technology options. The PTR treatment customers
were not tested with the technology.

The ICT tested in the PPP pilot was a programma-
ble thermostat that could also receive wireless signals
from the utility. On event days, CE sent a wireless
signal to the thermostats to increase the set-back tem-
peratures (the temperature at which the thermostat
kicks in) to pre-programmed levels. For instance, if
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the thermostat is programmed to have a set-back tem-
perature of 79°, a wireless signal sent from the utility
automatically raised the temperature to 79°. CE fol-
lowed an approach that involved pre-programming the
thermostats to customers’ preferred levels at the time of
installation. In most previous pilots, the customers were
not given such option, and the utility increased the
settings of their thermostats either to a certain level
(e.g., 80°), or by a given increment (e.g., by 4°).

Another unique feature of the CE’s enabling technol-
ogy deployment was the ease of overrides by the cus-
tomers. The customers could simply go to the control
panel of their thermostats and cancel the temperature set
by CE or adjust it to some other level. In many other
pilots, the overrides were more difficult and most of the
time involved calling the utility to cancel the utility’s
control of the thermostat. A combination of time-varying
rates, information treatments, and an enabling technolo-
gy yielded five different treatment cells in the pilot.

Sample design

CE had deployed 3,800 AMI meters in the city of
Jackson, Michigan which represented the participant
population for this pilot.2 Pilot customers were ran-
domly selected and then recruited from this sample
through direct mailing and follow-up calls. The final
sample design included approximately 600 program
participants. Of the 600 customers who were subject to
pricing or information-only treatments during this pe-
riod, 115 customers were classified as low income
because they earned less than $25,000 a year. Of this
total, 97 were on pricing treatments and 18 were on the
information-only treatment.

In the recruitment process, CE first mailed information
to the customers to notify them about the PPP and invit-
ing them to join the pilot. Customers who received the
mailings and wished to participate in the program could
contact CE’s hot line by email or telephone. CE also used
outbound calls to contact customers who did not respond.
Detailed information was provided to invitees in the
mailing including the type of rate design and/or enabling
technology. The letter only detailed the specific rate (e.g.,
CPP or PTR) that was being offered to the invitees and
none of the other rates. Participating customers were

offered an appreciation payment of $150 (for CPP,
PTR, and PIO treatments) or $175 (for CPP_TECH and
PIO_TECH) if they stayed in the pilot throughout the
pilot period. CE sequentially recruited treatment custom-
ers for five different treatment groups.

This was one of the few dynamic pricing pilots that
tested for the presence of the Hawthorne effect,
according to which, people who are not on any exper-
imental treatment change their behavior merely be-
cause they are aware of the experiment.3 This would
suggest that the observed treatment effects, which are
the difference in usage between the treatment and
control group customers, would be understated since
the control group customers would also change their
behavior merely by being included in the experiment.

CE randomly selected two control groups to carry out
the test. The GCON group, consisting of 228 customers,
was randomly selected from the AMI population and
was unaware of the pilot program. The RCON group,
consisting of 92 customers, was also randomly selected
but was made aware of the pilot program.4 The RCON
customers were told that CE would observe their every-
day usage patterns during the summer season, beginning
in June and running through the end of September. If the
Hawthorne effect existed, then the treatment effect mea-
sured relative to the RCON group would differ from that
measured relative to the GCON group. One might pre-
sume that the RCONmeasurement would yield a smaller
treatment effect than the GCON measurement since
customers in the RCON group would lower their peak
usage because they were being observed. Table 1 shows
the distribution of the treatment and the control custom-
ers into different pilot cells as of September 2010.

Customer communication

CE called six critical peak days between the months of
June and September. The participants were notified of
the critical peak days on a day-ahead basis through
one or more of the following options: telephone mes-
sages, e-mail communication, and text messages.

