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Abstract.

This article is concerned with the existence of a weak asymptotic solution for a 5 x 5 system of

nonstrictly hyperbolic conservation laws. We provide additional weak asymptotic expansions within the
framework of the weak asymptotic approach. Then, with the aid of these weak asymptotic expansions, we
establish sufficient conditions for the existence of a weak asymptotic solution for the 5 x 5 system with initial
data of Riemann type. Combining the Riemann problems allow us to form a weak asymptotic solution for a more

general type of initial data.
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1. Introduction

In the recent years, extensive study have been done for the
solution to a system of conservation laws

U+ (F(U),=0, xeR, re(0,00),
U(x,0) = Up(x),

specifically for Riemann type initial data

U_, x<0,
U+, x>0,

%@:{

where U is the vector of conservative variables, F'is the flux
function with U_ and U, as constant states. Different
methods like weak asymptotic method [1-3], vanishing
viscosity method [4-6], flux approximation method [7-9],
vanishing pressure limit method [10, 11], distributional
product apporach [12, 13], etc. have been devised to study
the hyperbolic system of conservation laws which admits J-
shock waves.

Analysis of solution to the Riemann problem for the
system of hyperbolic conservation laws involving non-
classical waves have been an intriguing yet a challenging
journey for researchers so far. Many have been tried in the
context of physical phenomena. First noted work on non-
classical wave solution can be found in [14]. Later Tan and
Zhang [15] observed d-shock wave for two-dimensional
Euler equations. To date many mathematicians and physi-
cists have been focused on oJ-shock wave solution,
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regarding these details we refer [16-19, 33] and the refer-
ences cited therein.

Here with the help of weak asymptotic method we study
the following system introduced by Joseph and Murthy [20]

(u,-),+2(%) —0, i=1,...n
J=1 !

for n = 5. For n = 1 the equation is the celebrated inviscid
Burgers equation for which detailed analysis has been done.
Hopf [21] and Cole [22] independently solved the initial
value problem for viscous Burgers equation and by letting
the viscosity term to zero they were able to find the weak
entropy solution to the inviscid Burgers equation which lies
in the space of BV functions when the initial data is con-
sidered to be of bounded measure. When n = 2, the system
is a one-dimensional hyperbolic model for the large scale
structure formation of universe [23] and also it is the well-
known transport equations, where solution may contain
nonclassical waves such as delta shock wave for one state
variable. This 2 x 2 system has been studied in the context
of vanishing viscosity method by Joseph [24]. With n = 3,
the system is studied using weak asymptotic method in [2]
where they have introduced a definition of &'-shock wave
type solution for the system as one of the state variable may
contain higher order singularity than Dirac delta distribu-
tion for some initial data. Further, this 3 x 3 system has
been discussed by Shelkovich in [25] by exploiting van-
ishing viscosity method where parabolic approximation is
considered and with the help of Hopf—Cole transformation
the parabolic system is reduced to the triple of linear heat
equations. Then the weak limit is established and &'-shock

(1.1)
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solution is constructed for some initial data. Also based on
the distribution multiplication theory it has been analyzed
in [26] where within an appropriate space of distributions
they defined w«-solution to the system. With the help of
those they obtained all the a-independent exact solutions
and observed the occurrence of §'-wave in the solution. In
[4], for n = 4, the system has been investigated in detail
using vanishing viscosity method and it was found out that
fourth component contains the measure d and its derivative
for specific Riemann data. In order to develop mathematical

theory for 8™ _shock (m = 3 in our case) now we turn our
attention to the case n = 5. To the best of our knowledge,

physical models which admit 0™ _shocks (m>?2) are not
reported yet in the literature. It is observed that the system
(1.1) is not strictly hyperbolic as it admits repeated eigen-
values u. So we can not apply the classical theory of Glimm
[27] and Lax [28] to the system (1.1). As for the case n = 4
we have noticed that 13 and us admit &’ and §”-shock wave
type solutions and the system has been analyzed by using
weak asymptotic method in [29], so following the intuition
for n =5 we may expect us to have higher order singu-
larity. So measure solutions approach [6, 30] as well as
well-known nonconservative product method [31, 32] is not
applicable here. We consider the weak asymptotic method
to study the system (1.1) for n = 5. With the transformation
(uy,uz,u3, ug,us) — (2ur,u2,3,55,55) we have the fol-
lowing reduced system

uy + (u

X

uy, + (2uiuy),

X

=0

=0

) (12)
us; + 2(3upus + uyus), =0
=0

)
)
s, + 2(u3 + uuz)
)
)

us, + uyus + dupuy + 3u3

X

We consider the initial data in the following form
0 _ 0 _ 0
ul(x)ﬂ u2(x7 O) - uz(x), u3(x7 0) - u3(x)7

ug(x,0) = ul(x) and us(x,0) = ul(x).

