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Abstract. This study presents a novel approach for the simplification and controller design of expansive

dynamic linear time-invariant plants. This approach applies to both single input single output and multiple input

multiple output models on a wide scale. The diminution approach is a straightforward method that guarantees

the stability of the lower-order plant, given that the higher-order system is stable. Implementing the balanced

truncation approach determines the denominator polynomial of the required system. The coefficients of the

numerator polynomial are computed using a simple mathematical procedure, as outlined in the suggested

scenario. The proposed method overcomes the constraints of the balanced truncation scheme while maintaining

its crucial attributes, including stability, controllability, observability, passivity, etc. The strategy that has been

developed guarantees the preservation of stability, time moments, Markov parameters, and other features of the

higher-order plant in the reduced model. A two-input, two-output, single-machine infinite bus real-time power

system model and a ninth-order system are utilized to test the accuracy and effectiveness of the proposed

method. The findings of the suggested technique are compared against other popular algorithms. Furthermore,

controllers are derived using the moment-matching process using the recommended lower-order plant for two

real-time case studies. The controller’s design is shown, and its efficacy is confirmed using a real-time system

described in the literature.

Keywords. Steady state approximation; complex order systems; order reduction; balanced truncation;

controller/compensator design; time moments; markov parameters.

1. Introduction

Realistic computer simulations in engineering, non-engi-

neering, physics, and mathematics can incur an increasing

computing strain. Model order reduction (MOR) is gaining

popularity because it may extract essential insights from

complicated simulations while removing computationally

costly and unneeded elements. MOR provides an identical

subsystem with a minor acceptance deviation that keeps

system features such as stability, passivity, positivity, and a

good approximation of input-output dynamics [1–3].

Reduced-order systems offer various advantages, including

being more accessible to understand, using less computa-

tional power, requiring less hardware complexity, and

assisting in the design of a feasible controller [1–3]. MOR

is now being used in many technological and scientific

fields. As in power systems [4, 5], chemical processes [6],

controller design [7–17], and references therein.

Many approaches for order reduction of original plants

are presented in the frequency domain [18–21]. To mention

a few, are the Pade approximation method (PAM), Routh

approximation method (RAM), stability equation method

(SEM), Mikhailov stability criterion (MSC), factor division

method (FDM), dominant mode retention (DMR) and pole

clustering technique (PCT). These methodologies give

simplified models that mimic the plant’s current dynamics

and input-output behavior. These techniques have certain

drawbacks, including the PAM may generate unstable re-

duced models for an existing stable plant, the RAM

requires the application of reciprocal and inverse transfor-

mations and needs to form two separate Routh tables, the

SEM is only applicable to minimum phase systems, DMR

is considered only poles near origin as a dominant, and the

PCT requirement for tuning and gain correction factors.

New mixed approaches combine the prior strategies; the

reader can refer to [22–26] and the references therein to

solve these deficiencies. Most of these techniques corre-

spond to the retention of stability and the first few moments

in the reduced model. But in general, maintaining a few

moments and a few Markov parameters is required for an

excellent overall response approximation of the original

system [27–31].

The concept of order reduction by balancing transfor-

mation may be traced back to Kalman’s first publication on*For correspondence
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canonical system decomposition in 1963, i.e., the uncon-

trollable or unobservable system modes do not exist in the

system transfer function. As a result, the authors of [32, 33]

conclude that system modes that are both weakly controlled

and weakly observable have minimal effects on system

dynamics and can be discarded. However, those modes that

are weakly controllable and well observable, as well as

those that are highly controllable and weakly observable,

cannot be ignored—they may become crucial for the

closed-loop system performance. The reduced-order system

produces an excellent approximation of the original system

(with good spectra approximation on higher frequencies)

subject to impulse input. Still, it displays considerable

steady-state inaccuracy for step input application (bad

spectra approximation on lower frequencies) [34]. This

issue occurs because the steady state gains of the original

and lower-order systems differ, as the simplified model is

generated by removing the spectra component at lower

frequencies (the system’s disregarded part-state variables

x2ðtÞ).
The literature provides a variety of methods [35–39] to

improve the balance truncated-reduced model’s steady state

approximation. In [35], the balanced truncation method

(BTM) is integrated with the Pade approximation method.

In [36], the BTM is combined with the factor division

method. At the same time, [37] uses the BTM and ele-

mentary mathematical equations to build the numerator of

the simplified model. The paper [38] uses the balanced

truncation to generate a lower-order model. Next, a gain

factor is added to the model to enhance the steady-state

performance. [39] Utilizes the benefits of the balanced

truncation approach in addition to the modified Cauer

continuous fraction expansion. The merits and limitations

of these techniques are detailed in table 1. Nevertheless,

these strategies [35–38] do not account for the high-order

system’s Markov parameters (MPs) in the simplified model.

Time moments (TMs) and MPs are essential for getting

close approximations of system responses. Keeping track of

TMs will offer a reasonable estimate of the system’s

responsiveness in a steady state. Keeping track of MPs will

provide a good approximation of the system’s responsive-

ness during transients. Even though there are a few dif-

ferent ways to order reduction, they still need to offer

satisfactory results across the board for any of the systems.

Consequently, research into the efficiency of new algo-

rithms is now receiving much attention.

It is common practice in model simplification strategies

to use optimization techniques to calculate lower-order

models by minimizing the difference in transient responses

between the full-scale system and the simplified plant.

Based on this idea, many methods for reducing and

weighted equation errors have been developed [42, 43]. The

most recent optimization development is using a

metaheuristic algorithm inspired by nature. Available

metaheuristic approaches are also used to reduce com-

plexity in the transfer function of dynamic systems [44–49].

Parameters for the simplified model have been optimized

using metaheuristic processes inspired by natural phenom-

ena. Minimizing the error-index, such as integral square

error (ISE), H? norm, H2 norm, and integral time absolute

error (ITAE), is a few.

Advanced controller design approaches such as linear-

quadratic-Gaussian (LQG), H? control design, micro-

synthesis, and linear matrix inequality (LMI) provide con-

troller orders that are at least equal to or greater than the

system order [8, 9]. Hence, all system states are unavailable

for measurement; therefore, state estimation involves using

a Kalman filter or a state observer, increasing the control

rule’s complexity and cost [8, 9]. As a result, a low-com-

plexity controller is frequently required. Numerous

approaches exist for developing simpler controllers for

large-scale order networks [7–17]. One option is to

decrease the plant’s order and then use the reduced model

as a predictive model to develop a reduced-order controller.

Another approach is constructing a high-order controller for

a real-world high-order plant and then decreasing the

controller order using reduction techniques.

This article proposes a unique approach for retrieving

simplified models of complicated order plants. The reduced

model denominator was obtained using the balanced trun-

cation method. The lessened model numerator coefficients

are retrieved using a simple mathematical procedure in the

proposed scenario by comparing the reduced model’s initial

TMs and MPs with the original plant. In contrast, most

existing approaches maintain initial TMs, but the intended

method retains TMs and MPs. The proposed method is

simple, accurately approximates the precise system

response over the whole frequency range, and ensures the

stability of the simplified system for the given stable origi-

nal system. The study’s second purpose is to provide a

strategy for developing a controller for a large-scale system

based on a reduced-order model. This method is used to

design controllers for any sophisticated real-time system.