2 Jackson is a small town in south central Michigan about 40
miles west of Ann Arbor with a population of some 30,000.
http://www.cityofjackson.org/

3 “The Hawthorne effect has been an enduring legacy of the
celebrated studies of workplace behavior conducted in the 1920s
and 1930s at Western Electric's Hawthorne Plant.” Jones (1992).
4 An alternative approach to form the RCON group is to recruit
them similarly to the treatment group, then to deny them the
treatment impact. However, by having two different control
groups with only one of them having the knowledge of the
pilot, we believe we would get very similar results.
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Data and methodology

Data

CEmetered the hourly usage of the treatment and control
group customers both before and during the pilot period.
The data from May to September yielded a residential
data set of 921 customers. Price series used into the
estimation procedure were first converted to all-in prices
in order to reflect the sum total of transmission, distribu-
tion, generation, and other customer charges. Four types
of rates structures were used in the PPP dataset:

Standard all-in rates Retaining the IBR structure
could lead to problems with identification of the de-
mand curves and needed special attention. We
addressed the problem by estimating the average CE
customer usage of 931 kWh/month and converting the
IBR to a flat all-in rate of $0.13/kWh. The rates were
then matched to the control group customers in the
pretreatment as well as the treatment periods in the
data manipulation stage. They were also matched to
the treatment customers in the pretreatment period
since the pilot rates were not yet in effect.

CPP all-in rates The CPP rates were converted into
all-in rates and matched to the CPP customers while
carefully checking that off-peak, peak, mid-peak, and
critical peak prices corresponded to the hours defined
in the CPP program.

PTR all-in rates The PTR rates were converted into
all-in rates and matched to the PTR customers with the
corresponding off-peak, peak, mid-peak, and critical
peak prices. We summed up the rebate component
with the peak rate to obtain the all-in PTR rate. We
contend that an additional kilowatt hour of consump-
tion means foregoing the rebate amount and, therefore,
constitutes an opportunity cost for the customer.

PIO all-in rates The standard all-in rates were
matched to the PIO customers in the pretreatment as
well as the treatment periods.

We also used two hourly weather variables, dry
bulb temperature and dew point temperature, to create
a temperature–humidity index (THI) variable, which
will be described later.

Demand model

We took several steps to our modeling approach: (1)
We specified electricity demand models that represent
the electricity consumption behavior of the CE cus-
tomers. (2) We used panel data econometrics to esti-
mate and parameterize the models. (3) We simulated
the impact of the treatments that were deployed in the
pilot as well as intermediate treatments that could be
deployed in the post-pilot phase.

We employed a model that has been widely used in
empirical work on dynamic pricing, the constant elas-
ticity of substitution (CES) model, to estimate custom-
er demand curves for electricity by time period and
derive the peak to off-peak substitution and daily price
elasticities. The CES model allowed us to estimate the
demand response impacts of each PPP pricing option
and also to predict the impact of prices other than
those used in the pilot. We also relied on the analysis
of variance and covariance (ANCOVA) model in order
to estimate the impacts of the information-only treat-
ments as they did not face time-varying rates.

The CES model consists of two equations. The first
equation models the ratio of the natural logarithm of
peak to off-peak quantities as a function of the ratio of
the natural logarithm of peak to off-peak prices and
other terms.5 The second equation models the average

5 Given that the price differential between the mid-peak rate and
the off-peak rate was insignificant, we treated the mid-peak period
as an off-peak period and used a two-period rate structure.

Table 1 The PPP sample design

Treatment Control Total

CPP PTR PIO TOTAL GCON RCON Total

Total 220 152 229 601 228 92 320 921

No TECH 122 152 155 429 228 92 320 749

TECH (ICT) 98 0 74 172 0 0 0 172
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daily electricity consumption as a function of the daily
price of electricity. The two equations constitute a
system for predicting electricity consumption by time
period where the first equation predicts the changes in
the load shape caused by changing peak to off-peak
price ratios, and the second equation predicts the
changes in the level of daily electricity consumption
caused by changing the average daily electricity price.

Econometric estimation

We used a “fixed-effects” estimation procedure to
model the CES demand system. Fixed effects estima-
tion uses a data transformation method that removes
any unobserved time-invariant effect that has a poten-
tial impact on the dependent variable. By estimating a
fixed effects model, we effectively controlled for all
customer specific characteristics that don’t vary over
time and isolate their impact on the dependent vari-
able. However, there are also several observed varia-
bles that may affect the level of the dependent
variable, and these need to be included in the model.
We discuss these variables and the econometric spec-
ifications of the substitution and the daily demand
equations below.

