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Abstract. In this paper, a discussion on the forced vibration of a transversely isotropic piezoelectric plate with

finite dimensions subjected to a time-harmonic force resting on a rigid foundation is carried out. Here, we

assume that the plate is poled along the perpendicular surface and bi-axial initially stressed in their reference

configuration. The three-dimensional linearized theory of electro-elastic waves in initially stressed bodies

(TLTEEWISB) is applied to the initially-stressed piezoelectric plate. A general formulation of the governing

equations of motions is provided according to the piece-wise homogeneous body model, and then the three-

dimensional finite element modeling (3D-FEM) is developed as a solution procedure in terms of weak for-

mulation and virtual work principle. The objective of this paper is to present the results regarding the frequency

response of the piezoelectric rectangular plate and the influence of the initial stress factor on the system.

Numerical examples imply that while the increasing aspect ratio of the plate prevents the resonance mode of the

dynamic force, the increasing thickness ratio exceeds this mode. Further, it is also demonstrated and discussed in

detail that the initial stress state has a considerable influence on this mode.

Keywords. Initial stress; forced vibration; 3D finite element model; frequency response; piezoelectricity.

1. Introduction

Recently, the development of piezoelectric materials has

become an important objective since science and technol-

ogy in this area are considerably increasing theoretical

approaches and applications to meet the demands of social-

technical and daily life requirements. Materials that have

the piezoelectric effect can sense and adapt their response

against external stimuli. Thanks to this excellent feature,

their application areas are increasing day-by-day. In par-

ticular, structural systems described as smart are very

popular in many engineering applications such as elec-

tromechanical systems and smart composites. For instance,

piezoelectric materials are preferred for the layers instead

of elastic ones while manufacturing smart composites.

Their development is based on integration into the structure

as sensors or actuators and in combination with appropriate

electronics, modeling, and control mechanisms.

Up to the present, many articles have been governed

related to the mechanical attitudes of piezoelectric struc-

tures; the reference in [1] may be read for more mechanical

information. Let us briefly mention some of the relevant

research. Alibeigloo solved the static problem of a simply

supported functionally graded material (FGM) rectangular

plate integrated with piezoelectric layers under the action of

a transverse force, standing on the Winkler-Pasternak

foundation [2]. Alibeigloo and Chen analyzed dynamic

vibration by a normal load and electric excitation of an

FGM cylindrical panel with simply supported edges [3].

Alibeigloo and Simintan presented their report regarding

the axisymmetric analysis of an FGM circular/annular plate

subjected to pressure and electrostatic excitation using the

differential quadrature method [4]. Zhou et al considered

the effect of the initial stress state on bulk wave propaga-

tion at the imperfect interface of a piezomagnetic/piezo-

electric plate [5]. Gaur and Rana derived the dispersion

relations in a piezoelectric composite strip of two different

layers for two different wave propagations [6]. Cupiał

proposed a numerical model for the natural vibrations of a

piezoelectric slab and compared the perturbation solutions

with the exact ones [7] Barati et al developed the refined

plate model for the buckling response of a functionally

graded piezoelectric (FGP) material with elastic faces [8].

Ezzin et al considered the SH wave propagations in lami-

nated piezomagnetic/piezoelectric plates utilizing the

stiffness matrix method [9]. Yue et al created a new

numerical approach to investigate the dynamic behavior of

the cantilever piezoelectric nanobeam for different initial

configurations [10]. Andakhshideh et al investigated the

piezoelectric electromechanical coupling effects on the

interlaminar stresses of multi-layered piezoelectric plates

subjected to uniform constant axial strain [11]. Hong

studied the free vibration analysis of bidirectional
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functionally graded material (2D-FGM) for the case where

mechanical properties vary continuously in both the

thickness and one-edge directions [12]. Song et al solved

the system of the partial differential equations regarding

vibrations by the rigid flat or cylindrical punches of the

piezoelectric half-space using the Fourier integral transform

[13]. Qi et al studied SH wave propagation in a two-di-

mensional piezoelectric strip with infinite length on the

basis of the multiple mirror superposition and wave func-

tion expansion methods [14]. Guha and Singh analytically

analyzed the scattering of the SH wave along a piezoelec-

tric fiber-reinforced material standing on a piezoelectric

half-plane [15]. Kumar and Harsha considered the nonlin-

ear static bending and free vibration of the functionally

graded piezoelectric plate (FGPP) resting on the two/three-

parameter foundation under a thermo-electro environment

using the first-order shear deformation theory [16].