(1.3)

ui(x,0) =

The order of the paper is as follows: in section 2, we revisit
the preliminaries where the definition of weak asymptotic
solution is recalled. In section 3, we provide some new
weak asymptotic expansions and exploiting these we obtain
a weak asymptotic solution for the initial data (1.3). Finally,
concluding remarks are given in section 4.

2. Preliminaries
The framework of weak asymptotic method is to approxi-

mate the solution of the system of equations by smooth
functions which are also dependent on arbitrary parameter,
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say, ¢ > 0 such that these approximate solutions converge
to the original solution in the sense of distributions and also
some product between these approximate solutions con-
verge to some quantity whenever ¢ — 0. With the help of
[2], we define weak asymptotic solution. But first let us
define the following:

L1 [u]
Lolur, uz

]
L[y, up, uz) =
] =
=

( 2))(?7
+ Quyuy),,
us; + 2(“2 + M1M3)
gy + 2(3uus + uyuy),,
+ (Quyus + dupuy + 3143)

34[14]71,{2,14’;, Uy

35 [ul y U, U3, Ug, U5

Definition 2.1 The functions

(uy (x,t,8), un(x, b, 8), us(x,t,8), ua(x,t,€),us(x,t,¢)) are

called weak asymptotic solution to the system (1.2) for
&> 0if

/ Lolur, ua(x)dx = o(1),

/ Lalur, i, uslp(¥)dx = o(1),

/ Ll s, uslp(¥)dx = o(1),

/ Pslur, up, uz, ug, usly(x)dx = o(1),
[n(0.6) o = o),
[ (0.0, ~ )b = (1),
[ (5(x.0,0) = )b = (1),
[ (w509~ )b = o(1),
[ (us(x.0.0) = )b = (1),

e — 0,

for all Y(x) € D(R) with initial data (1.3).

For the system (1.2), we look for a weak asymptotic
solution that takes the following form:

uy(x,1,8) =u12(x, 1) + [ [Ho, (—x + (1), &) + Ry, (x, 1, 8),
u(x, 1, )—uzz(x 1) + [ Huy (—x + $(2), ¢)

()5e _x+¢() )+Ru2(x>t’8)7

+8(1)

T

us(x,1,€) —u32( , 1) + [us]Huy (—x + ¢(2), &)
Og(—=x+ d(1),8) + h(1) 3, (—x + (1), ¢)
+ RM% (X,t )
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ug(x, 1, 8) =uap (x, 1) + [ua] Hu, (—x + (1), £)
+U(1)o1(—x + ¢(t),8) + m(1)),(—x + (1), ¢)
()9, (—x + ¢(t),8) + Ruy (x,1,2),
us(x,t,8) =usy(x,t) + [us|Hus (—x + ¢(1), €)
+0(t)3o(—x + ¢(t),8) + q(1)3,(—x + ¢(1), &)
+ ()0 (—x + ¢(1), ) + s(1)3)" (—x + P(2), )
+ Rus(x,1,€).

It is obvious to consider the above ansatz with that specific
form as we can expect the components to have respective
order of singularities. We use the notation [u;] = u;1 — up,
where u;; and uj, respectively are the values on the left and
right of the discontinuity curve ¢(¢) of u; for i = 1,...,5.
The functions

Hi, Op, Os Oy Oy

for
. s /
I = Uy, U, U3z, Uq,Us, J :eagalaoa Kk :hvm,q7

4 /
I'=n,r, m =s,

are regularization of the Heaviside function H, distributions
5, &', 8" and 8" respectively. We represent f(x,¢) as the
following regularization for a distribution f(x) € D'(R).

=f(x) *la)@), >0,

e ~o(:
where the mollifier @ has the property (a)-(c) of Lemma
3.1 and * denotes the convolution. Also R;, fori=

uy, up, u3,us and us, are correction terms and these satisfy

Rj(x,t,€) = op (1),
for
I = Uy, Uy, U3, Ug, s, & — 0.

The weak asymptotic method considered in this manuscript
has been applied to only specific systems but for more
general system it would be difficult to construct singular
superpositions (products) of distributions due to the
dependence of the singular superpositions on the regular-
izations of the Heaviside function, delta function, its
derivatives, and the correction functions.

3. Weak asymptotic solution

Let us begin with a Lemma where some asymptotic
expansions, in the sense of distributions, are derived.
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Lemma 3.1 Let {n,},, be mollifiers satisfying
(@) ni(x) = m(—x)

®) [ =1

(©) mi(x) >0.