Finally, the controller created using a simplified model is

integrated into the original plant. The proposed method is

validated using a ninth-order system, a sixth-order stable,

practical open-loop helicopter engine with a fuel controller

system, an eighth-order flexible-missile control model, and

a two-input, two-output (TITO) tenth-order linear dynam-

ical model of a SMIB power system network. The simu-

lation results demonstrate that the suggested approach

outperforms the most recent community-released model

reduction solutions.

The remainder of the document is organized as follows:

in Section 2; The general statement of the problem is dis-

cussed in Section 3, the suggested technique for computing

the reduced scheme is discussed. Section 4 describes PID

controller design and compensators using original and

reduced models. The utility of the recommended method is

shown in Section 5 using a few typical and real-life

examples from the literature. Section 6 concludes with the

future scope of the proposed work.
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2. Problem statement

Consider a high-dimensional minimal, asymptotically

stable, minimal, linear time-invariant in state space form

ð1Þ

here xðtÞ 2 <n; uðtÞ 2 <p; yðtÞ 2 <q are the state vector,

input vector, and output vector with n states, p inputs, and q
outputs. The system matrix (A), output matrix(C), input
matrix (B), and feed-forward matrix (D) are constant, with

appropriate dimensions. For single input single output

(SISO) case p ¼ q ¼ 1.

Definition 1 A linear time-invariant system (1) is

realizable if the pair C;Að Þ is entirely observable and the

pair A;Bð Þ controllable [1, 2, 33]. The equivalent transfer

function of the system (1) for the SISO case is

GðsÞ ¼ NðsÞ
DðsÞ ¼

f0 þ f1sþ � � � þ fms
m

h0 þ h1sþ � � � þ hnsn
ð2Þ

Where m� n; hj; j ¼ 0; 1; . . .; n and fi; i ¼ 0; 1; . . .;m
are the coefficients of the numerator and denominator

polynomials of a given original plant (2), respectively,

scalar constants. For the MIMO case, the dynamics of the

system (1) in the frequency domain are represented by the

transfer function matrix as follows:

½GðsÞ� ¼ ½gijðsÞ�q�p

¼ 1

DðsÞ

A11ðsÞ A12ðsÞ . . .: A1pðsÞ
A21ðsÞ A22ðsÞ . . . A2pðsÞ

..

. ..
. ..

. ..
.

Aq1ðsÞ Aq2ðsÞ . . . AqpðsÞ

2
6664

3
7775 ð3Þ

where i ¼ 1; 2; ::; q and j ¼ 1; 2; ::; p.

The basic form of entries gijðsÞ of (3) is defined as a

transfer function for i output to jth input, represented by

gijðsÞ ¼
AijðsÞ
DðsÞ ¼ f̂0 þ f̂1sþ � � � þ f̂ms

m

ĥ0 þ ĥ1sþ � � � þ ĥnsn
ð4Þ

The objective is to find an equivalent kth order reduced

model of the original system (1) of the form

ð5Þ

where xkðtÞ 2 <k; uðtÞ 2 <p; yðtÞ 2 <q are the state vector,

input vector, and output vector with k states, p inputs, and q
outputs. The system matrix (Ak), output matrix (Ck), input

matrix (Bk), and feed-forward matrix (Dk) are constant, with

appropriate dimensions. The rational system function (5)

for the SISO case is described as

RkðsÞ ¼ CkðsIk � AkÞ�1Bk þ Dk ¼
w0 þ � � � þ wk�1s

k�1

z0 þ � � � þ zksk

ð6Þ

where wi; i ¼ 0; 1; . . .; k � 1 and zj; j ¼ 0; 1; . . .; k are

unknown coefficients of reduced model numerator and

denominator polynomial of (6), respectively, which are

scalar constants. For the MIMO case

½RkðsÞ� ¼ ½rijðsÞ�q�p

¼ 1

DkðsÞ

B11ðsÞ B12ðsÞ :: B1pðsÞ
B21ðsÞ B22ðsÞ :: B2pðsÞ

..

. ..
. ..

. ..
.

Bq1ðsÞ Bq2ðsÞ :: BqpðsÞ

2
6664

3
7775 ð7Þ

The basic form of entries rijðsÞ of (7) is defined as a

transfer function for ith output to jth input, represented by

rijðsÞ ¼
BijðsÞ
DkðsÞ

¼ c0 þ c1sþ � � � þ ck�1s
k�1

d0 þ d1sþ � � � þ dksk
ð8Þ

2.1 Selection of reduced model order

In this article, the order in which the original system is to be

reduced is not random, and the reduced order is selected

based on the original system’s Hankel singular values

(HSV).

Select the reduced order ‘k’ such that.

rk [
Xn
i¼kþ1

ri ð9Þ

here ri is the ith HSV of the original system.

3. Proposed reduction procedure

3.1 Procedure to determine abated model
denominator by Balanced Truncation [32, 33, 48]

Consolidating the principal component analysis and singular

value decomposition, Moore [1] introduced the balanced

realization approach by employing the system controllability

and observability gramians. The BTM involves two stages,

namely Lyapunov balancing and state truncation.

3.1a Lyapunov balancing: 1. Compute the controllability

gramian Pcð Þ and observability gramian Qoð Þ of the original
system (1) using (10), which is a positive semi-definite and

unique solution to the following algebraic Lyapunov

equations

APc þ PcA
T ¼ �BBT

QoAþ ATQo ¼ �CTC

)
ð10Þ
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2. Transform the original system into a balanced form.

Do Choleskey factorizations of Pc and Qo as follows:

Pc ¼ XXT ; Q0 ¼ YYT .

Here X; Y 2 <n�n are lower triangular matrices.

3. Now compute the singular value decomposition (SVD)

of the Hankel matrix XTY .

4. SVDðXTYÞ ¼ U
P

VT .

Where U;V 2 <n�n are unitary (orthogonal) matrices.P
2 <n�n is a singular value matrix.

5. Balancing requires changing the basis for the states of

the system (1) using a similarity transformation matrix.

xðtÞ ¼ T ~xðtÞ, ~xðtÞ ¼ T�1xðtÞ.
Here T 2 <n�n is an invertible matrix.

6. The transformation matrix T ¼ XV
P�1

2 transforms the

system (1) into a balanced form

ð11Þ

7. The controllability and observability gramians of the

system in balanced form (11) are

~Pc ¼ ~Q0 ¼
X

¼
P

1 0

0
P

2

� �
¼ diagðr1; :; rk; :;rnÞ

ð12Þ

3.1b Concept of State Truncation: Partition the balanced

system of (11) into blocks corresponding to the block

partition of the singular value matrix
P

i; i ¼ 1; 2 as in (12).

ð13Þ

where subscripts 1 and 2 denote the dimensions k and n - k,
respectively.P

1 ¼ diagðr1; r2; . . .; rkÞ It gives singular values cor-

responding to strongly reachable and observable states.P
2 ¼ diagðrkþ1; rkþ2; . . .; rnÞ It gives singular values

corresponding to weakly reachable and observable states,

which decay rapidly and become insignificant.