In some of the references cited above, there is a con-

spicuous concept; that is the ‘‘initial stress’’ in the prob-

lems. This factor is one of the most important features of

the dynamic response of a system to be considered. Note

that initial stresses may be exposed to layers of the body

due to technological requirements or environmental con-

ditions. Due to these and other similar factors, problems

cannot be investigated according to the classical linear

elastodynamic theory (CLTED) since stress distributions

display nonlinear effects; as a result, the deformations in

elastic bodies are governed in terms of nonlinear partial

differential equations. However, when assuming (a) the

initial stress state is exactly homogeneous and static and

(b) the magnitude of the initial loading is considerably

greater than that of the dynamic force subjected to the body,

the corresponding problems can be investigated with the

utilization of the three-dimensional linearized theory of

elasticity for pre-stressed bodies. The recent studies by Guz

[17], Shams et al [18], and Akbarov [19] can be considered

quite popular papers related to the initial stress state.

Today, one can find many papers related to the influence

of the initial stress. Akbarov et al studied the influence of

the shear-spring imperfectness on the forced vibrations of a

bi-layered plate-strip with initial stress under the action of a

time-harmonic loading [20]. Kundu et al discussed oscil-

lations of Love waves along fiber-reinforced anisotropic

layer standing on an orthotropic half-plane numerically

[21]. Li and Tao investigated the influence of the initial

stress case on certain special types of wave propagation in a

rock mass [22]. Shams considered the effect of initial stress

on the propagation of Love waves in an incompressible

material based on a half-space [23]. Daşdemir studied the

forced vibration by a time-harmonic force of a finite-di-

mensional pre-stressed system with a piezoelectric core in

contact perfectly with two elastic faces [24] and then

extended the mentioned paper to the case where there exists

incomplete contact at the interfaces of the layers [25].

Kocakaplan and Tassoulas presented formulations of the

incremental equations of motion related to the frequency

spectrum of a pre-stressed straight rod of circular cross-

section [26]. Kumar et al analyzed shear (SH) waves in a

horizontally polarized functional-graded piezoelectric body

resting imperfectly on a functionally graded porous piezo-

electric material half-space [27]. Mahanty et al studied

shear acoustic waves in a piezoelectric cylinder boded

imperfectly to an external functional-graded piezoelectric

material [28]. Craciun et al developed a mathematical

model to be able to investigate the influence of antiplane

crack in a piezoelectric material in the existence of the

static initial stress and initial polarization in terms of

complex potentials [29]. Babych and Glukhov considered a

vibration problem by moving force at the top surface in a

multi-layered half-plane with initial stresses [30]. Panja and

Mandal analytically solved the stress field problem related

to several viscoelastic strips resting on a viscoelastic

orthotropic half-plane with initial stresses using the finite

difference method [31]. Daşdemir analyzed electrome-

chanical vibrations of a pre-stressed piezoelectric plate

under the action of an inclined dynamic force standing on a

rigid ground [32].

Taking the current literature, to the author’s knowledge,

although great endeavor has been made on many electro-

elastic problems of various forms regarding the dynamical

behavior of the piezoelectric materials, there is no funda-

mental study for investigating the dynamical response of a

bi-axially pre-stressed piezoelectric plate subjected to a

time-harmonic force resting on a rigid ground. Research is

needed to provide essential results in the characterization of

the stated response. This is our motivation to attempt the

aim to create an efficient mathematical model for the

solution of dynamical stress field problems concerning a

transversely isotropic and homogeneous piezoelectric plate

with a finite length. For this aim, we develop the

mechanical and electrical governing equations within the

scope of the three-dimensional linearized theory of electro-

elastic waves in initially stressed bodies (TLTEEWISB)

and also derive relations between the mechanical and

electrical initial stress. Note that the piezoelectric plate is

poled in parallel to the lateral boundary. On the basis of the

variational formulation and the virtual work principle, the

three-dimensional finite element modeling (3D-FEM)

under consideration is created. Great attention is given to

the frequency response and dynamical behavior of the

piezoelectric rectangular plate and the influence of both

mechanical and electrical initial stress parameters on the

resonance mode of the system.

2. Problem formulation

In the Cartesian coordinate system Ox1x2x3, consider a

piezoelectric plate of finite lengths resting on a rigid

foundation, with bi-axially initial stresses and poled in the

perpendicular direction to the top surface. As summarized
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by figure 1, the horizontal lengths are 2a1 and 2a3, and the

thickness is h, respectively. While creating the present

system, the body is first subjected to uniaxial static normal

forces (i.e., either tensile or compression) along the Ox1 and

Ox2-axes; next, the plate is left on the rigid ground. In this

case, the initial stress state can be determined by utilizing

the linear theory of elasticity as

r0
‘‘ ¼ q‘‘; and r0

ij ¼ 0 for ij 6¼ ‘‘;

where i; j ¼ 1; 2; 3, ‘ ¼ 1; 3, q‘‘ is a known value for each

direction, and the upper index ‘‘0’’ indicates the pre-state. It

should be noted that these developments also lead to the

construction of an initial electrical displacement in the

plate; namely, they are self-consistent. It is well-known that

the electric charge in the piezoelectric body is linearly

proportional to the mechanical force. Consequently, con-

sidering the constitutive equations, the following interre-

lationship between the mechanical and electrical initial

stress can be derived [32]:

D0
1 ¼ e33 c11 þ c12ð Þ � 2c13e31

c33 c11 þ c12ð Þ � 2c2
13

q11 and

D0
3 ¼

c11 � 2c12 þ c22ð Þc13e31 þ c2
12 � c11c22

� �
e33

c11 � 2c12 þ c22ð Þc2
13 þ c2

12 � c11c22

� �
c33

q33:

For simplicity, improving the related fields in the actual

problem may be beneficial. First, because of the dynamic

harmonic force varying with the time t, all the components,

such as displacement or stress, can be discretized from our

problem such that ½� mð Þ¼ ½̂� mð Þeixt, where i ¼
ffiffiffiffiffiffiffi
�1

p
, and e is

the famous Euler constant. We apply the coordinate trans-

formation x̂i ¼ xi=h to move our problem to the simpler

skeleton. For readability, we omit the hats over quantities

after this. According to Guz [17] and Fulin et al [33], based

on the foregoing assumptions, linear governing equations of

motion can be given as

rij þ r0
kjui;k

� �

;j
þqx2h2ui ¼ 0; ð1Þ

Di þ D0
i uj;i

� �
;i
¼ 0; ð2Þ

where i; j; k ¼ 1; 2; 3, and the summation protocol over

repeated indices is implemented. Here, rij is the stress

tensor, Di is the electric displacement tensor, respectively,

q is the mass density of the plate and the comma represents

partial differentiation. For the present case, the constitutive

relationships can be obtained as follows [1]:

r11

r22

r33

r23

r31

r12

0

BBBBBB@

1

CCCCCCA

¼

c11 c13 c12 0 0 0

c13 c33 c13 0 0 0

c12 c13 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c66 0

0 0 0 0 0 c44

0

BBBBBB@

1

CCCCCCA

e11

e22

e33

2e23

2e13

2e12

0

BBBBBB@

1

CCCCCCA

�

0 e31 0

0 e33 0

0 e31 0

0 0 e15

0 0 0

e15 0 0

0

BBBBBB@

1

CCCCCCA

E1

E2

E3

0

@

1

A;

ð3Þ

D1

D2

D3

0

@

1

A ¼
0 0 0 0 0 e15

e31 e33 e31 0 0 0

0 0 0 e15 0 0

0

@

1

A

e11

e22

e33

2e23

2e13

2e12

0

BBBBBB@

1

CCCCCCA

þ
c11 0 0

0 c33 0

0 0 c11

0

@

1

A
E1

E2

E3

0

@

1

A;

ð4Þ

where eij is the strain component, Ei is the electric field

component, and cij, eij, and cij are the mechanic, piezo-

electric and dielectric permittivity characteristics, respec-

tively. The strain-displacement and electric field-electric

potential relations are

eij ¼
1

2
ui;j þ uj;i
� �

and Ei ¼ �u;i: ð5Þ

Next, the following boundary-contact terms are held:

r21jx2¼0¼ r32jx2¼0¼ 0; r22jx2¼0¼ �pod
�; ð6Þ

r0
‘‘uj;‘ þ r‘j

� ���
x‘¼0;2a‘=h

¼ 0; ð7Þ

uj
��
x2¼�1

¼ 0; ð8Þ

Di þ D0
j ui;j

� ����
x‘¼0;2a‘

¼ 0; ð9Þ
Figure 1. Skeleton of the problem.
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ujx2¼0;�1¼ 0; ð10Þ

where ‘ ¼ 1; 3 and d� is the Dirac-like delta function as

d� ¼ d x1 � a1ð Þ2þ x3 � a3ð Þ2
� �

. While Eqs. (6) and (8) are

the mechanical traction-free conditions, Eqs. (7) and (9) are

mechanically and electrically open conditions. Also,

Eq. (10) is electrically open conditions.

3. Solution procedure

As shown in figure 1, we study the harmonic vibration of

the piezoelectric plate with finite lengths. For solving our

problem, we, therefore, prefer to utilize the finite element

method (FEM) according to the virtual work principle [34].