Define
o Hi(x,e) = nop(2) = [ my
o O(x,e) = ;nk(;;)

o Op(x.e) = 5=m()
where Hy, 6, and J; are regularizations of Heaviside

function H(x) and the distributions d(x), *(x) respectively.
Now we have the following weak asymptotic expansions:

(Hal,2))" = H(x) + Op (8),
WM@H&W—HU+%@)
(Hal,2))"0i(x.2) = 5(x) [ s (Ini(&)dé
+OD/(8),
(outa))” = o0 [ (e
+OD (e), (3.1)
Hur,0)0(x,2) = ()/m@m@%
() [ 1ok (E)ni(E)dE + Op (),
'MW@§WW®=;NQ/%@M@M6
+0p (2),
il ain o) =2 [amerae
+0D/(
B, 2)3(x. ¢
+0D/ (¢)
5ulx, )20 (x, ) = i / En(Em
+0p (2),
e, 028" 1,0) = = [ namt(ae
+0,y(s
Hi (e, 005 (x,0) = x/ém
5" /52 ok (O (E)dE + Op (&),
(3.2)
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Mo, 2)00'(x, 1) = 22 / T (O (&)

5//
/52’70]( /// é
f Mok (E)ni(E)dE + Op (e),

)28 (x,6) = @ [nutont @

+5/l/

Hal,
PLAC /a: N (EM(E)E + Op (2),
61 (x,2)00 (x,¢) = % / (O (&)
NLAC / Em(©)
6u(x.2)620)" (x, ) — ﬁ [ e
LA / En (" (E)dE + Op (o)
(3hte )2 :@ Joi@ra

+28 [ 2oq @

)20 o) = 23 [ e

5” / é /N
(25 (x,6))? = @ [o@ra

+29 [ ee)iac + 00 ),

df + ODf(E),

(3.3)

dé + OD’(S),

(&)dé+ Op(e),

e— 0", n=1,2...

Proof We can find the proof of (3.1) in [2] and (3.2) in
[29] so we omit the details. Now we prove (3.3), consid-
ering ¥ to be a test function which belongs to D(R). In
order to get the first relation of (3.3) consider the asymp-
totics of the product Hy (x, £)d!" (x, ¢). From the definition of
Hy and &!", using the change of variable x = ¢y and Taylor
expansion, we have

<Hk(x7 8)5;”()61 8)» lp(x»

= [ (D) o oo
— [ )z Gbenay
1

~ [ o) 5

(
Hoe3) 51" ) H(0) + ' (0)

2.2 3,3
+5(0) + =" (0))dy + O(e)
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[omomc)ay

(O) / y no;((y)ni”(y)derwT(o) / Y no)n! (y)dy

(3.4)

Now from the property (a), we obtain
[nomoiay=o. [ ooy =o
/ Yu)i (v)dy =0, / V()i (y)dy =0,
[mmoids =o.

Continuing from (3.4) and using the above relations we
have the first relation of (3.3) as

<Hk (x’ 3)5;//()(’ 8)7 lﬁ(x»
= 506) [t oav+ 22 [ et o)
+3") [ om0y +0(6).

To establish the second relation of (3.3), we need to eval-
uate the weak asymptotic product H(x, e)e?d) (x,¢). By
using the definition of H; and 5?/ , we have

y(x)
! ")wx)dx

(Hi (x, s)e 5V(x 8)
=
/ Mok )W (ey)dy
- [ o

2.,2
+ 5259 (0)

Mok y)(¥(0) + ey’ (0) 5

+83§3 W (0))dy + 0(e)

=1 oM WO + 5 o 0w 0
+% / Yo y)ni )" (0)dy

* é / Vo) ()" (0)dy + Oe).

Using property (a) we obtain

/ynOk( )iy (y)dy = /y3110k(y)n,~v(y)dy =0.

So we can obtain the second relation of (3.3)
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<Hk(xa S)Széy(xv 8); lp(X»
=@/mk( i (v )dy+52(x)

&3

Similar procedure can be applied to prove the rest of the

relations of (3.3) in the Lemma. Hence proved the Lemma.
O

We have seen in [29] that the ansatz they have taken
contains combination of 8, ¢ and §” with correction for a
component. So here we assume that us contains combina-
tion of 8, &', ¢” and ¢"”. Hence in our ansatz we have taken
the combinations of these singular waves with correction
term. We use the Lemma 3.1 to obtain a weak asymptotic
solution to the system (1.2).