Substitution equation The equation captures the abil-
ity of customers to substitute relatively inexpensive

off-peak consumption for relative expensive peak con-
sumption. The decision to substitute between peak and
off-peak periods is mainly affected by the relative
prices between these two periods. However, the rela-
tive weather conditions between the periods should
also be included in the analysis because weather has
a strong influence on load. Keeping everything else
constant, the average peak load is greater than the
average off-peak load on a hot summer day because
the average peak temperature is higher than the aver-
age off-peak temperature, which leads to more cooling
during the peak period. In the Midwest region, humid-
ity amplifies the effect of temperature. In order to
capture the impact of temperature and humidity on
the electricity load, we created a variable called the
THI (sometimes called the discomfort index). The
variable is a weighted average of the dry bulb temper-
ature (air temperature shielded from moisture) and the
dew point temperature (a measure of relative humidi-
ty) and is computed as follows:

THI ¼ 0:55� dry bulb temperatureþ 0:20

� dew point temperatureþ 17:5

The substitution equation takes the following func-
tional form:

ln ð Peak kWh

OffPeak kWh
Þ
it
¼ a0 þ a1THI DIFFt þ

X3

k¼1

dkðTHI DIFFt � D MonthkÞ þ a3 lnð Peak Price

OffPeak Price
Þit � THI DIFFtþ

a4 lnð Peak Price

OffPeak Price
Þit � THI DIFF� TECHi þ a5 lnð Peak Price

OffPeak Price
Þit � THI DIFF� PTRiþ

a6D TreatPeriodti þ a7D TreatCustomert þ a8D TreatPeriodt � TreatCustomeriþ
a9D WEEKENDt þ vi þ uit

where:

ln Peak kWh
OffPeak kWh

� �
it Natural logarithm of

the ratio of peak to
off-peak load for a
given day

THI_DIFFt The difference between
average peak and
average off-peak
THI.

THI_DIFFt × D_Monthk Interaction of THI_
DIFF variable with
monthly dummies.

ln Peak Price
OffPeak Price

� �
it
� THI DIFFt Interaction of ln

Peak kWh
OffPeak kWh

� �
it and

THI_DIFF
ln Peak Price

OffPeak Price

� �
it
� THI DIFF
�TECHi

Interaction of ln
Peak kWh

OffPeak kWh

� �
it, THI_

DIFF and TECH.
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TECH Equal to 1 if the
customer has an ICT.

ln Peak Price
OffPeak Price

� �
it
� THI DIFF
�PTRi

Interaction of
ln Peak kWh

OffPeak kWh

� �
it,

THI_DIFF and PTR
PTR Equal to 1 for a PTR

customer, 0 otherwise.
D_TreatPeriodt Dummy variable is

equal to 1 when the
period is July 2010
through September
1, 2010.

D_TreatCustomeri is equal to 1 for the
treatment customers.

D_TreatPeriodt ×
TreatCustomeri

Interaction of
D_TreatPeriodt with
D_TreatCustomeri

D_WEEKENDt Dummy variable that is
equal to 1 onweekends.

vi Time invariant fixed
effects for customers.

uit Normally distributed
error term.

The substitution equation was estimated using data
on both the treatment and the control customers before
and during the pilot period. Such database allows one to
isolate the true impact of the experiment by controlling
for any potential biases due to either differences be-
tween control and treatment customers in the pretreat-
ment period or any changes in the consumption
behavior of the treatment customers between the pre-
treatment and the treatment periods that are not related
to the treatment per se (Faruqui et al. 2009). These

potential confounding factors are controlled for by in-
troducing dummy variables pertaining to the customer
type and the analysis period. We estimated the substitu-
tion equation for the full sample using the GCON and
RCON control groups, as well as for the low-income
customer sample using the GCON control group.