To accomplish the aim, we first introduce the test functions

vi and w. Note that these functions satisfy the corresponding

boundary-contact conditions given in Eqs. (6)–(10). Next,

by integrating all the resultant equations over the unit cube

V ¼ �1; 1½ � � �1; 1½ � � �1; 1½ � after multiplying the

equations of motion in Eqs. (1) and (2) by the test functions

and summing them side by side, we obtain

Z

V

Tij;jvi þ qx2h2uivi þ Si;iw
� 	

dV ¼ 0; ð11Þ

and applying the famous Gauss-Ostrogradsky theorem into

the last equation yields

Z

V

Tijvi;j � qx2h2uivi þ Siw;i

� 	
dV �

Z

S

Tijvinj þ Siniw
� 	

dS

¼ 0;

ð12Þ

where S denotes the boundary of the unit volume V . Fur-

ther, let us introduce the notations

Tij ¼ rij þ r0
kjui;k ¼ pijknun;k þ rijku;k and Si ¼ Di þ D0

i uj;i
¼ rijkuj;k � siku;k:

ð13Þ

From the constitutive relationships in Eqs. (3) and (4),

the notations used in Eq. (13) can explicitly be given as

p1111 ¼ c11 þ r0
11; p1122 ¼ c13; p1212 ¼ c44;

p1221 ¼ c44 þ r0
11; p2112 ¼ c44;

p2121 ¼ c44; p2211 ¼ c13; p2222 ¼ c33;

p1133 ¼ c12; p1313 ¼ c66; p1331 ¼ c66 þ r0
11;

p3131 ¼ c66; p3311 ¼ c12; p2323 ¼ c44;

p2233 ¼ c13; p3232 ¼ c44; p3223 ¼ c44 þ r0
33;

p3322 ¼ c13; p3223 ¼ c44; p3113 ¼ c66 þ r0
33;

p3333 ¼ c11 þ r0
33;

r111 ¼ D0
1; r112 ¼ e15; r121 ¼ e15 þ D0

1;

r131 ¼ D0
1; r211 ¼ e31; r222 ¼ e33;

r233 ¼ e31; r313 ¼ D0
3; r323 ¼ e15 þ D0

3;

r332 ¼ e15; r333 ¼ D0
3;

s11 ¼ c11; s22 ¼ c33; s33 ¼ c11:

ð14Þ

Note that all components not included in Eq. (14) are

equal to zero.

Considering the partition of the plate surface and the

boundary-contact terms in Eqs. (5)–(10), the integral

statement in Eq. (12) over the unit volume V takes shape

Z

V

Tijvi;j � qx2h2uivi þ Siw;i

� 	
dV

�
Z

Su

p0d h2 x1 � a1ð Þ2þ x3 � a3ð Þ2
n o� �

v2

h i
dSu

¼ 0 ð15Þ

or in another way,

Z

V

rije
v
ij þ huijvi;j þ Diw;i þ hsijw;i � qx2h2uivi

h i
dV

�
Z

Su

p0d x1 � a1ð Þ2þ x3 � a3ð Þ2
� �

v2

h i
dSu ¼ 0;

ð16Þ

where evij ¼ vi;j þ vj;i
� �

=2, huij ¼ r0
kjui;k, h

s
ij ¼ D0

i uj;i, and Su
denotes the upper surface of the plate. Thus, we have

obtained the weak form of our problem.

Based on one of the weak forms given above, we can

construct the variational formulation for the problem. For

this purpose, let us replace the test functions vi and w with

the respective displacement functions dui and electric

potential du, which satisfy the governing equations in

Eqs. (1)–(2) and the boundary-contact terms in Eqs. (6)–

(10). As a result, Eq. (16) can be written as
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Here, the underlined term rij denotes the mechanical part

of the corresponding stress component. Let us use the fol-

lowing representations:

P ¼
Z

V

1

2
pijkluk;lui;j
� �

þ rkiju;kui;j �
1

2
sknu;nu;k


 �
dV; M

¼ 1

2

Z

V

qh2u2
i dV ; and P

¼
Z

Su

p0d x1 � a1ð Þ2þ x3 � a3ð Þ2
� �

v2

h i
dSu:

Consequently, our original problem related to the har-

monic vibration of the piezoelectric plate is transformed

into the total energy functional

d P� x2M � P
� �

¼ 0; ð18Þ

where P, M, and P are the potential, kinetic and virtual

work energies, respectively.

For our numerical solution, we create the displacement-

based FEM of our problem in view of the virtual work

principle. For this purpose, let Vh be the region of a finite

element mesh, i.e., Vh � V and Vh ¼
S

m Vem. Following

the classic finite element method, the displacements in

u ¼ u1 u2 u3½ � 2 Vuh, the electrical fields in

E ¼ E1 E2 E3½ � 2 VEh, and their virtual structures can

be approximated by

u ffi
XM

j¼1

N~u; du ffi
XM

j¼1

Nd~u; E ffi
XM

j¼1

N ~E; and dE

ffi
XM

j¼1

Nd ~E;