Theorem 3.2 The following ansatz :

o 0) + [ Hu, (—x + ¢(2), ),
y JHu, (—x + (1), )

b(1), €),

3/ M (—x + §(1), €)

uy(x,t,e) = upp(x

ur(x,t,6) = upn(x

)

A/—\

e

+e(t)0
us(x,t,¢) = u

—

X,t

+8(1)d, P(1), )
+h(1)9), P(1), )
+Ruy (—x + (1), ),
ug(x,t,8) = usp(x,1) + [ua)Hyy (—
H(1)o1(—x + P(1), €)
+m(t)3,,(—x + ¢(1), &)
+n (1), (—x + $(1), &)
+Ruy( X+¢(I)a8),

[
—x+
)+ [u
(—x+
(—x+

N AN

X+ (1))

where

Rug (X,
R

Uy (x7

t,e) = EP(1)0p(—x + d(1), &),
t,6) = & (Q(1)dg(—x + (1), &)
+R(1)0R (—x + (1), ),
Rus(x,t,6) = e (S(1)0% (—x + (1), )
+T (1)o7 (—x + ¢(1), )
HU(1)3(—x + §(1), 8)),

is a weak asymptotic solution to the following problem

(3.6)

/yn0k<> Y ()dy + O).
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u; + (u7), =0
uy; + (2ugup), = 0
us, + 23 + uuz), =0
ua; + 2(3upuz + ujus), =0
us, + (2uyus + 4upug +3u3), =0

(3.7)

provided the subsequent relations hold (with initial data):

—_

) =0, Llup] =0, +x> (1),
up,vi]| =0, Lafua,v2] =0, =£x> (1),
up,vi,wi] =0, L3[up,va,wr] =0, Fx> (1),
= (un +u2)| g, €(1) =[] (uar + u2)| 40,
(2[m1] (uar + u22) + [ur](uz1 + us2)) >

(¢?

(1)
dt

R

1
(é)r]e(é)dé = 57 ] =68, h7

B is a constant,

Laluyr,uar,uzi, us] =0, Lafurn, uz, uz, up] =0,
+x> ¢(1),

1(t) = —[us)p(r) + 2[3uaus + uyus),

/7701,41 ’71 dé /r]OMI(é

:%/ Engu, (E)n,(8)de —%

i) = 23{ae2 + ] [ s (1,(9)() + (u
] [ 10, (O ()ac)e(v)}
+ 3 + i) [ o (O E)E)AD)

+ (125 + [y m(£)dE)m(1)

[ 12xx]/52,70[“(5);1”(5)d€)n(t)]7

(1) = 2[3{(un + [u] / Now (14 (E)AEA(1)}
+ 2(uz2, + [u1,])n(1)],

—1 /
ul f@/’Oul //// [36([)h(t)/f178(§)nh(§)df

S

’10141 (5)'7

+ <u12xx +

R() =

+ 3e(t
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i / Enou, (O(E)dE),
O LIG df}[ o] [ (@D
~3g(1)e(r) / m(i)ng(é)di
3 ]P() / M, () (E)dy + m(1) ] / ey ()1 ()
t ulx /é”Oul

MIX]R / é’/’om ////

fs[ull Uzy, Uzy, Uqg, Msl] —0

Ls[uin, un, uz, sy, usy] = 0, £x > (1),

1 1
/'70“, (é)nn(é)dé = 51 / r]()u] (é)nq(é)dé = 57
[ Enomerae =1, [ En, @meay =3,

o(1) = [2uyus + 4upuy + 3u§] — [us}é(t),
4() = 4{ (12 + ] / Hou (M) + (a2

o) [ 10, (On(ae)e(v)

#3020 + i) [ o ()a0)g(0)
+ 20, + i) [ i, (D)
(st ] [ o (1m0

+ 3202+ i) [ (D)
1] / Eno (OO (1)
()

+ 2(”12)():

M22xx
+ 2 +T] / i (()s(0),
(1) = 4um + [u] / Nous () (ENEM(1) + 3 (2(un
+ ) / Now (O (E)AEA(1)}
+2{20+ 2 [ 20, (1)

{20+ 12 [ @ acinto)

#2030+ [, @050,

= 4+ L [, (oa2nte)
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B [ o @ (ae)s(u)
= ST T ez 2 Is0) [ (O (00ae)
+aeln(n) [ n(on(oaz
4R [ n € @+ 308 [ 0%z
+200P() [ 14O
+P0) [oip(@)aey)

+2{3(u2x +

if we have

/7701,41 /” dé = /é ’1014] /l/ a

[ @0z =3 [ Enmtierae,
[ e =3 [ oo
/ne 7 (&)dé == /fne % (
/ )’dé = / Emy(9))%ae,

[ imi@ras =3 / SAGIAGIS
/ pOras = [ e

else U(r) =

1 [ulx] (t)
2ur] [ Enon (O dg 2{2(
/ 6 0u1 ’71,{

/£2nul /// df—l—
— 2] / o (E11()dE)
— 4{n(t)[u / Enow, (&), (&)dE

T(t):

RO [ 10, (D0 ()
+e(omlt) [ e

+e(000) [ en(oniy(erac)
— 3{26(0)hc) / g (E(E)d
+24(1) / Eny(E(E)dEY],
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S(t) =