This equation determined the substitution elasticity
of the pilot customers. The substitution elasticity indi-
cates the percent change in the ratio of peak to off-peak
consumption due to a 1 % change in the ratio of peak to
off-peak prices. A priori, we hypothesize that the sub-
stitution elasticity will increase in absolute terms with
weather. To capture this behavior, we interacted the
price ratio and the weather term in the model. We also
introduced the interaction terms between the price ratios
and dummy variables for the enabling technology to
capture the incremental impact of the technology on
the price responsiveness of the customers.

Since the PIO customers did not face time-varying
rates, we estimated a separate model which we discuss
in the ANCOVA equation section. The estimation
results for the substitution equations are provided in
Table 2.

Daily demand equation Thedailydemandequation cap-
tures the change in the average daily consumption due to
the changes in the average daily price. Similar to the
substitution equation, the daily equation also relies on the
pretreatment and the treatment period data on both treat-
ment and control group customers.We estimated the daily
demand equation for the full sample using the GCON and
RCON control groups, as well as for the low-income
customer sample using the GCON control group.

We use the following specification for the CPP and
the PTR customers:

ln ðkWhÞit ¼ a0 þ a1 ln ðTHIÞt þ
P3

k¼1
dkðln ðTHIÞt � D MonthkÞ þ a3 ln ðPr iceÞit � ln ðTHIÞtþ

a4 ln ðPriceÞit � ln ðTHIÞt � TECHi þ a5 ln ðP riceÞit � ln ðTHIÞt � PTRi þ a6D TreatPeriodtþ
a7D TreatCustomeri þ a8D TreatPeriodt � TreatCustomeri þ a9D WEEKENDt þ vi þ uit

where:

ln(kWh)it Natural logarithm of the daily
average of the hourly load.

ln(THI)it Natural logarithm of the daily
average of the hourly THI.

ln (THI)t × D_Monthk Interaction of ln(THI) variable
with monthly dummies.

ln (Price)it × ln (THI)t Interaction of ln(price) with
ln(THI).

ln (Price)it × ln (THI)
× TECHt

Interaction of ln(price) with
ln(THI) and TECH.
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ET is equal to 1 if the customer
has an ICT.

ln (Price)it × ln (THI)
× PTRt

Interaction of ln(price) with
ln(THI) and PTR

PTR Equal to 1 for aPTRcustomer.
D_TreatPeriodt Dummyvariable is equal to 1

when the period is July 2010
through September 1, 2010.

D_TreatCustomeri Equal to 1 for the treatment
customers.

D_TreatPeriodt ×
TreatCustomeri

Interaction of with
D_TreatPeriodt with
D_TreatCustomeri

D_WEEKENDt Dummy variable that is
equal to 1 on weekends.

vt Time invariant fixed effects
for customers.

uit Normally distributed error
term.

The daily equation determined the daily price
elasticity of the CE customers. Similar to the sub-
stitution elasticities, the daily price elasticities were
interacted with the weather term. The estimation
results for the daily demand equation are presented
in Table 3.

ANCOVA equation As the PIO customers were not
subject to time-varying rates, it is not possible to
estimate the demand impacts for these customers us-
ing the substitution and daily equations. Instead, we
modeled the changes in the peak electricity consump-
tion of these customers on the event days using an
ANCOVA approach. This approach is based on

Table 2 Substitution equations,
by rate design

TreatCustomer variable drops
from the regression due to fixed
effects estimation. Substitution
equation. Dependent variable: ln
(peak_kwh/offpeak_kwh). Ro-
bust p values in parentheses. The
reported R2 values do not in-
clude the explanatory power of
the customer fixed effects. When
the explanatory power of the
fixed effects is included, the ad-
justed R2 values are around 0.2

*p≤0.05; **p<0.01

Variables All participants Income <$25,000

CPP/PTR
and GCON

CPP/PTR
and RCON

CPP/PTR
and GCON

thi_diff 0.003** 0.003 0.000

(0.006) (0.067) (0.990)

thi_diff × june 0.020** 0.018** 0.016**

(0.000) (0.000) (0.000)

thi_diff × july 0.011** 0.012** 0.017**

(0.000) (0.000) (0.000)

Thi_diff × aug 0.002 0.002 0.005

(0.156) (0.306) (0.228)

TreatPeriod 0.176** 0.116** 0.131**

(0.000) (0.000) (0.000)