The k-dimensional abated model was obtained by trun-

cating the weakly controllable and weakly observable states

as follows:

ð14Þ

The transfer function of the diminished model (14) is

RkðsÞ ¼ CkðsIk � AkÞ�1Bk ¼ C1ðsIk � A11Þ�1B1 ð15Þ

The characteristic or denominator polynomial of the

abated model is

dkðsÞ ¼ sIk � A11j j ¼ z0 þ z1sþ � � � þ zks
k ð16Þ

3.2 Determination of reduced model numerator
using a factor division-like method [50]

The reduced model denominator is obtained using the

balanced truncation approach, and the reduced model

numerator is created by matching the high-order system’s

first ‘‘k’’ moments with the reduced-order model. In certain

instances, this results in a subpar transient response

approximation. In general, a simplified model should keep a

few initial time moments (for steady-state response accu-

racy) and a few Markov parameters (for transient response

accuracy) from the higher-order dynamic system to give a

decent approximation of the overall response of the original

system [27–31, 38]. The goal is to find a ROM that

approximates HOS’s overall reaction (transient and steady-

state). A factor division-like approach retains initial ‘T’
time moments and ‘M’ Markov parameters in the reduced

model [50].

DkðsÞ Being predetermined by the algorithm discussed in

section 3.1, the reduced model numerator NkðsÞ is obtained
by retaining the initial ‘T’ time moments and ‘M’ Markov

parameters of the HOS (1). Such that T þM ¼ k. Let (2) be
approximated by (6), and then decompose the HOS

numerator polynomial as follows:

NðsÞ ¼ NMðsÞ þ NrðsÞ þ NTðsÞ ð17Þ

Remark 1 We need only the first ‘T’ terms of N(s) starting
from s0 to sT-1 to retain ‘T’ time moments of HOS in ROM,

and to retain ‘M’ Markov parameters of HOS in ROM, it

requires only ‘M’ terms of N(s) starting from sn-1 to sn-M.
The remaining terms, starting from sT to sn-M-1 of N(s), are
not required in order reduction.

Consider the polynomials defined as follows:

NMðsÞ ¼ fn�1s
n�1 þ fn�2s

n�2 þ � � � þ fn�Ms
n�M ð18Þ

NrðsÞ ¼ fn�M�1s
n�M�1 þ � � � þ fTþ1s

Tþ1 þ fT s
T ð19Þ

NTðsÞ ¼ fT�1s
T�1 þ � � � þ f1sþ f0 ð20Þ

Then from (2) GðsÞ can be written as follows:

G sð Þ ¼ NMðsÞ
DðsÞ þ NrðsÞ

DðsÞ þ NTðsÞ
DðsÞ ð21Þ

Note 1: In (13), only the expressions
NT ðsÞ
DðsÞ and

NMðsÞ
DðsÞ

contributions to the first ‘T’ time moments and ‘M’ Markov

parameters, respectively, are to be reserved in the reduced

model. So, the effect of
NrðsÞ
DðsÞ can be ignored for model order

reduction.

The reduced model numerator coefficients, determined

as follows such that it closely approximate (2)
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Rk sð Þ ¼ NkðsÞ
DkðsÞ

¼ NMðsÞDkðsÞ=DðsÞ
DkðsÞ

þ NTðsÞDkðsÞ=DðsÞ
DkðsÞ

ffi GðsÞ
ð22Þ

NkðsÞ ¼
NMðsÞDkðsÞ

DðsÞ þ NTðsÞDkðsÞ
DðsÞ ¼ NM

k ðsÞ þ NT
k ðsÞ

ð23Þ

where

NM
k ðsÞ ¼ wk�1s

k�1 þ wk�2s
k�2 þ � � � þ wk�Ms

k�M

NT
k ðsÞ ¼ wT�1s

T�1 þ wT�2s
T�2 þ � � � þ w1sþ w0

Case (i): The coefficients wT�1; . . .w0 are determined by

the following procedure that retains ‘T’ time moments. It

requires performing polynomial multiplication up to sT-1

terms from s0 in NTðsÞDkðsÞ and the first ‘T’ terms of DðsÞ
from s0 to sT-1.

The direct truncation of the Taylor series expansion of
NT ðsÞDkðsÞ

DðsÞ about s ¼ 0 obtains the coefficients

NTðsÞDkðsÞ
DðsÞ

����
s¼0

¼ w0 þ w1sþ � � � þ wT�1s
T�1 ð24Þ

where

NTðsÞDkðsÞ
DðsÞ ¼ e0 þ e1sþ � � � þ eT�1s

T�1

h0 þ h1sþ � � � þ hT�1sT�1
ð25Þ

Case (ii): The coefficients wk�1; . . .wk�M are determined

by the following procedure that retains ‘M’ Markov

parameters. It requires performing polynomial multiplica-

tion up to sn?k-1 terms from sn?k-M in NMðsÞDkðsÞ and the

first ‘M’ terms from sn to sn-M?1 in DðsÞ.
The direct truncation of the Taylor series expansion of

NMðsÞDkðsÞ
DðsÞ about s ¼ 1 obtains the coefficients

NMðsÞDkðsÞ
DðsÞ

����
s¼1

¼ wk�1s
k�1 þ � � � þ wk�Ms

k�M ð26Þ

where

NMðsÞDkðsÞ
DðsÞ ¼ skðl1sn�1 þ � � � þ lMs

n�MÞ
hnsn þ � � � þ hn�Mþ1sn�Mþ1

ð27Þ

4. Controller and compensator design algorithm

Designing and simulating a controller/compensator is

challenging for large plants. The difficulty and the expense

of the controller architecture rise in tandem with the order

of the system [7–9]. This problem can be handled by

locating a roughly similar reduced framework for the high-

order paradigm and designing the controller using a

reduced model.

4.1 The control design problem can be illustrated
as follows

Suppose the original open-loop model has poor dynamic

behavior, like high overshoot and slow oscillatory response

about a step input. In that case, the controller must be

designed such that the controlled system performance must

mimic the performance of the selected closed-loop refer-

ence model. The construction of the reference model is

based on the open loop behavior of the plant (either time or

frequency) [51–56]. The closed-loop characteristics of the

controlled plant with unity feedback fully match those of

the estimated reference model. The following stages

demonstrate the controller design algorithm based on

approximate model matching in Pade’s sense. The block

diagrams of the closed-loop control systems design are

presented in figures 1, 2, 3, and 4.

Step 1: Built a closed-loop reference model M(s) based
on the original system’s specified requirements for obtain-

ing the expected characteristics, such that the closed-loop

feature of the controlled system with unity feedback

resembles that of the reference system. The detailed pro-

cedure to construct a reference model from the given

specifications is explained in [51–56]. The general form of

( )G s
( )X s ( )Y s

Figure 1. Block diagram of open loop original model.

( )C s ( )G s
( )X s ( )As ( )Y s

Figure 2. Block diagram of open loop system with controller.

Figure 3. Block diagram of closed loop system with controller.

( )M s( )X s 2 ( )Y s

Figure 4. Block diagram of closed loop reference model.
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the unity feedback closed-loop reference model is selected

as follows:

MðsÞ ¼ x2
n

s2 þ 21xnsþ x2
n

ð28Þ

Based on the plant’s desired closed-loop performance,

the closed-loop reference model may be under-damped or

critically damped.

Step 2: The equivalent open loop reference model is

obtained as follows:

MopenðsÞ ¼
MðsÞ

1�MðsÞ )
x2

n

ðsþ 21xnÞs
ð29Þ

Step 3: Consider the following arbitrary transfer function
of a controller, which produces the necessary closed-loop

response:

Y1ðsÞ
XðsÞ ¼ CðsÞGðsÞ

1þ CðsÞGðsÞ �
Y2ðsÞ
XðsÞ ¼ MopenðsÞ

1þMopenðsÞ
) CðsÞGðsÞ ¼ MopenðsÞ

ð30Þ

CðsÞ ¼ MopenðsÞ
GðsÞ ) 1

s
HðsÞ ð31Þ

where, CðsÞ is the arbitrary transfer function of the con-

troller, GðsÞ represents the open loop plant model, HðsÞ the
polynomial obtained from the ratio

MopenðsÞ
GðsÞ .