ð19Þ

where ~u, d~u, ~E, and d ~E are nodal values of the displace-

ments, the virtual displacements, the electrical fields and

the virtual electrical fields, and N x1; x2; x3ð Þ are the con-

ventional 3-D FE interpolation functions. In this paper, we

0 ¼
Z

V

rijdeij þ huijdui;j þ Didu;i þ hsijdu;i � qx2h2uidui
h i

dV

�
Z

Su

p0d x1 � a1ð Þ2þ x3 � a3ð Þ2
� �

v2

h i
dSu

¼
Z

V

rij þ rkij
� �

deij þ r0
kjui;kdui;j þ rkijui;j � sknu;n

� �
du;k � qx2h2uidui

h i
dV

�
Z

Su

p0d x1 � a1ð Þ2þ x3 � a3ð Þ2
� �

v2

h i
dSu

¼
Z

V

rij þ r0
kjui;k

� �
dui;j þ rkij u;kdui;j þ ui;jdu;k

� �
� sknu;ndu;k � qx2h2uidui

h i
dV

�
Z

Su

p0d x1 � a1ð Þ2þ x3 � a3ð Þ2
� �

v2

h i
dSu

¼
Z

V

pmjkluk;ldui;j þ rkij u;kdui;j þ ui;jdu;k

� �
� sknu;ndu;k � qx2h2uidui

� 	
dV

�
Z

Su

p0d x1 � a1ð Þ2þ x3 � a3ð Þ2
� �

v2

h i
dSu

¼ d

Z

V

1

2
pijkluk;lui;j þ rkiju;kui;j �

1

2
sknu;nu;k


 �
dV � 1

2

Z

V

qx2h2u2
i dV

�
Z

Su

p0d x1 � a1ð Þ2þ x3 � a3ð Þ2
� �

v2

h i
dSu

2

666664

3

777775

ð17Þ
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use eight-noded smooth quadrilateral elements, so that the

interpolation functions N x1; x2; x3ð Þ are identified to be

quadratic polynomial functions. In [35], Hutton gave a list

of the used interpolation functions.

All the fields obtained over the nodes of a typical finite

element can be written in a single vector as follows:

ue ¼ ue1 ue2 ue3½ �T¼
ue11 . . . ue18 j ue21 . . . ue28 j ue31 . . . ue38½ �T

and

Ee ¼ Ee
1 Ee

2 Ee
3½ �T¼

Ee
11 . . . Ee

18 j Ee
21 . . . Ee

28 j Ee
31 . . . Ee

38½ �T :

Substituting Eq. (19) into the total energy functional

given in Eq. (18) and following the general process

including so extensive operations and manipulations, the

following matrix-vector system of equations is obtained:

Kuu � x2Muu

� 

~U þKuEE ¼ Fu ð20Þ

KuE
~U þKEEE ¼ FE; ð21Þ

where Kuu ¼
P

Kem
uu , KuE ¼

P
Kem

uE , and KEE ¼
P

Kem
EE

are the mechanical, electro-elastic, and electrical global

stiffness matrices, respectively, and Muu ¼
P

Mem
uu is the

global mass matrix. Note that the mentioned matrices are

constructed with ensemble ‘‘
P

h’’ of the corresponding

local matrices. Further, Fu and FE are the nodal force

vectors. It should be noted that, while the vector FE is null,

Fu contains only a unique non-zero component due to the

boundary-contact conditions in Eqs. (6)–(10). Considering

Eq. (18), we get the explicit entries of the stiffness and

mass matrices as

Mem
uu ¼

Z

Vem

qh2Ne
uh � Ne T

uh dV
em; Kem

uu

¼
Z

Vem

Se Tuh � C � SeuhdVem; ð22Þ

Kem
uE ¼

Z

Vem

Ne T
Eh � eT � Ne

EhdV
em; Kem

EE

¼
Z

Vem

Se TEh � c � SeEhdVem; ð23Þ

Seuh ¼ L rð Þ � Ne T
uh ; SeEh ¼ rNe T

Eh ; ð24Þ

L rð Þ ¼
o1 0 0 0 o3 o2

0 o2 0 o3 0 o1

0 0 o3 o2 o1 0

2

4

3

5

T

ð25Þ

Inserting the approximations in Eq. (19) into Eq. (18)

yields

K � x2M
� �

U ¼ F; ð26Þ

where K and M are the global stiffness and mass matrices,

which may include the components of the displacement in

the plane stresses, U and F is the generalized displacement

and force vectors. We can write the matrices and vectors in

the forms of

K ¼ Kuu KuE

KuE KEE


 �
; M ¼ Muu 0

0 0


 �
; U

¼
~U
~E

� �
; and F ¼ Fu

FE

� �
; ð27Þ

respectively. Because of the positive definiteness of the

variational form in Eq. (18), the global matrices K and M in

Eq. (27) are symmetric, real, and positive definite. This

means that the matrix-vector equation in Eq. (26) has a

solution and, therefore, could be evaluated. Solving the

above matrix equation leads to obtaining the displacements

and electrical fields at nodes, and we can transform the

obtained values to those of the relative stress and electrical

displacement components according to constitutive

equations.