TreatCustomer × TreatPeriod −0.024 0.029 −0.055
(0.080) (0.096) (0.076)

ln_price_ratio × thi_diff −0.022** −0.022** −0.022*
(0.000) (0.000) (0.041)

ln_price_ratio × thi_diff_TECH 0.005 0.005 0.019

(0.317) (0.317) (0.252)

ln_price_ratio × thi_diff_PTR 0.005 0.005 0.013

(0.289) (0.292) (0.274)

Weekend 0.040** 0.044** 0.016

(0.000) (0.000) (0.256)

Constant 0.013 0.002 0.042

(0.151) (0.874) (0.081)

Observations 73535 58144 11,898

R2 0.039 0.034 0.028

Number of customers 601 478 97
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identifying the event days and comparing the changes
in the peak usage, caused by the event notification, to

the peak usage of non-event days. The estimation
equation takes the following functional form:

ln ðkWhÞit ¼ a0 þ a1THIit þ
P3

k¼1
dkðTHI� D MonthkÞit þ a3D Event Dayt � THIitþ

a4D Event Dayt � THIit � D TECHþ a5D TreatPeriodt þ a6TreatCustomerþ
a7D TreatPeriod� TreatCustomerit þ a8D WEEKENDþ vi þ uit

where:

ln(kWh)it Logarithm of the hourly peak
load for a given day

THIt THI=0.55×dry bulb temperature+
0.20×Dewpoint+17.5

THI × D_Monthk Interaction of the hourly peak
THI with monthly dummies

D_TreatPeriodt Dummy variable is equal to
1 when the period is July
2010 through September
2010

Table 3 Daily demand equa-
tions, by rate design

TreatCustomer variable drops
from the regression due to fixed
effects estimation. Daily equa-
tion. Dependent variable: ln
(average_daily_consumption). P
value in parenthesis. The
reported R2 values do not in-
clude the explanatory power of
the customer fixed effects. When
the explanatory power of the
fixed effects is included, the ad-
justed R2 values are around 0.7

*p<0.05; **p<0.01

All participants Income <$25,000

Variables CPP/PTR
and GCON

CPP/PTR
and RCON

CPP/PTR
and GCON

ln_thi 1.241** 1.094** 1.020**

(0.000) (0.000) (0.000)

ln_thi × june 0.005** −0.000 −0.001
(0.010) (0.976) (0.896)

ln_thi × july 0.023** 0.069** 0.029**

(0.000) (0.000) (0.000)

ln_thi × aug 0.016** 0.064** 0.020**

(0.000) (0.000) (0.007)

TreatPeriod 0.083** −0.249** 0.035

(0.000) (0.000) (0.347)

TreatCustomer × TreatPeriod −0.017 0.125** −0.010
(0.103) (0.000) (0.665)

ln_price × ln_thi −0.006 0.003 −0.016
(0214) (0.595) (0.146)

ln_price × ln_thi_TECH −0.021** −0.026** −0.013
(0.001) (0.000) (0.610)

ln_price × ln_thi_PTR 0.006 0.001 0.009

(0.334) (0.920) 0.544

Weekend 0.019** 0.023** −0.009
(0.000) (0.000) (0.149)

Constant −5.346** −4.678** −4.838**
(0.000) (0.000) (0.000)

Observations 73438 57999 11,853

Number of customers 601 478 97

Rho 0.567 0.572 0.555

R2 0.085 0.069 0.0699
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TreatCustomer Dummy variable is equal to 1
for a treatment customer

D_TreatPeriodt ×
TreatCustomeri

Interaction of D_TreatPeriod
with TreatCustomer

D_Event_Dayt ×
THIit

Interaction of D_Event_Day
and THI for RPIO customers

D_Event_Dayt ×
THIit × D_TECH

Interaction of D_Event_Day ×
THI and dummy variable for
RPIO_TECH customers

D_WEEKENDt Dummy variable that is equal to
1 on weekends

vt Time invariant fixed effects for
customers

ut Normally distributed error term

The initial specifications of the PPP demand model
also implied that the peak consumption of the PIO
customers increased with the hotter weather. There-
fore, we included an interaction term between the
event day and the THI variables in the model to
capture this relationship. We also introduced an inter-
action term between the event day variable and the
enabling technology to capture the incremental impact
of technology above and beyond the information-only
treatment and relied on the fixed effects estimation
procedure to estimate the model. The estimation
results for the ANCOVA equation are presented in
Table 4.