HðsÞ ¼ x0 þ x1sþ � � � þ xT�1s
T�1 þ � � � þ xqs

q

y0 þ y1sþ � � � þ yT�1sT�1 þ � � � þ ypsp
ð32Þ

Step 4: Unknown controller or compensator parameters,

calculated by assuming that the output of the open-loop

controlled system followed that of the open-loop reference

prototype.

4.2 To design the PID controller

Let the PID controller structure have the following form:

CPIDðsÞ ¼
Ki þ Kpsþ Kds

2

s
ð33Þ

To determine the unknown PID controller parameters, it

is required to match the initial three-time moments (T) of
(31) with (33) as follows:

Ki þ Kpsþ Kds
2

s
¼ 1

s
H0ðsÞ ð34Þ

Ki þ Kpsþ Kds
2 ¼ H0ðsÞ ð35Þ

where H0ðsÞ ¼ x0þx1sþx2s
2

y0þy1sþy2s2
is obtained from the eq. (32).

The power series expansion of H0ðsÞ about s ¼ 0 gives

the time moments of H0ðsÞ.

H0ðsÞjs¼0¼ v0 þ v1sþ v2s
2 ð36Þ

Now, from eq. (35) and (36)

Ki þ Kpsþ Kds
2 ¼ v0 þ v1sþ v2s

2 ð37Þ

Now, compare identical powers of ‘s’ in eq. (37) from s0

to s2.

Ki ¼ v0;Kp ¼ v1;Kd ¼ v2 ð38Þ

4.3 To design a compensator controller

Let the compensator structure have the following form:

CcomðsÞ ¼
K1ð1þ K2sÞ
sð1þ K3sÞ

ð39Þ

To determine the unknown controller parameters, it is

required to match the initial three-time moments (T) of (31)
with (39) as follows:

K1ð1þ K2sÞ
sð1þ K3sÞ

¼ 1

s
H0ðsÞ ð40Þ

K1ð1þ K2sÞ
ð1þ K3sÞ

¼ H0ðsÞ ð41Þ

The power series expansion of H0ðsÞ about s ¼ 0 gives

the time moments of H0ðsÞ.

H0ðsÞjs¼0¼ v00 þ v01sþ v02s
2 ð42Þ

Now, from eq. (41) and (42).

K1ð1þ K2sÞ
ð1þ K3sÞ

¼ v00 þ v01sþ v02s
2 ð43Þ

Now, cross multiply Eq. (43) and compare identical

powers of ‘s’ from s0 to s2.

K1 ¼ v00 ð44Þ

K1K2 ¼ v00K3 þ v01 ð45Þ

K3v
0
1 þ v02 ¼ 0 ð46Þ

By solving eq. (44), (45), and (46), the compensator

controller parameters are determined.

Step 5: The closed-loop transfer function of a controlled

system with the controller designed using the original

system is represented as follows:

GG
clðsÞ ¼

GcðsÞGðsÞ
1þ GcðsÞGðsÞ

ð47Þ

GcðsÞ refer to the PID controller or compensator

designed using the original system.
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Step 6: Decrease the original system GðsÞ to use the

aimed process. Later, repeat steps 3 and 4. The closed-loop

transfer function of a controlled system with the controller

designed via the diminished model is represented as

follows:

GR
cl ¼

RcrðsÞGðsÞ
1þ RcrðsÞGðsÞ

ð48Þ

RcrðsÞ refer to a controller or compensator designed

using the reduced model.

5. Test systems and validation of results

The performance of the proposed technique is assessed and

compared to existing reduction strategies by computing

error indexes such as integral square error (ISE), H? norm,

root mean square error (RMSE), integral absolute error

(IAE), and impulse response energy (IRE). The suggested

approach’s utility and efficacy are investigated in different

case studies from the literature. The practical application of

the proposed technique is demonstrated by building a PID

controller and compensator controller for an eighth-order

flexible-missile control model and a sixth-order realistic

open-loop helicopter engine with a fuel control system to

achieve the desired closed-loop behavior. The lower the

value of the error indices for a specific simplified model,

the better the approximation of the original plant. The

comparative analysis of the presented algorithm and other

reduction algorithms is conducted based on several error

indices. The findings indicate that the proposed approach

exhibits superior performance and is on par with different

widely-used model reduction strategies.

5.1 The performance error indexes are considered
as follows

ISE ¼
Z1

0

½yðtÞ � ykðtÞ�2dt ð49Þ

IRE ¼
Z1

0

½hðtÞ�2dt ð50Þ

IAE ¼
Z1

0

yðtÞ � ykðtÞj jdt ð51Þ

Let the error system function is defined as follows:

EðsÞ ¼ GðsÞ � RkðsÞ.
Then, the H1 norm of the error system is defined as

follows:

EðsÞk k1¼ GðsÞ � RkðsÞk k1 ð52Þ

where yðtÞ; ykðtÞ are unit step responses of the existing

system abated model, respectively, and hðtÞ is the impulse

response of a system, GðsÞ is the original system function in

the s-domain, and RkðsÞ is the reduced model transfer

function in the s-domain. The RMSE of Bode’s response of

existing and reduced systems at each frequency x in a

given frequency range of interest x ¼ ½xLow;xHigh� is

computed concerning the number of frequency samples N
as follows:

RMSEGain ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

GðjxiÞj jdB� RkðjxiÞj jdB
� �2

N

vuuut
ð53Þ

where GðjxiÞj jdB and RkðjxiÞj jdB are the magnitude of the

original higher-order system and reduced model,

respectively.

Test System 1: A 9th-order system that is extensively

studied in engineering and sciences by several researchers

is adopted from the literature [39] as

The Hankel singular values of the original system are

0.8277 0.4769 0.1971 0.0613 0.0151 0.0032 0.00151

0.00048 0.0005]. The first three singular values are sig-

nificantly larger than the remaining ones, so a reduced

model is retrieved via truncating states corresponding to

those, as these states decay more quickly and become

insignificant. The state-space model of the abated model

retrieved via conventional balanced truncation [32, 33] was

obtained as follows:

RBTMðsÞ ¼
0:1405s2 � 0:8492sþ 1:8814

s3 þ 1:575s2 þ 3:5235sþ 1:7169
ð55Þ

The steady-state gain of the original plant (54) is com-

puted as 1, and the steady-state gain of the abated model

(55) via balanced truncation is 1.0958.

To achieve an accurate overall response (transient and

steady-state) approximation of the original system, the

reduced model should maintain a few starting time

GðsÞ ¼ s4 þ 35s3 þ 291s2 þ 1093sþ 1700

s9 þ 9s8 þ 66s7 þ 294s6 þ 1029s5 þ 2541s4 þ 4684s3 þ 5856s2 þ 4620sþ 1700
ð54Þ
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moments (for excellent steady-state accuracy) and a few

Markov parameters (for good transient accuracy). The

abated model numerator polynomial is obtained by

matching the initial moments as discussed in Section 3.2,

such that the model retains the first-time moment and few

Markov parameters. Now, using eq. (17–27), the abated

model numerator polynomials are obtained as follows:

n2ðsÞ ¼ �0:8492sþ 1:7169 with T ¼ 1;M ¼ 1.

n2ðsÞ ¼ 1:7169 with T ¼ 1;M ¼ 2.