1 "
20w] [, (E)n(E)dé [2[141]610)/énow(f)ﬂq(é)dé

~ a0l [ 1, (€O
im0 [ o, (Do
+el) [ n(m(E)ac)
= 302(lP() [ (eI
~ wslhtt) [ no @m0z
+20 [ n0d0)
42 r() [ n, (DD
T [ n, (O ()
(O] [ e (Emie)ac
RO [ nn (g (@)ac)
- 2{is<r> JEEGIACTE
25l [ n, @m0y

Proof 1In [29] it is proved that u;,uy,u; and uy is a weak
asymptotic solution of (1.1) for n = 4 if first twenty one
relations hold. In order to prove
(uy(x,1,8), ua(x,t,8),us(x,t,8), usa(x,t,¢), us(x,t,¢e)) is a
weak asymptotic solution to the system (1.2) we have to
show that it satisfies (2.1). We only need to show that (2.1),
holds provided all the assumptions in the Theorem (3.2) are
satisfied. So we need to consider the 5th equation of (1.2)

Us; + (2u1u5 + duruy + 3u§)x =0.

For (2.1), we need to compute the weak asymptotic product
uius, upus and u% and the partial derivative of us with
respect to ¢ to obtain a weak asymptotic solution. First we
compute the asymptotic product ujus. Using Lemma 3.1 we
have

up (x,1,&)us(x, t, &)
=upusy + [wus|H(—x + ¢(1)) + (ur

+ [u] / ow ()1, (E)dE)0(1)5(—x + (1))
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/ o (D208 (~x + B(0)) + (2
L [ g, a0 05—+ 9(0) + G
% / m,, (A58 (~x + B(r)
(~lia0) [ e, (€20

50 [ rems(en XA
Is0) [ o, (O (D1

o (O (&) X5 E )
+(lalr0) [ e (@ E)ae
~)T0) [ e (€ (D02)

/ 527]0 ///
u1

/ Erlon, (E)(E)dE)

+
+ ] —
+ ([

+ [u1 JU(2)

\

' (=x+ (1)

&

5"(—X+ o))

4+l
2
by
2 3

+
+ OD/(S)
(3.8)

Then we proceed to derive the asymptotic product uu.
Using Lemma 3.1 we obtain

up (x, 1, 8)uq(x, 2, €)

= upugy + [uaus]H(—x + ¢(1)) + {(u2
+l] [ s (©n@)ae)0)

-+ ] [ o (D1 a)e(0)}3(—x+ 9(0)

T (12 + w [ 0@ Odm()8' (- + 6(0)
Y P

o] [ 1, ©n(@de )@ [, @rig(ds

4o [ nom(agy =)

+{ento) [ n@mieas

Jn(1)0"(—x + (1))

o(=x+¢(1)

&3

+ e(DR() / ne(E(E)dE}

—n(1)[ua) / ENlon (ON(E)dE
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_e(t)Q(t)/ém( (& Wﬁ}w

t) /
&n
e l /é //// dﬁ}M—FOU(F)

(3.9)

Lastly we estimate the asymptotic product for u3 using

Lemma 3.1. So we have the weak asymptotic expansion of

2
uz as

u%(x, t,€)
= u3y + [3]H(—x + ¢(1)) + 2(uz

] [ o (D105~ + 9(0)
420+ ] [ 0 (D DADHED (~3+ 9(0)
+2{0ualP0) [ (€O~ bt [ (Dmi(E)ae
+0) [ a0

o

+20) [ h0)
_|_7)2(t)/( ///( )) df} ( x+¢(t))

)2dé + 2h(1)

+=2000() [ eny (O (&)

- 260P0) [ en (o >df}M
+{(1) / & (n;,(€))*dE + 2h(1) / Eny(Enp
+P2(1) /52 (o) df}M-FOD’(s)

(3.10)

Collecting the expansions of ujus, upuy and u% from (3.8),
(3.9) and (3.10) respectively and using the following
identities
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P, )0 (=x+ §(1)) = p(d(1), )0 (—x +
+p:(¢(1),1)0(—x + ¢
P, )0" (—x + (1)) = p(¢(1), 1)d" (—x + $(1))
+2p(¢(1), )0 (—x + (1))

+ Puc(D(1), )0(—x + d(1)),

p($(),0)0" (—x + (1))

+3pa(§(1),1)0" (—x + §(1))

+3pu( (1), )0 (—x + ¢(1))

+pxxx(¢(t)7 )5”1(776 + d)( ))a
(3.11)

)

)
);

px, )" (—x + ¢(1)) =

where p € C3, we obtained the expansion  of

2uius + 4uruy + 314%. After rearrangement of similar terms
we have
(2uy (x, 1, &)us(x, 1, &) + dup (x, 1, €)uy(x, 1, 8) + 3w>(x, 1))

= Quipusy + 4uxpugy + 3’4%2) +

+3BH(—x + (1) + 2(ura + ] / How (O)1,(2)dE)o (1)