Results

CPP and PTR elasticities

Once we had estimated the parameters of the substitu-
tion and the daily equations, we calculated the substitu-
tion and the daily price elasticities. As the CE price
elasticities are weather dependent, the impact of the
weather on the substitution elasticity and the daily elas-
ticity is captured through the THI_DIFF variable and the
ln (THI) variable, respectively. In order to quantify the
load impacts from the pilot, we determined the “average
CPP event day weather” to be used in the calculation of
the price elasticities. We identified the average CPP
event day weather by finding the average values of the
THI_DIFF and the THI variables for the six event days.

Substitution elasticity The substitution elasticities can
be derived from the following equations:

Subst Elasticityprice CPP ¼ a3 � THI DIFFt price;weatherð Þ
ð1Þ

Subst Elasticityprice CPP TECH ¼ a3 þ a4ð Þ � THI DIFFt
price;weather; and TECHð Þ

ð2Þ

Subst Elasticityprice PTR ¼ a3 þ a5ð Þ � THI DIFFt
price;weatherð Þ

ð3Þ

These equations make it possible to determine a
substitution elasticity conditional on a specific weather
condition and the existence of an enabling technology.

Table 4 ANCOVA demand equations, by rate design

Variables PIO & GCON PIO & RCON

thi_peak 0.0331** 0.0300**

(0.000) (0.000)

thi_peak_june 0.0007** 0.0002

(0.000) (0.354)

thi_peak_july 0.0030** 0.0038**

(0.000) (0.000)

thi_peak_aug 0.0017** 0.0027**

(0.000) (0.000)

TreatPeriod 0.0607* −0.1516**
(0.048) (0.000)

TreatCustomerxTreatPeriod −0.0495 0.1024**

(0.060) (0.005)

event_dayxthi_peak −0.0008* −0.0007*
(0.011) (0.030)

event_dayxthi_peak_TECH 0.0009 0.0009

(0.111) (0.111)

weekend 0.0284** 0.0362**

(0.003) (0.001)

Constant −2.2718** −2.0218**
(0.000) (0.000)

Observations 56291 40900

Number of customers 458 335

rho 0.554 0.556

R-squared 0.202 0.162

TreatCustomer variable drops from the regression due to fixed
effects estimation. ANCOVA equation. Dependent variable: ln
(average_daily_peak_consumption). Robust p values in parenthe-
ses. The reported R2 values do not include the explanatory power
of the customer fixed effects. When the explanatory power of the
fixed effects is included, the adjusted R2 values are around 0.6

*p<0.05; **p<0.01
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Daily elasticity The daily price elasticities from the
estimated model can be derived using the following
equations:

Daily Elasticityprice CPP ¼ a3 � ln THIð Þt price;weatherð Þ
ð4Þ

Daily Elasticityprice CPP TECH ¼ a3 þ a4ð Þ � ln THIð Þt
price;weather; and TECHð Þ

ð5Þ

Daily Elasticityprice PTR ¼ a3 þ a5ð Þ � ln THIð Þt price;weatherð Þ
ð6Þ

It is also possible to estimate a daily price elasticity
conditional on a specific weather condition using this
equation.

PIO impacts

We modeled the changes in the peak electricity con-
sumption of these customers on the event days using
the ANCOVA approach. After estimating the parame-
ters of the ANCOVA equation, we calculated the
impacts based on the “average CPP event day weath-
er.” We identified the average CPP event day weather
by finding the average values of the peak THI variable
for the six event days.

ANCOVA impacts The PIO impacts from the estimated
model can be derived using the following equations:

Im pactsPIO ¼ a3 � THI Peakt

price;weatherð Þ
ð7Þ

Im pactsPIO TECH ¼ a3 þ a4ð Þ � THI Peakt

price;weather; and TECHð Þ
ð8Þ

These equations make it possible to estimate the
peak impacts conditional on a specific weather condi-
tion and the existing of an enabling technology.