Corresponding diminished models are obtained as fol-

lows (figures 5, 6):

RT¼1;M¼1
BTM MMðsÞ ¼

�0:8492sþ 1:7169

s3 þ 1:575s2 þ 3:5235sþ 1:7169
ð56Þ

RT¼1;M¼2
BTM MMðsÞ ¼

1:7169

s3 þ 1:575s2 þ 3:5235sþ 1:7169
ð57Þ

Discussion: Figure 5 compares the step response of the

original plant, diminished models returned from the sug-

gested method, and models recovered from newly proposed

algorithms [11, 32, 37, 38, 40, 41] in the literature. Simi-

larly, figure 6 compares the frequency responses. Figures 5

and 6 show that the suggested reduced model closely

mimics the plant time and frequency responses across the

entire frequency range. Table 2 compares the findings of

the recommended strategy to various standard techniques in

the literature [11, 25, 32, 35, 37–39, 40, 41] in terms of

numerous performance indices such as ISE, IAE, IRE,

RMSE, and H? error. This table indicates that the pro-

posed technique yields the lowest error indices, which are

lower than the error values produced by most technologies

in the recent past.

Test System-2: The practical viability of the proposed

approach is illustrated using the single-machine infinite-bus

(SMIB) power system model from [45–49]. The SMIB

power system’s detailed block diagram, mathematical

model, and parameter values for different operating points

are considered from [45, 49].

The xT and xL in the figure 7 represent the reactance of

the transformer and the transmission line, respectively.

The VT and VL are the generator terminal and infinite bus

voltages, respectively. The system comprises a three-

phase 160-MVA synchronous machine with an automatic

excitation control system. The Hankel singular values of

the SMIB power system model are [12.1598 10.6553

2.4869 1.0555 0.1337 0.0052 0.0018 0.0007 0.0002

0.0000]

X10
i¼5

ri ¼ 0:1416\r4 ¼ 1:0555 ð58Þ

The fourth-order reduced model gives a good approxi-

mation of the original system.

R4ðsÞ ¼
1

D4ðsÞ
B11ðsÞ B12ðsÞ
B21ðsÞ B22ðsÞ

� �
ð59Þ

The fourth-order reduced models obtained using the

proposed reduction technique are obtained as follows.

B11ðsÞ ¼ 2:519s2 � 9:0997s� 66:4711

B12ðsÞ ¼ 29:09s2 þ 57:9743sþ 79:3593
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B21ðsÞ ¼ 2:6906s2 þ 2:9673sþ 29:9846

B22ðsÞ ¼ �1:0969s2 � 7:7939s� 2:3767

The common denominator is obtained as follows:

D4ðsÞ ¼ s4 þ 1:9889s3 þ 14:1829s2 þ 17:3303sþ 30:9775

Discussion: The relative Bode graphs of the original

two-area power system output 1 and 2, the retrieved

diminished models via the proposed method, and reduced

models attained using [32, 36, 38, 46–48, 57] are exem-

plified in figures 8 and 9, respectively. In table 3, the root

mean squared error between Bode’s graph of abated models

and the existing system is given, and the integral squared

error between the original system and diminished models

subject to a step input is also provided. It is evident from

the Bode graph comparisons of the reduction methodolo-

gies that the suggested method applied to a given power

Table 2. Performance comparison of the original plant and various abated models from recent literature for test system 1.

Reduction Method Diminished model H1 norm IRE ISE IAE RMSE

Original system 0.4705

Proposed method T=1, M=1 �0:8492sþ1:7169
s3þ1:575s2þ3:5235sþ1:7169

0.1603 0.4469 0.3581 4.7236 71.1991

Proposed method T=1, M=2 1:7169
s3þ1:575s2þ3:5235sþ1:7169

0.5007 0.3528 0.7544 5.9880 50.3732

MSC IPAM [11] 674sþ1700
3099s3þ5031s2þ4201sþ1700

0.4808 0.2838 0.6032 6.0996 64.6337

SEM FDM [25] �0:12026s2þ0:3172sþ0:493
s3þ1:494s2þ1:34sþ0:493

0.3976 0.3231 0.3413 4.5961 85.9258

BTM [32] 0:1405s2�0:8492sþ1:8814
s3þ1:575s2þ3:5235sþ1:7169

0.1116 0.4576 8.4985 90.0512 86.6606

BTM FDM [35] �1:6736s2�0:0392sþ1:717
s3þ1:575s2þ3:523sþ1:717

1.7420 2.3907 4.3323 14.0716 99.0236

BTM PAM [37] �1:674s2�0:0393sþ1:717
s3þ1:575s2þ3:523sþ1:717

1.7424 2.3914 4.3339 14.0740 99.0249

MBTM [38] 0:1405s2�0:8492sþ1:7169
s3þ1:575s2þ3:5235sþ1:7169

0.1692 0.3930 0.3856 4.7764 86.6654

BTM MCCF [39] �0:0386sþ1:7169
s3þ1:575s2þ3:5235sþ1:7169

0.4815 0.3530 0.6990 5.8230 57.2843

MSC DT [40] 291s2þ1093sþ1700
3099s3þ5031s2þ4201sþ1700

0.5252 0.2796 0.5670 5.9323 84.7329

GPC [41] 0:0347769s3þ0:3685s2þ1:5499sþ2:7164

s3þ32þ4:7164sþ2:7164

0.8397 Inf 3.5676 9.3380 104.1354

*Mihailov stability criteria (MSC), Improved Pade approximation method (IPAM), Stability equation method (SEM), factor division method (FDM),

Modified Cauer continued fraction (MCCF), Modified BTM (MBTM), Direct truncation (DT), Pade approximation method (PAM), generalized pole

clustering (GPC)

Figure 7. Single-machine infinite-bus (SMIB) power system.
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system retrieves a diminished system that closely matches

the frequency response of the original system in the low and

medium frequency ranges and approximately in the high-

frequency range. The error measures in table 3 validate the

persuasiveness of the proposed approach, which gives the

lowest error values, so the proposed conventional method

can be considered an alternative to system order reduction

compared to some standard techniques.

Test System-3: Consider a sixth-order stable, practical

open-loop helicopter engine, including a fuel control sys-

tem for the compensator design discussed in [16].

The closed-loop reference model to design a compen-

sator controller is considered from [16, 51–53]

MðsÞ ¼ 4

s2 þ 4sþ 4
ð61Þ

Open loop reference model computed using (29) as

follows:

MopenðsÞ ¼
4

sðsþ 4Þ ð62Þ

5.2 Design of compensator using the original
system

The arbitrary controller transfer function is

The general structure of the compensator is
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Figure 9. Bode magnitude diagram of the original system and

4th order reduced models for system output 2.

Table 3. Performance comparison of the original plant and various abated models from recent literature for test system 2.