4. Numerical findings and discussions

This section carries out numerical investigations for a

three-dimensional piezoelectric plate with initial stress. The

material to be used is Barium Titanate BaTiO3ð Þ with c44 ¼
44 GPa, e15 ¼ 11:4 C=m2, and c11 ¼ 1:115 nF=m, which

were taken from Ref. [36]. Define dimensionless frequency

parameter, initial stress parameter, electrical initial stress

parameter, aspect ratio, and thickness ratio as

X ¼ xh

ffiffiffiffiffiffi
q
c44

r
; g‘ ¼

q‘‘
c44

; j‘ ¼
D0

‘

c44

; a ¼ a1

a3

; h ¼ h

2a
;

ð28Þ

respectively. We split the domain of the problem into a

number of isoparametric finite elements with eight-node.

While the number of the components in the perpendicular

direction is indicated by n, the ones in the horizontal

directions are equal and denoted by m. It should be noted

that throughout the paper, our results will be presented on

the bottom surface of the plate under a ¼ 1, h ¼ 0:2,

X ¼ 0, g ¼ g1 ¼ g3, g ¼ 0, and m; nð Þ ¼ 50; 12ð Þ. Here, it

can be seen that the number of degrees of freedom (nDoFs)
is equal to 135252 in total.

We shall first prove the accuracy of the PC program that

will be used for numerical investigations. To do this, we

will implement a two-stage strategy. For that, first, intro-

duce the norm functions
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xk k1¼ max
i

xik k1; xk k1¼
X

i

xik k1; and xk k0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

xik k2
0

r
; ð29Þ

which are called the maximum norm, L1 norm, and the

Frobenius norm, respectively. As it is known, as the number

of finite elements increases, the amount of error made in

numerical results should decrease. This statement motivates

us to use the norm functions for the convergence analysis

described above. We, therefore, can use these norms for

testing relative errors between a reference solution and

numerical solutions. Figure 2 shows the relative errors in

norms given in Eq. (29) as a function of the total number of

degrees of freedom (nDoFs). Note that, while the one in

figure 2(b) has been produced for a mesh of 24 � 100 � 24

and the fixed value of m, the reference solution in fig-

ure 2(a) has been obtained for a mesh of 100 � 5 � 100 and

the fixed value of n via a special workstation. The graphs

prove that the rates of relative errors in the stress values

decrease gradually as the number of meshes increases. This

means that the numerical results converge to a certain

Figure 2. Convergence rates in error norms for the number of meshes in the directions of (a) horizontal and (b) vertical axes.

Figure 3. Cross-compare of our results under x3=h ¼ a3=h and the ones of Daşdemir [37]: (a) h ¼ 2 and (b) h ¼ 1.
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asymptotic value. As a result, we can obtain the numerical

values at the desired accuracy rate by increasing the num-

ber of meshes as much as necessary. This indicates that our

PC algorithm is valid.

For further validation, we consider the case where

a ! 1. This yields that the sketch of the plate looks like

the one studied by Daşdemir [37] when the length a1 is a

constant. In this situation, the numerical findings and results

obtained for x3=h ¼ a3=h under the same conditions must

approach to the corresponding ones in [37] as a ! 1. As

seen, in figure 3(a), the distributions of the shear stress

r12h=p0 versus the line x1=h are displayed under h ¼ 0:1
and x3=h ¼ a3=h. Further, in figure 3(b), the ones of the

normal stress r22h=p0 versus the line x1=h are located under

h ¼ 0:2 and x3=h ¼ a3=h. Here, the starred graphs imply

the corresponding ones of Daşdemir [37]. The foresight

above-stated is validated by the graphs of figures 3a and 3b.

Further, the graphs of figure 3 are symmetric about line

x1=h since the dynamic force is perpendicular to the free

surface of the plate. In addition, the normal stress r22h=p0

almost vanishes near the point where the shear stress

r12h=p0 attains the extreme value. In [38], the authors also

stated that this should be the case. This confirms the

trustiness and accuracy of the PC algorithms and programs

once again.

Figure 4 shows the three-dimensional distributions of

r22h=p0 on the plane x2=h ¼ �1 for various values of g.

The negative values of the initial stress parameter g indicate

initial compression and positive values to initial tension.