[2111 us + duouy

e+ o] [ 10, (DDA + (e

] [ 10 (O (aE)e(0)} + 3200

] [ 0 (D1,()aE)g(0)) + 2

) [ 10, (O, ()a)a(0)

bl + s [ 0 (o) + 32002
+lind [ o (OmE)aE)n0)

+ 20+ 12 [ e, @00

e+ 122 [ g @000

+ 2(”2xxx

N [—6] / Elou (E)n,(6)dC)

+ R(ura + ] / Now (1,()dE)q(r) + 4(uz2
+ li) / ows (1 (E)dEIm()

S(O)] = p(r)0(—x + ¢(1))
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3{20u + ] [ 10 (OM(OAE0)2{200,
2 [ g (a0} + 420
2 [, )} + 23
e / Enon (OO O gy 0(—x

) + Pl + 1) / Erlgyy (] (E)dE)r (1)
Ty + 1 2 [ o (nEan(0) + 203w
+[T] / o OOy (2

+ 2{ (s
“1 / Eo (MO gy 0"(=x
+ [2{—[u1lq /f’?om
+[u11s<>/nu<> L&)z}
a{emoln] [ 1, €Oz
Q0 [ o, (g + i) [ nOm(ac)
+ 302000 [ (e
~ bt [ m(Om@ae +£0) [ (a0}
+2{—lunr0) [ G (e
~ ) [ s (€ (@)}
Fa{on0lie) [ b (@iE)ae
~ R [ e (O ()
+2{M [ Enemcac

ulxx / 1,]0”1 dé} x=(t)
(1)

2{ ul s(t / 0M|
/’10

+ 4{e(t) t)//ne
/ M (O (E)dE} + 3(() / () ()¢

0 o

+P0) [ 004N g

o(=x+ (1))
(&)de}

l//
’/’il

+ 2h(t
o(=x+ ¢(1))

&3
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+{-llrto) [ e, (@010
~ )T() [ G (01}
+a{on0ln] [ e (Eie)ac
~ RO | (D1 (D

—e(n) Q1) / (&)}
+3{=2g(1)h() / ey (En(E)de
— 2()P(1) / Eny(En()de}

+2{2 [MIX;S(t)/éz Oul m(f)dé
&(—x+ ¢(1))

&

| L ue) / o, (MDA

o [ o,

it / P, () (£)dE)

4 ae00) / i

+3{—h2 /5
/g

+7)2 /52 /// di} o0

///I dé}

5”(—)6 + d)(t)) + OD’(S).
&

(3.12)

Then we need to calculate the expansion of the term us,. So
after the differentiation of us(x, ¢, ¢) with respect to ¢ we are
left with the following expansion

[usH(—x + ¢(1)) + (6(2)
)o(=x+ (1)) +

us,(x,1,8) = usy, +

[ slo(e + (o(N (1)
q(1))0'(—x + ¢(1))
( (0)$(1) + F(1)8" (—x + (1)) + (r(1) (1)
+5(1))8" (—x + (1)) + ()¢(t)5”"( +¢(1))
+ Op (&)

(3.13)
By exploiting (3.12) and (3.13) we obtain
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us, + (2uy (x,t, &)us(x, t, €)

+ duy (x, 1, €)ug(x, 1, 8) + 3u3(x,1,¢)),

= usy, + (Quipusy + dunpusy + 3u3,y),

+ [pr + Quyus + duzuy + 3u3) JH(—x + $(1))

+ [6(1) + [us) (1) — [2urus + duzuy + 3u2]])(—x + ¢ (1))

Hod(0) + (1) = 2z + ] [ 1, (€100
4l + o] [ (a0

+ G+ ] [ (D00}

+ 3020 + ] [ 00 (D10}

420y ] [ 0, € (E)E)g(0) +
i [ o (Ona@)Emln

30200+ [ [ (AW} + 2z

el [, @@
s+ 122 [ @00

5l [, (080 (5 + 000)
Hla®9(0) +70) = Rz + ] [ 0 ()ate)
+ (s + ] [ (€ dDm()

+ 320 + lis] | Mo (OB} + 2(200n,
2 [ 2, @n (a0}

En(t) + 2(upx

420 +2 [ o, (A0} + 230

+E%ﬂ/f%wiﬁm@M®NOMbw@y(x+¢@»

2ans + 2 [, ()t

o+ 2 [ o, (O aEInte)

+ [r(0)p(1) +5(1) -
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[ulx]
6

/ 637]0u1 (@'k(f)%)s(r)}]} |X=<b(r)5m(—x n ¢(t))
+[s()b(1) = [2{ (w2
+ %/ 53110141 (é)ns(f)di)S(l‘)}]]|x:¢(t)5////(