Reduction methodology

r11ðsÞ r12ðsÞ r21ðsÞ r22ðsÞ

ISE RMSE ISE RMSE ISE RMSE ISE RMSE

Proposed method 0.7720 1.6443 0.3101 0.1711 0.3254 2.2022 0.0796 1.0903

BTM [32] 11.263 1.8486 7.8017 0.3399 7.8942 1.3665 5.2269 5.5796

IBRT [36] 3551.8 14.862 3231.8 7.5076 761.49 15.251 673.06 15.511

MBTM [38] 0.6116 1.7705 0.3297 0.1738 0.2628 1.8554 0.0773 0.8777

DPR IWO [46] 294.98 6.9509 294.55 5.6006 68.804 4.2029 67.183 13.241

DPR FA [47] 1.0905 3.8959 0.5632 0.2702 0.5304 1.7451 0.2521 1.9627

BTM PSO [48] 0.4284 2.5944 0.1859 0.1612 0.1397 1.7343 0.0339 1.2078

DPR FDM [57] 1694.3 13.736 1994.7 6.8868 383.64 14.097 409.54 14.649

*Improved balanced realization technique (IBRT), dominant pole retention (DPR), Invasive weed optimization (IWO), Firefly algorithm (FA), Particle

swarm optimization (PSO)

GðsÞ ¼ 248:05s4 þ 1483:3s3 þ 91931s2 þ 468730sþ 634950

s6 þ 26:24s5 þ 1363:1s4 þ 26803s3 þ 326900s2 þ 859170sþ 528050
ð60Þ
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CCOMðsÞ ¼
K1ð1þ K2sÞ
sð1þ K3sÞ

ð64Þ

To determine the unknown controller parameters, it is

required to match the initial three-time moments (T) of (63)
with (64) as follows:

K1ð1þ K2sÞ
sð1þ K3sÞ

¼ 2:112e06þ 3:437e06sþ 1:308e06s2

sð2:54e06þ 2:51e06sþ 836454s2Þ ð65Þ

K1ð1þ K2sÞ
ð1þ K3sÞ

¼ 0:8316þ 0:5313s� 0:2841s2 ð66Þ

Now, by cross multiplying eq. (66) and comparing

identical powers of ‘s’ from s0 to s2 the compensator

parameters, they are computed as follows:

K1 ¼ 0:8316, K2 ¼ 1:1735 and K3 ¼ 0:5347.
The compensator transfer function is obtained as follows:

GCOMðsÞ ¼
0:976sþ 0:8316

sð0:5347sþ 1Þ ð67Þ

The transfer function of a closed-loop controlled system

with the compensator is designed using an original plant

and can be obtained as

GG
clðsÞ ¼

GCOMðsÞGðsÞ
1þ GCOMðsÞGðsÞ

ð68Þ

GCOMðsÞ is the compensator designed using the original

system.

5.3 Design of compensator using the proposed
reduced model

The third-order reduced model via the proposed BTM and

matching moments was computed as follows:

RPr opðsÞ ¼
356:0219s2 � 93:9535sþ 1484:0947

s3 þ 2:1561s2 þ 1018:9077sþ 1234:2329

ð69Þ

The arbitrary controller transfer function is computed

as

CðsÞ ¼ MopenðsÞ
RPr opðsÞ

¼ 4937þ 4076sþ 8:624s2 þ 4s3

sð5936þ 1108sþ 1330s2 þ 356s3Þ
ð70Þ

To determine the unknown controller parameters, it is

required to match the initial three-time moments (T) of (63)
with (70) as follows:

K1ð1þ K2sÞ
sð1þ K3sÞ

¼ 4937þ 4076sþ 8:624s2

sð5936þ 1108sþ 1330s2Þ ð71Þ

K1ð1þ K2sÞ
ð1þ K3sÞ

¼ 0:8316þ 0:5313s� 0:2841s2 ð72Þ

Now, by cross-multiplying eq. (72) and comparing

identical powers of ‘s’ from s0 to s2 the compensator

parameters, they are computed as follows:

K1 ¼ 0:8316, K2 ¼ 1:1735 and K3 ¼ 0:5347.
The compensator transfer function is obtained as follows:

RCOMðsÞ ¼
0:976sþ 0:8316

sð0:5347sþ 1Þ ð73Þ

The transfer function of a closed-loop controlled system

with the compensator is designed using an abated model

obtained by using

GR
clðsÞ ¼

RCOMðsÞGðsÞ
1þ RCOMðsÞGðsÞ

ð74Þ

RCOMðsÞ is the compensator designed using the proposed

reduced system.

Discussion: The figure 10 displays the closed-loop sys-

tem plant’s step response, incorporating compensators

created by various model reduction methods. These

CðsÞ ¼ MopenðsÞ
GðsÞ ¼ 2:112e06þ 3:437e06sþ 1:308e06s2 þ 107212s3 þ 5452s4 þ 105s5 þ 4s6

sð2:54e06þ 2:51e06sþ 836454s2 þ 9:786e04s3 þ 2476s4 þ 248:1s5Þ ð63Þ
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Figure 10. Comparison of step responses of closed-loop con-

trolled systems for test system 3.
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compensators are computed using the natural plant and

decreased models; it is evident that the characteristics of the

closed-loop regulated systems closely reflect those of the

reference model in transient and steady-state areas. Table 4

displays the time-domain characteristics of the closed-loop

plants with compensators. The time-domain properties of

Table 4. Qualitative comparison of closed-loop controlled system.

Reduction

methodology Abated model

Compensator gains

[K, K1, K2]

Time response performance

Rise

time

Peak

amplitude

Settling

time

– Closed loop reference model – 1.679 0.9991 2.917

– Original model 0.8316, 1.1735,0.5347 1.7628 1.0026 2.8107

Proposed method T=3,
M=0

356:0219s2 � 93:9535sþ 1484:0947

s3 þ 2:1561s2 þ 1018:9077sþ 1234:2329

0.8316, 1.1735, 0.5347 1.7628 1.0026 2.8107

Proposed method T=1,
M=1

122:6912sþ 1484:0947

s3 þ 2:1561s2 þ 1018:9077sþ 1234:2329

0.8316, 1.1735

0.5346

1.8575 1.0186 2.8142

GPC IPAM [15]

30:7724sþ 140:3316

s3 þ 1:9541s2 þ 129:3247sþ 116:7054

0.8316, 1.1677, 0.5289 1.7698 1.0025 2.8204

GPC PAM [16] 0:6357sþ1:48
s2þ3:042sþ2:056

1.3892, 1.0058, 0.2058 1.1802 1.0217 4.2186

RAM FDM [23]

3:8651s2 þ 20:3182sþ 25:5227

s3 þ 14:0706s2 þ 37:2422sþ 22:889

0.8316, 1.1735,

0.5347

1.7628 1.0026 2.8106

SEM FDM [24]

9:5695s2 þ 46:873sþ 63:495

2:593s3 þ 33s2 þ 85:917sþ 52:805

0.8316, 1.1736,

0.5348

1.7627 1.0026 2.8106

BTM [32]

3:9166s2 þ 122:6912sþ 1431:471

s3 þ 2:1561s2 þ 1018:9077sþ 1234:2329

0.8623, 0.8715, 0.3815 1.7996 1.0202 4.0711

MBTM [38]

3:9166s2 þ 122:6912sþ 1484:0947

s3 þ 2:1561s2 þ 1018:9077sþ 1234:2329

0.8316, 0.8693, 0.3764 1.8475 1.0185 2.8116

RHA FDM [58]

16:035s2 þ 419:96sþ 634:95

4:21s3 þ 227:73s2 þ 818:61sþ 528:05

0.8316, 1.1735,

0.5347

1.7628 1.0026 2.8106

DM PAM [59]

283:98s2 � 57:431sþ 761:9

1:6082s3 þ 78:46s2 þ 515:5sþ 633:7

0.8317, 1.1736, 0.5348 1.7625 1.0026 2.8104

RAM Routh approximation method, DM differentiation method, RHA Routh Hurwitz array
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the closed-loop plant with the compensator developed using

the presented reduced model are nearly identical to those of

the closed-loop system with the compensator obtained

using the original plant, and these specifications are almost

similar to those of the reference model. As a result, the

proposed approach generates lower-order models and con-

trollers, which are especially valuable for quick compre-

hension of large-scale systems, simplifying controller

design, cutting computing complexity, allowing for faster

simulations, and reducing storage space requirements.