According to the graphs, the absolute values of r22h=p0

increase as the initial compression parameter g decreases

but the corresponding values increase with the initial ten-

sion parameter g. In summary, the absolute values of

r22h=p0 decrease cordially with the values of the initial

stress parameter g. This means that increasing values of the

initial stress parameter g give rise to the stiffness of the

plate to increase. In view of the structural investigation of

distributions, we can say that there are three domains; i.e.,

blue-, green-, and orange-colored domains. The first is the

domain where stress formation is most intense. The latter is

a relatively more peaceful area. In the last zone, the stress

almost vanishes. We can term those as major, minor and

dead domains, respectively. The numerical results prove

that the increasing values of g lead to a decrease in the

magnitudes of the major area but to increase in the mag-

nitudes of the minor area. We, therefore, can say that the

stress on the body is distributed more homogeneously as the

Figure 4. Three-dimensional distributions of r22h=p0 on the plane x2=h ¼ �1: (a) g ¼ �0:06, (b) g ¼ �0:04, (c) g ¼ �0:02, (d)

g ¼ 0:02, (e) g ¼ 0:04, (f) g ¼ 0:06, (g) color scale.
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values of g increase. In addition, according to the Robin

boundary conditions in Eq. (7), the stress must vanish at the

edge sides of the plate as g ! 0. This is seen from the

graphs in figures 3 and 4, confirming our algorithms.

Figure 5 displays three-dimensional graphs of r22h=p0 on

the plane x2=h ¼ �1 for various values of the dimension-

less frequency parameter X. An increase in the value of X
causes higher values of stress. This result is consistent with

the present literature, i.e., see Daşdemir [39] and, Kuzeci

and Akbarov [40]. It follows from the graphs that the

greatest influence of the dimensionless parameter X is seen

near the point 2:5; 2:5ð Þ. Further, the magnitudes of both

the major and minor domains expand with X. Note that the

boundary of each domain can be seen from the graphs.

Further, there are certain distortions in the dead domain for

higher values of X, e.g., see figure 5(f). This is caused by

the reflection of the stress waves striking the side edges of

the plate. Figures 4 and 5 demonstrate that the 3D

appearance of the stress caused by the dynamic loading in

the plate is a right circular cone with the center at the point

2:5; 2:5ð Þ of the plane x2=h ¼ �1. Alongside, in the case

where a ! 0 and X ! 0 for fixed values of other problem

parameters, the shape of our problem gradually begins to

resemble the well-known Boussinesq problem considered

by Timoshenko and Godier [38]. In this instance, the dis-

tributions of the graphs in figures 4 and 5 must qualitatively

be similar to those of the mentioned paper. Both fig-

ures confirm this foresight. The excellent agreement of the

Figure 5. Three-dimensional distributions of r22h=p0 on the plane x2=h ¼ �1: (a) X ¼ 0:0, (b) X ¼ 0:2, (c) X ¼ 0:4, (d) X ¼ 0:6, (e)

X ¼ 0:8, (f) X ¼ 1:0, (g) color scale.

Figure 6. Dependency between r22h=p0 and X for certain values

of g.
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numerical results provided confidence in the correctness of

the present analysis once again.

Figures 6 provides an opportunity to explain the rela-

tionships between r22h=p0 and X for various values of g.

The values of r22h=p0 increase gradually with X and after a

certain value of X, the stress r22h=p0 suddenly reaches an

extreme value that is called resonance value. Denote it by

X�. After this point, the graphs have unstable distributions.

It is clear that the influence of the parameter g on the

dynamic response of the plate becomes more meaningful as

X ! X�. According to the distributions of the graphs, the

resonance of the system under consideration appears near

the point where X 	 1:3. Furthermore, for certain values of

X, the stress r22h=p0 also has local resonance values, which

change with the ratio g. Denote it by X � �. Note that the

values of X� and X � � can be detected from the graphs.

The location where these local resonances occur is indi-

cated by an ellipse in the graph. The graphs show that

increasing values of the initial tension shift the resonance

values forward but increasing values of the initial com-

pression becalm the corresponding resonance mode down.

This establishes that when the plate was exposed to the

higher initial stress, the stress r22h=p0 has more regular

distributions and the system becomes more stable.

According to the numerical results, initial compression

increases the amount of particles falling on per unit volume

of the body, accelerating the stress flow caused by the

external force and increases the amount of vibration

occurring in the environment. On the contrary, the initial

tension causes the particles of the object to move away

from each other, dampening the vibration of the environ-

ment. These expressions explain the physical effects of the

initial stress parameter on the resonance mode of the sys-

tem. As a result, the initial stress parameter g plays an

important role in the frequency response of the plate.

Figures 7 shows the dependency between r22h=p0 and X
for various values of the aspect ratio a. Note that while

drawing the graphs, the length a3 is variable, but the length

a1 is constant. It is deduced from the graphs that the

absolute values of the stress r22h=p0 increase as the ratio a

increases. But, the relationships between r22h=p0 and X are

non-monotonous, which is consistent with the current

mechanical considerations, i.e., see the papers by Daşdemir

[24], Eröz [41], and Akbarov [42]. This proves the validity

of our algorithm and programs again. Further, an increase

in the value of the ratio a prevents the resonance mode of

r22h=p0, i.e., the values of X� decrease as the ratio a

increases. Since one of the horizontal lengths of the plate is

chosen to be relatively small, it means that the stresses

stored in the medium will affect each particle more. This

causes the formation of a higher resonance mode in the

Figure 7. Dependency between r22h=p0 and X for certain values

of a.