Empirical findings

Table 5 reports the estimated substitution and daily
price elasticities for the CPP and the PTR customers.

The key findings are noted below:

1. We found that the elasticities of substitution are
statistically significant and in line with other
pilots, confirming that residential customers are
price responsive.

2. Unlike the substitution elasticities, the daily price
elasticities were statistically insignificant except
for the CPP customers with the enabling technol-
ogy. The CPP + TECH daily elasticity was esti-
mated as −0.089, more than twice as high as the
value observed in the 2008 BGE experiment.

3. CE customers showed the same price responsive-
ness to the equivalently designed PTR and CPP
rates. This finding complements the result of the
BGE pilot in Maryland which, during its first year
of operation in 2008, tested both the CPP and the
PTR rates. However, it contradicts the results of
the PowerCents DC pilot carried out by Pepco in
the District of Columbia which ran during the
summers of 2008–2009 and the finding of the
dynamic pricing pilot run by Connecticut Light
& Power Company (Faruqui et al. 2012; Wolak
2011).

4. The CPP and the PTR substitution elasticities
were estimated as −0.107. This is higher than the
average substitution elasticity of −0.076 reported
in the California SPP and of −0.096 reported in
the BGE pilot.6

5. We found that the substitution elasticities did not
differ for customers with and without the enabling
technology. This finding contradicts the result of
the BGE pilot in Maryland and the Connecticut
Light & Power pilot in Connecticut and may be

6 See Faruqui and George (2005) for the California Statewide
Pricing Pilot analysis and Faruqui and Sergici (2011) for the
BGE analysis.

Table 5 Residential elasticity estimates

Elasticity type CPP PTR

Substitution elasticity estimates

Price only −0.107 −0.107
Price + TECH −0.107 N/A

Daily elasticity estimates

Price only 0.000 0.000

Price + TECH −0.089 N/A
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due to the ease with which customers were able to
override the utility’s control of their thermostat.

6. As mentioned earlier, CE recruited two control
groups GCON and RCON to test the existence
of a Hawthorne effect. As shown in Table 2, we
found no statistical difference between the substi-
tution elasticities using the GCON group which
were unaware of the pilot program and the RCON
group who were told that the utility would observe
their everyday usage patterns. However, the daily
price elasticity for the CPP with enabling technol-
ogy customers was higher when estimated using
the RCON group, compared to the original model
(estimated using the GCON group). Finally, the
load reduction impact estimated from the
ANCOVA model using the RCON group is slight-
ly lower compared to that using the GCON group;
however, the difference between these two coef-
ficients is not statistically significant. Based on
these findings, we conclude that there is no defin-
itive evidence to support the existence of a Haw-
thorne effect in the PPP pilot.

7. The results showed that the substitution elasticities
for low-income groups were not statistically dis-
tinguishable from non-low-income participants.
Enabling technologies did not yield additional
impacts across income groups. The substitution
elasticities for the CPP and PTR treatments were
also indistinguishable among income groups.

8. The daily elasticities of CPP treatments were in-
significant across income groups. The CPP and
PTR treatments are statistically different among
non-low-income participants.

Simulating the demand response impacts

Once we had estimated the equations for the CPP, the
PTR, and the PIO customers, we were then able to
estimate the demand response impacts for the rates

tested in the PPP. We obtained the impacts of the
PIO customers directly from the ANCOVA equation,
while we determined the impacts of the CPP and the
PTR rates through the Pricing Impact Simulation
Model (PRISM) software. The PRISM software
emerged from the California Statewide Pricing Pilot
(Faruqui and George 2005). Originally developed for
California, PRISM has been adapted to conditions in
other parts of North America after making adjustments
for weather, customer price responsiveness (price elas-
ticities), rate, and load shape characteristics. We cali-
brated the PRISM model to the estimated elasticities,
the typical CE residential load profiles, and all-in rates
the control and the PPP customers paid during the
pilot period and created the CE-PRISM model. Using
the CE-PRISM model, we calculated the demand re-
sponse impacts for the rates that were tested in the PPP
program. CE-PRISM also allows calculating the
impacts from other values of the rates tested in the
PPP.