Test System 4: Consider the flexible-missile control

model and the rigid body loop given by an eighth-order

transfer function for the design of the PID controller design

so that it provides a natural frequency of 10 rad/sec and a

damping ratio of 20 [40]

The closed-loop reference model to design a PID con-

troller is considered from [40]

MðsÞ ¼ 100

s2 þ 400sþ 100
ð76Þ

The open-loop reference model is computed using (29)

as follows:

MopenðsÞ ¼
100

sðsþ 400Þ ð77Þ

5.4 PID controller design using the original
system

The arbitrary PID controller transfer function was obtained

using eq. (75) and (77) as follows:

The general structure of the PID controller is

CPIDðsÞ ¼
Ki þ Kpsþ Kds

2

s
ð79Þ

To determine the unknown controller parameters, it is

required to match the initial three-time moments (T) of (78)
with (79) as follows:

Ki þ Kpsþ Kds
2

s

¼ �1:442e16� 2:823e14s� 3:422e13s2

sð�2:362e14� 6:167e11sþ 7:775e10s2Þ

ð80Þ

Ki þ Kpsþ Kds
2 ¼ 61:039þ 2:3293sþ 60:1985s2 ð81Þ

Now, comparing the identical powers of ‘s’ from s0 to s2

the PID controller parameters are computed as follows:

Kp ¼ 2:3293, Ki ¼ 61:0396 and Kd ¼ 0:1985.

The PID controller transfer function is obtained as

GPIDðsÞ ¼
61:0396þ 2:3293sþ 0:1985s2

s
ð82Þ

The transfer function of a closed-loop controlled system

with a PID controller is designed using the original system

as follows:

GG
clðsÞ ¼

GPIDðsÞGðsÞ
1þ GPIDðsÞGðsÞ

ð83Þ

GPIDðsÞ is the controller designed using the original

system.

5.5 PID controller design using the proposed
reduced system

The second-order diminished model via the proposed

method, as discussed in Sections 3.1 and 3.2, was computed

as follows:

RPropðsÞ ¼
�0:0970sþ 2:4796

s2 þ 0:9322sþ 605:4218
ð84Þ

GðsÞ ¼ �s6 þ 306s5 � 4:96� 104s4 þ 3:577� 106s3 � 6:303� 107s3

s8 þ 53s7 þ 3:05� 104s6 þ 1:375� 106s5 þ 1:839� 108s4 þ 5:232� 109s3 þ 3:422� 1011s3

�1:246� 1010s2 þ 5:906� 1011

þ2:823� 1012s2 þ 1:442� 1014

ð75Þ

CðsÞ ¼ MopenðsÞ
GðsÞ

¼ �1:442e16� 2:823e14s� 3:422e13s2 � 5:232e11s3 � 1:839e10s4 � 1:375e08s5 � 3:05e06s6 � 5299s7 � 100s8

sð�2:362e14� 4:393e12sþ 3:767e10s2 � 1:368e09s3 þ 1:626e07s4 � 72800s5 þ 94s6 þ s7Þ
ð78Þ
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The arbitrary PID controller transfer function was

obtained using eq. (75) and (84) as follows:

Ki þ Kpsþ Kds
2

s
¼ �6:054e� 04� 93:22s� 100s2

sð991:8þ 36:32sþ 0:097s2Þ ð85Þ

Ki þ Kpsþ Kds
2 ¼ 61:0403þ 2:3292sþ 0:1921s2 ð86Þ

Now, comparing the identical powers of ‘s’ from s0 to s2

the PID controller parameters are computed as follows:

Kp ¼ 2:3292, Ki ¼ 61:0403 and Kd ¼ 0:1921

The PID controller transfer function is obtained as

RPIDðsÞ ¼
0:1921s2 þ 2:3292sþ 61:0403

s
ð87Þ

The transfer function of a closed-loop controlled system

with a PID controller is designed using the original system

as follows:

GR
clðsÞ ¼

RPIDðsÞGðsÞ
1þ RPIDðsÞGðsÞ

ð88Þ

RPIDðsÞ is the controller designed using the reduced

system.

Discussion: The figure 11 compares the temporal

response of the closed-loop transfer function of the

original plant with PID controllers that were calculated

by approximated systems with the reference system. It is

evident that the features of the closed-loop controlled

systems closely reflect those of the reference model in

both transient and steady-state areas. Table 5 displays

the time-domain characteristics of the closed-loop plants

with controllers. The time-domain properties of the

closed-loop plant with the controller created using the

presented reduced model are nearly identical to those of

the closed-loop system with the controller designed

using the original plant, and these specifications are

roughly equivalent to the reference models. Conse-

quently, the proposed approach produces lower-order

models and controllers, which are particularly effective

for rapid comprehension of high-dimensional plants,

controller design reduction, computation complexity

reduction, allowing for better simulations, and memory

space reduction.
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Figure 11. Closed-loop controlled system step response com-

parison of different techniques for test system 4.

Table 5. Qualitative comparison of closed-loop controlled system.

Reduction methodology Diminished model

Controller gains

[Kp, Ki, Kd]

Time response performance

Rise time Peak time Settling time

Closed loop reference model – 8.7826 42.1569 15.6410

– Original model 2.3293, 61.0396, 0.1985 8.8147 42.1567 15.6444

Proposed method T=2, M=0 �0:0970sþ2:4796
s2þ0:9322sþ605:4218

2.3292, 61.0403, 0.1921 8.8107 42.1566 15.6438

MSC DT [10] �0:1246sþ5:906
2:4394s2þ1:9977sþ1442

1.2197, 61.0396, 0.1292 8.7470 41.9661 15.5893

MSC IPAM [11] 5:906
2:4394s2þ1:9977sþ1442

-0.0680, 61.0396, 0.1034 8.6999 41.7425 15.5268

GPC FDM [12] �0:1282sþ3:268
s2þ1:15sþ797:9

2.3298, 1.0388, 0.16805 8.8009 42.1587 15.6408

IMPC IPAM [22] 2:8024
s2þ1:0788sþ684:22

-0.0564, 61.0388, 0.0894 8.6975 41.7458 15.5278

SEM FDM [25] �0:1246sþ5:906
2:4399s2þ28:23sþ1442

2.3301, 61.0396, 0.1498 8.7986 42.1590 15.6364

BTM [32] �0:1384sþ1:8753
s2þ0:9322sþ605:4218

5.8776, 80.7091, 0.5672 6.8458 19.8395 11.8579

MBTM [38] �0:1384sþ2:4796
s2þ0:9322sþ605:4218

2.1064, 61.0518, 0.1753 8.7959 42.1103 15.6255

RHA FDM [58] �0:2353sþ5:906
1:8794s2þ1:1903sþ1442

2.3296, 61.0396, 0.1726 8.8021 42.1579 15.6414

*Improved modified pole clustering (IMPC)
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6. Conclusion and future scope

A novel approach has been put forward for simplifying

complex systems on a large scale. The suggested method-

ology maintains the benefits of the balanced truncation

strategy while also considering the static and transient

reactions of the smaller plant’s higher-order system (HOS).