- ((~lwlato) [ e, (©r(0)2
+mlS) [ (@ ns(0ae)
a{omioln] [ n (€O
] [ i (@1 + i) [ nem(eaz)
+ 30200 [ (e
~lhto) [ n@m0de+ £0) [ (a0}
2= lnrto) [ e, (€017 (200
—WMTM/E%MQ”W)%}
+ 4{—n(t)[uz, / Mo, (€

~ RO [ Gnan (@ E)ac)

+ 2{3(1/!22x +

—x+ ¢(1))

+2{[M1xx]s(t)/éz 0u1 ”/(é)dé
8 (—x+¢(n)

&

+ land) D[ o Emtiael g
—PWJO/%A@W@%

o) [ o, (e + 4en(n) [ n(epie)ac
R [ nEn @) +3020) [ &)
+2nP0) [ e

+220) [Py )

*M%%MO/@%@M@Mé
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~)T(0) [ n, (O ()
a{-n0ln] [ em(Enie)ae
~ RO [ e (E (D0
—eom(e) [ en oz
-0 [ en(mseras)
+3(-28(0h00) [ en(Emce)ac
— 25(/P(1) / (e}

2 [ e, @n o
+ B0 [ e, @ty =

[1]s(2)

— (5 [ S, O (ae
o0

20 [ o oniieracy

+4{e(”2”<’) / (e

WD [ e 9y

+3{7h2 /52
/f

P /é 22 g L £+ 60)
(&)-

&
+ Op

(3.14)

We can obtain all the coefficient in (3.14) as zero except the
error term by applying the conditions in the Theorem 3.2.
So we have

Lsluy, uz,uz,us,us) = op (1), &— 0%,
If the initial data also satisfy weak asymptotic relations then
the ansatz that we have taken in the Theorem 3.2 is a weak
asymptotic solution to the system (1.2). Hence proved. [J

In the previous Theorem we have obtained a weak
asymptotic solution where the initial data may not be
constant. For that reason our conditions are more compli-
cated compared to the constant initial data. But for the
constant initial data case we have a simpler version of
Theorem 3.2, which we have captured in the following
Corollary. The following Corollary is very useful to con-
struct weak asymptotic solution for more general initial
data.
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Corollary 3.3 When uy;, uy;, us;, us; and us;, for i = 1,2,
are constants then the ansatz in the Theorem 3.2 is a weak
asymptotic solution to (1.2) if the following relations hold.

¢

—~

1) = (un +u)l g, €(1) = [ur](uar +u2)| g0,
1) = (2[m](u21 + vzz) (1] (u31 + 132))] 1)
)

(h(0luto(0). ) = 20

1
n()ul (é>”j(€)d5 :/éznOuz(é)ne(é)dézia j:e7g7h7

oQ.
—~

My (), (E)dE

—_—— &

uy(p(1),1)
—[ua](t) + 2[3u2u3 + uyuy),

Mo, Ouy (f)’h(f)df

B .
17 B is a constant,

\Q

o ()€ =5 [ 10, (Dma(E)aE =3,
1) = 232 + ] [ 0, (1,9
+ (2 + ] [ i (DD,
(1) = 203{ (12 + [ / o (14 ()R,
T T one (Eceyy B [ nom e
+3eP0) [ éne(é)né’a’(é)d&f
(0] [ e @n

R(t) =

2 (£)dd],

Q) = (T @@ 2] [ na(Emee
= 3g(0)e(t) [ n(Em(e)ac
=30l [ o, (e
+m()[ur] [ 1, (E)n,(£)dE]
[ @z =3, [, @m0z =3,
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/é 170141 rlr dé =1 /é 170141

o(t) = [2uyus + 4upuy + 3u3] [u5]¢(t),
(0) = 42 + ] [ o (DD + (2

o] [ o (©1(Dde()

43020 + ] [ 10, (D1, (940}
(1) = 4z + ] [ o, (1 (dm()

+ 30202 + ] [ 0, (DDA}
500 = 4+ [ (@ acInte)

T T e 2 s

[ o @ @) +aewnto) [ n(emierac
R [ n (€ @+ 308 [ (0P
+2P0) [ @ eae

P / (1(8)dE),
1
2[ur] [ yno,, (Eny (&)dE

[=2{[ur]r(2)
/f”lom

&)dE =3,

T(1) =

(£)de} — 4{n(0)l / Elow (O (E)dE

/ fﬂouz ////

—3{2¢g(1)

+2¢g(1)
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1
20wi] [ () (&)d

~ a0l [ 1, (€O
Q) [ 1, (Dlo(Ode + (1)
[ n@maey

= 302(P() [ (D)

~ lulho) / M (Em(EdE + (1) / R(E)dE))].
(3.15)

S(t) =

- 2lula(o) / G AG

We know that piecewise constant functions can be used
to approximate wide range of functions which are not
necessarily constant. Now using the Corollary 3.3 we
construct a weak asymptotic solution for the Riemann
problem for certain initial data.