Figure 8. Dependency between r22h=p0 and X for certain values

of h.

Figure 9. Dependency between r22h=p0 and g for certain values

of a.
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medium. It is seen from the graphs that the influence of the

aspect ratio a on the values of X� have notable in both

quantitative and qualitative.

We can observe the influence of the thickness ratio h on

the dependency between r22h=p0 and X from figure 8. The

absolute values of the stress r22h=p0 decrease as the ratio h

increases. Further, the difference between the values of the

stress r22h=p0 versus X for two consecutive values of h

decreases. This means that the influence of the ratio h on

the stress r22h=p0 damps down. The graphs of figure 8

prove that the resonance mode of the external dynamic

force exceeds as the ratio h increase. This is because the

stress waves by the dynamic force hit more particles of the

plate for a higher ratio h and increase the vibrations of the

medium. To be clear, the values of X� decrease for the

increasing values of h. We can say that the number of

extremal values of the graphs of the stress r22h=p0

increases as h decreases. Hence, the stability of the system

under consideration increases with decreasing values of the

ratio h. In addition, it can be said from figures 7 and 8 that

both the aspect ratio a and the thickness ratio h have a

significant influence on the frequency response of the

piezoelectric plate, both quantitatively and qualitatively.

The comparison of figures 7 and 8 shows that the thickness

ratio h possesses a greater influence on the stress r22h=p0

than the aspect ratio a. This can be explained by the fact

that the total static force applied to the lateral sides of the

plate is growing when the thickness ratio h increases.

In figure 9, the relationships between r22h=p0 and g for

various values of the aspect ratio a are shown. Further, in

figure 10, the influence of the thickness ratio h on the

mentioned relationships is given. It is a common result

from both figures that the graphs of r22h=p0 with respect to

g are of linear distribution. The graphs in figures 4, 6, 9, and

10 prove that the initial tension displays an opposite effect

on the oscillating character of the stress r22h=p0 according

to that of the initial compression. As the ratio a increases,

the slope of the graphs plotted for the stress r22h=p0

increases. Increasing values of the ratio a yield the influ-

ence of the initial stress parameter g on the stress r22h=p0 to

increase. On the contrary, increasing values of the ratio h

decrease the slope of the mentioned graphs. This means that

the increase of the ratio h causes the influence of the initial

stress parameter g on the stress r22h=p0 to reduce. These

results show that the increase in the dimensions of the plate

causes the influence of the initial stress parameter g on the

stress r22h=p0 to damp. Apparently, the effect of the ratio a

on the dynamic response of the plate is greater than that of

h. We can explain this situation as follows. When the ratio a

is changed, the positions of the particles are more affected

due to the static force applied to the lateral surfaces of the

plate. This situation significantly affects the stress flow.

Although changing the ratio h affects the amount of stress

in the medium, its effect on the amount of stress emission

of each particle is quite limited. Further, we can say that

both ratios have a great role in the influence of g on stress

distributions.

5. Conclusions

The work described the numerical characterization of

forced vibration reasoned by a time-harmonic force of a

pre-stressed piezoelectric plate in contact with a rigid

foundation according to the piece-wise homogeneous body

model. Our dynamic model was conducted according to the

three-dimensional linearized theory of electro-elastic waves

in initially stressed bodies (TLTEEWISB). The weak

statement of the problem for arbitrary testing functions

satisfying the corresponding boundary-contact conditions

was derived. Based on weak expression, the variational

statement of the pre-stressed piezoelectric plate was for-

mulated, and the analytical solution to the forced vibration

problem was obtained. We checked the validity and

trustiness of the presented model and provided some

numerical results related to the dynamical behavior of the

piezoelectric plate.

We can summarize some outlines of the results achieved

according to our numerical discussions as follows.

• The distributions of the stress on the plate become

more homogeneous as the values of g increase.

• The aspect ratio a prevents the resonance of r22h=p0,

but the thickness ratio h exceed this resonance mode.

• The influence the parameter g has on the dynamical

behavior of the plate is damped as the values of the

thickness ratio h increases; but this influence increases

with the aspect ratio a.

• For fixed values of the aspect ratio a, the numbers of

the extremal values of the stress versus the dimen-

sionless frequency decrease with increasing the ratio h.

Figure 10. Dependency between r22h=p0 and g for certain

values of h.
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• The initial tension prevents resonance in the stress

r22h=p0, but initial compression damps this resonance

mode.

Although the results given throughout the paper were

presented for a specific material, they also have general

validity in a qualitative sense and are helpful for the des-

ignation and application of a pre-stressed piezoelectric

plate resting on a rigid foundation in practice. Our model

serves as a basis for mechanical investigations of different

configurations, e.g., composite materials with imperfect

interfaces, including various polarization directions.
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