Furthermore, it effectively overcomes the constraints

imposed by the balanced truncation methods. The proposed

approach demonstrates improved accuracy in analyzing

real-time plant data compared to current methodologies.

Furthermore, the analysis of reaction times indicates that

the simplified models generated by the proposed technol-

ogy provide a very accurate estimation of the behavior of

large-scale systems. It is evident that the suggested

methodology is suitable for single-input, single-output

(SISO) models and yields favorable results for higher-order

multi-variable systems. The use of the proposed reduced-

order model extends to the construction of controllers for

plants of significant size. It has been observed that the time

domain specifications of the closed-loop system derived

from the reduced-order model closely resemble those

obtained from the higher-order system. The use of simpli-

fied order systems in controller design renders it more

approachable compared to the utilization of large-scale

systems in controller design. Hence, the suggested

methodology can optimize controllers’ designs for many

categories of expansive real-time systems. Furthermore, the

approach described herein may include Order reduction of

multi-input and multi-output systems, Discrete-time sys-

tems, linear interval systems, and Controller

implementation.
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method. IETE Tech. Rev. 39(2): 257–269
[38] Duddeti B B 2023 Approximation of fractional-order

systems using balanced truncation with assured steady-state

gain. Circuits Syst. Signal Process 42: 5893–5923
[39] Duddeti B B 2023 Order reduction of large-scale linear

dynamic systems using balanced truncation with modified

Cauer continued fraction. IETE J. Educ.. https://doi.org/10.
1080/09747338.2023.2178530

[40] Prajapati A K and Prasad R 2021 A novel order reduction

method for linear dynamic systems and its application for

designing of PID and lead/lag compensators. Trans. Inst.
Meas. Contr. 43(5): 1226–1238

[41] Prajapati A K and Prasad R 2022 Reduction of linear

dynamic systems using generalized approach of pole

clustering method. Trans. Inst. Meas. Contr. 44(9):

1755–1769

[42] Obinata G and Inooka H 1983 Authors reply to comments on

model reduction by minimizing the equation error. IEEE
Trans. Autom. Contr. 28(1): 124–125

[43] Eitelberg E 1981 Model reduction by minimizing the

weighted equation error. Int. J. Control 34(6):

1113–1123

[44] Salah K 2017 A novel model order reduction technique

based on artificial intelligence. Microelectron. J. 65:

58–71

[45] Alsmadi O M, Abo-Hammour Z S and Al-Smadi A M 2012

Robust model order reduction technique for MIMO systems

via ANN-LMI-based state residualization. Int. J. Circuit
Theory Appl. 40(4): 341–354

[46] Abu-Al-Nadi D I, Alsmadi O M, Abo-Hammour Z S, Hawa

M F and Rahhal J S 2013 Invasive weed optimization for

model order reduction of linear MIMO systems. Appl. Math.
Mode. 37(6): 4570–4577

[47] Alsmadi O, Al-Smadi A and Gharaibeh E A 2019 Firefly

artificial intelligence technique for model order reduction

with substructure preservation. Trans. Inst. Meas. Contr.
41(10): 2875–2885

[48] Duddeti B B, Naskar A K and Subhashini K R 2023 Order

reduction of LTI systems using balanced truncation and

particle swarm optimization algorithm. Circuits Syst. Signal
Process. 42: 4506–4552

[49] Vasu G, Sivakumar M and Ramalingaraju M 2020

Optimal model approximation of linear time-invariant

systems using the enhanced DE algorithm and improved

MPPA method. Circ. Syst. Signal. Process 39:

2376–2411

[50] Lucas T N 1984 Biased model reduction by factor division.

Electr. Lett. 20(14): 582–583
[51] Peterson W C and Nassar A H 1978 On the synthesis of

optimum linear feedback control systems. J. Frankl. Inst.
306(3): 237–256

[52] Towill D R 1970 Transfer function techniques for control
engineers. 1stedn.London: IliffeBooksLtd

[53] Jamshidi 1998 Large-scale systems: modeling, control, and

fuzzy logic, first edit. Upper Saddle River: Prentice Hall
PTR

[54] Gautam S K, Nema S and Nema R K 2023 a novel order

abatement technique for linear dynamic systems and design

of PID controller. IETE Tech. Rev.. https://doi.org/10.1080/
02564602.2023.2268582

[55] Banerjee R, Biswas A and Bera J 2023 A novel integrated

differential-Routh approach to develop reduced order con-

troller with improved performance. Electr. Eng.. https://doi.
org/10.1007/s00202-023-02123-8

[56] Suman S K 2023 A new scheme for the approximation of

linear dynamical systems and its application to controller

design. Circuits Syst. Signal Process. https://doi.org/10.

1007/s00034-023-02503-2

[57] Prajapati A K and Prasad R 2019 Reduced order modelling

of linear time invariant systems using the factor division

method to allow retention of dominant modes. IETE Tech.
Rev. 36(5): 449–462

[58] Singh N, Prasad R and Gupta H O 2006 Reduction of linear

dynamic systems using Routh Hurwitz array and factor

division method. IETE J. Educ. 47(1): 25–29

Sådhanå          (2024) 49:164 Page 17 of 18   164 

https://doi.org/10.1080/09747338.2023.2178530
https://doi.org/10.1080/09747338.2023.2178530
https://doi.org/10.1080/02564602.2023.2268582
https://doi.org/10.1080/02564602.2023.2268582
https://doi.org/10.1007/s00202-023-02123-8
https://doi.org/10.1007/s00202-023-02123-8
https://doi.org/10.1007/s00034-023-02503-2
https://doi.org/10.1007/s00034-023-02503-2


[59] Kumar D K, Nagar S K and Tiwari J P 2013 A new

algorithm for model order reduction of interval systems.

Bonfring Int. J. Data Min. 3(1): 6–11
[60] Al-Amer S H and Al-Sunni F M 2000 Approximation of

time-delay systems. In Proceedings of the 2000 American
Control Conference. ACC IEEE Cat. No. 00CH36334, 4:
2491–2495

[61] Bingi K and Prusty B R 2021 Approximation of Time- Delay

Systems Using Curve Fitting Technique. In 2021 Innovations
in Power and Advanced Computing Technologies
(i-PACT,) pp. 1–6. IEEE

[62] Golub, Gene H and Charles F Van Loan 1989 Matrix
Computations. 2nd ed. Johns Hopkins Series in the Mathe-

matical Sciences 3. Baltimore, Md: Johns Hopkins University

Press

Springer Nature or its licensor (e.g. a society or other partner)

holds exclusive rights to this article under a publishing agreement

with the author(s) or other rightsholder(s); author self-archiving of

the accepted manuscript version of this article is solely governed

by the terms of such publishing agreement and applicable law.

  164 Page 18 of 18 Sådhanå          (2024) 49:164 


	A new method for model reduction and controller design of large-scale dynamical systems
	Abstract
	Introduction
	Problem statement
	Selection of reduced model order

	Proposed reduction procedure
	Procedure to determine abated model denominator by Balanced Truncation [32, 33, 48]
	Determination of reduced model numerator using a factor division-like method [50]

	Controller and compensator design algorithm
	The control design problem can be illustrated as follows
	To design the PID controller
	To design a compensator controller

	Test systems and validation of results
	The performance error indexes are considered as follows
	Design of compensator using the original system
	Design of compensator using the proposed reduced model
	PID controller design using the original system
	PID controller design using the proposed reduced system

	Conclusion and future scope
	References