The CE-PRISM model generates several metrics
including percent change in peak and off-peak con-
sumption on critical and non-critical days and percent
change in total monthly consumption.

Customer impacts

Table 6 presents the customer impacts.
The following findings emerged from the experiment:

1. The CPP customers reduced their critical peak
period usage by 15.2 %.

2. The CPP customers with the enabling technology
reduced their critical peak period usage by 19.4 %,
but this effect is not coming from their having a
higher substitution elasticity; instead, it is coming
from their having a higher daily price elasticity.

3. The PTR customers reduced their critical peak
period usage by 15.9 %.

Table 6 Residential demand impact results

CPP (%) CPP_TECH (%) PTR (%) PIO (%) PIO_TECH (%)

Critical days–peak (% of original consumption) −15.2 −19.4 −15.9 −5.8 −5.8
Critical days–mid-peak (% of original consumption) 4.4 −0.7 4.6 0.0 0.0

Non-critical days–peak (% of original consumption) −5.0 −3.9 −7.8 0.0 0.0

Non-critical days–off-peak (% of original consumption) 13 2.5 2.1 0.0 0.0

Total change in consumption (%/month) 0.0 0.8 0.0 0.0 0.0
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4. The PIO customers reduced their critical peak
period usage by 5.8 %.

5. The PIO customers with the enabling technology
did not yield additional impacts above and beyond
that of the information only treatment.

6. The total monthly consumption remained un-
changed for both the CPP and the PTR programs
as the daily elasticity was statistically insignifi-
cant. Such findings implied that the CPP and the
PTR rates only induced customers to shift their
loads from peak to off-peak periods, and did not
lead to any statistically detectable load building or
load conservation impacts.

7. The total monthly consumption for the CPP cus-
tomer with enabling technology increased by 0.8 %
as the daily elasticity was statistically significant.
During the pilot period, the average daily price
reached $0.23/kWh on critical event days, whereas
it decreased to $0.10/kWh on the non-critical days.
Since the number of event days was far less than the
number of non-event days in a given month, the
load building effect overweighed the load conser-
vation effect, and average monthly usage increased.
It is also plausible that changing the hardware may
have changed the schedules and/or energy usage
and led to increased energy consumption.

Figure 1 lays out the peak reductions for CE resi-
dential customers relative to other pilots (Faruqui and
Palmer 2012). It takes data from a variety of dynamic
pricing pilots that have been conducted during the past
decade over three continents. Most of the pilots had
multiple treatments, and the figure shows the results of

each treatment. On the vertical axis, we plot the re-
duction in peak demand and associate it with the peak
to off-peak price ratio which is plotted on the horizon-
tal axis. The results are grouped by treatment type:
price-only shown in red, price with technology shown
in blue, and price with super technology shown in
green. Simple regression curves are fit to each of the
three clusters yielding three “arcs of price responsive-
ness.” The three CE impacts, with circles drawn
around them, are broadly consistent with the findings
of the other experiments.

Conclusions

In CE’s dynamic pricing experiment, we found con-
clusive evidence of price responsiveness, as seen in
other dynamic pricing pilots. We also found that
equivalently designed PTR and CPP rates had equiv-
alent impacts on peak demand. This finding comple-
ments the result found in the BGE pilot in Maryland
during its first summer of operation in 2008, but con-
tradicts the findings of the dynamic pricing pilots
carried out in the District of Columbia in 2008–2009
and in Connecticut in 2009. This remains a fertile
topic for future work. We also found that “information
only” customers responded to the provision of pricing
information but at a lesser rate than customers who
were actually on dynamic pricing.

In this experiment, enabling technologies only affect-
ed the daily price elasticity and had no effect on the
substitution elasticity. This tended to yield a lower im-
pact for enabling technologies than seen in other pilots.
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Within the subset of the PPP customers who
responded to the income question, we found that the
elasticities of substitution for low-income customers
with known income data were essentially the same as
those for the average customer. Finally, we did not
find any definitive evidence to support the existence of
a Hawthorne effect in the pilot.
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