Theorem 3.4 If u%, 9, u3, ul and ul € Ly(R) for B €
[1,00) then there exists a T > 0 such that (1.2) and (1.3)

has a weak asymptotic solution for t € [0, T).

Proof We know that when uf, 9, 9, ufand ul € Ly(R)
for f € [1,00), we can approximate these using simple

functions. So for every ¢ > 0 we can find simple functions

0 ,0 L0 0 0
uj,, Uy, Us,, uy, and ug, such that

||u(1) - u(l].sHLﬁ <g,
||I/l(2) - uga'”L/; <&,
| — ul, ||, <e (3.16)

||Mg - ug.v,”Lﬁ <&,

||M(5) - M(S).';”Lﬁ <é.

Now let Y be a test function having support in Q such that
these simple functions can be written as

W =31 upi(H(—x+a;) — H(—x + a;_1)),
ug, = >0 voi(H(—x + a;) — H(=x + ai 1)),
ud, = >"  woi(H(—x + a;) — H(—x + a;_1)), (3.17)
uy, =3 z0i(H(—x + a;) — H(—x 4+ a;_1)),
ug, = S poi(H(—x + a;) — H(—x + a;_1)).

Now the following ansatz
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up ()C, t? 8) = Z(u(l)z u(l)z+l)H ( —x+ ai + (rbi(t)v 8) =+ u(l)m
ugz+1)H ( x+ai+¢i(t)78) +ugm

+ ) eilt)de(—x + ai + (1), 2)

LI

((”(3):

+ Zgz
m—1

+ 2 (= +ai+ (0).c)

=1

- ”giH)Hus(_x +ai + ¢;(1), ) + ”gm

o(—x+ai + (1), )

m—1

+ZRL{3[ x+al+¢() )
i=1
m— 1

x t, (g ”41 u4l+1 u4(_x+ai+¢i(t)78) +u2m

i=1
m—1

+ le(l)51(—x +a; + ¢;(1), ¢)

1
+ mi0,, (—x + a; + ¢;(1), €)

i

+ ) mbi(—x+ai+ (1), €)
i=1

3

L]
-

n—1
+ D Rui(—x +ai+ ¢i(1),8)
i=1
m—1
= Z((”gz - u(S)i+l)HM5(_x +ai + ¢;(t), 8) + ”(s)m
=1
m—1
+ ) 0i(t)0,(=x + a; + ¢;(1), ¢)
mil
+) @b, (—x+a; + (1), )
i=1
m—1
+ > 8 (—x+ a + (1), ¢)

i=1

m—1
+ 350 (—x +ai + (1), 2)

i=1

us(x,t,¢€)

m—1
+2Rusz x+ai+¢i<t)76>7

i=1

is a weak asymptotic solution to (1.2) with initial data (1.3)
for t<T where T is the minimum of interaction time of the
all different Riemann problems with
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n;(0) =0,

weym—1

where €i, &i, hi7 lia m;, n;, 0i, qi, i, Si, Rugi; Ruu' and

Rusi satisfy (3.15) with wuyy, ui, uo1, up, uszi, us,
Ug1, Ugp, Us) and Usy replaced by
0 0 ,0 ) 0 .0 0 0 0
Wioys Upp Upiyy Uy Uzg yy Uzgy Ugi_ys Uy, Us;y and i

respectively and e, g, h, [, m, n, o, g, r and s are
replaced by e;, g, hi, l;, m;, n;, 0;, q;, r; and s; respec-
tively. So for every y(x) € D(R) and ¢ > 0, we have

40

/ Lt w2, usl (x)dx = O(c)
/$4[u1,u2, uz, ug) (x)dx = O(e)
/ ZLs [ulv Uz, U3, Uq, MS]III(x)dx = 0(8)

and for initial conditions we have

/ |u1(x,0,¢) — u?(x)\tp(x)dx
< [l (a,0.8) = a3 o

+ [ 1 x) = s
<O0(e) + Ce where C is max of

and similar procedure can be applied for other initial
functions. So we have weak asymptotic solution (i (x, ¢, ¢),
up (x,1,€), us(x,1,€),uq(x, t,6)us(x, t,¢&)) for (2.1) with ini-

tial data 9, u9, u9, u} and u? € Ly(R) for B € [1,00). O

4. Conclusions

In this article, we considered a nonstrictly hyperbolic sys-
tem of conservation laws and it is observed that one of the
components of its solution contained a linear combination
of Dirac measure and its first, second and third derivatives.
Sufficient conditions are established in order to obtain a
weak asymptotic solution. Then by exploiting Riemann
type initial data, we constructed weak asymptotic solution
for more general type initial data. In future, we would like
to extend these type of solutions to different physical sys-
tems for more general initial data and also to work on the
interaction of nonlinear waves using weak asymtotic
method.
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